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Abstract

A multiscale model in the framework of micromechanics is developed to study the

effect of microcracks present at the interface between coarse aggregates and mor-

tar matrix in cementitious composites. The different stages of damage induced by

the propagation of microcracks are analyzed at the mesoscale with the aid of so-

lutions based on interface fracture mechanics. Using the solution of the interaction

between an edge dislocation and a circular inclusion with an interface crack, the

stress intensity factor of a kinked arc crack is derived numerically by the method of

distributed dislocations. The macroscopic response under uniaxial tensile loading is

seen to be affected considerably by the presence of microcracks. Various factors such

as the inclusion size, inclusion volume fraction, initial size of microcrack and elastic

properties of the individual phases are found to influence the overall constitutive

behaviour of the composite. The findings of the study can be utilized to provide

guidelines to tailor the material properties and enhance the performance of such

composites.
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Nomenclature

a = radius of the coarse aggregate;

c = length of kinked interface crack;

Ea, Em = elastic moduli of the phases;

f = volume fraction of coarse aggregates;

n = unit normal on the interface of the aggregate towards the matrix;

P = far field tensile load;

Sa,Sm = compliance tensor of the phases;

T = traction at the interface;

‖u‖ = displacement jump at interface;

V a = total volume of coarse aggregates;

X(z) = Plemelj function;
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α = Semi-angle subtended by interface crack;

ε = macroscopic strain;

εint = average additional strain due to microcracks;

κa, κm = Kolosov constant of the phases;

µa, µm = shear moduli of the phases;

νa, νm = Poisson’s ratios of the phases;

Γ = ratio of shear moduli of aggregate to mortar;

Σ = macroscopic stress;

Φ,Ψ = Complex potentials;

σa = average stress in the aggregate;

σm = average stress in the mortar;

1 Introduction

Concrete is an attractive choice as a construction material owing to the ease

with which it can be manufactured and used as well as its low cost. The com-

plex intrinsic structure of concrete involving various material length scales has
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posed to be a challenge in gaining sufficient understanding of the failure mech-

anisms and the role of the microstructure therein. The mechanical behaviour

of cementitious composites such as concrete largely depends on the properties

of the constituent phases and their mutual interactions. Therefore, prediction

of the overall response of such materials entails a comprehensive description

of the mechanisms taking place at the meso or micro scales.

Considerable research has been performed to understand the underlying dam-

age mechanisms which determine the macroscopic constitutive behaviour of

concrete. It has been experimentally observed that microcracks develop in

concrete during the manufacturing process. Owing to the difference in the

elastic properties of the coarse aggregates and surrounding mortar matrix and

the differential rates of shrinkage, the interface between these constituents is

most vulnerable to the formation of such cracks. Damage is initiated at the

mesoscale from the interface cracks under the influence of external loads. The

different stages of damage involve debonding or dewetting of the aggregate

particles from the matrix, deviation of the cracks from the interface into the

matrix and finally propagation of the deviated cracks in matrix (Schlangen

and Van Mier, 1992; Shah et al., 1995).

Recent years have witnessed a surge in models based on continuum microme-

chanics, capable of describing the mechanical behaviour of composites ac-

curately by incorporating the failure mechanisms occurring at lower scales.

Micromechanics based models have been proposed to simulate the damage
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caused by partially or fully debonded inclusions randomly located in metal

or ductile matrix composites (Ju and Lee, 2001; Pyo and Lee, 2010). The

response of geomaterials such as concrete and rocks under mechanical loads

have been studied by several authors (Pensée et al., 2002; Pichler et al., 2007).

Zhu and co-workers have developed models to study the damage caused by

microcracking in brittle materials (Zhu et al., 2008, 2009; Zhu and Shao, 2015;

Zhu et al., 2016). The growth of microcracks as well as the friction between

the crack faces are considered to be the major dissipative mechanisms in these

materials. The primary focus of the models has been to obtain the effect of mi-

crocracks on the macroscopic response of these materials. Therefore, a family

of microcracks dispersed in the matrix phase has been considered for analysis

and the macro-behaviour is predicted based on the effects of the microcracks

and the matrix. In these models, the inclusion phase has been neglected which

is an over-simplification of the problem under consideration. Based on exte-

rior point Eshelby tensor, Mihai and Jefferson (2011) predicted the initiation

of interface microcrack in concrete. However, the model did not consider the

progressive damage states caused by the microcrack propagation and assumed

the microcrack to propagate into the matrix immediately after its formation.

Experimental observations have shown that in many cases, the interface crack

kinks away from the interface and enters either into the inclusion (causing

particle fracture) or into the matrix (Buyukozturk and Hearing, 1998; Cho

et al., 2006). Matrix cracking is usually more prevalent as the aggregate phase
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has higher toughness for most of the cases. Homogenization based models de-

scribing progressive damage at all stages are relatively scarce. Finite element

and full scale model simulations, though available, are computationally de-

manding. Therefore, it is useful to develop a simple model which can capture

the damage events at the micro (meso) scale and predict the influence of micro

(meso) structure on the overall properties of a composite material.

