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a b s t r a c t

Piezoelectrically active cellular solids are reminiscent of passive structural cellular solids, and therefore, de-

pending on their inner cellular architecture, their cellular ligaments can deform locally by either bending or

axial stretching. Three main cellular solid structures (i.e. hexagonal, tetragonal and triangular) that exemplify

bending and stretching dominated piezoelectrically active cellular solids are considered. Three-dimensional

finite element models were developed to understand the relationships between cellular structure, deforma-

tion modes and their effective electromechanical properties. The principal elastic, dielectric and piezoelectric

properties of piezoelectric 3-1 cellular solids are insensitive to inner structure or topology in the longitudi-

nally poled systems and highly sensitive to structure in the transversely poled systems. The in-plane elec-

tromechanical properties are highly sensitive to cellular architecture and connectivity as well. The effective

out-of-plane elastic properties for all the three cellular structures depend linearly on relative density (i.e.

stretching dominated), while the dependence of the in-plane effective elastic properties is linear for trian-

gular and tetragonal cellular structures (i.e. stretching dominated) and generally non-linear for hexagonal

honeycombs (i.e. bending dominated). Amongst the longitudinally poled systems, the triangular structures

exhibit the highest in-plane stiffness properties. Amongst the transversely poled systems, the tetragonal

structure exhibits the best overall combination of piezoelectric figures of merit.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

Piezoelectrically active materials play an instrumental role in

wide range of actuating and sensing applications such as hy-

rophones, ultrasound and echo-cardiogram devices, wherein they

ndertake the critical role of converting mechanical energy (e.g.,

ue to vibrations or static strain) to electrical energy (i.e., charge)

nd vice versa. Piezoelectric materials intended for sensing appli-

ations are required to ideally possess a combination of charac-

eristics such as high piezoelectric sensitivity (i.e. the ratio of the

enerated electric energy to the applied mechanical energy) and

ow acoustic impedance. Existing monolithic piezoelectric ceramics

e.g., lead zirconate titanate (PZT), barium titanate) and polymers

e.g., PVDF) exhibit less than ideal combined characteristics; ceram-

cs have high piezoelectric sensitivity and high acoustic impedance

hile piezoelectric polymers exhibit low piezoelectric sensitivity

nd low acoustic impedance. Only composite piezoelectric materials,
∗ Corresponding author. Tel.: +97165152955.
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ncluding both porous piezo-composites (e.g., Alvarez-Arenas and

e Espinosa, 1996; Alvarez-Arenas and Freijo, 1996; Banno, 1987;

ast and Wersing, 1989; Bowen et al., 2004; Bowen and Topolov,

003; Chen and Wu, 2004; Dunn and Taya, 1993b; Hikita et al.,

983; Iyer and Venkatesh, 2010, 2011; Kar-Gupta and Venkatesh,

006, 2007c; Kara et al., 2003; Mikata, 2001; Nagata et al., 1980;

iazza et al., 2005; Ramesh et al., 2005; Ting, 1985; Zhang et al.,

007) and polymer based piezo-composites (e.g., Dunn and Taya,

993a,c; Guinovart-Díaz et al., 2001; Hossack and Hayward, 1991;

ar-Gupta and Venkatesh, 2007a,b; Newnham et al., 1978; Petter-

ann and Suresh, 2000; Poizat and Sester, 1999; Ramesh et al., 2006;

ichard et al., 2004; Skinner et al., 1978)., show promise in provid-

ng the required combined characteristics of high piezo-sensitivity

nd low acoustic impedance. Available piezoelectric composites, al-

hough having played a prominent role in sensing devices, are far

rom demonstrating ideal combinations of high piezoelectric sensi-

ivity and reduced acoustic impedance. In addition, promising exist-

ng piezo composites (i.e., 3-1) is limited to one directional piezo-

ctivity, along the piezo elements axial direction. A promising ap-

roach that allow for achieving closer to ideal combinations of char-

cteristics, multi-dimensional piezo-sensitivity and tunable piezo

rystal symmetry is to tailor the microstructure of piezo-composites.

http://dx.doi.org/10.1016/j.ijsolstr.2015.10.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2015.10.024&domain=pdf
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Continuing efforts along this path have put the spotlight on a promis-

ing subclass of piezo-porous composites, namely piezoelectric cellu-

lar solids (e.g., Bosse et al., 2012; Challagulla and Venkatesh, 2009,

2012; Kar-Gupta and Venkatesh, 2007a, b, 2008; Marcheselli and

Venkatesh, 2008) and piezoelectric ferroelectret foams (Bauer et al.,

2004; Fang et al., 2007)

Recently, piezoelectric cellular solids have attracted significant in-

terest and several experimental (Arai et al., 1991; Haun and Newn-

ham, 1986; Li et al., 2003; Marselli et al., 1999; Ting, 1985; Ueda et al.,

2010) analytical (Banno, 1987; Bowen and Topolov, 2003; Dunn and

Taya, 1993b; Dunn and Wienecke, 1997; Espinosa and Tarakci, 1977)

and numerical-based (Bosse et al., 2012; Challagulla and Venkatesh,

2012; Challagulla and Venkatesh, 2013; Iyer and Venkatesh, 2010,

2011; Kar-Gupta and Venkatesh, 2006, 2007c; Marcheselli and

Venkatesh, 2008) studies have been performed to understand their

potential, characterize their electromechanical properties and eluci-

date the dependence of their macroscopic properties on their inner

cellular architecture (i.e. property-microstructure coupling). These

efforts confirmed that piezoelectric cellular solids can exhibit sig-

nificantly enhanced combinations of electromechanical properties

(i.e. higher piezoelectric sensitivity and reduced acoustic impedance)

(Challagulla and Venkatesh, 2012), and have shown that electrome-

chanical properties of cellular solids depend on: shape of the

porosity (e.g. spheroidal or fiber-like), cellular interconnectivity (i.e.

open vs. closed cells), aspect ratio of pore geometry and level of

porosity.

Prior efforts, experimental, analytical and computational, have

assessed the impact of porosity on acoustic impedance and sensi-

tivity of piezoelectric materials. Experimental studies considered

several porosity configurations, including: enclosed porosity in a

piezoelectric material (i.e., 3-0 type) (Arai et al., 1991; Haun and

Newnham, 1986; Li et al., 2003; Marselli et al., 1999; Ting, 1985;

Ueda et al., 2010); long continuous fiber-like porosity, similar to a

fiber composite (i.e., 3-1 type foam) (Bast and Wersing, 1989; Wirges

et al., 2007) and open-foam like porosity (i.e., 3-3 type foam) (Lee

et al., 2007; Roncari et al., 2001). Results confirmed that porosity

assist in enhancing the sensitivity of piezoelectric materials.

