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The paper presents analytical or semi-analytical solutions for the formation and evolution of localized
plastic zone in a uniaxially loaded bar with variable cross-sectional area. A variationally based formula-
tion of explicit gradient plasticity with linear softening is used, and the ensuing jump conditions and
boundary conditions are discussed. Three cases with different regularity of the stress distribution are
considered, and the problem is converted to a dimensionless form. Relations linking the load level, size
of the plastic zone, distribution of plastic strain and plastic elongation of the bar are derived and com-
pared to another, previously analyzed gradient formulation.
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1. One-dimensional softening plasticity model

For many materials, the stress–strain diagrams characterizing
their mechanical behavior exhibit the so-called softening branches,
with decreasing stress at increasing strain (and thus with a nega-
tive tangent stiffness). The physical origin of this intriguing phe-
nomenon is in the initiation, propagation and coalescence of
defects such as microcracks or microvoids. Softening-induced
localization of inelastic processes into narrow zones often acts as
a precursor to failure. Proper modeling of the entire failure process
requires an objective description of the localized process zone and
its evolution.

Perhaps the most popular class of inelastic material models is
represented by the theory of (elasto-)plasticity. The present paper
focuses on the localization properties of softening plasticity mod-
els. To allow for analytical solutions, all considerations are done
in the one-dimensional context, referring to the case of a straight
bar under uniaxial loading as the typical paradigm. However, the
analysis is nontrivial due to the fact that a variable cross-sectional
area is considered, and a regularized formulation of softening plas-
ticity is used.
1.1. Classical formulation

In the small-strain range, classical elastoplasticity is based on
the additive split of the total strain into the elastic part and the
plastic part. The elastic strain is linked to the stress by Hooke’s
law, while the plastic strain can grow only if the stress level attains
ll rights reserved.
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the yield limit, which is mathematically indicated by zero value of
the yield function. The oriented direction of the plastic strain rate
is specified by the flow rule and the evolution of the yield surface
(set of plastic stress states in the stress space) is described by the
hardening/softening law. For simplicity, we assume linear soften-
ing, i.e., linear dependence of the current yield stress on the cumu-
lative plastic strain. Description of the stress–strain relation by a
bilinear diagram is certainly a rough approximation, but it can
reflect the main features of elastoplasticity with softening and
serve as a prototype model, for which analytical solutions exist.

In the one-dimensional setting, the basic equation can be sum-
marized as follows:

r ¼ Eee ¼ Eðe� epÞ ð1Þ
f ðr;jÞ ¼j r j �rYðjÞ ð2Þ
rY ðjÞ ¼ r0 þ Hj ð3Þ
_ep ¼ _ksgnr ð4Þ
_j ¼j _ep j ð5Þ
_k P 0; f ðr;jÞ 6 0; _kf ðr;jÞ ¼ 0 ð6Þ

Here, r is the stress, e is the (total) strain, ee and ep are its elastic and
plastic parts, E is the elastic modulus, f is the yield function, rY is
the current yield stress, r0 is the initial yield stress, H < 0 is the
softening modulus, k is the plastic multiplier and j is the cumula-
tive plastic strain. The overdot denotes differentiation with respect
to time. A more detailed discussion of this specific problem is avail-
able in Jirásek et al. (2010) and a broad background of the theory of
plasticity e.g. in Lubliner (1990) or Jirásek and Bažant (2001).

If we restrict attention to tensile loading (with possible elastic
unloading, but never with a reversal of plastic flow), then the plas-
tic strain ep, cumulative plastic strain j and plastic multiplier k are
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all equal. We will use j as the primary symbol for (cumulative)
plastic strain and rewrite Eqs. (1) and (6) as

r ¼ Eðe� jÞ ð7Þ

_j P 0; f ðr;jÞ 6 0; _jf ðr;jÞ ¼ 0 ð8Þ

The above equations refer to uniaxial tension, but formally the
same framework can be used for the one-dimensional description
of a shear problem. Normal stress and strain are then replaced by
shear stress and strain, Young’s modulus E by the shear modulus
G, and the tensile yield stress by the shear yield stress.

1.2. Standard gradient formulation

It is well known that softening is a destabilizing factor that may
lead to localization of dissipative processes (in our case of plastic
yielding) into narrow zones. For classical continuum formulations
with local dependence between stress and strain, the thickness of
such localized process zones is undetermined and may become
arbitrarily small. The undesired consequence is that the structural
response becomes excessively brittle and numerical simulations
suffer by pathological sensitivity to the discretization parameters
such as the size of elements used by the finite element method.
This has to be avoided, e.g. by introducing a regularization tech-
nique which enforces a nonzero thickness of the localized process
zone and thus nonvanishing dissipation during the failure process.

In the one-dimensional setting, negative plastic modulus H
always leads to localization of plastic strain. Consider a straight
bar with perfectly uniform properties, subjected to uniaxial tension
(induced by applied displacement at one bar end). The response
remains uniform in the elastic range and also during plastic yield-
ing with a positive plastic modulus. For a negative (or vanishing)
plastic modulus, uniqueness of the solution is lost right at the
onset of softening (or of perfectly plastic yielding). Stress distribu-
tion along the bar must still remain uniform due to the static
equilibrium conditions (in the absence of body forces), but a given
stress level can be attained by softening with increasing plastic
strain, or by elastic unloading with no plastic strain evolution.
Which cross sections unload and which exhibit softening remains
completely arbitrary, and there is no lower bound on the total
length of the softening region(s). Therefore, infinitely many
solutions exist, including solutions with plastic strain evolution
localized into extremely small regions. Even if the nonuniqueness
of the solution is removed by a slight perturbation of the perfect
uniformity of the bar, the problem with localization of softening
into arbitrarily small regions (in fact into the weakest cross
section) still persists.

