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a r t i c l e i n f o a b s t r a c t
Article history:
Received 15 November 2010
Received in revised form 16 April 2012
Available online 18 June 2012

Keywords:
A: Creep
B: Anisotropic material
Polycrystalline material
C: Invariant decompositions
0020-7683/$ - see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.ijsolstr.2012.06.002

⇑ Tel.: +48 22 8261281x435; fax: +48 22 8269815.
E-mail address: kkowalcz@ippt.gov.pl
In the paper the theoretical analysis of bounds and self-consistent estimates of overall properties of linear
random polycrystals composed of arbitrarily anisotropic grains is presented. In the study two invariant
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1. Introduction sentative aggregate leading to the isotropic overall behavior is as-
Assessment of overall properties of heterogenous materials on
the basis of a knowledge about their microstructure and local
properties is the central problem of contemporary micromechanics
which has its practical and theoretical aspects. This problem at-
tracts researchers since the 50s of the previous century. Many
important results and developments have been obtained and pro-
posed since then (Christensen, 1979; Nemat-Nasser and Hori,
1999; Milton, 2002; Li and Wang, 2008). This work deals with
the special class of heterogeneous materials which are the poly-
crystalline aggregates. Different estimates of overall properties of
such materials are considered.

In the paper linear crystals are studied, i.e. it is assumed that
mechanical behavior of constituent grains is governed by a linear
constitutive law relating strain and stress measure, thus material
properties are represented by fourth-order Hooke’s tensor. The
study encompasses for example linear elasticity but also linear vis-
cous materials. Analytical expressions for uniform strain upper
bound and uniform stress lower bound are provided. Moreover,
more rigorous bounds, resulting from the theorems of minimum
potential energy and of minimum complementary energy, pro-
posed by Hashin and Shtrickman (Hashin and Shtrikman,
1962a,b) are analysed. The detailed theoretical treatment of these
bounds as well as its generalizations are presented in Willis (1977,
1981), Walpole (1981), Talbot and Willis (1985), de Botton and
Ponte Castañeda (1995), and Castañeda et al. (1998). In the present
work random distribution of crystal orientations within the repre-
ll rights reserved.
sumed. The developed procedure is also useful when analyzing
polycrystal with other type of texture. Preliminary results concern-
ing the polycrystals with fiber texture can be found in Kowalczyk-
Gajewska (2011).

Next, the so-called self-consistent estimates of overall proper-
ties are considered. In the self-consistent scheme a single crystal
is viewed as an ellipsoidal inclusion embedded in an infinite med-
ium of unknown properties. For the theoretical formulations con-
cerning a self-consistent method one is referred to the classical
papers (Kröner, 1958; Hill, 1965; Willis, 1981; Walpole, 1981). Be-
low they are specified for a crystal of general anisotropy and of a
spherical shape. Special attention is paid to these materials in
which anisotropic grains are volumetrically isotropic. Existence
and uniqueness of obtained solutions are discussed. Reductions
of above estimates for incompressible materials, materials with
constrained modes of deformation and materials with unsustained
stresses are also derived. It seems that the most interesting results
have been obtained within the context of materials with
constraints. For example, the scaling law proposed in Nebozhyn
et al. (2000, 2001) is here proven analytically. For viscous
deformation by slip one has to do with the constrained deforma-
tion if crystal has an insufficient number of easy slip systems. It
is the case for many metals and alloys of low symmetry e.g. Mg,
Ti, Zr or c-TiAl alloys. Many of them exhibit high specific strength
and stiffness but suffer from low ductility.

Some of the derived results are already known in the literature.
Uniform strain and uniform stress bounds in a concise form have
been provided by Walpole (1981), and by Cowin et al. (1999) using
the spectral theorem. A quartic equation for a self-consistent esti-
mate of an overall shear modulus for cubic crystals has been found
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already by Hershey in Hershey (1954) (independently by Kröner
(1958)) and then reduced to the cubic one e.g. in Kröner (1958),
Hill (1965), and Willis (1981). Hexagonal crystals have been stud-
ied by Kneer (1963). Qui and Weng (1991) have discussed the
influence of grain morphology on the self-consistent estimates
for overall properties of such crystals. For hexagonal, trigonal and
tetragonal crystals implicit equations for these estimates, depend-
ing on the components of a local stiffness tensor, were provided in
different forms by Pham (1997), and Pham (2003) and by Berry-
man (2005). The Hashin–Shtrikman bounds have been provided
for different crystal symmetries e.g. in Peselnick and Meister
(1986), Watt (1965), Pham (2003), and Berryman (2005) (see also
literature cited there). Optimal bounds on effective bulk and shear
moduli of planar isotropic polycrystals composed of grains of
orthotropic symmetry have been characterized by Avellaneda
et al. (1996). The invariant decompositions of Hooke’s tensor have
been utilized to study the bounds and estimates of elastic proper-
ties for textured polycrystals of cubic symmetry in Böhlke and Ber-
tram (2001), and Böhlke et al. (2010).

The originality of a presented analysis lies mainly in the method
applied. In order to obtain the solutions, spectral and harmonic
decompositions of fourth-order Hooke’s tensor are used simulta-
neously. Thanks to that the important feature of the derived solu-
tions is that they are expressed by means of invariants of local
stiffness (compliance) tensors. The method has been proposed in
Kowalczyk-Gajewska (2009) and applied to the analysis of the Voi-
gt and Reuss bounds and self-consistent estimates. The most inter-
esting result reported in Kowalczyk-Gajewska (2009) concerns the
condition for an existence of the self-consistent estimate of the
flow stress for the viscously linear random polycrystal with an
insufficient number of independent slip systems. It has been
proved that such estimate exists only if the constrained deviatoric
space is one-dimensional. It means that crystal should have at least
four independent slip systems in order to have a finite self-consis-
tent estimate of an overall flow stress. It is a counterpart of the
well-known Taylor condition of five independent slip systems,
which guaranties acceptable solutions obtained by means of an
uniform strain hypothesis. Here, the analysis is extended to the for-
mulation of the Hashin–Shtrikman bounds. Additionally, new re-
sults, with respect to Kowalczyk-Gajewska (2009), concern the
scaling laws for self-consistent estimates applicable to materials
with constrained deformation. Moreover, crystals with unsu-
stained stresses are discussed. For volumetrically isotropic crystals
belonging to this class the condition of existence of a non-zero esti-
mate of a shear modulus is formulated. As an example of material
with unsustained stresses, again the creep of crystals of low sym-
metry can be indicated. When initiation of slip for some category of
admissible slip systems is much smaller than for another ones,
then the subspace of deviatoric stresses generated by geometry
of independent easy slip systems can be identified as a subspace
of unsustained stresses (see Section 4).

For the derived results concerning crystals with constrained
deformation and with unsustained stresses analogy can be drawn
with the limitation of the self-consistent method indicated by
Budiansky already in Budiansky (1965) when assessing the effec-
tive properties of two-phase isotropic material for which one phase
is incompressible while the other corresponds to rigid inclusions
(moduli G ¼ K !1) or holes (moduli G ¼ K ¼ 0). In the first case
a finite overall shear modulus G is obtained when volume fraction
of rigid inclusions is less than 2/5. In the second case, the non-zero
overall bulk modulus K and shear modulus G are obtained when
volume fraction of holes is less than 1/2. It can be also shown that
if one phase is a non-viscous fluid (K – 0 and G ¼ 0) and the second
phase is isotropic (not necessarily incompressible) then the overall
shear modulus is non-zero when the volume fraction of a fluid
phase is less than 3/5 (Milton, 2002). One can wonder if the result
proven in Kowalczyk-Gajewska (2009), for polycrystals with an
insufficient number of easy slip systems, and the results obtained
in Section 3, for materials with unsustained stresses, indicate sim-
ilar limitation of the self-consistent method applied to polycrystal-
line one-phase materials or represent their real behavior. Although
a definite answer to this question is not yet established, some sup-
port for the latter possibility can be found in Lebensohn et al.
(2004); therefore a linear ice-type crystal and a Zr-type crystal
studied in the latter paper are invoked as illustrative examples in
the last section of this paper.

The paper consists of five sections. After this introductory part
in which we state the problem, in Section 2 we shortly recall the
results derived in Kowalczyk-Gajewska (2009) concerning uniform
strain and uniform stress bounds and extend the analysis to the
Hashin-Shtrickman bounds. In Section 3 we discuss the self-consis-
tent estimates focusing on the crystals with constrained deforma-
tion and with unsustained stresses. In Section 4 the derived
formulae are applied to estimate linear viscous properties of poly-
crystals of low symmetry. Section 5 contains a summary of results
and concluding remarks. In Appendix A the spectral and harmonic
decompositions of Hooke’s tensor are recalled in a nutshell intro-
ducing the required notation. More details concerning the spectral
theorem one may find e.g. in Rychlewski (1995), Cowin and Mehra-
badi (1995), and Chadwick et al. (2001). The harmonic decomposi-
tion is presented e.g. in Forte and Vianello (1996), Rychlewski
(2000), Rychlewski (2001b), and Rychlewski (2001a). The reader
is referred to these publications for more details.