Analytical models developed to study porous piezoelectric mate-

rials considered multiple porosity configurations (3-0 and 3-1 types),

and aimed to establish predictive theories to describe the electrome-

chanical properties of piezoelectric porous materials. These analyti-

cal models either utilized simplified geometries (Banno, 1987; Bowen

and Topolov, 2003; Iyer and Venkatesh, 2014) or an Eshelby-type in-

clusion problem by employing a Green’s function approach (Dunn

and Taya, 1993b; Dunn and Wienecke, 1997). Models showed that an

increase in porosity leads to an increase in the figures of merit (i.e.,

enhanced sensing sensitivity).

Though analytical models were useful, their predictive utility was

limited as they employed simplifying assumptions (e.g., geomet-

ric), generally utilized transversely isotropic constituents and could

not easily accommodate complex geometries (e.g., stochastically dis-

tributed porosity, complex 3-3, 3-0 and 3-1 geometries). To accom-

modate accurate details, realistic porosity configurations, material

anisotropy and to study the effect of the poling direction, porosity

shape and orientation, finite element based analysis proved more

suitable. Efforts along this path illustrated the positive correlation

between porosity, increased piezoelectric sensitivity and reduced

acoustic impedance (Marcheselli and Venkatesh, 2008), and empha-

sized the importance of pore geometry and configuration. For in-

stance, piezoelectric properties were found to be sensitive to porosity

shape in 3-0 type foams (Iyer and Venkatesh, 2010, 2011) and poros-

ity relative orientation to poling direction in 3-1 foams (Kar-Gupta

and Venkatesh, 2006, 2007c).

The aforementioned studies of piezoelectric cellular solids high-

lighted the strong coupling between effective electromechanical

properties and cellular architecture. As for passive cellular solids this
oupling can be seen as a consequence of cellular ligaments acting as

etworks with admissible deformation modes (Alkhader and Vural,

008, 2009; Evans et al., 2001; Fleck et al., 2010; Pingle et al., 2011).

heoretically, this structure-property coupling can be exploited to

ptimize or application-tailor piezoelectric cellular solids. However,

o usefully exploit this coupling it should be understood first; in

articular, geometric cellular features and associated deformation

odes that strongly affect the macroscopic electromechanical prop-

rties should be identified and analyzed.

Literature from passive isotropic cellular solids suggests that one

f the main issues related to structure-property coupling is the

ole of the dominant deformation mode (i.e., bending vs. stretching

Andrews et al., 2001; Ashby et al., 2000; Deshpande et al., 2001;

nck et al., 2001; Shi and Tong, 1995)), which in turn is influenced by

odal connectivity (i.e. the average number of ligaments connected

o a vertex) and the nature of applied stresses (Alkhader and Vural,

010; Papka and Kyriakides, 1998). For piezoelectric cellular solids,

here is added complexity due to the elastic, dielectric and piezoelec-

ric anisotropy of the cellular solids constituents, the coupled electro-

echanical nature of the problem, the sensitivity to the poling direc-

ion and its orientation with respect to the porosity of cellular solids.

urthermore, the relationship between deformation modes, effective

lectromechanical properties and geometric features such as nodal

onnectivity in piezoelectric cellular solids is not yet completely un-

erstood or even explored.

Hence, in this paper, we develop finite element models to charac-

erize the effect of deformation modes (bending vs. stretching) on the

omplete electromechanical properties of piezoelectric active cellular

olids by studying two dimensional piezoelectric cellular solids with

arying cellular architectures, representative of cellular solids with

ending and stretching dominant deformation modes. Representa-

ive cellular solids include perfect honeycomb (represent bending

ominated cellular solids), 2D triangular structure (represent stretch-

ng dominated cellular solids) and tetragonal structure (represents

ellular solids with mixed or load dependent deformation modes)

The present work has been organized as follows. Section 2 illus-

rates the utilized methodology and discusses the details of the de-

eloped finite element models. Results are discussed in Section 3

nd principal conclusions from the present study are highlighted in

ection 4.

. Methodology

.1. Structure of piezoelectric cellular solids

Three classes of two dimensional honeycomb-like piezoelectric

ellular solids are considered (Fig. 1). These have been selected to rep-

esent cellular solids with low, moderate and high nodal connectivity,

hich can exhibit bending-dominated, mixed-mode, or stretching-

ominated deformation characteristics, depending on the loading

onditions. Nodal connectivity, α, is defined as the average number

f ligaments connected at a node (vertex). The low connectivity class

s represented by a hexagonal honeycomb structure (α = 3) while

he moderate connectivity class is represented by tetragonal struc-

ure (α = 4), and the high connectivity class is represented by trian-

ular structure (α = 6).

From literature of passive cellular solids we infer that, low con-

ectivity honeycombs generally deform in a bending mode under in-

lane normal and shear loading conditions, while highly connected

ellular structures, (with a connectivity of 6 in 2D), generally de-

orm in a stretching mode under all loading conditions (Alkhader and

ural, 2008, 2009; Deshpande et al., 2001; Guo and Gibson, 1999).

he tetragonal structures deform in a mixed-mode depending on the

n-plane loading direction; when the load is aligned with ligaments

t deforms in a stretching mode but when the load is not aligned

ith cellular ligaments (and for in-plane shear loading) tetragonal
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Fig. 1. Schematics illustrating the piezoelectric cellular structures with nodal connectivity (α) of 3, 4 and 6, respectively, representing honeycomb, tetragonal and triangular

structures studied in the present work. In the longitudinally poled structures (a, b, c) the porosity is aligned with the poling direction (i.e. 3-direction) while in the transversely

poled structures, the porosity is orthogonal to the poling direction.

Table 1

The fundamental properties of the model

piezoelectric system PZT-7A (poled in the

3-direction) chosen for the present study

(Density ρ = 7700 kg/m3).

Properties PZT-7A

C11 = C22 (GPa) 148

C12 (GPa) 76.2

C13 = C23 (GPa) 74.2

C33 (GPa) 131

C44 = C55 (GPa) 25.3

C66 (GPa) 35.9

e15 = e23 (C/m2) 9.31

e31 = e32 (C/m2) −2.324

e33 (C/m2) 10.9

κ11 = κ22 (nC/Vm) 3.98

κ33 (nC/Vm) 2.081
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tructures deform in a bending deformation mode. Therefore, one

an consider the three selected classes as representatives of cellular

olids that exhibit different deformation modes, which will permit

he investigation of the effect of cellular solids structure (topology)

nd deformation modes on the effective electromechanical proper-

ies of piezoelectric cellular solids.