Commonly used regularization techniques overcome the
problem by suitable enrichments of the governing equations. Such
enrichments typically introduce at least one additional parameter
with the dimension of length (or a parameter which can be
combined with the traditional ones such that the result has the
dimension of length). This parameter reflects the intrinsic length
scale of the material and is related to the size and spacing of major
heterogeneities in the microstructure. The size of the process zone
is then controlled by the choice of the length scale parameter.

In principle it is possible to construct regularized models with
enriched kinematic and equilibrium equations, e.g. strain-gradient
plasticity or Cosserat-type models. From the practical point of view
it is more convenient to limit the enrichments to the constitutive
equations describing the material behavior and to keep the
kinematic and equilibrium equations unchanged. This class of
approaches is usually referred to as nonlocal continuum theories
in the broad sense. Nonlocality of the stress–strain relation can
be introduced by weighted spatial averaging of suitably chosen
internal variables, or by incorporation of gradients of such
variables into the constitutive description. Here we focus on the
latter case, in particular on its typical representative—the second-
order explicit gradient model that evolved from the work of
Aifantis and colleagues (Aifantis, 1984).

The explicit gradient formulation of elastoplasticity is based on
incorporation of a term proportional to the Laplacean of
cumulative plastic strain into the softening law (3). In the
one-dimensional setting, the Laplacean reduces to the second
derivative and the enriched softening law reads

rY ðjÞ ¼ r0 þ Hðjþ l2j00Þ ð9Þ

where l is a new parameter with the dimension of length.
In a bar with perfectly uniform properties (cross section, yield

stress, softening modulus, etc.) and in the absence of body forces
and inertia forces, the stress is constant along the bar. The plastic
zone, Ip, is characterized by growing plastic strain ( _j > 0) and
vanishing value of the yield function (f ¼ 0). Since the yield
function is given by (2), we conclude that the yield stress must
be constant inside the plastic zone, and then (9) leads to a
second-order differential equation with constant coefficients and
a constant right-hand side:

l2j00ðxÞ þ jðxÞ ¼ r� r0

H
ð10Þ

As shown e.g. in de Borst and Mühlhaus (1992), the (most localized)
plastic zone is an interval of length 2pl, arbitrarily placed along the
bar.

Analytical solutions for several types of bars with variable cross
sections were presented in Jirásek et al. (2010). The governing
equation

l2AðxÞj00ðxÞ þ AðxÞjðxÞ ¼ F � r0AðxÞ
H

ð11Þ

was constructed from (10) by setting rðxÞ ¼ F=AðxÞ, where A is a
function describing the distribution of the cross-sectional area
along the bar, and F is the axial force transmitted by the bar, which
is constant (independent of x) because of static equilibrium.

In the present paper, we will use a modified formulation of the
one-dimensional gradient plasticity model, constructed by a
variational approach. Analytical or semi-analytical solutions will
be derived and compared to the results for the standard gradient
formulation based on (11). An important advantage of the
variational formulations is that it permits a consistent treatment
of problems with discontinuous data, e.g. with a jump in the
cross-sectional area (leading to a jump in the stress field).

1.3. Variational gradient formulation

The variational formulation of the second-order explicit gradi-
ent plasticity model considered here is inspired by the work of
Mühlhaus and Aifantis (1991), Valanis (1996), Svedberg (1996),
Svedberg and Runesson (1997, 1998), Polizzotto et al. (1998),
Borino et al. (1999), and Liebe and Steinmann (2001). In the
one-dimensional case, it is derived from the functional

Pðu;jÞ ¼
Z
L

1
2

EAðu0 � jÞ2 dxþ
Z
L

1
2

HA j2 � l2j02
� �

dx

þ
Z
L

Ar0jdx�
Z
L

Abudx ð12Þ

in which L denotes the interval that represents the entire bar, A is
the cross sectional area and b is the prescribed body force density
in the longitudinal direction (per unit volume), introduced just for
the sake of generality but later set equal to zero. The first integral
in (12) can be interpreted as the elastic strain energy, the second
as the plastic part of free energy, the third as the dissipated energy
and the fourth as the potential energy of external forces.
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Functional P is considered in the space of all sufficiently
smooth displacement fields u that satisfy the geometric (essential)
boundary conditions on the boundary @L, and all sufficiently
smooth and nonnegative plastic strain fields j. In formal mathe-
matical language, the domain of definition of functional P is the
space V ¼ Vu � Vj where

Vu ¼ fu 2 H1ðLÞ j u ¼ �u on @L in the sense of tracesg ð13Þ
Vj ¼ fj 2 H1ðLÞ j j P 0 almost everywhereg ð14Þ

This means that the functions describing the displacement and the
plastic strain must be square-integrable and possess square-
integrable generalized first derivatives, but continuity of the first
derivatives and existence of the second derivatives are not a priori
required.

Due to the lack of convexity, the analysis can hardly rely on
global minimization of functional P. Nevertheless, it is reasonable
to expect that stable solutions of the problem are associated with
local minima of P. The subsequent derivations will be based on
necessary conditions of a local minimum, in particular, on nonneg-
ative values of the first variation (Gateaux derivative) of functional
P corresponding to all admissible variations of fields u and j. It
will be demonstrated that such an approach leads to a consistent
set of conditions that describe the problem and include the equilib-
rium equation, the complementarity conditions governing the
plastic flow, as well as appropriate boundary conditions at the
physical boundary and regularity conditions at the elasto-plastic
interfaces. A complete analysis should also pay attention to the
second variation, which is related to stability issues. Analytical
conditions for a non-negative second variation, derived for the
simplest case of a bar with uniform properties, are presented in
Appendix A.