Throughout the paper the so-called ‘‘tensor’’ notation is used.
Notation conventions are as follows: scalars are in mathematical
italics, e.g. a; E;rY ; for vectors and second-order tensors boldface
roman or greek symbols are used (meaning should be clear from
the context), e.g. n, r; the blackboard style is used for the fourth-
order tensors, e.g. L;A. The second-order and the symmetrized
fourth-order identity tensors are denoted as I and IS, respectively.
Their components in any orthonormal basis are found to be dij and
1
2 ðdikdjl þ dildkjÞ. Notation used for operations between tensors of
different order is as follows (summation convention applies):
u� v and A� B mean uiv j and AijBkl, respectively, A � n and A � B
mean Aijnj and AijBij, respectively, AB means AijBjk, B �A and A � B
mean AijklBij and AijklBkl, respectively, while A � B means AijklBklmn,
where ð�Þijkl; ð�Þij; ð�Þi signify components of subsequent tensorial
quantities in some orthonormal basis. The inverses of second-
and fourth-order Hooke’s tensors are denoted by A�1 and A�1,
respectively and they are defined by relations A�1A ¼ AA�1 ¼ I;
A�1 �A ¼ A �A�1 ¼ IS.

Let us now formulate the problem which is addressed within
the paper. Assume a single-phase polycrystal with components
(i.e. grains) of arbitrary anisotropy, with the same properties
although axes of symmetry fakg rotated with respect to each other
(see Fig. 1). Moreover, let the orientations /c of these components
be randomly distributed within the considered representative vol-
ume element. It means that macroscopically polycrystalline mate-
rial can be treated as an isotropic one.

Locally the constitutive relation between the stress tensor r and
strain tensor (or strain-rate tensor) e is linear,

e ¼M � r; r ¼ L � e; L ¼M�1; ð1Þ

where L and M are stiffness and compliance tensors, respectively.
Macroscopic relations for the averaged fields E ¼ hei and R ¼ hri
are assumed to be linear as well, namely

E ¼ �M � R; R ¼ �L � E; �L ¼ �M�1: ð2Þ

Moreover, all the introduced fourth-order tensors have the sym-
metries with respect to the permutation of indices of Hooke’s
tensor (see Appendix A). Note that major symmetry of the
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Fig. 1. Polycrystalline element.

1 If r� belongs to the subspace P� of unsustained stresses for the material described
by Hooke’s tensors L then any stress state r which can be achieved in the material
fulfills

r� � r ¼ 0) r� � L � e ¼ 0) L � r� ¼ 0: ð17Þ
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constitutive tensor originates in the assumption of existence of a
strain potential.

In view of the above assumptions, the spectral decomposition
(A.2) can be applied to the local stiffness and compliance tensors

L /cð Þ ¼
XM

K¼1

hKPK /cð Þ; M /cð Þ ¼
XM

K¼1

1
hK

PK /cð Þ; ð3Þ

where /c denotes orientation of local axes fakg with respect to
some macroscopic frame fekg specified by e.g . three Euler angles.
Moreover,

PK /cð Þ ¼ Q /cð ÞHPKð0Þ; ð4Þ

where Q /cð Þ is the second-order orthogonal tensor and PKð0Þ is the
projector for some selected Q 0 2 Qtex, where Qtex is the space of
admissible orientations for the considered texture. In the case of
un-textured polycrystal, one can select for example Q 0 ¼ I, so the
crystals for which the local and macroscopic frames coincide.
QHð�Þ denotes the rotation operation for a n-th order tensor A,
namely

QHA ¼ QHðAij...kei � ej � . . .� ekÞ
¼ Aij...kðQeiÞ � ðQejÞ � . . .� ðQekÞ: ð5Þ

Now, for each of projectors PK the harmonic decomposition
(A.5) of a fourth-order Hooke’s tensor is applied

PK /cð Þ ¼ gP
KIP þ gD

K ID þA
l
K /cð Þ þAm

K /cð Þ þHK /cð Þ; ð6Þ

where IP and ID are specified by (A.6) while

gP
K ¼

1
3

I � PK /cð Þ � I ¼ 1
3

I � PKð0Þ � I; gD
K ¼

1
5

mK � gP
K

� �
; ð7Þ

A
l
K /cð Þ ¼ AlðlDK /cð ÞÞ; Am

K /cð Þ ¼ Am mDK /cð Þð Þ ð8Þ

and mK is the multiplicity of the corresponding modulus hK .
The following identities are important in the outlined analysis.

Let h be any second-order deviator and H any fourth-order fully
symmetric and traceless tensor. Specifying corresponding rotated
tensors as

h /cð Þ ¼ Q /cð ÞHh; H /cð Þ ¼ Q /cð ÞHH; ð9Þ

one can prove that

hh /cð ÞiQ ¼ 0; hH /cð ÞiQ ¼ O; ð10Þ
where h�iQ denotes averaging over the whole orientation space. If
the orientation is specified by three Euler angles /c ¼ fu1;w;u2g
then this averaging is performed according to the following formula
(Bunge, 1982):

h�iQ ¼
1

8p2

Z 2p

0

Z p

0

Z 2p

0
ð � Þ sin wdu1dwdu2: ð11Þ

It should be stressed that such formula for averaging is relevant for
an isotropic orientation distribution (i.e. polycrystal with no tex-
ture). For other textures, e.g. fiber textures, the set of orientations
over which the averaging is performed changes.

An interesting and important subgroup of the considered mate-
rials is the class of materials for which I is the eigenstate of L and
M. Materials with this property are called volumetrically isotropic
(Burzyński, 1928), since its response to a hydrostatic stress state
is the change of volume without the change of shape, similarly
as in the case of isotropic materials. Let us denote the Kelvin bulk
modulus of L by hP, then the spectral decompositions (3) for the
considered subclass of materials take the form

L /cð Þ ¼ hP
IP þ

XM

K¼2

hKPK /cð Þ; ð12Þ

M /cð Þ ¼ 1

hP IP þ
XM

K¼2

1
hK

PK /cð Þ; ð13Þ

where

PK /cð Þ ¼ gD
K ID þAm

K /cð Þ þHK /cð Þ;
XM

K¼2

PK /cð Þ ¼ ID ð14Þ

and specifically

gD
K ¼

1
5

mK ;
XM

K¼2

mK ¼ 5; Am
K /cð Þ ¼ Am

K mDK /cð Þð Þ: ð15Þ

Note that all crystals of cubic symmetry are volumetrically isotro-
pic. In Kowalczyk-Gajewska and Ostrowska-Maciejewska (2004a)
it has been shown that incompressible materials can be viewed as
a special case of the volumetrically isotropic materials for which
the bulk modulus is infinite

hP !1: ð16Þ

Note that all linearly viscous materials, for which we assume that
viscous deformation is incompressible, are volumetrically
isotropic.

Moreover, in Kowalczyk-Gajewska and Ostrowska-Maciejewska
(2004a), considering linearly elastic materials with constraints im-
posed on deformation, it has been shown that the subspace of re-
stricted deformation modes is the eigen-subspace of the
corresponding constitutive fourth-order tensor (not necessarily
volumetrically isotropic). Analogically, it can be proved that the
subspace of unsustained stresses1 is the eigen-subspace of the cor-
responding constitutive tensor. The dimension of this subspace is de-
noted as m�, where m� is also the multiplicity of the Kelvin modulus
h�. For material with constrained deformation h� ! 1, while for
material with unsustained stresses h� ! 0. Consequently, spectral
decompositions (3) have the form
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L /cð Þ ¼ h�P� /cð Þ þ
XM

K¼2

hKPK /cð Þ; ð18Þ

M /cð Þ ¼ 1
h�

P� /cð Þ þ
XM

K¼2

1
hK

PK /cð Þ: ð19Þ

For material with constrained deformations the first component in
(19) tends to zero, while for material with unsustained stresses
the first component in (18) tends to zero. As it is seen an incom-
pressible material is an example of a material with constrained
deformation.

For macroscopically isotropic material its overall stiffness and
compliance tensors have the form

�L ¼ �hPIP þ �hDID; �M ¼ 1
�hP

IP þ
1
�hD

ID; ð20Þ

where �hP ¼ 3K is the overall Kelvin bulk modulus while
�hD ¼ 2�l ¼ 2G is the overall Kelvin shear modulus. Below we use
notation the bulk modulus and the shear modulus for these quantities,
but one should note the slight difference with respect to K and G
which are usually called by these names.2 Formulae (20) are in the
same time spectral and harmonic decompositions of macroscopic
constitutive tensors. In the next subsections, when discussing untex-
tured polycrystals (i.e. random polycrystals), we derive the upper and
lower bounds for �hP and �hD as well as their self-consistent estimates.