A model piezoelectric constituent material, PZT-7A, is chosen for

he present study. The electromechanical properties of PZT-7A are

resented in Table 1. The three cellular classes considered in the

resent work have relative densities ranging from 5% to 20%. In each

f the three classes of cellular materials, longitudinally poled (i.e.

oled along the porosity axis) and transversely poled (i.e. poled or-

hogonal to the porosity axis) systems are considered.

.2. Constitutive behavior of piezoelectric cellular solids

The most general representation of the electromechanical coupled

onstitutive relationships for a piezoelectric material, in the linear

lastic regime, is given by:

ij = CE
ijklεkl − eijkEk

Di = eiklεkl + κε
ij Ej (1)

here i, j, k, l assume the value 1 to 3, σ and ε are the second-order

tress and strain tensors respectively, E is the electric field vector, D
s the electric displacement vector, CE is the fourth-order elasticity

ensor with the superscript “E” indicating that the elasticity tensor

orresponds to measurement of C at constant or zero electric field, e

s the third-order coupling tensor, and κε is the second-order permit-

ivity tensor measured at constant or zero strain. Eq. (1) represents

he elastic, piezoelectric and dielectric coefficients and has 21 elas-

icity, 18 piezoelectric and 6 permittivity constants that are indepen-

ent material properties. As the cellular solids studied in this work

re in the elastic regime, Eq. (1) is used to represent both the cel-

ular solids’ constituent material and macroscopic response. For the

atter, Eq. (1) is applied in terms of effective elastic, piezoelectric and

ielectric coefficients as well as average stress and strain. Based on

q. (1), the complete characterization of the effective electro-

echanical properties of piezoelectric cellular solids, in the linear

lastic domain, requires identifying all 45 independent material con-

tants.

.3. Finite element modeling of piezoelectric cellular solids

A unit cell approach is utilized in this work; where in the elec-

romechanical response of a large periodic piezoelectric cellular solid

s characterized by modeling the behavior of a representative volume

lement. The finite element analysis of the unit cell is carried out us-

ng the commercial software (ABAQUS). Eight-node linear piezoelec-

ric brick (C3D8E) elements are used to mesh the unit cell. Each node

as a total of four degrees of freedom – three translational (i.e., 1, 2, 3)

nd one electric potential (i.e., 9 per ABAQUS convention). To ensure

hat the unit cell captures the response of the entire material, peri-

dic boundary conditions are enforced. These conditions ensure that

he deformation and electric potential of a unit cell are compatible

cross its boundaries with that of the adjacent unit cells as explained

n Refs. (Iyer and Venkatesh, 2010, 2011). Periodicity is ensured by

orcing parallel faces of the unit cell to remain parallel during defor-

ation.

To apply the periodic conditions, the unit cell is modeled using a

esh that is symmetric in the 1-2, 2-3 and 1-3 planes. The periodic

oundary conditions are achieved by connecting each node on one

ide (e.g., left) with the corresponding node on the opposite side of

he unit cell (e.g., right) using constraint equations that are defined

ith respect to the master nodes, located on the vertices of the unit

ell (Fig. 2), referred to as A, AA, B, BB, C, CC, D, and DD. Although
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Fig. 2. (a) Schematic showing the triangular piezoelectric foam structure studied in the present work. (b) Finite element model of the corresponding unit-cell showing the master

nodes and the node sets R, RR, S, SS, T, TT, U, UU located along the boundaries of the unit-cell.
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Fig. 2 represents the triangular geometry, the process followed to set

up the period boundary conditions is still applicable. The constraint

equations are designed such that they allow the master nodes to con-

trol the overall behavior of the unit cell. All loads (mechanical and

electrical) are applied to the master nodes only. The master node A

is fixed and electrically grounded to prevent rigid body motion. The

total number of constraint equations is almost half the number of

boundary nodes in the model. To write the constraint equations in a

compact form, nodes on boundary lines connecting two master nodes

are assigned to a node set. Therefore, eight node sets are defined such

that: R contains the nodes between A and D; RR contains nodes be-

tween AA and DD; S contains nodes between B and C; SS contains

nodes between BB and CC; U contains nodes between A and B; UU

contains nodes between AA and BB; T contains nodes between C and

D; TT contains nodes between CC and DD. In terms of the node sets

and master nodes the constraint equations are given as:

PRi − PA = PSi − PB; PRRi − PAA = PSSi − PBB; PTi − PD = PUi − PA;
PTTi − PDD = PUUi − PAA (2)

where “P” refers to the degrees of freedom (i.e., P = 1, 2, 3, and 9) and

‘i’ represents the node in the set, see Fig. 2.

The unit cell is subjected to a set of controlled mechanical and

electrical loading conditions and its response to each loading is stud-

ied. Data from the loadings (tests) is used to determine all 45 cor-

responding material constants (i.e. complete electroelastic moduli:

elastic, piezoelectric and dielectric). The outlined finite element mod-

eling scheme can be adopted to determine the complete electroelas-

tic moduli for any piezoelectric cellular architecture as long as it can

be represented by a unit cell. In our prior studies, the electromechan-

ical response of a unit-cell has also been checked to ensure that it

accurately represents the electromechanical response of a larger vol-

ume of material comprised of many unit-cells (Iyer et al., 2014).

In the finite element models developed in this study, it is assumed

that all regions in the piezoelectric foams are poled uniformly in one

direction. From a practical point of view, such uniform poling can

be readily realized in longitudinally porous honeycombs as uniform

electric fields in the out-of-plane (i.e., 3) direction can be easily cre-

ated in such foams. However, poling of transversely porous piezo-

electric honeycombs in a uniform manner could be challenging (Iyer

et al., 2014). Some regions may remain un-poled or be poled in a di-

rection that is different from the direction that is originally intended

in the poling process. However, if the porous regions were to be filled

by a material with elastic modulus and dielectric constant that is con-

siderably lower than that of the honeycomb (e.g., a polymer), then

significant improvements in the uniformity of the poling characteris-

tics across a wider region of the foams could be achieved (Iyer et al.,

2014). Alternately, a poled, solid piezoelectric material may, in prin-

ciple, be selectively treated such that the inner regions of the foams
re removed while retaining the foam network to create a uniformly

oled foam structure.

. Results

.1. Effective elastic properties

Using finite element analysis, for each of the three piezoelectric

lasses considered (see Fig. 1), the effective elastic constants repre-

ented by CE
ijkl

in Eq. (1) and the elastic moduli and Poisson’s ratios

ere obtained. Effective constants were obtained for a range of rel-

tive densities (Fig. 3) as well as for longitudinally poled and trans-

ersely poled systems.

The finite element results for the longitudinally poled hexago-

al structures were first validated using an analytical model devel-

ped for longitudinally poled porous piezo composite with circular

orosity (Dunn and Taya, 1993b) (which structurally resemble the

exagonal-piezo structures considered in this work).