Strictly speaking, the variational approach should be applied in
an incremental fashion, as discussed e.g. by Petryk (2003). How-
ever, for the present purpose it is fully sufficient to consider a total
formulation. It turns out that, for one-dimensional problems with
expanding or stationary plastic zones, the parameterized solutions
constructed in this way do not violate the irreversibility
constraints and thus represent physically admissible responses to
given loading scenarios.

The first variation of functional P defined in (12) can be
expressed as

dPðdu; dj; u;jÞ ¼
Z
L

EAðu0 � jÞðdu0 � djÞdx

þ
Z
L

HA jdj� l2j0dj0
� �

dxþ
Z
L

Ar0djdx

�
Z
L

Abdudx ð15Þ

where du is the displacement variation (difference between two
admissible displacement fields taken from Vu) and dj is the varia-
tion of plastic strain (difference between two admissible plastic
strain fields taken from Vj). Integration by parts of the terms with
du0 and dj0 leads to

dPðdu; dj; u;jÞ ¼ �
Z
L
ðEAðu0 � jÞÞ0 þ Ab
� �

dudx

þ
Z
L

HAjþ ðHAl2j0Þ0 þ Ar0 � EAðu0 � jÞ
h i

djdx

þ
X
@L

EAðu0 � jÞndu�
X

i

½½EAðu0 � jÞdu��xi

�
X
@L

HAl2j0ndjþ
X

i

½½HAl2j0dj��xi
ð16Þ

where
P

@L stands for the boundary integral, in the one-dimensional
setting reduced to the sum over two points at the boundary of the
interval L; n is the ‘‘unit normal’’, equal to �1 at the left boundary
and to 1 at the right boundary, and the sums with subscript i are
taken over all points at which the quantity in the double square
brackets has a discontinuity. The double brackets denote the jump
of the quantity inside the brackets, defined as

½½f ��xi
¼ lim

x!xþ
i

f ðxÞ � lim
x!x�

i

f ðxÞ ð17Þ

As already explained, the first variation dP must be nonnegative for
all admissible variations du and dj. By admissible variations we
mean arbitrary changes of u and j for which uþ du 2 Vu and
jþ dj 2 Vj.

Variations du are arbitrary inside L but vanishing on the bound-
ary. The expression multiplying du in the integral on the first line of
(16) must be identically equal to zero, which provides the equilib-
rium conditions

ðEAðu0 � jÞÞ0 þ Ab ¼ 0 ð18Þ

Of course, u0 corresponds to the strain, u0 � j is the elastic strain,
Eðu0 � jÞ is the stress and EAðu0 � jÞ is recognized as the axial force.
Since du is arbitrary inside L, the jumps of EAðu0 � jÞ must vanish,
i.e., the axial force (not the stress) must remain continuous.

The variation of j is not completely arbitrary, because jþ dj
must remain nonnegative. If we define the plastic zone
Ip ¼ fx 2 L j jðxÞ > 0g, dj can have an arbitrary sign inside Ip

but must be nonnegative outside Ip. Therefore, the expression
multiplying dj in the integral on the second line of (16) must van-
ish in Ip but outside Ip it is only constrained to be nonnegative. We
recognize the resulting equation

HAjþ ðHAl2j0Þ0 þ Ar0 ¼ EAðu0 � jÞ for x 2 Ip ð19Þ

as the yield condition, and the resulting inequality

HAjþ ðHAl2j0Þ0 þ Ar0 P EAðu0 � jÞ for x 2 L n Ip ð20Þ

as the plastic admissibility condition. The advantage of the varia-
tional formulation is that the cases of variable sectional area A, soft-
ening modulus H or internal length l are covered in a systematic
way, even in cases when some of these quantities exhibit disconti-
nuities. From the last two lines of (16) we obtain the corresponding
jump conditions and also the boundary conditions.

On the physical boundary @L, we get HAl2j0n ¼ 0 if the bound-
ary point belongs to Ip, or HAl2j0n 6 0 if this point does not belong
to Ip. The first condition means that if the plastic zone contains a
point of the physical boundary, the homogeneous Neumann condi-
tion j0 ¼ 0 should be imposed at that point. The second condition
means that if the boundary point remains elastic (j ¼ 0 at the
boundary), the spatial derivative of plastic strain could, in princi-
ple, be nonzero. Since H < 0 and Al2

> 0, at the right end of the
bar (n ¼ 1) the derivative j0 must not be negative. However, if
j ¼ 0 at the right boundary and j P 0 everywhere, j0 cannot be
strictly positive at the boundary and its only admissible value is
again zero.

The jump conditions imply that if the quantity HAl2j0dj is dis-
continuous at some point, its jump should be nonnegative for any
admissible dj.