2. Upper and lower bounds

2.1. Uniform stress and uniform strain (V–R) bounds

The simplest upper bound for averaged properties of polycrystal
is obtained by taking

e ¼ E; ð22Þ

everywhere in the polycrystal (Hill, 1952). Such upper bound is
called the Voigt (1889) bound for elastic materials or the Taylor
(1938) bound for rigid-plastic or viscoplastic materials. By averag-
ing Eq. (1)2 and applying hypothesis (22) one obtains

�L ¼ hL /cð Þi; �M ¼ �L�1 ¼ hL /cð Þi�1
: ð23Þ

The simplest lower bound for averaged properties of polycrystal
is obtained by taking

r ¼ R; ð24Þ

everywhere in the polycrystal (Hill, 1952). Such lower bound is
called the Reuss (1929) bound for elastic materials or the (Sachs,
1928) bound for rigid-plastic or viscoplastic materials. Averaging
(1)1 and applying hypothesis (24) one obtains

�M ¼ hM /cð Þi; �L ¼ �M�1 ¼ hM /cð Þi�1
: ð25Þ

The bounds formulated above will be now specified for random
polycrystals (untextured polycrystals). Introducing decomposi-
tions (3) and (6) into (23) and (25) it has been demonstrated in
Kowalczyk-Gajewska (2009) that

�hP
UP ¼

XM

K¼1

hKgP
K ;

�hD
UP ¼

XM

K¼1

hKgD
K ð26Þ

and
2 Kelvin’s bulk and shear moduli are related with the macroscopic Young modulus
E and the Poisson ratio �m according to the known relations, viz.:

E ¼ 3�hP�hD

2�hP þ �hD
; �m ¼

�hP � �hD

2�hP þ �hD
; �m < 0() �hP < �hD� �

: ð21Þ
�hP
LO ¼

XM

K¼1

gP
K

hK

 !�1

; �hD
LO ¼

XM

K¼1

gD
K

hK

 !�1

: ð27Þ

It can be shown that 1=3�hP
UP is equal to the average bulk modulus of

polycrystal while 3�hP
LO is equal to the inverse of an average com-

pressibility modulus (Kocks et al., 2000).
In the case of volumetrically isotropic materials the formulae

above reduce to

�hP
UP� ¼ �hP

LO� ¼ hP
; �hD

UP� ¼
1
5

XM

K¼2

hK mK ;
�hD

LO� ¼ 5
XM

K¼2

mK

hK

 !�1

; ð28Þ

so the macroscopic bulk modulus is equal to the local one. Since
upper and lower bounds for the bulk modulus coincide, �hP ¼ hP is
the exact value.

As already has been noted, incompressible materials, can be
viewed as a special case of the volumetrically isotropic materials
for which the bulk modulus is infinite

hP !1: ð29Þ

As it has been shown above for such materials macroscopic bulk
modulus is equal to the local one. Note that it is true independently
of crystallographic texture. Therefore, we also have

�hP !1: ð30Þ

The V–R bounds for an overall shear modulus �hD are not changed
and specified by Eq. (28).

In the case of materials with constrained deformation or unsu-
stained stresses, formulae for upper and lower bounds for macro-
scopic bulk and shear moduli are rewritten as

�hP
UP ¼ h�gP� þ

XM

K¼2

hKgP
K ;

�hD
UP ¼ h�gD� þ

XM

K¼2

hKgD
K ð31Þ

and

�hP
LO ¼

gP�

h�
þ
XM

K¼2

gP
K

hK

 !�1

; �hD
LO ¼

gD�

h�
þ
XM

K¼2

gD
K

hK

 !�1

: ð32Þ

Consequently,

� For material with constrained deformation (h� ! 1) the bound
�hP

UP is finite only when gP� ¼ 0 (it means that the subspace P�
generated by P� is the subspace of deviatoric tensors), while
the modulus �hD

UP is finite when gD� ¼ 0, which is equivalent to
gP� ¼ m�. Apparently, both conditions cannot be fulfilled simul-
taneously and �hD

UP is finite only when m� ¼ gP� ¼ 1. It is the case
when material is incompressible. Lower bounds of �hP and �hD are
finite until there exists at least one K for which hK is finite and
simultaneously
– 0 and gD
K – 0: ð33Þ
If additional restrictions have been imposed on the incompress-
ible materials, as far as an upper bound is concerned, both mac-
roscopic moduli are infinite so there is no upper bound while
there exists a lower bound for an overall shear modulus as long
as some modes of deformation are not restricted.
� For material with unsustained stresses (h� ! 0) the bound �hP

LO is
non-zero only when gP� ¼ 0 (it means that the subspace P� gen-
erated by P� is the subspace of deviatoric tensors), while the
modulus �hD

LO is non-zero when gD� ¼ 0, which is equivalent to
gP� ¼ m�. Again, both conditions cannot be fulfilled simulta-
neously and �hD

LO is non-zero only when m� ¼ gP� ¼ 1. It is the
case when hydrostatic stress states are not sustained. Upper
bounds of �hD and �hP are both non-zero until there exist at least
one K for which hK is non-zero and (33) are simultaneously
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valid. If for some incompressible material there are some unsu-
stained deviatoric stresses, as far as a lower bound is concerned,
the macroscopic shear modulus is zero so a non-zero lower
bound does not exists, while there exists a non-zero upper
bound for an overall shear modulus as long as some stress com-
ponents are sustained.

One should note that the derived bounds depend only on local
Kelvin moduli hK , their multiplicity and M � 1 independent values
gP

K , so maximum 11 independent function of 21 components of a
local stiffness tensor. All these functions are invariants of the local
elasticity tensor (Kowalczyk-Gajewska and Ostrowska-Mac-

iejewska, 2004b). Specific formulae for �hP
UP=LO;

�hD
UP=LO

n o
for all local

symmetry groups covered by the fourth-order tensor are collected
in Kowalczyk-Gajewska (2009). It should be underlined that ana-
lytical formulae for bounds specified by assumptions (22) and
(24) for an arbitrarily anisotropic crystal are known in the litera-
ture (Walpole, 1981; Kocks et al., 2000; Cowin et al., 1999). The
originality of results derived in Kowalczyk-Gajewska, 2009 lie
mainly in the method applied enabling the specification of them
in terms of invariants of L coming from its spectral and harmonic
decompositions applied subsequently. As it is shown further the
proposed procedure can be also applied for the derivation of
Hashin–Shtrikman bounds and self-consistent estimates.

2.2. Hashin–Shtrikman (H–S) bounds

More rigorous bounds, resulting from the theorems of mini-
mum potential energy and of minimum complementary energy
have been derived by Hashin and Shtrikman (Hashin and
Shtrikman, 1962a; Hashin and Shtrikman, 1962b), cf. (Willis,
1977; Willis, 1981; Walpole, 1981). In view of these derivations
some eL provides an upper (correspondingly: lower) bound on the
tensor of effective properties �L according to the following
implications

c � ðeLðL0Þ � �LÞ � c P ð6Þ0 if
^

/c2Qtex

c � ðL0 � L /cð ÞÞ � c P ð6Þ0;

ð34Þ

where c is any strain state. The L0 is a stiffness tensor for some com-
parison material of the same symmetry as �L. For the analysed poly-
crystalline materials of grains with the same shape and orientation
of ellipsoid axes the estimate eL is specified aseL ¼ hðL /cð Þ þ L�ðL0ÞÞ�1i�1 � L�ðL0Þ; ð35Þ

where L�ðL0Þ is the Hill tensor depending on the assumed shape
of inclusions and properties of comparison material L0. If overall
properties are isotropic it can be shown that bounding estimates
(35) are valid for an arbitrary shape of inclusions (Christensen,
1979) with the isotropic L� specified by (see e.g. (Li and Wang,
2008))

L� ¼ hP
�IP þ hD

� ID; ð36Þ

where

hP
� ¼ 2hD

0 ; hD
� ¼ hD

0
3hP

0 þ 4hD
0

2 hP
0 þ 3hD

0

� � : ð37Þ

Positive quantities hP
0 and hD

0 are bulk and shear moduli of isotropic
comparison material. Note that right-hand side of an inequality in
implication (34) is equivalent to semi-positive (semi-negative) def-
initeness of the tensor L0 � L /cð Þ for any /c . One can show that eL
specified by (35) is a monotonically increasing function of hP

0;h
D
0

(Walpole, 1981; Berryman, 2005), thus the upper (lower) bound is
the tightest when the bulk and shear moduli of a comparison mate-
rial are as small (correspondingly: large) as possible. It leads to the
conclusion of Nadeau and Ferrari (2001) that for an optimal L0 the
smallest (largest) eigenvalue of the difference L0 � L /cð Þ should be
equal to zero.

Procedure of deriving the H–S bounds involves two important
steps, namely:

1. An appropriate selection of a comparison material L0 which
does not violate the condition of semi-positive (semi-negative)
definiteness of DL /cð Þ ¼ L0 � L /cð Þ and in the same time pro-
vides the tightest possible upper (lower) bound3

2. Specification of eL according to the formula (35) with use of the
selected L0

Procedure is not as straightforward as derivation of the V–R
bounds because in general the local tensor L /cð Þ and the isotropic
Hill tensor L�ðL0Þ as well as the estimate eL do not commute. Two
steps simplify this considerably if locally material is volumetrically
isotropic and the latter property holds.

2.2.1. Volumetrically isotropic crystals
Analysis of the V–R bounds indicated that �hP ¼ hP. Therefore

also ~hP
UP ¼ ~hP

LO ¼ hP, and hP
0 ¼ hP. Consider that for volumetrically

isotropic crystal, under hP
0 ¼ hP we have

DL /cð Þ ¼
XM

K¼2

hD
0 � hK

� �
PðKÞ /cð Þ; ð38Þ

therefore it is easy to see that^
/c2Q

c � DL /cð Þ � c P ð6Þ0() hD
0 P max

K>1
fhKg hD

0 6min
K>1
fhKg

� �
:

ð39Þ

Consequently the tightest upper and lower bounds eLHS are obtained
by setting, correspondingly, hD

0 ¼maxK>1fhKg and hD
0 ¼minK>1fhKg

in the following formula derived from (35) with use of (10),

~hD
HS ¼ 5

XM

K¼2

mK

hK þ hD
� ðh

P
; hD

0 Þ

 !�1

� hD
� hP

;hD
0

� �
: ð40Þ

The above specification of optimal bounds is equivalent to the
one obtained by Nadeau and Ferrari (2001) for this class of
polycrystals.