For the longitudinally poled systems, it is demonstrated that

ll the three cellular structures exhibit similar out-of-plane (i.e. 3-

irection) behaviors. This outcome is anticipated as, regardless of

tructure (or topology), the three cellular architectures have the same

rojected area density, and in an out-of-plane loading scenario, the

ell walls are loaded axially. However, Fig. 3 illustrates that the in-

lane (i.e. 1-2 plane) behavior is highly sensitive to cellular topol-

gy and connectivity. For instance, normal effective moduli (C11 and

22) are the lowest for the honeycomb structure and the highest for

he tetragonal structure (whose ligaments, for the particular load-

ng scenario used in this study, are aligned with loading direction).

11 and C22 for the triangular structure approach those of tetrago-

al structure. Coupling modulus C12 that defines developed stresses

long the lateral direction (i.e. 2-direction) due to axial strain (i.e. 1-

irection) is the highest for the honeycomb structure and the lowest

or the tetragonal structure. This modulus is related to the Poisson’s

atio which is sensitive to topology, particularly to inclined ligaments

hat couple between the two material principal directions. The most

ensitive elastic property to cellular topology is the in-plane shear

odulus (C66), which is significantly higher for the triangular struc-

ures as compared to that of both hexagonal and tetragonal structures

Fig. 3).

However, for the transversely poled systems, the normal elastic

odulus along the 2-direction is the least sensitive to the cellular

opology as the three structures have the same projected area density

long the 2-direction and upon loading along the 2-direction the cell

alls of all the three structures are loaded axially. On the other hand,

he shear modulus in the 1-3 plane (i.e. C55) is the most sensitive to

he foam topology with the foam structure with the highest nodal

onnectivity (i.e. the triangular structure) exhibiting the highest C55

odulus.
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Fig. 3. Variation of the effective stiffness elastic constants with relative density in the longitudinally poled (L) and transversely poled (T) honeycomb, tetragonal and triangular

piezoelectric foams structures, respectively, with nodal connectivity α = 3, 4, 6. (The analytical model predictions by Dunn and Taya, (1993) are for a longitudinally poled system

with circular porosity.)
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Overall, Fig. 3 illustrates that the effective out-of-plane elastic

roperties (i.e. along 3-direction for longitudinally poled systems and

long the 2-direction for transversely poled systems), for all the three

ellular structures, are insensitive to the geometry of the foam and

epend linearly on relative density. On the other hand, the depen-

ency of the in-plane effective elastic properties (i.e. in the 1-2 plane

or longitudinally poled systems and in the 1-3 plane for transversely

oled systems) on relative density exhibit dependence on the cel-

ular structure. Such that, this dependence is linear for triangular

nd tetragonal cellular structures (where the deformation is stretch-

ng dominated) and generally non-linear for hexagonal honeycombs

where the deformation is bending dominated). This observation is

onsistent with passive cellular solids literature, which illustrates

hat for a stretching- or bending-dominated deformation, the corre-

ponding elastic properties, respectively, vary linearly or non-linearly

ith relative density.
ig. 4. Variation of the effective piezoelectric and dielectric constants with relative density

riangular piezoelectric foams structures, respectively, with nodal connectivity α = 3, 4, 6. Th

ystem with circular porosity.
.2. Effective piezoelectric properties

Using finite element models, the effective piezoelectric constants

epresented by eijk in Eq. (1) were obtained for the three classes of

ellular structures shown in Fig. 1 for a range of relative densities

Fig. 4). For each of the three classes, the corresponding piezoelec-

ric properties of longitudinally poled and transversely poled systems

ere also obtained. For the 2D cellular solids considered, the non-

ero effective piezoelectric properties are e15, e24, e33, e31 and e32. In

eneral, the piezoelectric properties of longitudinally poled 2D cel-

ular structures are independent of the structure or topology (Fig. 4).

owever, significant dependence of the piezoelectric properties on

he cellular topology is observed in the transversely poled systems.

With respect to the variation of effective piezo properties with

elative density, the triangular and tetragonal topologies exhibit

enerally linear dependence, while the hexagonal topology exhibits
in the longitudinally poled (L) and transversely poled (T) honeycomb, tetragonal and

e analytical model predictions by Dunn and Taya, (1993) are for a longitudinally poled
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non-linear dependence. This non-linear dependence is associated

with shear/bending deformation related piezoelectric properties.

Amongst the transversely poled structures, the highest and the

lowest e33 and e32 piezoelectric constants are observed, respectively,

in the case of tetragonal and hexagonal structures. On the other hand,

the piezoelectric constant e31 is highest for the hexagonal structure

and lowest for the tetragonal structure while the piezoelectric con-

stant e15 is highest for the triangular structure and lowest for the

tetragonal structure. Thus, cellular structure or topology can be tai-

lored to optimize a set of piezoelectric constants that are desired for

a particular application.

3.3. Effective dielectric properties

The effective piezoelectric constants represented by κε
ij

in Eq. (1)

were obtained for the three cellular structure shown in Fig. 1, for a

range of relative densities (Fig. 4) and for longitudinally poled and

transversely poled systems. In general, the dielectric constants - κ11,

κ22, and κ33, of longitudinally poled structures and the dielectric con-

stant κ22 of the transversely poled structures are independent of the

cellular topology (Fig. 4). However, the dielectric constants - κ11 and

κ33 of the transversely poled structures exhibit significant depen-

dence on cellular topology. Amongst the transversely poled struc-

tures, the tetragonal foams exhibit the highest κ11 and the lowest

κ33 dielectric constants while the triangular and honeycomb cellu-

lar structures exhibit relatively similar effective dielectric properties

that are 10% off those exhibited by tetragonal structures.

3.4. Effective figures of merit

The aforementioned fundamental material constants are repre-

sented in this section via the industry adopted figures of merit. These

figures are defined as combinations of the fundamental material con-

stants and are used to assess the utility of piezoelectric materials for

applications. Four figures of merit are of interest to piezoelectric cel-

lular solids and their potential applications (e.g., ultrasound imagers

and energy harvesters); they are: the piezoelectric charge coefficient

(dh), the hydrostatic figure of merit (dhgh), the acoustic impedance

(Z), and the coupling constant (kt) (Kar-Gupta and Venkatesh, 2006).

These figures were computed using the effective fundamental ma-

terial constants (elastic, piezoelectric and dielectric) presented in

Figs. 3, and 4 and the results are plotted in Fig. 5 against relative den-

sity. In general, the figures of merit of longitudinally poled structures

are independent of the cellular topology (Fig. 1). However, signifi-
Fig. 5. Variation of the effective piezoelectric figures of merit with relative density (0.05–0

and triangular piezoelectric foams structures, respectively, with nodal connectivity α = 3, 4,
ant dependence of the figures of merit on the cellular topology is

bserved in the transversely poled structures which is expected, as

he figures of merit are mostly dependent on the principal material

lastic, piezoelectric and dielectric constants (i.e. C33, e33 and κ33)

hich have been shown to exhibit sensitivity to the cellular topology

in the transversely poled structures).