� For points inside the plastic zone Ip, dj can be positive as well
as negative, and therefore HAl2j0 must remain continuous. So in
general we should not enforce continuous differentiability of
plastic strain, but rather continuity of the product HAl2j0. This
is important when the spatial distribution of the softening mod-
ulus or of the sectional area is discontinuous.
� For points outside the plastic zone, the variation dj is nonneg-

ative and so the jump of HAl2j0 is in principle admissible but
only if it is positive. Inside the elastic zone, j0 vanishes and
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HAl2j0 has no jump at all. However, at the elasto-plastic inter-
face (which is located at the boundary of the plastic zone), the
derivative of plastic strain could exhibit a jump from zero value
in the elastic zone to nonzero value in the plastic zone. At the
left boundary of the plastic zone, the jump is equal to the value
in the plastic zone. Since H is negative and Al2 is positive, the
limit of j0 (as we approach the boundary of the plastic zone
from inside) is allowed to be negative (or zero). However,
j0 < 0 would mean that j < 0 at some point inside the plastic
zone (because j ¼ 0 at the boundary of that zone), which is
not admissible. Similar arguments can be applied at the right
boundary of the plastic zone, where the jump is minus the value
in the plastic zone, and therefore j0 is allowed to be positive (or
zero), but a positive slope of the plastic strain profile is impos-
sible to achieve without generating negative plastic strains
inside the plastic zone near the boundary. So this discussion
leads to the conclusion that the condition j0 ¼ 0 should be
imposed at the boundary of the plastic zone.

In the absence of body forces, we set b ¼ 0 and Eq. (18) implies
that EAðu0 � jÞ is constant along the bar (independent of the spatial
coordinate x). Physically, this constant represents the axial force
transmitted by the bar and therefore will be denoted as F.
Eq. (19) is then rewritten as

HAðxÞjðxÞ þ ðHAðxÞl2j0ðxÞÞ0 þ AðxÞr0 ¼ F for x 2 Ip ð21Þ
2. Bar with piecewise constant stress distribution

Having presented the governing equations, we can proceed to
localization analysis of a tensile bar with variable cross section.
As the first case, consider a bar with piecewise constant sectional
area (Fig. 1(a)). Suppose that the bar contains a weak segment of
length 2lg and sectional area Ac , while the remaining parts have a
larger sectional area Ac=ð1� bÞ where b 2 ½0;1Þ is a dimensionless
parameter. The origin of the spatial coordinate system can be
placed into the center of the weak segment. The solution is then
expected to exhibit symmetry with respect to the origin.

Let us emphasize that the present analysis is strictly focused on
one-dimensional modeling. Therefore, the stress distribution
across each section is considered as uniform. Of course, for a real
three-dimensional body containing notches, the stress field would
have a singularity at the notch tip and the stress distribution across
sections near that singularity would be highly nonuniform. How-
ever, we use the case of variable cross section as a paradigmatic
example of the localization properties of a gradient plasticity mod-
el in cases with non-smooth and sometimes even discontinuous
data. Therefore, the stress is expressed simply as the normal force
divided by the sectional area.

For the bar with a weak segment of length 2lg , the stress distri-
bution is described by

rðxÞ ¼
F=Ac ¼ rc for j x j< lg
F=½Ac=ð1� bÞ� ¼ ð1� bÞrc for j x j> lg

�
ð22Þ
(a)
F

Fig. 1. Tensile bars with (a) discontinuous distribution of stress, (b) con
and has discontinuities at sections x ¼ �lg; see Fig. 2. As long as the
stress remains below the yield limit, the response is purely elastic.
The onset of yielding can be expected when the yield limit is
attained, which happens at the elastic limit force F0 ¼ Acr0. For a
softening plasticity model without any regularization, plastic
yielding would localize into one cross section, the dissipation would
vanish (because the plastic zone has zero volume) and the response
would be extremely brittle. Regularization by the additional
gradient term leads to a finite size of the plastic zone.

2.1. Plastic zone contained in weak segment

Let us first assume that the plastic zone Ip is fully contained in
the weak segment, i.e., Ip � ð�lg ; lgÞ. The yield condition (21) with
A ¼ Ac and F ¼ Acrc can be rewritten as

l2j00ðxÞ þ jðxÞ ¼ rc � r0

H
for x 2 Ip ð23Þ

This is a linear second-order differential equation with constant
coefficients and a constant right-hand side, and its general solution
is

jðxÞ ¼ rc � r0

H
þ C1 cos

x
l
þ C2 sin

x
l

ð24Þ

where C1 and C2 are arbitrary constants. Let Lp denote the length of
the plastic zone and suppose that the plastic zone is centered at the
origin, i.e., Ip ¼ ð�Lp=2; Lp=2Þ. If this was not the case, the origin
could simply be shifted to the center of the plastic zone. As
explained at the end of Section 1.3, the plastic strain j must remain
continuous and its derivative must vanish at the elasto-plastic inter-
face, @Ip, which consists of two points, x ¼ �Lp=2. Conditions
jð�Lp=2Þ ¼ 0, jðLp=2Þ ¼ 0, j0ð�Lp=2Þ ¼ 0 and j0ðLp=2Þ ¼ 0 lead to
C2 ¼ 0, C1 ¼ ðr0 � rcÞ=ðH cosðLp=2lÞÞ and sinðLp=2lÞ ¼ 0. The last
condition means that the length of the plastic zone, Lp, must be an
integer multiple of 2pl. The shortest positive length of plastic zone
is obtained if Lp ¼ 2pl. However, such a solution is admissible only
if the plastic zone is indeed fully contained in the weak segment of
length 2lg , i.e., if lg > pl. In that case, the solution is given by

jðxÞ ¼
rc�r0

H 1þ cos x
l

� �
for x 2 Ip ¼ ð�pl;plÞ

0 for x R Ip

(
ð25Þ

This is the classical solution that describes localization in a bar with
perfectly uniform properties (de Borst and Mühlhaus, 1992).
Analysis of the second variation of functional P, presented in detail
in Appendix A, reveals that this solution corresponds to a local
minimum of P.