In the case of incompressible crystals the estimate of bulk mod-
ulus is infinite, while formula (40) for the H–S bounds of �hD re-
mains unaffected, with an exception that

hP
� ¼ lim

hP
0!1

hP
� ¼ 2hD

0 ; hD
� ¼ lim

hP
0!1

hD
� ¼

3
2

hD
0 : ð41Þ
2.2.2. Anisotropic crystals
Now, let us consider anisotropic crystals which are not volu-

metrically isotropic. To this end let us rewrite (3) as follows

L /cð Þ ¼
XN

K¼1
hKP /cð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}bL /cð Þ

þ
XM

K¼Nþ1

hKPK /cð Þ; ð42Þ

M /cð Þ ¼
XN

K¼1

1
hK

PK /cð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}bM /cð Þ

þ
XM

K¼Nþ1

1
hK

PK /cð Þ; ð43Þ
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where projectors PK /cð Þ for K ¼ N þ 1; . . . ;M into deviatoric eigen-
subspaces commute with IP while PK /cð Þ for K ¼ 1; . . . ;N do not.
Note thatXN

K¼1

PK /cð Þ ¼ bPð/cÞ ¼ IP þ bPDð/cÞ; ð44Þ

where bPð/cÞ and bPDð/cÞ fulfil P � P ¼ P, so these fourth-order ten-
sors are projectors. Both commute with IP and

bL /cð Þ ¼ bP /cð Þ � L /cð Þ ¼ L /cð Þ � bP /cð Þ; ð45Þ

while M̂ /cð Þ is a partial inverse of bL /cð Þ.
With use of the above notation DL /cð Þ is specified as

DL /cð Þ ¼ DbL /cð Þ þ
XM

K¼Nþ1

hD
0 � hK

� �
PK /cð Þ ð46Þ

and DbL /cð Þ ¼ bL0 � bL /cð Þ. Requirement of semi-positive (semi-nega-
tive) definiteness of the tensor DL /cð Þ is fulfilled when^
/c2Qtex

c �DbL /cð Þ �cP ð6Þ0 and hD
0 Pmax

K>N
fhKg hD

0 6min
K>N
fhKg

� �
:

ð47Þ

Above inequalities specify an admissible set A0 2 R2 of pairs fhP
0;h

D
0 g

for the comparison isotropic tensor L0. Now, we derive estimator eL
for the selected pair of these scalars. Let us denote (inverse means
the partial inverse)

bR /cð Þ ¼ bL /cð Þ þ bL�ðL0Þ
� ��1

ð48Þ

and perform its harmonic decompositionbR /cð Þ ¼ l̂PIP þ l̂DID þ bR /cð Þani ð49Þ

as well as harmonic decompositions (14) of deviatoric projectors PK

for K > N. After introducing above decompositions into (35) and
using the property (10) one finds

~hP ¼ 1
l̂P
� hP

� ;
~hD ¼ l̂D þ

XM

K¼Nþ1

mK

5 hK þ hD
�

� �
0@ 1A�1

� hD
� : ð50Þ

As already discussed moduli ~hP and ~hD are monotonically increasing

functions of hP
0; hD

0 , therefore the optimal upper (lower) bounds are

obtained for fhP
0;h

D
0 g lying on the boundary of the admissible set A0

specified by relations (47). As it will be demonstrated, contrary to
volumetrically isotropic polycrystals such restrictions do not spec-
ify the optimum L0 uniquely. An additional requirement is needed.
The choice of such requirement is not unique. For example in Na-
deau and Ferrari (2001) it has been suggested that optimal bounds
are specified by L0 with minimum (maximum) trace, where

TrL0 ¼ hP
0 þ 5hD

0 . In this paper it is proposed to calculate the upper

(lower) bound on the isotropic eL for a pair fhP
0;h

D
0 g 2 A0 for which

the function F0 ¼ keLk2, specified as

F0 hP
0;h

D
0

� �
¼ ~hP hP

0; h
D
0

� �2
þ 5~hD hP

0;h
D
0

� �2
ð51Þ

reaches minimum (maximum). Note that F0ðhP
0; h

D
0 Þ is a monotoni-

cally increasing function of its arguments.
Let us specify the H–S bounds for the materials in which N ¼ 2

and corresponding h1 and h2 are of multiplicity one. In such a case
there exists uniquely defined (within the sign) deviatoric second-
order tensor d /cð Þ of a unit norm such thatbPD /cð Þ ¼ d /cð Þ � d /cð Þ; PK /cð Þ � d /cð Þ ¼ 0 for K ¼ 3; . . . ;M

ð52Þ
and

bL /cð Þ ¼ L11IP þ L22 bPD /cð Þ þ 1ffiffiffi
3
p L12 I� d /cð Þ þ d /cð Þ � Ið Þ: ð53Þ

One can show that quantities L11; L22 and ðL12Þ2 are invariants of the
local elasticity tensor since they are specified as follows:

L11 ¼
1
3

I � Lð0Þ � I ¼ h1gP
1 þ h2gP

2 > 0; ð54Þ

L22 ¼ dð0Þ � Lð0Þ � dð0Þ ¼ h1 þ h2 � L11 > 0; ð55Þ
ðL12Þ2 ¼ L11L22 � h1h2 > 0: ð56Þ

It can be easily checked that L11 provides the Voigt-type upper
bound (26) for an overall bulk modulus. With use of above defini-
tions one can show that the condition of semi-positive (semi-nega-
tive) definiteness of the tensor DbL /cð Þ is equivalent to the condition
of semi-positive (semi-negative) definiteness of the 2� 2 matrix of
the form

hP
0 � L11 �L12

�L12 hD
0 � L22

" #
; ð57Þ

which, using the fact that Lð/cÞ is positive definite, implies the fol-
lowing inequalities

hP
0 P ð6ÞL11; hD

0 P ð6ÞL22; hP
0 P ð6ÞL11 þ

ðL12Þ2

hD
0 � L22

: ð58Þ

The admissible subspaces of hP
0 and hD

0 specified by above inequali-
ties and (47) are presented in Fig. 2.

For the specified hP
0 and hD

0 estimators (35) become

~hP ¼ L11 �
ðL12Þ2

L22 þ hD
�
; ~hD ¼ 5

hP
� þ L11

J�
þ
XM

K¼3

mK

hK þ hD
�

� �
0@ 1A�1

� hD
� ;

ð59Þ

where

J� ¼ L11 þ hP
�

� �
L22 þ hD

�

� �
� L12ð Þ2: ð60Þ

As already stressed the tightest upper (lower) bound is obtained for
values lying on the boundary of the admissible set A0 of solutions
marked in Fig. 2a–b(c–d) by a thick black line. Points on this line
fulfill equation

hP
0 ¼ hP

0ðh
D
0 Þ ¼ L11 þ

ðL12Þ2

hD
0 � L22

; and hD
0 P hmaxð6 hminÞ ð61Þ

and hmax ¼maxfhD
max; L22g (hmin ¼minfhD

min; L22g). The above condi-
tions are equivalent to the requirements formulated by Berryman
(2005) for polycrystals of hexagonal, trigonal, and tetragonal sym-
metries. Relation (61)1 is also equivalent to the corresponding for-
mula derived by Nadeau and Ferrari (2001) when constructing the
procedure of finding the optimal bounds. According to the relation
(61)1 the modulus hP

0 is a decreasing function of hD
0 ; therefore the

requirement that the optimum bounds are obtained for hP
0 and hD

0

as small (large) as possible is inconclusive for points lying on the
boundary of A0. The additional requirement imposed on

F0 ¼ jjL0jj2 is used to specify fhP
0ðh

D
0 Þ;h

D
0 g uniquely. Denote by ĥD

0

the solution of the following extremum condition

dF0

dhD
0

¼ @F0

@hD
0

þ @F0

@hP
0

dhP
0

dhD
0

¼ @F0

@hD
0

� ðL12Þ2

ðhD
0 � L22Þ2

@F0

@hP
0

¼ 0: ð62Þ

If ĥD
0 P hmax (correspondingly: 0 6 ĥD

0 6 hmin) then the tightest
upper (correspondingly lower) bound on �L will be obtained for

the isotropic comparison material with moduli fhP
0ðĥD

0 Þ; ĥD
0 g. If it is

not the case, one should take isotropic material with moduli



Fig. 2. The admissible subspaces of hP
0 and hD

0 specified by (58) when calculating the H–S bounds for random polycrystal of local properties defined by (42) and (53): (a)

hD
max > L22 (UP) (b) hD

max < L22 (UP) (c) hD
min < L22 (LO) (d) hD

min > L22 (LO).
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fhP
0ðhmaxÞ;hmaxg (correspondingly: fhP

0ðhminÞ;hming). Note that for

hmax ! L22 one has hP !1, so the comparison material is
incompressible.

Conclusions concerning the existence of a finite bound for the
materials with constraints outlined for the V–R bounds are valid
also for the H–S bounds.

As already discussed in the introduction the Hashin–Shtrikman
bounds for random polycrystals have been provided for different
crystal symmetries in Peselnick and Meister (1986), Watt (1965),
Pham (2003), and Berryman (2005). An original outcome of the
presented analysis is a new method of deriving these bounds that
makes use of invariant decompositions of Hooke’s tensors. This
procedure enables specification of these estimates with use of
invariants of a single crystal stiffness tensor independently of its
symmetry group.