The problem of a crack at the interface between an inclusion and matrix has

received much attention in the last few decades. The importance of the prob-

lem lies in determining the mechanisms of damage in composites as well as

in the assessment of the strength and toughness of composites. While there

exists a large body of literature in interface fracture mechanics, only a few pa-

pers on the propagation of interface arc cracks pertinent to the present work

are mentioned. A closed form solution of the stress and displacement distri-

bution along the interface of a circular inclusion with an interface arc crack

was derived by Toya (1974). Criteria based on energy as well as strength were

proposed to determine the propagation of the crack either along the interface

or away from it. Prasad and Simha (2003) derived the complex stress inten-

sity factor for an interface crack under concentrated loads and also proposed

the condition for debonding or kinking of the crack based on the maximum

circumferential stress (MCS) criterion. Using the boundary element method,

Paŕıs et al. (2007) explained the mechanism of initiation and propagation of

damage (in the form of interface cracks) in fibre reinforced composites. The
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appropriate conditions for the crack to deviate out of the interface were de-

rived depending on the geometry of the problem. However, to the best of the

authors’ knowledge, the solution of the stress intensity factors and the crack

opening displacement of a crack at the interface of an elastic inclusion which

has deviated into the matrix is not available in the literature.

In the present work, a micromechanics based model is proposed to study the

successive stages of damage in cementitious composites and their influence

on the macroscopic response. The model is primarily aimed at simulating the

behaviour of concrete and it can be generalized to any particle reinforced com-

posite with different constituent properties which would eventually help in the

design of durable composites. Each stage of damage, namely inclusion-matrix

debonding, deviation of the interface crack into the matrix and its further

propagation in the matrix, is taken into account. The solution to the problem

of a kinked interface crack is derived based on the method of distributed dislo-

cations. The interaction of an edge dislocation with an inclusion having an arc

crack at its interface is used as a Green’s function. The kinked interface crack is

modelled as distributed dislocations. The macroscopic behaviour is obtained

from the mesoscopic scale by implementing a homogenization scheme. The

proposed model is computationally simple and efficient and involves parame-

ters with clear physical significance. The role of the microstructural properties

on the overall behaviour of the composite are clearly emphasized which can

be utilized for engineering the material.

8
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The article is structured as follows: Micromechanics based constitutive rela-

tions for a particulate composite containing interface microcracks under uni-

axial tension are described in Section 2. The elastic solutions of the problems

of an inclusion containing an interface arc crack and a kinked crack from an in-

terface are summarized in Section 3. The numerical algorithm adopted for the

solution of the problem is outlined in Section 4. The key results are presented

and validated in Section 5. A parametric study is carried out to investigate

the influence of the various parameters on the macro response. Section 6 con-

tains the results of the parametric study. Finally, Section 7 mentions the main

conclusions drawn from the present work.

2 Micromechanical model

A model based on continuum micromechanics is used to study the effect of

progressive damage at the mesoscale on the overall constitutive relation of

cementitious composites such as concrete. A representative volume element

comprising of elastic inclusions (denoted as phase ‘a’) dispersed in an elastic

matrix (denoted as phase ‘m’) is considered. The inclusion-matrix interface is

characterized by the presence of an arc shaped microcrack. Each of the phases

is considered to be isotropic and homogeneous.

The macroscopic stress Σ is related to the average stress of the constituent
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phases by

Σ = (1− f)σm + fσa (1)

The relation between the macroscopic stress Σ and the macroscopic strain ε

is given by (Tan et al., 2007a,b):

ε = Sm : Σ + f(Sa − Sm) : σa + fεint (2)

where Sm and Sa are the elastic compliance tensors for the matrix and the

inclusion respectively, σm and σa are the average stresses of the respective

phases. The volume fraction of the inclusion phase present is denoted by f .

It should be noted here that the individual phases remain linear elastic at

all stages of loading. The nonlinear behaviour is a consequence of damage,

namely the propagation of the interface microcracks. The term εint accounts

for the inelastic strain which arises due to the displacement jump between the

crack faces of the interface arc crack.

The average stress of the inclusion is

σa =
1

V a

∫

S
T ⊗ xdS (3)

where V a is the total volume of inclusions present in the representative volume

element (RVE) and S is the interface between the inclusion and the matrix.

The average stress is obtained as the cumulative effect of the interfacial trac-

tion T acting on the boundary of the inclusion. x represents the coordinates

of a point considered on the circumference of the inclusion.
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The inelastic strain resulting from the displacement jump occurring across the

interface is

εint =
1

2V a

∫

S
(‖u‖ ⊗ n+ n⊗ ‖u‖)dS (4)

where ‖u‖ is the relative displacement of the two crack faces and n is the unit

normal on the interface of the inclusion towards the matrix.