If the weak segment is sufficiently long with respect to the char-
acteristic length of the material (longer than 2pl), the plastic zone
will form inside that segment and the solution will not be affected
by stronger parts of the bar. However, if the weak segment is short-
er than the plastic zone in a perfectly uniform bar, solution (25) is
not admissible and the derivation must be modified.

It is convenient and elegant to convert the problem to a dimen-
sionless format. For this purpose, we introduce the dimensionless
(b)
F F

(c)
F F

tinuous distribution of stress, and (c) smooth distribution of stress.
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Fig. 2. Bar with a weak segment and the corresponding stress distribution.
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constant stress distribution (bar with a weak segment).
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spatial coordinate, n ¼ x=l, normalized plastic strain, jn ¼ �Hj=r0,
and dimensionless stress / ¼ rc=r0. Note that /, defined as the
ratio between the stress in the weak segment and the yield stress,
is at the same time the ratio between the axial force, F, and its
elastic limit value, F0, and thus will be referred to as the load param-
eter. The distribution of plastic strain in a uniform bar, given by
(25), can be described in terms of the dimensionless quantities as

jnðnÞ ¼
ð1� /Þ 1þ cos nð Þ for n 2 ð�p;pÞ
0 for n R ð�p;pÞ

�
ð26Þ

This solution is valid for a bar with a weak segment of length 2lg

provided that 2lg > 2pl, i.e., kg > p where kg ¼ lg=l is a dimension-
less parameter describing the ratio between the ‘‘geometric’’ char-
acteristic length, lg , and the material characteristic length, l.

2.2. Plastic zone extending to strong segments

Let us proceed to the case when 2lg < 2pl, i.e., kg < p. Eq. (23) is
now valid only for j x j< lg . In terms of the dimensionless quanti-
ties, we rewrite it as

j00nðnÞ þ jnðnÞ ¼ 1� /; j n j< kg ð27Þ

For simplicity, the derivatives with respect to n will still be denoted
by primes, despite possible confusion with derivatives with respect
to x. For the parts of the plastic zone surrounding the weak segment,
a similar equation with a modified right-hand side can be derived
from (21):

j00nðnÞ þ jnðnÞ ¼ 1� /þ b/; kg <j n j< kp ð28Þ

Here, kp ¼ Lp=2l is a dimensionless parameter characterizing the ra-
tio between one half of the plastic zone length, Lp=2, and the mate-
rial characteristic length, l. Since the solution is again expected to be
symmetric with respect to the origin, we construct it only in the
weak segment and in one of the stronger segments adjacent to it:

jnðnÞ ¼
1� /þ C1 cos nþ C2 sin n for � kg 6 n 6 kg

1� /þ b/þ C3 cos nþ C4 sin n for kg 6 n 6 kp

�
ð29Þ

Integration constant C2 must vanish due to symmetry. Constants
C1; C3 and C4 and the dimensionless plastic zone size kp can be
determined from four conditions: continuity of jn and of Aj0n at
n ¼ kg and at n ¼ kp. These conditions lead to the set of four
equations

C1 cos kg � C3 cos kg � C4 sin kg ¼ b/ ð30Þ
� C1ð1� bÞ sin kg þ C3 sin kg � C4 cos kg ¼ 0 ð31Þ
C3 cos kp þ C4 sin kp ¼ ð1� bÞ/� 1 ð32Þ
� C3 sin kp þ C4 cos kp ¼ 0 ð33Þ

which are linear in terms of C1;C3 and C4 but nonlinear in terms of
kp. Since the load parameter, /, enters the equations in a linear
fashion, it is of advantage to reformulate the problem and solve
for the integration constants and / in terms of kp. Another parame-
ter that affects the solution is kg , and so we can parameterize the
solution by kg and kp and write

C1ðkg ; kpÞ ¼ b/
sinðkp � kgÞ

Dðkg ; kpÞ
ð34Þ

C3ðkg ; kpÞ ¼ ðb� 1Þb/
sin kg cos kp

Dðkg ; kpÞ
ð35Þ

C4ðkg ; kpÞ ¼ ðb� 1Þb/
sin kg sin kp

Dðkg ; kpÞ
ð36Þ

/ðkg ; kpÞ ¼
1

1� b
1

1þ b sin kg

Dðkg ;kpÞ

ð37Þ

where

Dðkg ; kpÞ ¼ ð1� b sin2 kgÞ sin kp � b sin kg cos kg cos kp

¼ 1� 1
2

b

	 

sin kp þ

1
2

b sinðkp � 2kgÞ ð38Þ

Recall that parameter /, defined as the ratio rc=r0, can also be
interpreted as the ratio between the axial force transmitted by the
bar, F ¼ Acrc , and its limit elastic value, F0 ¼ Acr0. For a fixed kg ,
the dimensionless size of the plastic zone kp can be varied as a
parameter describing various stages of plastic zone evolution.
The range in which the solution makes physical sense can be deter-
mined from the conditions that the initial value of the load param-
eter at the onset of yielding is / ¼ 1 and that / ¼ 0 corresponds to
complete failure. The relation between the load parameter / and
the dimensionless plastic zone size kp is graphically illustrated in
Fig. 3 for b ¼ 0:5 and for several values of parameter kg ranging
from 0.01 to 2.5. The interesting range of kg is between zero and
p because for kg > p the weak zone is long enough to allow forma-
tion of the complete plastic zone in its interior, and the solution is
the same as for a bar with a perfectly uniform section Ac .