3. Self-consistent (SC) estimates

Self-consistent estimate of an overall behavior of polycrystal re-
lies on Eshelby’s solution (Eshelby, 1957) for the ellipsoidal inclu-
sion embedded in the infinite medium. Here a single grain is
considered as an inclusion while the medium has averaged, yet un-
known, properties of a polycrystal. Following Hill’s formulation of a
SC procedure (Hill, 1965) one finds the following localization equa-
tion for local strain

e ¼ A � E; A ¼ ðLþ L�Þ�1 � ð�Lþ L�Þ; ð63Þ
where A is a localization tensor and L� is the Hill tensor which de-
pends on the shape of inclusion and the averaged properties �L. In
this paper we consider the SC estimates for spherical grains. There-
fore, we can show that equivalently

�L ¼ hL �Ai; hAi ¼ IS: ð64Þ
First equation is an implicit equation since A depends on �L. Instead
of (64) for derivation of �L the equivalent equation is utilized,
namely
hð�L� LÞ �Ai ¼ O: ð65Þ
where O is the Hooke’s tensor with all components equal to zero.
Another implicit formula for derivation of �L is obtained with anal-
ogy to (35), viz.:
�L ¼ hðL /cð Þ þ L�ð�LÞÞ�1i�1 � L�ð�LÞ: ð66Þ
Usually, one of the above formulae is solved numerically to find
the SC estimate of the average properties of a polycrystal. An iter-
ative procedure applied to solve the Eq. (66), in which L� is calcu-
lated with use of approximation of �L from the previous iteration,
with e.g. the Voigt upper bound being the starting value, leads to
�L possessing the minor and major symmetries of Hooke’s tensor
(A.1).

In the case of macroscopic isotropy (no texture) and a spherical
shape of grains the Hill tensor is specified by (36) and (37) with

fhP
0;h

D
0 g replaced by f�hP; �hDg. Introducing appropriate formulae into

A one notices that the inversion present in the formula (63)2 is not
straightforward unless all PK /cð Þ do not commute with IP. All PK /cð Þ
commute with IP if material is volumetrically isotropic. Let us first
consider this class of materials.

3.1. Volumetrically isotropic crystals

Substituting formulae (12) into (63)2 the localization tensor is
specified as

A /cð Þ ¼
�hP þ hP

�

hP þ hP
�

IP þ
XM

K¼2

�hD þ hD
�

hK þ hD
�

PK /cð Þ: ð67Þ

Substituting A specified above into (65) and performing averag-
ing over the whole orientation space, we find that the SC esti-
mates for �hP and �hD are obtained from the set of two scalar
equations

�hP � hP
� �

�hP þ hP
�

� �
hP þ hP

�

¼ 0; ð68Þ
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�hD þ hD
�

� �XM

K¼2

�hD � hK
� �

mK

hK þ hD
�
¼ 0: ð69Þ

In view of positive definiteness of local and macroscopic constitu-
tive tensors the first equation is fulfilled when

�hP ¼ hP ð70Þ

consistently with the result of previous section. Substituting (37)
into the second equation, one can reduce it to a polynomial equa-
tion of odd degree 2M � 3, which serves to obtain �hD. We look for
�hD among positive real roots of this polynomial. For example, for
crystals of cubic symmetry we have M ¼ 3 and the well-known cu-
bic equation is obtained (Kröner, 1958). It is important to note that
the solution depends only on the values of local Kelvin’s moduli and
their multiplicity, thus the invariants of local elasticity tensor.
Moreover, it should be stressed that knowledge about the multiplic-
ity of Kelvin’s moduli is not necessary - formally one can solve this
equation as a 9-degree one setting all mK ¼ 1:X9

k¼0

ak
�hD
� �k ¼ 0: ð71Þ

One can show that coefficients ak depend then on the invariant hP

and other invariants of deviatoric part of elasticity tensor in a
way which is independent of the ordering of the local Kelvin moduli
(see B). Analysis of coefficients ak leads to the conclusion that the
polynomial (71) has always a single positive real root (for details
see (Kowalczyk-Gajewska, 2009)). Consequently, the admissible
solution exists and is unique.

For incompressible crystals one has �hP !1. A SC estimate for
the macroscopic shear modulus is obtained with use of the limit
values for hP

� and hD
� specified by (41), where hD

0 is replaced by
�hD, so Eq. (69) reduces to

5�hD
XM

K¼2

�hD � hK
� �

mK

2hK þ 3�hD
¼ 0;

XM

K¼2

mK 6 5: ð72Þ

This equation, under the assumptions hK > 0 and �hD > 0, is equiva-
lent to the polynomial equation of M-1 degree. One can prove that
this polynomial has always exactly one real root which is positive.
Consequently solution exists and is unique. Similarly like for volu-
metrically isotropic materials, this polynomial equation can be for-
mulated with use of invariants of the local stiffness tensor (see B).

3.2. Anisotropic crystals

Using spectral decompositions (42) and (43) and formulae (44)
and (45) it is found

ð�L� LÞ �A ¼ �̂L� bL� �
� bA|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}bR /cð Þ

þ
XM

K¼Nþ1

�hD � hK
� � �hD þ hD

�

� �
hK þ hD

�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
aK

PK /cð Þ;

ð73Þ

where

bA /cð Þ ¼ bL /cð Þ þ bL� /cð Þ
� ��1

� b�L /cð Þ þ bL� /cð Þ
� �

; ð74Þ

bL� /cð Þ ¼ bP /cð Þ � L� ¼ hP
�IP þ hD

�
bPD /cð Þ; ð75Þ

b�L /cð Þ ¼ bP /cð Þ � �L ¼ �hPIP þ �hD bPD /cð Þ: ð76Þ

An inverse in (74) is the partial inverse. Harmonic decomposition of
projectors PK ; ðK ¼ N þ 1; . . . MÞ and of the symmetric part ofbR /cð Þ:bRs /cð Þ ¼ âPIP þ âDID þ bAl /cð Þ þ bAm /cð Þ þ Ĥ /cð Þ ð77Þ
are now performed. After averaging over the whole orientation
space two scalar equations corresponding to (68) and (69) are
obtained:

baP ¼ 0; baD þ
XM

K¼Nþ1

aK mK ¼ 0: ð78Þ

Similarly as in the case of the H–S bounds, let us specify these
equations for the materials in which N ¼ 2 and respective h1 and
h2 are of multiplicity one. Introducing (53)–(56) into (74)–(76),
after some algebra it is found that

baP ¼
�hP þ hP

�

� �
ðL12Þ2 þ �hP � L11

� �
hD
� þ L22

� �� �
hP
� þ L11

� �
hD
� þ L22

� �
� ðL12Þ2

; ð79Þ

baD ¼
�hD þ hD

�

� �
L12ð Þ2 þ hP

� þ L11

� �
�hD � L22
� �� �

hP
� þ L11

� �
hD
� þ L22

� �
� ðL12Þ2

ð80Þ

and Eq. (78) are equivalent to

ðL12Þ2 þ �hP � L11
� �

hD
� þ L22

� �
¼ 0; ð81Þ

L12ð Þ2 þ hP
� þ L11

� �
�hD � L22
� �

hP
� þ L11

� �
hD
� þ L22

� �
� L12ð Þ2

þ
XM

K¼3

�hD � hK
� �

mK

hK þ hD
�

¼ 0: ð82Þ

Due to relations (37), contrary to volumetrically isotropic materials,
�hP cannot be calculated independently of �hD.

The class of materials considered above is not artificial. All
materials of transversal (hexagonal), trigonal and tetragonal sym-
metry belong to the considered group. For these materials devia-
toric tensor d is specified as

d ¼ 	 1ffiffiffi
6
p ð3m�m� IÞ; ð83Þ

where m is the unit vector coaxial with the main axis of local sym-
metry. Formulae for SC estimates for these classes of single crystal
anisotropy have been provided in Berryman (2005) in the form of
implicit equations which are equivalent to (81) and (82). In Berry-
man (2005) the quantity denoted as GV

eff is introduced which is
called ‘‘uniaxial shear energy’’ per unit volume for an unit applied
shear strain. It is easily verified that 2GV

eff ¼ L22.

3.3. Materials with constrained deformation

In this subsection the self-consistent estimates for volumetri-
cally isotropic crystals with constrained deformation modes are
studied. First, let us consider the case when the space of con-
strained deformation is the subspace of the deviatoric second-order
tensors. As previously m� denotes the dimension of this subspace
and at the same time the multiplicity of the corresponding Kelvin
modulus h�. Consequently, the estimate (70) for the overall bulk
modulus is still valid. Substituting (18) and taking the limit for
h� ! 1, Eq. (69) can be rewritten as follows

�m�

2 hP þ 3�hD
� �þXM

K¼3

�hD � hK
� �

mK

wK hK ;h
P
; �hD

� � ¼ 0; ð84Þ

where

wK hK ;
�hP; �hD� �

¼ 4 �hD� �2 þ 3 �hP þ 2hK
� ��hD þ 2hK

�hP: ð85Þ

Under assumptions that �hD > 0 and hK > 0, this equation is equiva-
lent to the polynomial equation of degree 2ðM � 2Þ:
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XM

K¼3

2 �hD � hK
� �

hP þ 3�hD
� �

mK

YM
L¼3ðL–KÞ

wL hL;
�hP; �hD� �

�m�
YM
K¼3

wK hK ;
�hP; �hD

� �
¼ 0: ð86Þ

Analysis of this polynomial leads to the conclusion that it has at
least one positive real root as long as m� 6 2. In other words, in
the case of volumetrically isotropic material a finite SC estimate for
the overall shear modulus exists as long as the dimension of a space
of constrained deviatoric deformation modes is less than three.