Mean field homogenization schemes such as the dilute solution, the self con-

sistent method, the Mori-Tanaka method etc. are used in micromechanics to

predict the effective behaviour of composites (Nemat-Nasser and Hori, 1993).

In the present study, the Mori-Tanaka method of homogenization is employed

to obtain the relation between the macroscopic quantities and their respective

microscopic counterparts. The Mori-Tanaka method is suitable for compos-

ites containing relatively high percentage of inclusions. The presence of a high

volume fraction of inclusions result in perturbation of the surrounding stress

(or displacement) field. This perturbation is approximated by considering that

each of the inclusions is subjected to an average matrix stress (or strain) in-

stead of the far field stress (or strain).
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3 Interface arc crack: Elastic solution

The elastic solution of a single inclusion with an interface arc crack subjected

to far field tension is presented in this section. The entire damage process

which results due to the presence of microcracks at the matrix-inclusion inter-

face can be categorized into three stages. In the initial stage, the microcrack

propagates along the interface which causes progressive debonding. Upon fur-

ther increasing the load, depending on the properties of the constituents, the

microcrack may deviate from the interface into the matrix. The kinked mi-

crocrack continues to propagate in the matrix and finally, may coalesce with

microcracks from neighbouring inclusions. Thus, the three stages involved in

damage process are: (a) Microcrack propagation along interface (b) Kinking of

the interface crack into the matrix (c) Propagation of the kinked microcrack.

In each of the three stages, the contribution to the macroscopic stress-strain

relation is computed by using elastic solutions at the microscale and finally

scaling up the results by a homogenization procedure as mentioned previously.

3.1 Interface arc crack along circular inclusion

A circular inclusion with an interface arc crack is embedded in an infinite ma-

trix and subjected to far field uniaxial tension. While the crack can be located

anywhere at the interface, the one present perpendicular to the direction of

the applied tension is the most critical and is considered in the present study.
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Fig. 1. Circular inclusion with interface arc crack under far field tension

The stress and displacement components are systematically derived based on

Toya’s solution (Toya, 1974) of an interface arc crack. A schematic diagram

of the problem under consideration is given in Figure 1. The crack subtends

an angle of 2α at the centre of the circular inclusion and is symmetric about

the direction of loading.

The normal and tangential components of the displacement jump, in polar

coordinates, of the crack faces, ‖ur‖ and ‖uθ‖, are represented in the complex

form as

‖ur‖+ i ‖uθ‖ = −A1Pa

[
sin

1

2
(α− θ) sin

1

2
(α + θ)

] 1
2
{
G1 −

1

k
− 2(1− k)

k

× exp[−iθ + 2λ(α− π)]

}
× exp

[
λ(π − α)− i

{
θ

2
− λ ln

[
sin(α−θ

2
)

sin(α+θ
2

)

]}]

(5)

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The different parameters appearing in the equation are listed in Appendix A.

The inelastic strain components due to a single microcrack can be represented

as:

εint11 =
a

A

∫ α

−α
‖u1‖ cos θdθ

εint22 =
a

A

∫ α

−α
‖u2‖ sin θdθ

εint12 =
a

2A

∫ α

−α
(‖u1‖ sin θ + ‖u2‖ cos θ)dθ

(6)

where a is the radius of the inclusion and A is the area of the RVE in two

dimensions. ‖u1‖ and ‖u2‖ represent the cartesian components of the displace-

ment jump of the crack faces. The above equations are derived based on the

assumption that the arc microcrack is entirely open. Therefore, the values that

the angle 2α can assume, have some limits based on the elastic properties of

the inclusion and the matrix.

The interface stresses in the bonded part of the aggregate are given by

2(σrr + iσrθ) = −P
4
ka(1− g)i(1 + 2iλ) sinαN0[a exp iθ − a exp iα]

1
2
iλ (7)

where

N0 = h1(α, θ) + ih2(α, θ)

h1(α, θ) = G1 −
1

k
− 2(1− k)

k
exp[2λ(α− π)] cos θ

h2(α, θ) =
2(1− k)

k
exp[2λ(α− π)] sin θ

(8)

t is an arbitrary point on the interface given by t = a exp[iθ]. The traction com-

ponents thus obtained, are integrated to derive the average aggregate stress
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as follows:

σa11 =
a

A

∫ 2π−α

α
T1 cos θdθ

σa22 =
a

A

∫ 2π−α

α
T2 sin θdθ

σa12 =
a

2A

∫ 2π−α

α
[T1 sin θ + T2 cos θ]dθ

(9)

where Ti = σijnj is the traction component in cartesian coordinates along the

interface.

3.2 Crack path selection

In this section, the various conditions which determine the path of the interface

crack are discussed. An interface crack may grow along the interface, causing

further debonding of the inclusion from the matrix or it may deviate from the

interface and penetrate into the matrix. In the present analysis, the inclusion

is considered to be tougher than the matrix, hence the possibility of the crack

kinking into the particle causing its fracture is not considered.