Amongst the longitudinally poled systems, the triangular struc-

ures with the α = 6 exhibit figures of merit which are similar to

ther cellular structures as well as outstanding in-plane shear prop-

rties which are significantly better than those of the tetragonal or

exagonal structures.

Overall, the transversely poled systems exhibit better figures

f merit (Z, dh and dhgh) than the longitudinally poled systems.

mongst the investigated transversely poled systems, the tetragonal

tructure with a moderate level of nodal connectivity of 4, exhibits

he best overall combination of high piezoelectric coupling constant,

iezoelectric charge coefficient and the hydrostatic figure of merit

ith marginally higher acoustic impedance

Thus, by modifying the cellular topology and the poling character-

stics of piezoelectric cellular structures, their mechanical and func-

ional properties can be application tailored and optimized.

.5. Scaling laws

Dependence of cellular solids’ effective properties on relative den-

ity is often represented by scaling laws (e.g.,(Gibson and Ashby,

997)), which are mathematical fits that generally follows,

E∗

Es
= c (ρ̄)

n = c

(
ρ∗

ρs

)n

(3)

here c and n are fitting parameters, E∗ and Es represent the effective

roperty of the cellular solid and constituent material, respectively.

n addition, ρ̄ is the relative density which is defined as the ratio of

he density of the cellular solid (ρ∗) to the density to the constituent

aterial (ρs). Scaling laws are useful from an application perspec-

ive as they: allow for predicting the effective properties of cellular

olids over a continuous range of relative densities based on few dis-

rete data points, assist in approximating the effective properties of

ellular solid as long as they are used across cellular solid with fairly

imilar cellular architectures and constituent materials, and provide

ome insight into the deformation mechanisms. For instance, as illus-

rated in reference (Gibson and Ashby, 1997), as the power n increases

hen Eq. (3) is applied to Shear or Young’s moduli, bending deforma-

ion is dominant and as it approaches unity, stretching deformation is
.25) in the longitudinally poled (L) and transversely poled (T) honeycomb, tetragonal

6.
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Table 2

The variation with relative density of the effective electromechanical properties

of longitudinally poled piezoelectric foams with honeycomb, tetragonal and tri-

angular structures captured by the scaling laws, with the corresponding coeffi-

cients a and n as described by Gibson and Ashby (1997) (C∗ , e∗ and κ∗ represent

foam properties while C, e and κ represent the properties of the constituent solid

material).

Properties Honeycomb Tetragonal Triangular

a n a n a n

C11∗/C11 0.3212 1.207 0.4429 1.065 0.3915 1.107

C12∗/C12 0.4053 1.03 0.3097 2.156 0.2277 1.072

C13∗/C13 0.3442 1.121 0.3381 1.116 0.3354 1.098

C22∗/C22 0.3216 1.208 0.4429 1.065 0.3081 1.034

C23∗/C23 0.3444 1.121 0.3381 1.116 0.2806 1.044

C33∗/C33 0.7496 1.015 0.7515 1.017 0.7379 1.009

C44∗/C44 0.6229 1.075 0.6159 1.072 0.5248 1.014

C55∗/C55 0.6229 1.075 0.6159 1.072 0.6321 1.072

C66∗/C66 1.528 3.058 0.3597 3.212 0.3947 1.014

e15∗/e15 0.6229 1.075 0.6159 1.072 0.6321 1.072

e24∗/e24 0.6229 1.075 0.6159 1.072 0.5248 1.014

e31∗/e31 0.3442 1.121 0.3381 1.116 0.3354 1.098

e32∗/e32 0.3444 1.121 0.3381 1.116 0.2806 1.044

e33∗/e33 1.091 0.9944 1.099 0.9978 1.095 0.9968

κ11∗/κ11 0.6232 1.075 0.5903 1.036 0.565 1.061

κ22∗/κ22 0.481 0.9115 0.5903 1.036 0.2484 0.3903

κ33∗/κ33 0.9523 0.9552 1.02 1.001 1.008 0.9953
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For the piezoelectric cellular specimens considered in this work,

ll effective data presented in Figs. 3 and 4 were fitted to the scal-

ng law (Eq. (3)). Resulting fitting constants are reported in Tables 2

nd 3. Quality of the fits were ensured by visual inspection as well

s by computing the R2 regression value for each fit, which were for

ll fits greater than 0.96. The in-plane shear properties of the hon-

ycomb structures (i.e., C66 in the longitudinally poled system and

55 in the transversely poled system) vary with relative density in

non-linear manner (i.e. n = 3) indicating that the in-plane shear

ehavior is bending dominated and hence, the in-plane moduli are

xpected to be less than that of tetragonal or triangular structures

here the corresponding shear moduli vary with relative density in

linear manner (i.e. n = 1) indicating that the in-plane shear behav-

or is stretching dominated. The out-of-plane normal properties (i.e.

33 in the longitudinally systems and C22 in the transversely poled

ystems) for the three foam structures exhibit linear variation with
Table 3

The variation with relative density of the effective electromechanical properties of

transversely poled piezoelectric foams with honeycomb, tetragonal and triangular

structures captured by the scaling laws, with the corresponding coefficients a and n

as described by Gibson and Ashby (1997) (C∗ , e∗ and κ∗ represent foam properties

while C, e and κ represent the properties of the constituent solid material).

Properties Honeycomb Tetragonal Triangular

a n a n a n

C11∗/C11 0.3286 1.231 0.5245 1.062 0.4445 1.091

C12∗/C12 0.4203 1.047 0.3602 2.152 0.2353 1.124

C13∗/C13 0.4223 1.129 0.4793 1.078 0.4522 1.079

C22∗/C22 0.3388 1.192 0.4339 1.068 0.3178 1.055

C23∗/C23 0.402 1.098 0.3628 1.139 0.321 1.067

C33∗/C33 0.8254 1.012 0.837 1.013 0.8248 1.009

C44∗/C44 0.6625 1.07 0.6225 1.076 0.5729 1.025

C55∗/C55 0.5779 1.084 0.6098 1.069 0.5887 1.07

C66∗/C66 2.219 3.052 0.5023 3.219 0.5031 1.029

e16∗/e16 1.236 3.091 0.2252 3.159 0.2645 1.134

e21∗/e21 −1.523 0.9733 0.2646 2.32 −0.5407 −0.9093

e22∗/e22 0.4677 1.123 0.6595 1.06 0.495 1.031

e23∗/e23 0.3637 1.56 0.4201 1.193 0.3648 1.154

e34∗/e34 0.6626 1.07 0.6225 1.076 0.5729 1.025

κ11∗/κ11 0.899 1.06 1.052 1.015 0.8381 1.048

κ22∗/κ22 0.7561 0.9269 0.6523 1.077 0.4135 0.5346

κ33∗/κ33 1.315 0.9787 1.347 0.981 1.482 1.035
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elative density (i.e. n = 1) indicating that their out-of-plane normal

ehavior is stretching dominated.