Now, let us consider incompressible materials in which addition-
ally some subspace of deviatoric deformation modes is con-
strained. As it has been already shown, the overall bulk modulus
is infinite in this case. Let us rewrite Eq. (72) as follows

5�hD
�hD � h�
� �

m�

2h� þ 3�hD
þ 5�hD

XM

K¼3

�hD � hK
� �

mK

2hK þ 3�hD
¼ 0;

XM

K¼3

mK 6 4; ð87Þ

where as previously m� denotes the dimension of the constrained
subspace of deviatoric deformation modes (due to incompressibil-
ity, total dimension of the space of constrained deformation modes
is m� þ 1). Now we take a limit of this equation for h� ! 1 and find
the counterpart of polynomial Eq. (86),

XM

K¼3

2 �hD � hK
� �

mK

Y
L¼3ðL–KÞ

2hL þ 3�hD� �
�m�

Y
K¼3

2hK þ 3�hD� �
¼ 0;

ð88Þ

which is of degree M � 2. Positive solution for the above polynomial
equation exists and is unique only if m� ¼ 1. In other words, in the
case of incompressible materials the SC estimate for the overall shear
modulus is finite only when the subspace of restricted deviatoric modes
is one-dimensional. It should be underlined that the above properties
of the SC estimate have been proved without referring to the spe-
cific lattice symmetry.

As it will be shown below the results concerning materials with
the constrained deformation modes are very useful when consider-
ing the inelastic deformations of polycrystalline metals with an
insufficient number of easy slip systems described by means of
the viscoplastic regularization. The dimension m� of the con-
strained subspace of deformation can be identified with 5� i,
where i is the number of independent easy slip systems. Assume
that inelastic deformation takes place by crystallographic slip on
N slip systems. The number and geometry of slip systems depend
on the geometry of crystallographic lattice of a single crystal. The
local constitutive relation is formulated as a power law in the form
(Hutchinson, 1976)

_ev ¼ _c0

XN

r¼1

sr

sr
c





 



n�1 sr

sr
c

Pr ; ð89Þ

in which _c0 is a reference slip rate, sr , sr
c are the resolved shear

stress on the slip system r and the corresponding critical shear
stress, where

sr ¼ r � Pr; Pr ¼ 1
2
ðmr � nr þ nr �mrÞ: ð90Þ

Two unit vectors mr and nr define the slip system denoting slip
direction and normal to the slip plane, respectively. Usually expo-
nent n much higher than one is used in modeling of viscoplastic re-
sponse of polycrystalline metals, e.g. for successful predictions of
texture evolution in fcc metals n 
 100 has been identified as a rel-
evant value (Havner, 2008) and n 
 20 is used in the simulations by
the VPSC code for low symmetry crystals (Lebensohn and Tomé,
1993; Agnew et al., 2001; Proust et al., 2009). However, although
the linear case n ¼ 1 studied in this paper is of limited practical
applicability, it is important for the qualitative analysis and verifica-
tion of the homogenization scheme (Lebensohn et al., 2004). It can
be shown that some properties of the solution for the linear case
can be transferred to the non-linear case (Nebozhyn et al., 2000;
Nebozhyn et al., 2001). Derivation of bounds and self-consistent
estimates for n > 1 requires an appropriate linearization of a prob-
lem and estimates are found numerically by discretization of the
orientation space, e.g. (Hutchinson, 1976; Nebozhyn et al., 2001;
Bornert et al., 2001). The overall flow stress depends on a loading
scheme. In these calculations knowledge about the analytical solu-
tions for the linear case is beneficial from the point of view of ver-
ification of the applied numerical scheme. Moreover, it provides
good initial approximation of a solution needed within the compu-
tational procedure.

Note that the constitutive relation (89) can be also applied
when describing steady creep of polycrystalline metals and other
materials at temperatures above one third of the melting temper-
ature. The applicable values of n are then between 3 and 8 (Hutch-
inson, 1976).

For n ¼ 1 the local linear viscous relation has the form

_ev ¼Mv � r; Mv ¼ _c0

XN

r¼1

1
sr

c
Pr � Pr: ð91Þ

The number N and geometry of slip systems depend on the geome-
try of crystallographic lattice of a single crystal. Clearly, material de-
scribed by (91) is incompressible. The overall constitutive relation
for random polycrystal can be written as (Perzyna, 1963; Hutchin-
son, 1976)

_Ev ¼ 1
�hD

ID � R ¼
3 _c0

2�rY
ID � R; ð92Þ

where �rY is the reference flow stress.
In the case of metals and alloys of high specific strength the

group of easy slip systems usually does not fulfill the Taylor condi-
tion. In Nebozhyn et al. (2000) and Nebozhyn et al. (2001), on the
basis of the analysis of the variational SC estimates for random
power-law polycrystals with reduced number 1 < i < 5 of inde-
pendent easy slip systems, it has been found that the overall flow
stress follows the scaling law of the form

�rY � ðqhardÞ
4�i

2 ; ð93Þ

where qhard ¼ shard
c =seasy

c . This law is independent of the exponent n.
Before analyzing the examples we will show that such scaling law
can be easily deduced from the analytic formula (72) for linear
polycrystals.

Assume the crystal with easy and hard categories of slip modes
and with the critical shear stress for the hard modes much higher
than for the easy ones. For the purpose of the analysis of a scaling
law, without introducing significant approximations, the local vis-
cous compliance (91) can be written as

Mv ¼ 1
heasy

P2 þ
1

hhard
P3; ð94Þ

where m2 – multiplicity of P2 – is equal to i in the scaling law (93)
while the viscous moduli heasy and hhard are algebraic functions of _c0

and the critical shear stresses shard
c and seasy

c (see Table 1 in the next
section for an example). Projectors PK ðK ¼ 2;3Þ depend on crystal
symmetry and fulfill (14). For such specification of Mv the Eq.
(72) reduces to the following square equation

3�h2 þ gði� 3Þ þ 2� ið Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bðg;iÞ

�h� 2g ¼ 0; ð95Þ

where �h ¼
�hD

SC
�heasy

, g ¼ hhard
heasy

; i ¼ m2, with the positive root
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�h ¼ �bðg; iÞ
6

þ jbðg; iÞj
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24g

bðg; iÞ2

s
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

f ðg;iÞ

: ð96Þ

For i – 3 the function f ðg; iÞ can be expanded into a power series
around 1=g! 0. These expansions introduced into (96), after
neglecting terms of order 1=g2 and smaller, lead to the following
approximation of �h for high values of g

�h 


2
3 ðgþ 1Þ for i ¼ 1;
1
3 gþ 2 for i ¼ 2;
2 for i ¼ 4:

8><>: ð97Þ

For i ¼ 3 formula (96) reduces to

�h ¼ 1
6

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24g

p� �
� ffiffiffi

g
p

: ð98Þ

It is seen that the scaling law proposed in Nebozhyn et al. (2001) is
confirmed by the above analytical derivations. Moreover, the above
result provides additional information. First, we observe that the
scaling law for i ¼ 1 is the same as for i ¼ 2. Second, the linear
approximation of �h for i ¼ 1;2 is provided and the finite limit value
for i ¼ 4 is specified. The quality of linear approximations for i ¼ 1;2
is illustrated in Fig. 3.

Let us now compare the SC estimate specified by (96) with the
V–R bounds, with the H–S bounds and with the Hill’s estimates
resulting from these bounds, namely

�hD
H-VR ¼

1
2

�hD
LO þ �hD

UP

� �
; �hD

H-HS ¼
1
2

�hD
LO-HS þ �hD

UP-HS

� �
: ð99Þ

In Fig. 4 this comparison is performed subsequently for i ¼ 1;2;3;4
and large and moderate values of g. Analysis of figures leads to the
following conclusions:

� For one independent easy slip system the self-consistent esti-
mate is close to the H–S upper bound and is larger than both
Hill’s estimates.
� For two independent easy slip systems the SC estimate is close

to, though higher than, Hill’s estimate obtained for the V–R
bounds.
� For three independent slip systems and moderate values of g

the SC estimate is well approximated by Hill’s estimate result-
ing from H–S bounds. However, for high values of g it strongly
deviates from other estimates and bounds lying between Hill’s
estimates and the H–S lower bound
� As it has been demonstrated above, for four independent slip

systems the SC estimate for g!1 tends to a finite value, thus
it is the closest to the lower H–S bound.
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Fig. 3. SC estimate of viscous �hD
SC for random polycrystal with reduced number i of

independent easy slip systems – exact solutions (continuous line) and approximate
ones (dashed line) for large values of g ¼ hhard=heasy .
3.4. Materials with unsustained stresses

In this subsection volumetrically isotropic crystals with unsu-
stained deviatoric stresses are considered. In order to formulate
the condition for existence of a non-zero SC estimate of �hD for ran-
dom polycrystal composed of such crystallites, the polynomial Eq.
(71) will be used. Observe that for the established m denoting the
dimension of the subspace of unsustained deviatoric stresses
ðm 6 5Þ one has

JK ¼ 0 for K ¼ 6� I; where I ¼ 1; . . . ;m�: ð100Þ

Using the above relations to find ak specified by (B.1) and ana-
lyzing the resulting polynomial equation, we find that it has a
non-zero positive solution for �hD if m 6 2. If hydrostatic stress
states are unsustained ðhP ¼ �hP ! 0Þ then the SC estimate of
shear modulus is non-zero if m 6 1. In the case of incompress-
ible crystals ðhP ¼ �hP !1Þ we explore the polynomial Eq. (B.2)
and we find that �hD is non-zero when m 6 2. The latter case cor-
responds to incompressible steady creep of crystals with one
category of slip systems much easier to initiate than remaining
ones. A number m is then identified with the number of inde-
pendent slip systems within the easy category. A good example
of such crystal is magnesium for which the basal slip is much
easier to initiate than remaining slip systems. There are two
independent basal slip systems for magnesium, so in this case
m ¼ 2. Consequently, a non-zero SC estimate of an overall flow
stress will be found for a random polycrystal even if sbasal

c ! 0
(see the next section).