The path selected by the crack is dominated by the local stress conditions

near the tip of the existing crack similar to the analysis of Toya (1974). The

cleavage stress in the matrix is computed at a small distance c from the tip of

the interface crack. Figure 2 shows the deviated crack into the matrix having

length c and making an angle ψ with the tangent at the interface (at the tip

of the interface crack). For an extension of the crack by ∆α, the contact stress
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σrr at the interface is computed. A comparison is made between the interface

contact stress with the tensile strength of the interface F int
n and the maximum

cleavage stress, σψψ, with the tensile strength of the matrix Fm
n .

If σrr ≥ F int
n and σψψ < Fm

n , the crack propagates along the interface. On

the other hand, if σψψ ≥ Fm
n , deviation of the crack into the matrix occurs

in a direction perpendicular to the direction of the maximum cleavage stress.

While both normal and tangential stress components are present for an in-

terface crack, for the material parameters chosen for plain concrete, the shear

component of stress σrθ is much less than the normal stress component σrr.

The shear strength of concrete is also much higher (two to three times) com-

pared to its tensile strength. For example, considering the material parameters

of the experimental results of Reinhardt (1984) (given in Table 1), the nor-

mal stress and tangential stress components at the interface are computed as

σrr = 3.0066MPa and σrθ = −0.1131MPa respectively. Employing the mixed

mode criterion ( σrr
F intn

)2 + ( σrθ
F ints

)2 = 1, the contribution from the normal compo-

nent is 1.004 while that from the shear component is 3.553× 10−4. Therefore,

the contribution of the shear components is neglected for the present analysis

in implementing the strength criterion at the interface.

The cleavage stress at a point located at a distance c making an angle ψ (with

the tangent at the interface crack tip) is

16
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2α

x2

a

x1

cψ

Fig. 2. Circular inclusion with kinked interface crack

σψψ =
σ11 + σ22

2
+
σ11 − σ22

2
cos[2(α− ψ)] + σ12 sin[2(α− ψ)] (10)

σ11, σ22 and σ12 represent the cartesian components of stress. The quantities

σ11 + σ22, σ11 − σ22 and σ12 are given by:

1

P
(c/a)

1
2 (σ11 + σ22) = −k[Re(M0) sin ζ + Im(M0) cos ζ] sinα exp[−λ(α− ψ)]

(2 sinα)
1
2

(11)

1

P
(c/a)

1
2 (σ22 − σ11) = [−2λRe(M0) sin ζ1 − 2λ Im(M0) cos ζ1 − Re(M0) cos ζ1 + Im(M0) sin ζ1] sinα

× sinψ exp[−λ(α− ψ)] + [−Re(M0) sin ζ2 − Im(M0) cos ζ2] sinα exp[−λ(α− ψ)]−

[−Re(M0) sin ζ3 + Im(M0) cos ζ3]g sinα exp[−λ(α + ψ)]

(12)
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1

P
(c/a)

1
2 (2σ12) = [2λRe(M0) cos ζ1 + 2λ Im(M0) sin ζ1 − Re(M0) sin ζ1 − Im(M0) cos ζ1] sinα

× sinψ exp[−λ(α− ψ)] + [Re(M0) cos ζ2 − Im(M0) sin ζ2] sinα exp[−λ(α− ψ)]−

[Re(M0) cos ζ3 + Im(M0) sin ζ3]g sinα exp[−λ(α + ψ)]

(13)

where

M0 = (i+ 2λ) sin(α)

{
G1 −

1

k
+

2(1− k)

k

1

g
exp[−iα + 2λα]

}
(14)

and

ζ = 0.5(ψ − α) + λ lnx1

ζ1 = −5

2
α +

3

2
ψ + λ lnx1

ζ2 = −5

2
α +

1

2
ψ + λ lnx1

ζ3 = −3

2
α +

1

2
ψ − λ lnx1

x1 =
c

2a sinα

(15)

Re(M0) and Im(M0) denote the real part and the imaginary part of M0 re-

spectively.

The stress components show oscillations which are inherent to cracks present

at a bimaterial interface. However, the region of oscillation is very small and

is of the order of 10−3a. Therefore, the solutions given are valid for the regions

at a distance greater than the region of oscillation. It can be observed that

the critical stress is a function of the size of the aggregate and the initial crack
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length (measured by the angle subtended by the crack at the centre).

3.3 Kinked interface crack

The condition for the crack to grow along the interface or to kink into the

matrix is given in the previous section by comparing the stress components

with the tensile strengths of the interface and the matrix. When the interface

strength is less than the toughness of the matrix or the aggregate, the crack

will grow along the interface. However, at a point of time, when subjected to

still higher loads, the crack may deviate into the matrix.

In this section, the detailed solution of the stress intensity factor (SIF) of the

kinked interface crack is presented. Analysis of the kinked interface crack is

done numerically by modelling the kinked crack as a distributed dislocation.