When the axial force reaches the limit elastic value (i.e., when
/ ¼ 1), the entire weak segment of length 2lg starts yielding and
the initial value of the dimensionless plastic zone size is kp ¼ kg .
Subsequently, the plastic zone expands continuously, and this ini-
tially happens at an increasing load level, provided that kg < p=2,
i.e., that the length of the weak segment 2lg is smaller than pl.
The maximum force

Fmax ¼
F0

1� b
1

1þ b sin kgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�bð2�bÞ sin2 kg

p
ð39Þ

is attained when the dimensionless size of the plastic zone is
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kp;peak ¼ p� arctan
1� b sin2 kg

b sin kg cos kg
ð40Þ

After that, the axial force decreases to zero as the size of the plastic
zone approaches the limit

kp;max ¼ kp;peak þ
1
2
p ð41Þ

If the size of the weak segment exceeds pl, the global response is
softening right from the onset of plastic yielding.

Substituting from (34)–(37) into (29), we obtain the distribu-
tion of plastic strain parameterized by kp, and integrating over
the plastic zone we get the plastic elongation. An example of the
evolution of plastic strain profile, calculated for b ¼ 0:5 and
kg ¼ 0:5, is shown in Fig. 4. The plastic zone expands and, at each
section, the plastic strain grows monotonically.

It is also of interest to construct the load–displacement diagram
for the entire bar. The elastic elongation is proportional to the axial
force and the proportionality factor (bar compliance) depends on
the bar length. Therefore, it is convenient to consider the contribu-
tion of plastic strain to the elongation separately, since the bar
length does not affect it (provided that the bar is sufficiently long
such that the full plastic zone can develop). The plastic part of
bar elongation,

up ¼
Z Lp=2

�Lp=2
jðxÞdx ð42Þ

can be computed by integrating the plastic strain along the plastic
zone. In the context of dimensionless description, it is natural to
deal with the dimensionless plastic elongationZ kp

�kp

jnðxÞdn ¼
Z Lp=2

�Lp=2
�HjðxÞ

r0

dx
l
¼ �Hup

r0l
¼ up

jf l
ð43Þ

where jf ¼ �r0=H is a material parameter that corresponds to the
plastic strain at complete failure if the gradient terms are ignored.

The plastic part of the load–displacement diagram, obtained by
plotting the dimensionless load parameter / against the dimension-
less plastic elongation up=jf l, is shown in Fig. 5(a) for fixed b ¼ 0:5
and different dimensionless sizes of the weak segment, kg , and in
Fig. 5(b) for fixed kg ¼ 0:5 and different values of b. These graphs
explain the influence of both parameters on the shape of the load–
displacement diagram. The weak segment can be considered as an
imperfection in a uniform bar, parameter kg refers to the length of
that imperfection and b to its ‘‘magnitude’’ (in the sense that larger
b means a more dramatic reduction of the sectional area). For short
imperfections, the initial structural hardening is very steep and the
maximum axial force is close to the value calculated for a perfect
bar. For somewhat longer imperfections, the structural hardening
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Fig. 4. (a) Early stage and (b) late stage of evolution of plastic
is more gradual and the maximum force is between the values that
would correspond to the weaker and stronger sections, and for
imperfection lengths exceeding pl (which is exactly one half of
the plastic zone that would form in a perfectly uniform bar) the
maximum load is dictated exclusively by the weak section and the
load–displacement diagram is softening from the onset of yielding.

3. Bar with piecewise linear stress distribution

3.1. General solution

Now consider a bar with variable sectional area described by a
function that is continuous but not continuously differentiable at
the weakest section; see Fig. 1(b). To allow for analytical solutions,
we define the specific distribution of sectional area such that the
corresponding stress distribution becomes piecewise linear. This
is achieved by setting

AðxÞ ¼ Aclg

lg � jxj
ð44Þ

where lg is a parameter that sets the geometric length scale of the
problem. Substituting (44) into (21) and dividing by HAðxÞ, we
obtain

l2j00ðxÞ þ l2 sgnx
lg � jxj

j0ðxÞ þ jðxÞ ¼ rcðlg � jxjÞ
Hlg

� r0

H
for x 2 Ip � f0g

ð45Þ

Eq. (45) must be satisfied at all points inside the plastic zone, with
the exception of point x ¼ 0 at which the sectional area is not differ-
entiable. At that point, conditions of continuity of j and Aj0 have to
be imposed. Since A is continuous, the latter condition actually
means continuity of j0. After conversion to dimensionless form,
the governing equation reads

j00nðnÞ þ
sgnn

kg � jnj
j0nðnÞ þ jnðnÞ ¼ 1� / 1� jnj

kg

	 

ð46Þ

This is a second-order differential equation, but in contrast to (27)
or (28), it contains on the left-hand side an additional term with
the first-order derivative which has a non-constant coefficient,
and the right-hand side is not constant. Still, an analytical solution
in terms of special functions can be constructed. The derivation is
presented in detail in Appendix B. The resulting general solution
has the form

jnðnÞ ¼ ðkg � jnjÞC�1 J1ðkg � jnjÞ þ ðkg � jnjÞC�2 Y1ðkg � jnjÞ

þ 1� /pðkg � jnjÞ
2kg

H1ðkg � jnjÞ for n 2 Ip ð47Þ
(b)
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strain profile for a piecewise constant stress distribution.