In order to study in more detail the consequences of the above
results let us study a volumetrically isotropic crystal for which one
deviatoric Kelvin modulus hK is much smaller than the others. For
such crystal the stiffness tensor can be approximately written in
the form

L ¼ hP
IP þ heasyP2 þ hhardP3; ð101Þ

where multiplicity of heasy is denoted by m;PK depend on crystal
symmetry and fulfill (14). For such L the Eq. (69) reduces to

4�h3 � 2nðm� 3Þ � 2ðm� 2Þ � 3l½ ��h2 � nð6þ lðm� 2ÞÞ½
þlð3�mÞ��h� 2nl ¼ 0; ð102Þ

where �h ¼ �hD
SC=hhard, n ¼ heasy=hhard < 1 and l ¼ hP

=hhard. When n! 0
this equation reduces to

�h 4�h2 þ ð2ðm� 2Þ þ 3lÞ�h� lð3�mÞ
� �

¼ 0 ð103Þ

and the non-zero solution is found from the square equation above
only for m ¼ 1 and m ¼ 2, namely

�hm¼1 ¼
1
8

2� 3lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 20lþ 9l2

q� �
; ð104Þ

�hm¼2 ¼
1
8
�3lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16lþ 9l2

q� �
: ð105Þ

When l!1, so when the material is incompressible, using (72) or
taking the limit of Eq. (103), we find

�hl!1
m¼1 ¼

2
3
; �hl!1

m¼2 ¼
1
3
: ð106Þ

Finally, when l! 0, so when the hydrostatic stress states are unsu-
stained, a non-zero �h is obtained only for m ¼ 1, namely

�hl!0
m¼1 ¼

1
2
: ð107Þ

The results are illustrated in Fig. 5, where we present dependence of
�h on l. In Fig. 6 the values of the overall Poisson ratio corresponding
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Fig. 4. Comparison of bounds and Hill’s estimates to the SC estimate of viscous �hD
SC for random polycrystal with reduced number i of independent easy slip systems for large
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to the obtained SC estimates and the upper H–S bound of overall
bulk and shear moduli are presented. We observe that the Poisson
ratio �mSC is negative for l < 1=7 in the case of m ¼ 1 and for
l < 4=7 in the case of m ¼ 2.
In Fig. 7 the effective Poisson ratio for �hD
SC results from the solu-

tion of the Eq. (102) for different values of l and n as well as
m ¼ f1;2;3;4g. In Fig. 7 the line corresponding to �m ¼ 0 has been
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Table 1
Local viscous moduli in ½sbas

c = _c0 � for selected hcp materials (i–number of independent
easy slip systems).

Ice Zr Mg

h2 ð1þd2Þ2

9d2 q ð3þ7d2þ4d4Þ
54d2 q ð1þd2Þ2

9d2

hq!1
2

1 1

h3 4ð1þd2Þ2

3ð1þ4d2þd4Þ
q 4ð3þ7d2þ4d4Þq

3ð3þ7d2þ4d4Þqþ16d2
4ð1þd2Þ2

3ð1þ4d2þd4Þ

hq!1
3

1 4=3

h4 4ð1þd2Þ2q
3ð2ð1�d2Þ2þð1þd2Þ2qÞ

4ð3þ7d2þ4d4Þq
3ð4ð3�6d2þ4d4Þþð3þ7d2þ4d4ÞqÞ

4ð1þd2Þ2
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distinguished. Note that this line always lies in the regime for
which heasy 6 hP ¼ �hP

6 hhard.
4 It should be noted that, contrary to the example studied in Lebensohn et al.
(2004), it is observed for zirconium that the basal slip is usually less easy to initiate
than prismatic slip.
4. Examples

In this section we demonstrate the applicability of the derived
results to the analysis of linear viscous flow (i.e. steady creep) for
materials with hcp lattice symmetry and validation of the self-con-
sistent homogenization procedure. Following (Lebensohn et al.,
2004) we consider Ice-type and Zr-type crystals and additionally
Mg-type crystals. The first two examples represent incompressible
crystals with constrained deformation while the last example rep-
resents an incompressible crystal with unsustained stresses. The
relevant slip systems are:

� three basal slip systems f0001gh11�20i,
� three prismatic slip systems f10�10gh11�20i,
� first-order pyramidal hc þ ai slip systems f10�1�1gh11�23i,
� second-order pyramidal hc þ ai slip systems f11�22gh11�23i.

Denoting by sbas
c ; sprism

c ; spyr:I
c and spyr:II

c the resolved critical
shear stresses under which subsequent modes are initiated, we as-
sume the following relation between their values for the consid-
ered materials:
� For ice-type crystals sprism
c ¼ spyr:II

c ¼ qsbas
c ; spyr:I

c !1 and the
lattice parameter c=a ¼ 1:629.
� For Zr-type crystals sprism

c ¼ sbas
c ; spyr:I

c ¼ qsbas
c , spyr:II

c !1 and
the lattice parameter c=a ¼ 1:593.
� For Mg-type crystals sprism

c ¼ spyr:II
c ; sbas

c ¼ 1=qspyr:II
c ; spyr:I

c !1
and the lattice parameter c=a ¼ 1:624.

Following Lebensohn et al., 2004 the nomenclature Ice-type,
Zr-type and Mg-type is used to indicate that, as discussed above,
n ¼ 1 is not valid exponent for these materials, i.e. n ¼ 3 is usu-
ally identified for steady creep of ice, while n around 20 is used
in modeling of inelastic response of Mg and Zr alloys with use of
the the VPSC model. However, as concerns q ¼ shard

c =seasy
c the as-

sumed differentiation between slip system categories in general
follows the values established on the basis of experiments, see
for example (Agnew et al., 2001; Proust et al., 2009) for Mg-
alloys or (Fundenberger et al., 1997; Castelnau et al., 2001) for
Zr-alloys.4 As concerns ice, in many papers only basal slip is as-
sumed to be active (q!1) or if other slip systems are considered
they have much higher critical shear stress, c.f. (Morland and
Staroszczyk, 2009).

In the case of linear viscous flow of hcp material the compliance
tensor Mv exhibits transversal isotropy, namely

Mv ¼ 1
h2ðq; c=aÞP2 þ

1
h3ðq; c=aÞP3 þ

1
h4ðq; c=aÞP4

m2 ¼ 1; m3 ¼ m4 ¼ 2; ð108Þ

where transversely isotropic projectors PK are specified as for the
volumetrically isotropic material (see e.g. (Rychlewski, 1995; Kow-
alczyk-Gajewska and Ostrowska-Maciejewska, 2009)). Local Kelvin
moduli hk are specified in Table 1, together with the limit case when
q!1.

In Fig. 8 bounds and estimates for an overall flow stress for ice-
type and Zr-type random polycrystals are presented. In agreement
with the theoretical analysis presented in previous sections, with
increasing value of q:

� for ice-type polycrystals the SC estimate of an overall flow
stress tends to infinity being close to the Hill estimate based
on the V–R bounds,
� for Zr-type polycrystal the SC estimate saturates at finite value

similarly to the lower bounds.

The question is if this result, proven for arbitrary lattice
symmetry in Section 3.3, indicates limitation of the SC method
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applied to materials with an insufficient number of independent
easy slip systems or represents their real behavior. Although a
definite answer to this question is not yet established, some sup-
port for the latter possibility can be found in Lebensohn et al.
(2004), where the relevant results of numerical simulations
employing the Fast Fourier Transforms (FFT) for assembles of
random aggregates of such crystals have been reported. These re-
sults are depicted in Fig. 8 by large squares. They are in very
good quantitative agreement with the SC estimate for both mate-
rials, which indicates validity of this method for estimating the
overall properties of polycrystalline materials. Note that the exis-
tence of the finite SC estimate for hcp random polycrystals with
only four independent slip systems has been already noticed by
Hutchinson (1977). He also suggested that such approximation
could be valid for real hcp materials.

In Fig. 9 the bounds and estimates of an overall flow stress for a
Mg-type random polycrystal as functions of 1=q are presented. It is
seen that, in agreement with the theoretical study, a nonzero flow
stress for random polycrystal is predicted, even though locally ba-
sal slip is initiated under resolved shear stress tending to zero
(1=q! 0).
5. Conclusions

In this paper, using the method proposed in Kowalczyk-Ga-
jewska (2009), bounds and SC estimates on overall properties
of polycrystalline materials of arbitrary anisotropy have been
studied. Linear constitutive laws have been considered for which
the material properties are represented by fourth-order Hooke’s
tensors.