. Discussion and summary

The piezoelectric cellular solids analyzed in this work represent

hree distinct classes of cellular solids in terms of dominant deforma-

ion modes. Hexagonal structures represent bending dominated cel-

ular solids while the triangular structures represent stretching dom-

nated cellular solids. Finally, tetragonal structures represent cellular

olids whose dominant deformation mode is dependent on the load-

ng scenario. This classification is based on Maxwell’s stability cri-

erion which, in the field of cellular solids, has been utilized to give

nsight into why passive foams and honeycombs are almost always

ending dominated (Deshpande et al., 2001).

Maxwell’s rule as explained in (Deshpande et al., 2001; Pelle-

rino and Calladine, 1986) defines the condition for a pin-jointed

rame made up of b struts and j frictionless joints to be both stati-

ally and kinematically determinate. This condition in 2D is written

s M = b − 2 j + 3 = s − m, where s and m counts the number of states

f self-stress (i.e. redundant members exist) and of mechanisms (i.e.

ero stiffness modes), respectively, and they can be determined by

nding the rank of the equilibrium matrix that describes the frame

n a full structural analysis (Pellegrino and Calladine, 1986). Using

axwell’s criterion, Deshpande et al. (Deshpande et al., 2001) ana-

ytically showed that the necessary and sufficient condition for rigid-

ty of 2D periodic trusses with similarly situated nodes is a connec-

ivity, α, of 6 such that α is the average number of struts per node.

ccordingly, a pin-jointed triangular structure with a connectivity

α) of 6 is rigid, while pin-jointed tetragonal (α = 4) and hexago-

al (α = 3) frames exhibit three and one mechanisms, respectively.

herefore, pin-jointed hexagonal frame will collapse under normal

nd shear loadings, while pin-jointed tetragonal frames collapse only

nder shear.

Structures analyzed in this work are derived from the pin-jointed

rames analyzed above by locking their joints (i.e. the joints are not

llowed to rotate and can transmit moment). The effect of locking the

oints can be easily anticipated. As the pin-jointed triangular frame

s a truss whose struts are two-point members, locking its joints will

ot have significant effects; at most it would give rise to negligible

ending stresses in few struts. Conversely, locking the joints of the

in-jointed hexagonal frame has a significant effect; it will eliminate

he three mechanisms, allow the frame to exhibit axial and shear

tiffness and encourage the frame’s struts to deform mostly by bend-

ng, regardless of the loading scenario. Finally, locking the joints of the

in-jointed tetragonal structure would affect its response under pure

xial loading (along the 1 or 2 directions); however, it would elimi-

ate its shear-type single mechanism and allow the tetragonal frame

o provide shear stiffness by promoting bending deformations in the

truts. Accordingly, the pin-jointed tetragonal structure with locked

oints exhibits a response that depends on the loading scenario; its

truts are loaded axially under macroscopic axial loading (in the 1

nd 2 direction) and by bending under macroscopic shear loading (in

he 1-2 plane).

Each of the piezoelectric cellular structures analyzed in this work

an be derived from one of the idealized pin-jointed frames with

ocked joints discussed above. Therefore, the analysis of rigidity in the

dealized pin-jointed frames, as summarized above, can give valuable

nsight regarding the mechanical behavior of the piezoelectric cellu-

ar structures. The triangular piezoelectric structure is derived from a

igid pin-jointed frame and should deform predominantly by cell wall

tretching. On the other hand, the hexagonal piezoelectric structure is

erived from a pin-jointed frame with three mechanisms and should

e bending dominated. Therefore, the triangular specimen should

e mechanically stiffer in the in-plane (i.e. 1-2 plane), which agrees

ith the finite element results. Finally, the tetragonal piezoelectric
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Table 4

Analysis of the bending and axial stresses developed across the foam struts at representative locations L1 and L2 in the honeycomb, tetragonal and

triangular foams with 20% relative density when subjected to six uniform (normal and shear) macroscopic strain loading conditions, which are used

to determine the corresponding six fundamental elastic properties Cij . The N metric is evaluated using the formula, N = 1- (Bending stress / Axial

Stress). The strains applied are maintained within the linear elastic limit to approximately 0.25% for all loading conditions.

Honeycomb (L1) Honeycomb (L2)

Property, loading condition Bending stress (Pa) Axial stress (Pa) N Bending stress (Pa) Axial stress (Pa) N

C11, ε11 2.35E + 04 2.81E + 06 0.992 1.36E + 06 2.65E + 06 0.487

C22, ε22 1.35E + 04 3.67E + 04 0.631 1.15E + 06 2.34E + 06 0.508

C33, ε33 1.80E + 00 1.86E + 04 1.00 5.01E + 04 3.30E + 06 0.985

C44, γ 23 1.30E − 07 1.04E − 03 1.00 1.68E − 02 3.75E − 01 0.955

C55, γ 13 8.50E − 05 1.35E + 00 1.00 1.58E − 02 1.44E − 01 0.890

C66, γ 23 1.83E + 06 3.00E + 01 −60900.0 2.33E + 08 7.14E + 07 −2.26

Tetragonal (L1) Tetragonal (L2)

Property, loading condition Bending Stress (Pa) Axial Stress (Pa) N Bending Stress (Pa) Axial Stress (Pa) N

C11, ε11 7.82E + 04 4.61E + 06 0.983 4.59E + 04 2.26E + 05 0.797

C22, ε22 4.76E + 04 2.58E + 05 0.816 0.00E + 00 3.90E + 06 1.00

C33, ε33 1.05E + 05 5.26E + 06 0.980 1.41E + 04 3.40E + 06 0.996

C44, γ 23 3.19E − 05 1.33E − 03 0.976 7.54E − 02 4.38E + 00 0.983

C55, γ 13 6.44E − 03 1.27E + 00 0.995 1.03E − 02 1.01E − 02 −0.0155

C66, γ 23 2.29E + 04 2.50E − 01 −91600.0 2.17E + 06 7.16E + 04 −2.93

Triangular (L1) Triangular (L2)

Property, loading condition Bending Stress (Pa) Axial Stress (Pa) N Bending Stress (Pa) Axial Stress (Pa) N