The solution for the interaction of an inclusion with an interface crack with

an edge dislocation in the matrix (Fang et al., 2003) is used as a Green’s

function. Making use of Muskhelishvili’s complex potentials Φ(z) and Ψ(z),

relation between the various elastic field quantities are expressed as:

σrr + σθθ = 2[Φ(z) + Φ(z)]

σrr + iσrθ = Φ(z) + Φ(z)− zΦ′(z)− z/zΨ(z)

2µ(u′1 + u′2) = iz
[
κΦ(z)− Φ(z) + zΦ′(z) + z/zΨ(z)

]

(16)

The complex potentials for the interaction of an edge dislocation, located at
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z0 in the matrix (making an angle θ with the positive x-axis), with a circular

inclusion with an interface crack are given by Fang et al. (2003) as:

Φm(z) =
K

1− g
[
G(z) +D0

]
− X(z)

1− g
[
G0(z) +G∞(z) +Gz0(z) +Gz∗(z)

]

Φa(z) =
−h

1− g
[
G(z) +D0

]
+
X(z)

1− g
[
G0(z) +G∞(z) +Gz0(z) +Gz∗(z)

]

(17)

The different parameters and the material constants are given in Appendix B.

The superscripts ‘a’ and ‘m’ represent the aggregate phase and mortar phase

respectively.

The complex potentials Ψa and Ψm can be determined from the complex

potentials Φa and Φm using the following equations:

Ψa(z) =
a2

z2

[
Φa(z) + Φa(a2/z)− zΦa′(z)

]

Ψm(z) =
a2

z2

[
Φm(z) + Φm(a2/z)− zΦm′(z)

] (18)

The crack is modelled as a distribution of dislocations along the entire length

of the crack c, the density of which has to be determined. The potentials for

the problem can thus be expressed as:

Φ(z) =
∫ c

0
Φ(z, z0)dr + Φ∞(z)

Ψ(z) =
∫ c

0
Ψ(z, z0)dr + Ψ∞(z)

(19)
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where Φ∞(z) and Ψ∞(z) are the complex potentials for a circular inclusion

with an interface arc crack subjected to far field tensile loads (given by Toya

(1974)).

In order to determine the unknown dislocation densities, condition of stress

free crack surfaces, σθθ + iσrθ = 0, is imposed. The limits of the integration is

changed from [0, c] to [−1, 1] by making the following substitutions:

z = a exp(iα) +
(s+ 1)c

2
exp(iθ); z0 = a exp(iα) +

(t+ 1)c

2
exp(iθ) (20)

This gives rise to a singular integral equation which is solved to obtain the

unknown dislocation distributions bx and by. The solution of the integral equa-

tion is obtained by adopting the method developed by Gerasoulis (1982). The

details of the numerical solution are provided in Appendix C. The stress in-

tensity factors at the tip of the kinked crack are

KI + iKII

P
√
c

=
1√
2

[bθ + ibr] (21)

where P is the far field tensile load and c is the length of the kinked crack into

the matrix. After the deviation of the crack into the matrix, it is treated as

an ordinary sharp crack lying in the matrix and its propagation is determined

by the stress intensity factors.
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4 Numerical Implementation

An incremental analysis is carried out to obtain the macroscopic stress-strain

relationship due to the different damage processes occurring at the microscale.

The various steps involved in the algorithm are elucidated in this section.

Step 1 Increment the semi-debond crack angle by ∆α, i.e., α = α + ∆α.

Step 2 Obtain the interface tractions and the displacement jump components for

the new crack length from Equation 7 and Equation 5 respectively.

Step 3 Compute the cleavage stress at a point in the matrix located at distance c

from the tip of the interface crack from Equation 10.

Step 4 Determine the path of the crack (i.e., debonding or crack kinking) by com-

paring the stresses with the tensile strength of the interface (σrr ≥ F int
n )

and the matrix (σψψ ≥ Fm
n ).

Step 5 Macroscopic stress and strain components are obtained by homogenization

as given in Equation 2.

Step 6 Once the crack is kinked, its propagation is determined by the stress inten-

sity factors (Equation 21)in the matrix.
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5 Results and Discussions

5.1 Stress intensity factor for kinked interface crack

The stress intensity factors obtained by the method outlined in Section 3

are presented for different lengths of the kinked crack and different relative

stiffness of the aggregate and the mortar matrix. The variation of the mode I

SIF for a radial crack arising from a circular void is shown in Figure 3. It can be

seen that SIF increases with increase of the size of the void or decrease of the

size of the crack. The stress intensity factor is also dependent on the direction

in which the crack kinks. It decreases as the angle made by the kinked crack

with the positive x-axis increases.

Figure 4 and Figure 5 represent the variation of the stress intensity factor

for two different stiffness ratios of the component phases respectively. The

stiffness ratio Γ is given as the ratio Ea to Em. The length of the crack is

considered as 0.1a in both the cases. Figure 4 thus represents the case when

the inclusion is softer than the matrix (Γ = 0.65) while the case when the

inclusion is stiffer is represented in Figure 5 (Γ = 2.0). The latter is a more

realistic representation of plain concrete. It can be observed that as the coarse

aggregate is made stiffer, the stress intensity factor reduces.