(a) (b)

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7  8

lo
ad

 p
ar

am
et

er
, φ

normalized plastic elongation, up/lκf

λg=0.01
0.1
0.5

1.
1.5
2.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7  8

lo
ad

 p
ar

am
et

er
, φ

normalized plastic elongation, up/lκf

β=0.6
0.4
0.2

0.01

Fig. 5. Plastic part of load–displacement diagram for a piecewise constant stress distribution for (a) different values of relative imperfection size kg ¼ lg=l and (b) different
values of imperfection ‘‘magnitude’’ b.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10  12

lo
ad

 p
ar

am
et

er

normalized plastic elongation

variational
standard

Fig. 6. Plastic part of normalized load–displacement diagram for piecewise linear

262 M. Jirásek et al. / International Journal of Solids and Structures 50 (2013) 256–269
where C�1 and C�2 are integration constants, J1 and Y1 are the Bessel
functions of the first and second kind, resp., and H1 is the Struve
function (Korenev, 2002).

3.2. Particular solution

For simplicity, we have written (47) in a compact form, but the
integration constants have different values in the ‘‘positive part’’ of
the plastic zone, where n > 0, and in the ‘‘negative part’’ of the
plastic zone, where n < 0. Therefore, we deal with four integration
constants, Cþ1 , Cþ2 , C�1 and C�2 , and with two additional unknowns
that determine the position of the right and left boundary of the
plastic zone. This makes a total of six unknowns, which can be
determined from appropriate jump and boundary conditions.
According to the foregoing analysis, the solution must remain con-
tinuously differentiable at the origin and at the two boundary
points, which leads to six equations for the six unknowns.

Due to symmetry, the problem can be simplified and it is suffi-
cient to restrict attention to the positive part of the plastic zone,
Iþp ¼ ð0; kpÞ. The three relevant unknowns, Cþ1 ;C

þ
2 and kp, can be

determined from three conditions,

j0nð0Þ ¼ 0 ð48Þ
jnðkpÞ ¼ 0 ð49Þ
j0nðkpÞ ¼ 0 ð50Þ

Substituting the general solution (47) into (48)–(50), we obtain a
set of three equations,

� 2kg Cþ1 J0ðkgÞ þ Cþ2 Y0ðkgÞ
� �

þ /pH0ðkgÞ ¼ 0 ð51Þ

Cþ1 J1ðkg � kpÞ þ Cþ2 Y1ðkg � kpÞ �
/p
2kg

H1ðkg � kpÞ þ
1

kg � kp
¼ 0 ð52Þ

� 2kg Cþ1 J0ðkg � kpÞ þ Cþ2 Y0ðkg � kpÞ
� �

þ /pH0ðkg � kpÞ ¼ 0 ð53Þ

which are linear in terms of Cþ1 and Cþ2 but nonlinear in terms of kp.
In (51) and (53), we exploited identities ðnJ1ðnÞÞ0 ¼ nJ0ðnÞ,
ðnY1ðnÞÞ0 ¼ nY0ðnÞ and ðnH1ðnÞÞ0 ¼ nH0ðnÞ, where Jm and Ym are Bes-
sel functions of order m and Hm are Struve functions of order m; see
e.g. Andrews (1992) and Korenev (2002). Again, it is of advantage to
reformulate the problem and solve for Cþ1 ;C

þ
2 and / in terms of kp

and kg:

Cþ1 ðkg ; kpÞ ¼
p �Y0ðkg � kpÞH0ðkgÞ þ Y0ðkgÞH0ðkg � kpÞ
� �

Dþðkg ; kpÞ
ð54Þ

Cþ2 ðkg ; kpÞ ¼
p J0ðkg � kpÞH0ðkgÞ � J0ðkgÞH0ðkg � kpÞ
� �

Dþðkg ; kpÞ
ð55Þ

/ðkg ; kpÞ ¼
2kg J0ðkg � kpÞY0ðkgÞ � J0ðkgÞY0ðkg � kpÞ
� �

Dþðkg ; kpÞ
ð56Þ
where

Dþðkg ; kpÞ ¼ 2H0ðkgÞ þ pðkg � kpÞf½�J1ðkg � kpÞY0ðkgÞ
þ J0ðkgÞY1ðkg � kpÞ�H0ðkg � kpÞ þ ½J0ðkg

� kpÞY0ðkgÞ � J0ðkgÞY0ðkg � kpÞ�H1ðkg � kpÞg ð57Þ

From symmetry with respect to the origin, we obtain integration
constants corresponding to the negative part of the plastic zone
as C�1 ¼ Cþ1 and C�2 ¼ Cþ2 . The assumption of symmetry may seem
to be restrictive, but it can be verified by (tedious) analysis of the
complete problem with six equations and six unknowns that no
nonsymmetric admissible solution exists.

3.3. Results and discussion

Based on the solution constructed in the previous subsection,
the evolution of the plastic zone can be analyzed, and the corre-
sponding load–displacement diagram can be constructed. The
plastic part of the load–displacement diagram is shown in Fig. 6,
where the dimensionless load parameter / is plotted against the
dimensionless plastic elongation, up=ljf . Recall that
/ ¼ rc=r0 ¼ F=F0 is the ratio between the axial force F and its va-
lue at the onset of yielding, F0 ¼ Acr0. The plastic elongation, up, is
normalized by a reference value ljf , which would correspond to
the plastic elongation of a bar of length l at complete failure if
the solution remained uniform.