C11, ε11 5.14E + 05 1.57E + 07 0.967 1.40E + 06 4.30E + 06 0.675

C22, ε22 1.76E + 04 2.43E + 05 0.928 7.48E + 05 6.91E + 06 0.892

C33, ε33 5.78E + 05 1.67E + 07 0.965 5.90E + 03 1.68E + 07 1.00

C44, γ 23 1.23E − 04 1.68E − 03 0.927 3.28E − 03 1.23E + 00 0.997

C55, γ 13 3.18E − 02 1.95E + 00 0.984 2.96E − 03 1.49E + 00 0.998

C66, γ 23 1.06E + 06 2.50E + 03 −425.0 2.55E + 05 4.17E + 06 0.939
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structure is derived from the tetragonal pin-jointed frame; therefore

it should exhibit axial deformation under uniaxial loading and bend-

ing deformation under shear loading. This agrees well with the finite

element results which show that the tetragonal specimen has effec-

tive elastic and piezoelectric properties that approach those of the tri-

angular specimen under uniaxial loading and approach those of the

hexagonal specimen under shear loading (see Figs. 3 and 4).

To confirm that the dominant deformation modes exhibited by

the simulated piezoelectric specimens follow the preceding theoret-

ical arguments, stresses developed in the struts of the piezoelectric

specimens were extracted and used to determine the dominant de-

formation mode as outlined in Ref. (Alkhader and Vural, 2009). As

the deformation is elastic and struts’ stiffness is uniform, stresses in

struts can be decomposed using simple mechanics of materials ap-

proach into a uniform axial stress and a bending stress that varies

linearly along the strut’s thickness. Subsequently, the level of axial

and bending stresses are used to deduce the dominate deformation

mode.

For the triangular structures, stress decomposition analysis and

stress contours demonstrate that, for in-plane uniaxial loading con-

ditions (i.e. 1-2 plane in longitudinally poled systems); the struts are

loaded by mostly axial stresses. Under in-plane shear loading (i.e. 1-2

plane in longitudinally poled systems) two thirds of the struts (in-

clined struts) are observed to be loaded axially while the straight

struts are dominated by bending. However, the maximum bending

stress in the horizontal struts is less than 25% of the axial stress ob-

served in the inclined struts. For the tetragonal specimens, stress con-

tours show that under axial loading the struts are under pure axial

loading. On the other hand, for shear loading, the struts mostly ex-

hibit bending-type deformation with the maximum bending occur-

ring near the vertices where maximum bending stresses are more

than three orders of magnitude more than the axial stresses. Finally,

for honeycombs under all loading directions, stress contours showed

significant bending deformation with the maximum occurring near

vertices. Alkhader and Vural, (2009) showed using finite element
nalysis that around 20% of the elastic energy stored in a honeycomb

s in the form of stretching energy.

Furthermore, the difference in the axial and bending stresses nor-

alized by the axial stress can be used as a metric to gauge the extent

f axial vs. bending deformations and predict stiffness level (i.e. high

s. low) when the structures are subjected to uniform macroscopic

eformation modes (e.g. ε11 uniaxial strain, γ 66 pure shear strain).

hen this metric is close to or equal to one, then predominant mode

f deformation is expected to be stretching. As bending stresses in-

rease, this metric proportionally decreases (Table 4). In this table,

xial and bending stresses were found at the force transition points

nder maximum stresses (referred to as L1 and L2 in Fig. 6). According

o the metric (Table 4), we expect the four-noded tetragonal struc-

ure to deform mostly by stretching when loaded uniaxially in the in-

lane direction (i.e. 1 and 2 direction in longitudinally poled systems)

s the observed metric is the highest. Consequently, we expect the

orresponding elastic moduli (i.e. C11 or E11 and C22 or E22) to be the

ighest for the four-noded foam structure. Similarly, the six-noded

riangular structure is expected to deform mostly by stretching under

n-plane shear loading (i.e. 1-2 plane in longitudinally poled systems)

s the corresponding metric is the highest. Consequently, we expect

he corresponding in-plane shear modulus (i.e. C66 or G12) to be the

ighest for the six-noded triangular structure as well. These predic-

ions on the elastic moduli based on the analysis of bending and axial

tresses are consistent with the trends observed in the finite element

nalysis (Fig. 3).

One should be careful in extending results from this work to other

iezoelectrically active cellular solids, since the pin-jointed frame

nalysis performed, assumes that the pin-jointed structure is large,

eriodic and has self-situated nodes. Piezoelectric cellular solids with

nite, random or non-periodic structures can still be derived from

arent pin-jointed structures, but the necessary and sufficient con-

ition of rigidity for these structures might not be 6 in 2D. Instead,

he rigidity analysis can be used in a general perspective to provide

nsight into the mechanical behavior of these piezoelectric cellular
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Fig. 6. The longitudinally poled honeycomb (a), tetragonal (b) and triangular (c) piezoelectric foam structures subjected to in-plane axial (d, e, f) and shear loading (g, h, i) exhibit

varying degrees of bending and axial deformations. The extent of bending and axial deformation is captured by analyzing the maximum (σ a) and minimum (σ b) stresses developed

in the foam struts at two representative cross-sections L1 and L2.
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olids. To illustrate, the degree of rigidity of these structures can be

elated to the number of independent collapse mechanisms (m) in

heir parent pin-jointed frames through average connectivity α. Then,

n general, as the average nodal connectivity increases, the number of

ollapse mechanisms in the parent structure decreases and the struc-

ure shifts toward being stretching dominated. This trend continues

ntil the connectivity satisfies the rigidity condition, beyond which

n increase in connectivity increases the number of states of self-

tress and has little effect on the effective mechanical properties.

An interesting phenomenon that is worth highlighting is the abil-

ty of cellular structures or topology to affect the crystal symmetry of

piezoelectric cellular solid. For instance, although the parent mate-

ial used has negative e31, the triangular piezoelectric specimen ex-

ibited a positive effective e31 (see Fig. 4). This reversal in sign is

aused mainly by the contribution of the inclined struts to the surface

harge along the 2-direction due to a load along the 1-direction. To il-

ustrate, Fig. 7 shows the surface charge distribution observed on the

op of surface of the triangular specimen due to uniaxial strain along

he 1-direction. This figure shows that near the vertices, where the in-

lined ligaments are contributing, the charge distribution is positive,
ig. 7. (a) Schematic illustrating a unit cell that corresponds to the triangular piezo-

lectric foam structure subjected to a uni-axial strain along the 1-direction, where l

s the position of the nodes and L is the total length of the face perpendicular to the

-direction. (b) Figure presenting the variation of the electric displacement along the

odes on the face perpendicular to the 2-direction.
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hile the rest of the top surface is exhibiting close to null distribution

very small positive value).