The reduction of the stress intensity factor with the increase of the stiffness of

the coarse aggregate is further elucidated in Figure 6. This figure shows the
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Fig. 3. Variation of mode I SIF with crack length for radial crack arising from void

variation of the SIF for varying lengths of a radial crack for different stiffness

ratios. While the highest stress intensity factor is seen to occur for a void (Γ =

0), the variation reduces to a considerable extent when the aggregate stiffness

is increased. The SIF also decreases as the length of the crack increases, or

the size of the aggregate decreases.
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Fig. 4. Variation of mode I SIF for crack emanating from an inclusion with Γ = 0.65

5.2 Macroscopic Response: Experimental validation

Typical behaviour obtained from the model are presented in this section and

are compared with the experimental results available in the literature. The

experimental results are those of direct uniaxial tension tests performed on

plain concrete specimens. The stress-strain response at the macroscale is de-

scribed for a material volume element in a localized zone or a fracture process

zone ahead of a macrocrack.
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Fig. 5. Variation of mode I SIF for crack emanating from an inclusion with Γ = 2.0

Concrete is modelled at the meso-scale as a two phase composite - the stiffer

aggregate phase dispersed in the mortar matrix. The aggregates are consid-

ered to be circular in shape. The assumption of a circular inclusion simplifies

the computations and is capable of representing the different stages of dam-

age occurring in concrete. Figure 7 and Figure 9 show the comparison of the

macroscopic response of the model with that obtained from experiments. In

case of the experimental data of Reinhardt (1984), average strain is obtained

by dividing displacement by the width of the process zone. Typically for con-
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Fig. 6. Variation of mode I SIF for radial crack with crack length emanating from

an inclusion for various stiffness ratios

crete, the width of the process zone varies from 3 to 5 times the size of coarse

aggregate (Bažant and Oh , 1983). In the present analysis the size is consid-

ered to be 3.5 times the aggregate size (i.e., 35 mm). The different material

properties used in the analysis are given in Table 1. The semi-debond angle,

α, is taken to be 10 degrees in each of the simulations.

The variation of the crack opening displacement ur with the semi-debond

angle α and the variation of the normalized cleavage stress σψψ with the angle
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Fig. 7. Typical macroscopic stress-strain response under uniaxial tension compared

with Experimental resultsReinhardt (1984)

of kink ψ are shown in Figure 8. It can be seen that for the material properties

considered, under uniaxial tension, the crack opening displacement ur remains

positive along the entire crack length. Hence, the implementation of the open

crack model is justified. As the debonded area grows along the interface, the

angle at which the cleavage stress is maximized also shows an increase. For

the problem under consideration, the crack kinks into the matrix at about a

semi-debond angle of α = 50 degrees and the angle at which the kink occurs
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Fig. 8. (a) Variation of crack opening displacement with semi-debond angle (b)

Variation of cleavage stress with angle of kink
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Fig. 9. Typical macroscopic stress-strain response under uniaxial tension com-

pared with (a) Experimental results(López et al., 2008) (b) Experimental re-

sults(Gopalaratnam and Shah, 1985)
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The micromechanical model is able to represent the macroscopic behaviour

of concrete under uniaxial tensile load satisfactorily. Initially when strain lev-

els are low, the tensile stress in the vicinity of the crack tip is well below

the tensile strength of the interface (or the mortar matrix) and the interface

crack remains stationary. The stress-strain response is linear. Upon further

increasing the strain, the energy available for the crack is sufficient to over-

come the toughness of the interface and crack begins to propagate along the

interface. This results in nonlinear hardening before the peak stress is reached.

The crack deviates into the matrix when subjected to higher level of strain.

Kinking of the interface crack into the matrix is marked by a sharp decrease

of the macroscopic stiffness. Further, crack propagation in the matrix takes

place which results in post-peak softening of the macroscopic behaviour.

6 Parametric study

The micromechanical model presented involves material parameters which

have clear physical significance. The influence of the different mesoscopic prop-

erties on the overall behaviour of plain concrete is presented in this section. The

parameters under consideration are aggregate size, aggregate volume fraction,

initial size of the interface crack and the elastic properties of the individual

phases.
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6.1 Aggregate size

Experimental investigations have shown that the macroscopic response is in-

fluenced by the size of the coarse aggregates used for the manufacture of

concrete (Elices and Rocco, 2008; Tasdemir et al., 1996). The effect of aggre-

gate size on the stress-strain behaviour of concrete is presented in Figure 10

by considering three different aggregate diameters, 33mm, 24mm and 16mm.