With use of the spectral and harmonic decompositions of
Hooke’s tensors, new expressions for H–S bounds and SC estimates
have been derived for random polycrystals composed of elements
of arbitrary anisotropy. For a wide class of anisotropic crystals cor-
responding formulae for SC estimates have been provided in the
form of polynomial equations with coefficients depending on the
invariants of a local stiffness tensor. Incompressible materials
and materials with constrained deformation modes or with unsu-
stained stress modes have been considered.

It should be noted that the spectral and harmonic decomposi-
tions of Hooke’s tensors are relatively new mathematical tools
(Rychlewski, 1983; Cowin and Mehrabadi, 1995; Forte and Via-
nello, 1996; Rychlewski, 2000). Their simultaneous application,
first, to the analysis of the stiffness/compliance tensors and then,
to bounds and estimates of overall properties of polycrystalline
materials seems to be not known in the literature. The use of
invariants of fourth-order tensors resulting from the decomposi-
tions employed allows us to demonstrate that the existence of a
finite SC estimate for an overall shear modulus for random poly-
crystal depends on the dimension of a subspace of constrained
deviatoric deformation. It has been shown that the above prop-
erty of SC scheme is important for the case of linear viscous
polycrystals of low symmetry with an insufficient number of
easy slip systems. This original analytical result indicates that
the crystal should have at least four independent slip systems
in order to have a finite self-consistent estimate of an overall
flow stress. It is the counterpart of the well-known Taylor condi-
tion. Similarly, it has been demonstrated that the existence of a
non-zero shear modulus for random polycrystal with unsustained
stress modes depends on the dimension of a subspace of unsu-
stained stresses.
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Appendix A. Invariant decompositions of Hooke’s tensors

A.1. Spectral decomposition

Hooke’s tensor is a fourth-order tensor with the following sym-
metries with respect to the permutation of indices:

Tijkl ¼ Tjikl ¼ Tijlk ¼ Tklij: ðA:1Þ

The last internal symmetry in (A.1) is called a major symmetry.
Since in the same time Hooke’s tensor is a symmetric second-order
tensor in six-dimensional Euclidean space the spectral theorem can
be applied to such tensor (Rychlewski, 1983; Mehrabadi and Cowin,
1990), viz.

T ¼
XM

K¼1

TKPK ; ðA:2Þ

where TK are M 6 6 mutually different eigenvalues and PK are
orthogonal projectors into corresponding subspaces of eigenten-
sors. Orthogonal projectors fulfil

PK � PL ¼
PK if K ¼ L

O if K – L



;
XM

K¼1

PK ¼ IS: ðA:3Þ

If TK is an eigenvalue of multiplicity mK then the corresponding pro-
jector may be specified in the form

PK ¼
XmK

i¼1

xi �xi; ðA:4Þ

where fxig; i ¼ 1; . . . ;mK constitute basis in the corresponding mK -
dimensional eigen-subspace of second-order tensors. It should be
stressed that decomposition (A.2) is unique.

The symmetry group of T is the product of symmetry groups of
projectors PK . More on that issue one finds for example in Rych-
lewski (1983), Rychlewski (1995), Cowin and Mehrabadi (1995),
Chadwick et al. (2001), and Kowalczyk-Gajewska and Ostrowska-
Maciejewska (2004a, 2009).

A.2. Harmonic decomposition

Any Hooke’s tensor can be also uniquely decomposed into five
pairwise orthogonal parts (belonging to five pairwise orthogonal
subspaces), viz.
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T ¼ hP
IP þ hD

ID|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
the isotropic part

þ Al þAm þH|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
the anisotropic part

; ðA:5Þ

where first two parts are isotropic and specified by the second-or-
der identity tensor I and the fourth-order symmetrized identity ten-
sor IS:

IP ¼
1
3

I� I; ID ¼ IS � 1
3

I� I ðA:6Þ

and two scalars hP and hD. Second two parts are specified as linear
functions of two second-order deviators / and q, namely5

Alð/Þ ¼ I� /þ /� I; ðA:8Þ

AmðqÞ ¼ 1
2

I� qþ q� I½ �Tð23ÞþTð24Þ � 2
3

I� qþ q� I½ � ðA:9Þ

where TTð23ÞþTð24Þ
ijkl B Tikjl þ Tilkj and H is totally symmetric and trace-

less. This decomposition enables the following one to one
correspondence

T$ hP
;hD

;/;q;H
� �

: ðA:10Þ

Scalars are calculated as follows

hP ¼ 1
3

I � T � I; hD ¼ 1
5
ðTrT� hPÞ; hP ¼ 1

3
Tiikk; TrT ¼ Tikik;

ðA:11Þ

while second-order deviators are calculated with use of the so-
called Novozhilov’s deviators lD and mD, namely

/ ¼ 1
3
lD; q ¼ 2

7
ð3mD � 2lDÞ; ðA:12Þ

where lD and mD are deviators of the following tensors

l ¼ T � I; m ¼ TTð23Þ � I; lij ¼ Tijkk; mij ¼ Tikjk: ðA:13Þ

The symmetry group of the tensor T is a product of symmetry
groups of the tensors /, q (or equivalently of lD; mD) and H.

Because projectors PK of the spectral decomposition of T are
fourth-order Hooke’s tensors the harmonic decomposition (A.5)
of them can be performed, namely

PK ¼ gP
KIP þ gD

K ID þA
l
K þAm

K þHK ; ðA:14Þ

where specifically

gP
K ¼

1
3

I � PK � I; gD
K ¼

1
5
ðmK � gP

KÞ; A
l
K ¼ AlðlDKÞ; Am

K

¼ AmðmDKÞ ðA:15Þ

and mK is the multiplicity of the corresponding modulus hK . One
should note the following identities:XM

K¼1

PK ¼ IS )
XM

K¼1

gP
K ¼ 1;

XM

K¼1

gD
K ¼ 1;

XM

K¼1

mK ¼ 6; ðA:16Þ

where 0 6 gP
K 6 1;0 6 gD

K 6 1 andXM

K¼1

A
l
K ¼O

XM

K¼1

lDK ¼0

 !
;
XM

K¼1

Am
K ¼O

XM

K¼1

mDK ¼0

 !
;
XM

K¼1

HK ¼O:

ðA:17Þ
5 As shown by Rychlewski (2000) there are infinitely many possible definitions of
Al and Am , while their sum remains the same for the considered tensor T. All of them
have the form

Aa ¼ @a � ðI� aa þ aa � IÞ; ðA:7Þ

where @a are independent permutation operations while aa are some second-order
deviators depending on Novozhilov’s tensors deviators.
The form of decomposition (A.5) is based on the presentations
in Rychlewski (2000), Rychlewski (2001b). Different definitions of
Al and Am have been utilized in Forte and Vianello (1996). This rel-
atively new mathematical tool proved to be useful when analyzing
symmetry groups of elastic materials (Forte and Vianello, 1996),
finding the basis of invariants for Hooke’s tensor (Boehler et al.,
1994) or identification of anisotropic properties of biological mate-
rials (Piekarski et al., 2004).

Appendix B. Polynomial equations for self-consistent estimates
of shear modulus for volumetrically isotropic materials

The crystal bulk modulus hP and the following functions of devi-
atoric Kelvin modulae

J1 ¼ h2 þ h3 þ h4 þ h5 þ h6 > 0;
J2 ¼ h2h3 þ h2h4 þ � � � þ h5h6 > 0;
J3 ¼ h2h3h4 þ h2h3h5 þ � � � þ h4h5h6 > 0;
J4 ¼ h2h3h4h5 þ h2h3h4h6 þ � � � þ h3h4h5h6 > 0;
J5 ¼ h2h3h4h5h6 > 0

are invariants of a local L for the volumetrically isotropic material
which are independent of the ordering of hK and can be calculated
without performing the spectral decomposition. The coefficients ak

of the polynomial Eq. (71) for a self-consistent estimate of an over-
all shear modulus �hD are specified with use of the above invariants
as follows

a0 ¼ �16J5h4
P < 0;

a1 ¼ �h3
P 192J5 þ 16J4hPð Þ < 0;

a2 ¼ �h2
P 864J5 þ 160J4hP þ 12J3h2

P

� �
< 0;

a3 ¼ �hP 1728J5 þ 576J4hP þ 88J3h2
P

� �
< 0;

a4 ¼ � 1296J5 þ 864J4hP þ 204J3h2
P � 36J2h3

P � 27J1h4
P

� �
;

a5 ¼ � 432J4 þ 144J3hP � 204J2h2
P � 216J1h3

P � 81h4
P

� �
;

a6 ¼ 352J2hP þ 576J1h2
P þ 432h3

P > 0;

a7 ¼ 192J2 þ 640J1hP þ 864h2
P > 0;

a8 ¼ 256J1 þ 768hP > 0;
a9 ¼ 256:

ðB:1Þ

We have proved in Kowalczyk-Gajewska (2009) that Eq. (71) has al-
ways a unique positive solution.

The equation for a self-consistent estimate of an overall shear
modulus for incompressible material can also be expressed in
terms of invariants Jk assuming mK ¼ 1 for all deviatoric Kelvin
modulae hK ;K ¼ 2; . . . ;6. It has the following form

81�h5
D þ 27J1

�h4
D � 12J3

�h2
D � 16J4

�hD � 16J5 ¼ 0: ðB:2Þ

This equations has a single positive real root.
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