The aforementioned results and discussion assume specific ide-

lized assumptions that one should be aware of as they may affect

he properties and the range of applicability of the piezoelectric cel-

ular solids that have been considered in this study. For instance,

roperties of these piezoelectric cellular solids will highly depend

n their poling characteristics, i.e., poling direction and poling uni-

ormity. From a practical perspective realizing uniform poling, espe-

ially for the transversely poled materials, is quite challenging as the

lectric field passing through a porous medium tends to realign itself

ith the solid phase. Increasing the uniformity of the electric field

istribution can, in principle, be achieved by poling the cellular struc-

ure in an oil bath with dielectric properties approaching those of the

onstituents of the piezo cellular solid. Such an oil bath can be cre-

ted possibly by introducing dielectric particles in the oil (Iyer et al.,

014). However, 100% uniform poling may not be achieved. In such a

ase, it could be expected that the overall properties of piezoelectric

ellular solids may deviate from the values reported here for the ideal

i.e. uniformly poled) case.

Analogous to the uniform poling assumption, the implemented

odel assumes uniform microstructure and grain size. Variability in

he grain size would affect the overall piezoelectric properties as elec-

romechanical properties for many piezoelectric constituents depend

n grain size (Kar-Gupta and Venkatesh, 2008). In addition, it is im-

licitly assumed in the model developed in this study that the thick-

ess of ligaments is larger than the grain size. Thus, grain size can

imit the achievable relative density, but this might not be an issue as

iezoelectric materials with 1 μm grain size are feasible (Huan et al.,

013).

It should be noted that the topology, ligament length scale and

ts thickness can greatly affect the range of applicability of piezoelec-

ric cellular solids. Porous and cellular solids often exhibit dispersive

haracteristics and frequency band gaps that depend on the topol-

gy and length scales of the cellular architecture. However, for cel-

ular solids with cell size on the order of 1 mm, they start to exhibit
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dispersion characteristics at frequencies exceeding the acoustic range

(i.e. early ultrasound) (Alkhader et al., 2015; Gonella and Ruzzene,

2008). Thus results presented here should not be generalized with-

out a detailed investigation of piezo transducers designed to detect

MHz and GHz frequencies.

Finally, the presented model is for infinitely periodic materials (far

away from the boundaries). Near the boundaries and depending on

the application, cellular cells can exhibit properties that deviate from

the ones representing the infinitely periodic case. For instance, such

scenario could stem from adhesives or other substances penetrating

the boundary cells. Such device specific changes in the local structure

and composition of the piezoelectric cellular solids and their influ-

ence on the effective performance characteristics of these materials

need to be carefully examined with appropriate modifications to the

models presented in this study.

5. Conclusions

Active piezoelectric cellular solids are a novel class of materials

that have been recently proven to exhibit unique electromechanical

properties. Within the context of piezoelectric cellular solids one of

the most significant issues related to structure-property coupling is

the role of the dominant deformation mode (i.e., bending vs. stretch-

ing), which in turn is influenced by a number of factors, much of

which are yet to be fully understood, such as: nodal connectivity, the

nature of stresses applied, the inherent elastic, dielectric and piezo-

electric anisotropy of the constituent material, the poling direction

and its orientation with respect to the porosity of cellular solids.

Hence, finite element models were developed to characterize the ef-

fect of deformation modes (bending vs. stretching) on the complete

electromechanical properties of two dimensional honeycomb-like

piezoelectric active cellular solids. By studying piezoelectric cellular

solids with varying cellular architectures, representative of cellular

solids with bending and stretching dominant deformation modes, the

following principal conclusions were obtained.

(1) The principal elastic, dielectric and piezoelectric properties

(such as C33, κ33 and e33) of piezoelectric cellular solids are

insensitive to structure or topology in the longitudinally poled

systems. However, the principal electromechanical properties

(i.e. C33, κ33 and e33) are strongly influenced by the cellular

structure in the transversely poled systems.

(2) The in-plane (i.e. 1-2 plane for longitudinally poled systems

and the 1-3 for transversely poled systems) behavior is very

sensitive to cellular structure and connectivity. The highest in-

plane elastic moduli (C11 and C22 in the longitudinally poled

systems and C11 and C33 in the transversely poled systems) are

obtained in the four-noded tetragonal foams while the highest

in-plane shear moduli (i.e. C66 for the longitudinally poled sys-

tem and C55 for the transversely poled system) are obtained in

the six-noded triangular cellular structures.

(3) The effective out-of-plane elastic properties (i.e. along 3-

direction for longitudinally poled systems and along the 2-

direction for transversely poled systems), for all the three cel-

lular structures depend linearly on relative density. On the

other hand, the dependence of the in-plane effective elastic

properties (i.e. in the 1-2 plane for longitudinally poled sys-

tems and in the 1-3 plane for transversely poled systems) is

linear for triangular and tetragonal cellular structures and gen-

erally non-linear for hexagonal honeycombs.

(4) The linear variation of electromechanical properties of piezo-

electric cellular solids with relative density is generally asso-

ciated with a stretching mode of deformation while the non-

linear variation is associated with relatively more bending

mode of deformation. Thus, the piezoelectric cellular solid can

exhibit enhanced stiffness or enhanced compliance in different
directions depending on the deformation mode (respectively,

stretching or bending) which in-turn is influenced by nodal

connectivity and the nature of stress that is applied. For ex-

ample, the six-noded triangular structure exhibit outstanding

in-plane shear modulus as the dominant mode of deformation

under in-plane shear loading is stretching.

(5) Scaling laws that can assist in predicting the effective elec-

tromechanical properties of piezoelectric cellular solids have

been identified through fitting process. The coefficients of the

scaling laws that were obtained further indicate that the trian-

gular structures deform predominantly by axial stretching.

(6) Amongst the longitudinally poled systems, the triangular

structures with the highest nodal connectivity of six exhibit

outstanding in-plane shear properties which are significantly

better than those of the tetragonal or hexagonal structures.

However, in terms of figures of merit (acoustic impedance,

piezoelectric charge coefficient, hydrostatic figure of merit and

piezoelectric coupling constant) the triangular structures did

not exhibit enhanced behavior.

(7) Overall, the transversely poled systems exhibit better figures

of merit (acoustic impedance, piezoelectric charge coefficient

and hydrostatic figure of merit) than the longitudinally poled

systems. Amongst the transversely poled systems, the tetrag-

onal structure with a moderate level of nodal connectivity of

four exhibits the best overall combination of high piezoelec-

tric coupling constant, piezoelectric charge coefficient and the

hydrostatic figure of merit with a marginally higher acoustic

impedance as compared to that of the hexagonal or triangular

structures.

(8) Results confirm that cellular structure or topology can be tai-

lored to optimize a set of piezoelectric constants that are de-

sired for a particular application.
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