The volume fraction of aggregates is assumed to be constant. The elastic mod-

ulus of concrete is observed to increase slightly as the size of the aggregate

decreases. A higher peak stress is also recorded for smaller aggregates as com-

pared to that of the larger ones. The critical value of stress, which is required

for the interface microcrack to propagate, is inversely proportional to the size

of the aggregate. Therefore, a higher stress is required for the damage to grow

along the interface of a smaller aggregate. The larger aggregates also exhibit

a less steep post-peak softening response when compared to the response of

aggregates of smaller size. The post-peak response is primarily dominated by

the propagation of the kinked crack in the matrix. The size of the interface

crack (indicated by the semi-debond angle α) at which the crack kinks into

the matrix increases with the increase of the size of the aggregate. Therefore,

for a given volume fraction, increasing the size of the aggregate results in more

distributed damage which results in a more compliant post-peak behaviour.
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Fig. 10. Effect of aggregate size on the macroscopic response

6.2 Aggregate content

The aggregate content in concrete is considerably higher and varies from 30%

to 70%. The percentage of aggregates present in concrete affects its macro

response. In the present study, three different aggregate contents are consid-

ered and the variation in the macroscopic behaviour is analyzed. Figure 11

shows the dependence of the macroscopic behaviour on the volume fraction

of the coarse aggregates. Increasing the volume fraction of coarse aggregates

results in an increase of the overall stiffness of concrete. The aggregates are

the stiffer phase with the elastic modulus being 1.1 to 3.9 times the elastic

modulus of mortar. Increasing the aggregate content, thus, results in mak-

ing concrete much stiffer. The percentage of defects, namely the cracks at

34



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the mortar-aggregate interface, also increases, resulting in a more distributed

damage. Thus, a lower critical stress is required for the interface cracks to

begin to propagate. The overall response of concrete is more brittle as the

aggregate volume fraction is increased. A higher percentage of aggregates im-

plies closer spacing between the aggregate particles. The path along which

the crack propagates after it deviates from the interface into the matrix is

reduced, thereby resulting in a more brittle behaviour.
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Fig. 11. Effect of aggregate volume fraction on the macroscopic response

6.3 Initial flaw size

As mentioned previously, cementitious composites such as concrete have flaws

prior to application of any external load due to the differential rates of shrink-

age of the component phases during manufacturing. The presence of initial
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flaws alter the macroscopic behaviour and is an important parameter that

should be considered in modelling. In the present analysis, three different ini-

tial crack sizes are considered. The angle subtended by the crack at the centre

of the aggregate serves as the measure of the crack size. The variation of the

macroscopic response with the initial flaw size is shown in Figure 12. The ini-

tial stiffness at the macroscale varies slightly and it increases with the decrease

of the crack size. An increased initial crack size implies the extent of damage

to be greater in the composite, and thus, a higher inelastic strain εint. This

results in a small variation in the elastic modulus of concrete. The critical

stress required for the crack to propagate along the interface also decreases

with the increase of the size of the crack. The peak stress, which is also a

function of the crack size, increases as the size of the initial crack decreases.
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Fig. 12. Effect of initial size of interface crack on macroscopic response
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6.4 Elastic properties of the phases

The relative elastic properties of the two phases affect the behaviour of a crack

present at a bimaterial interface, and therefore, the overall behaviour of the

composite. The Poisson’s ratio is seen to have negligible influence on the re-

sponse. The effect of the elastic modulus of the phases on the macroscopic

behaviour is studied by varying the elastic modulus of the mortar matrix. It

can be seen from Figure 13 that a reduction in the elastic modulus Em of

mortar results in reducing the overall stiffness of concrete. It is evident as the

overall stiffness of the composite is a function of the stiffnesses of the individ-

ual phases, and any change in the properties of the constituents, is directly

manifested in the response of the composite as a whole. The peak stress is

observed to be lower for a lower value of elastic modulus. The behaviour is

more brittle compared to the case when the elastic modulus is higher. This

is because by lowering Em, the stress concentration at the interface becomes

even higher (due to the mismatch of elastic moduli of the two phases) which

results in lowering the critical stress level at which the interface crack begins

to propagate. It should also be noted that once the crack kinks from the inter-

face, its path through the matrix is determined solely by the elastic properties

of the matrix. A more compliant matrix results in reducing its load carrying

capacity, thereby causing the macroscopic response to be more brittle.
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Fig. 13. Effect of elastic modulus of mortar on macroscopic response

7 Concluding Remarks

A simple model within the framework of micromechanics is developed to study

the effect of progressive damage in cementitious composites with microcracks

present at the inclusion-matrix interface. The composite is modelled in two

dimensions and circular inclusions dispersed in infinite matrix are analyzed.

The Mori-Tanaka homogenization procedure is adopted for micro-macro tran-

sition. The model is used to predict the behaviour of concrete, a quintessential

quasi-brittle composite, under uniaxial tension. However, it is not restricted

to only concrete and can be used to simulate the behaviour of other particle

reinforced composites as well. The advantages of the present micromechan-

ical model is its computational simplicity and efficiency. It should also be
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emphasized that the different parameters involved have clear physical signif-

icance and can be obtained from experiments. The results obtained are in

good agreement with available experimental data from literature. The effect

of various damage phenomena occurring at the meso-scale on the macroscopic

constitutive relations are studied in detail. A comprehensive understanding of

the roles of the different constituent parameters has also been achieved. The

present analysis thus gives a more rational basis for designing and engineering

the material optimally to cater to the needs of the construction.
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A Parameters related to the solution of the interface arc crack

The parameters appearing in the solution of a circular inclusion with an inter-

face arc crack as given by Toya (1974) are (used in the model in subsection 3.1):

G1 =
1− (cosα + 2λ sinα) exp[2λ(π − α)] + (1− k)(1 + 4λ2) sin2 α

2− k − k(cosα + 2λ sinα) exp[2λ(π − α)]
(A.1)

The bimaterial constants for the interface are given by:

A1 =
k

4

(
1 + κm

µm
+

1 + κa

µm

)

k =
µm(1 + κm)(µm + κmµa)

µm(1 + κa) + µa(1 + κm)

(A.2)

The oscillation index λ is :

λ = −(ln |g|)/2π; g = −µ
m + κmµa

µa + κaµm
(A.3)

B Parameters related to the solution of the kinked interface arc

crack

The different terms of the complex potentials used to derive the solution of

the kinked interface arc crack in subsection 3.3 are:
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G(z) =
γ2

z − z0
+
γ2
z
− γ2
z − z∗ +

γ2z
∗(z0 − z∗)

z0(z − z∗)2

G0(z) =
hγ2
z

1

X(0)

G∞(z) = KD0

[
z − a

2
(exp[−iα] + exp[iα])− iaλ(exp[−iα]− exp[iα])

]
+ hγ2

Gz0(z) =
hγ2
X(z0)

1

z − z0
(B.1)

X(z) is the Plemelj function given by:

X(z) = (z − a exp[−iα])(−
1
2
−iλ)(z − a exp[iα])(−

1
2
+iλ) (B.2)

D0 is given as:

D0 =
QQ1 −Q1

1−Q2
(B.3)

where

Q =
−K
1− gX(0)a

[
0.5(exp[−iα]+exp[iα])+iλ(exp[−iα]+exp[iα])

]
− K

1− g +1

(B.4)

and

44



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Q1 =
hγ2

1− g
X ′(0)

X(0)
+
hX(0)

1− g

{
γ2(z0 − z∗)
z0X(z∗)

[
z0
a2

+
X ′(z∗)

X(z∗)

]
+ γ2 −

γ2
z0X(z0)

+
γ2

z∗X(z∗)

}

− h

1− g
[γ2
z∗

+
γ2(z0 − z∗)

z0z∗
− γ2
z0

]

(B.5)

γ2 is expressed in terms of the displacement discontinuities b1 and b2 of the

edge dislocation in the matrix at z0 as:

γ2 =
µm

π(1 + κm)
(b2 − ib1) (B.6)

The bi-material constants are defined as:

g = −µ
m + κmµa

µa + κaµm

h = −µ
a + κmµa

µa + κaµm

K = −µ
m + κaµm

µa + κaµm

(B.7)

C Solution of singular integral equation

Numerical solution of SIE as given by Gerasoulis (1982)

The solution of a singular integral (appearing in subsection 3.3) equation of

the form
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1

π

∫ 1

−1

g(t)

t− sdt+
∫ 1

−1
K(s, t)g(t)dt = f(s) (C.1)

can be obtained by considering weight functions as follows:

g(t) is approximated by

g(t) =
φ(t)

(1− t2)0.5 (C.2)

The interval [−1, 1] is divided into 2n equal parts.

K(s, t)φ(t) =
2k∑

i=2k−2
K(s, ti)φ(ti) (C.3)

where tj = −1 + jh, for j = 0, 1, ..., 2n and h = 1/n.

1

π

2n∑

i=0

[wi(s) + πνiK(s, ti)]φ(ti) = f(s) (C.4)

The weight functions are given by:

wi(s) = [Gi/2(s) + E(i+2)/2(s)]δ0,mod(i,2) + F(i+1)/2(s)δ1,mod(i,2)

νi(s) = [ci/2(s) + a(i+2)/2(s)]δ0,mod(i,2) + b(i+1)/2(s)δ1,mod(i,2)

(C.5)

The coefficients are:

aj = H(t2j, t2j−1)/2h
2

bj = −H(t2j, t2j−2)/h
2

cj = H(t2j−1, t2j−2)/2h
2

(C.6)
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where

H(x, y) = (0.5+xy)(θ2j−θ2j−2)+(x+y)(cos(θ2j)−cos(θ2j−2))−(sin(θ2j)−sin(θ2j−2))/4

(C.7)

Ej = M(t2j, t2j−1)/2h
2

Fj = −M(t2j, t2j−2)/h
2

Gj = M(t2j−1, t2j−2)/2h
2

(C.8)

where

M(x, y) = −(1−t22j)1/2+(1−t22j−2)1/2+[s2+xy−s(x+y)]Aj(s)+(s−x−y)(θ2j−θ2j−2)

(C.9)
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