During the elastic stage of loading, the axial force increases
from 0 to F0 and no plastic strain evolves. Thus the initial part of
the diagram in Fig. 6, up to / ¼ 1, is vertical. For a bar with a uni-
form section, the continuation of that diagram would be a straight
line that corresponds to linear softening, and the plastic elongation
stress distribution.
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Fig. 8. Evolution of plastic strain profile for piecewise linear stress distribution.
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at complete failure (/ ¼ 0) would be 2pljf . This is in fact a limit
case of the present solution with kg ! 1. For finite kg , i.e., for a
bar with a variable section, the load parameter first increases and
only later decreases. Complete failure is attained at larger elonga-
tions than for the uniform bar. This is represented in Fig. 6 by the
solid curves, which correspond to different values of parameter
kg ¼ 3:2, 5, 10 and 50 (from top to bottom). Lower values of kg cor-
respond to stronger variation of the sectional area and lead to high-
er peak loads and higher elongations at failure. For comparison, the
solutions constructed in Jirásek et al. (2010) using a ‘‘standard’’ for-
mulation, with the second term in (21) replaced by HAl2j00, are
plotted by the dotted curves. The present, variationally based for-
mulation leads to qualitatively similar solutions, but with higher
peak loads and higher elongations at complete failure. Note that,
for the standard formulation, the elongation at failure is always
the same as for a uniform bar, independently of the value of
parameter kg .

The evolution of the plastic zone size is illustrated in Fig. 7 by
plotting the load parameter / against the dimensionless plastic
zone size kp ¼ Lp=2l, again for kg ¼ 3:2, 5, 10 and 50. For a uniform
bar (kg ! 1), the plastic zone would attain its full size Lp ¼ 2pl
(corresponding to kp ¼ p) immediately at the onset of yielding. In
contrast to that, for the bar with a variable section, the plastic zone
evolves continuously from the weakest section up to its full size,
attained at complete failure. The fact that the plastic zone expands
monotonically is important, because it justifies our tacit assump-
tion that the material outside the current plastic zone has not
experienced any plastic straining before. The full size of the plastic
zone turns out to be somewhat smaller than for a uniform bar,
which is different from the standard solution constructed in Jirásek
et al. (2010), plotted for comparison by dotted curves.

The evolution of the plastic strain profile is plotted in Fig. 8 for
kg ¼ 5. Again, solid curves represent the variational formulation
and dotted curves the standard formulation from Jirásek et al.
(2010). At early stages of plastic strain evolution, both formula-
tions give almost the same result, but later the differences grow.

4. Bar with smooth stress distribution

As the most regular case, we consider a smooth distribution of
sectional area, with continuous derivatives of an arbitrary order.
The origin of the spatial coordinate is again placed at the weakest
section, where plastic yielding is expected to start. In Jirásek et al.
(2010), the function describing the sectional area was selected such
that the resulting stress distribution was quadratic. For the present
purpose, it turns out to be more convenient to consider another spe-
cial case in which the stress distribution is given by a Gaussian
function,

rðxÞ ¼ rc e�x2=2l2g ð58Þ

The sectional area is thus

AðxÞ ¼ Ac ex2=2l2g ð59Þ

Since, for this case, the solution based on the standard formulation
has not been published yet, let us present it before turning attention
to the variational formulation.

4.1. Solution based on standard formulation

According to the standard formulation used in Jirásek et al.
(2010), the yield condition is considered in the form

HAl2j00ðxÞ þ HAjðxÞ þ Ar0 ¼ F for x 2 Ip ð60Þ

which differs from (21) by the second term. The corresponding dif-
ferential equation for the plastic strain can be converted into the
dimensionless form

j00nðnÞ þ jnðnÞ ¼ 1� /e�n2=2k2
g ð61Þ

The general solution of the corresponding homogeneous equation is
a linear combination of cos n and sin n, and the particular solution
for the given right-hand side can be constructed by variation of con-
stants. For the particular solution represented by

~jnðnÞ ¼ eC 1ðnÞ cos nþ eC2ðnÞ sin n ð62Þ

we obtain a set of two equationseC 01ðnÞ cos nþ eC 02ðnÞ sin n ¼ 0 ð63Þ

� eC 01ðnÞ sin nþ eC 02ðnÞ cos n ¼ 1� /e�n2=2k2
g ð64Þ

from which

eC1ðnÞ ¼ cos nþ /
Z

e�n2=2k2
g sin ndn ð65Þ

eC2ðnÞ ¼ sin n� /
Z

e�n2=2k2
g cos ndn ð66Þ

The integrals can be conveniently expressed by switching to com-
plex functions. As shown in Appendix C, the resulting general solu-
tion of Eq. (61) can be expressed as

jnðnÞ ¼ C1 cos nþ C2 sin nþ 1� /kge�n2=2k2
g

�
ffiffiffi
2
p

2
F

k2
g � inffiffiffi

2
p

kg

 !
þ F

k2
g þ inffiffiffi

2
p

kg

 !" #
ð67Þ

where C1 and C2 are arbitrary constants, i denotes the imaginary
unit, and

FðxÞ ¼ e�x2
Z x

0
et2

dt ð68Þ
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is the so-called Dawson function; see e.g. Olver (1997).
In general, one should impose two boundary conditions (of van-

ishing value and vanishing derivative) at each boundary point and
solve for two integration constants C1 and C2 and two unknown
coordinates of the boundary points. Due to symmetry, the problem
can be simplified. Integration constant C2 must vanish, and the
plastic zone Ip ¼ ð�kp; kpÞ is characterized by one unknown
parameter, kp. Boundary conditions jnðkpÞ ¼ 0 and j0nðkpÞ ¼ 0 lead
to a set of two equations,

� C1 cos kp þ /
kgffiffiffi

2
p e�k2

p=2k2
g F

k2
g � ikpffiffiffi

2
p

kg

 !
þ F

k2
g þ ikpffiffiffi

2
p

kg

 !" #
¼ 1 ð69Þ

C1 sin kp þ /
ikgffiffiffi

2
p e

�
k2

p

2k2
g F

k2
g � ikp

kg

ffiffiffi
2
p

 !
� F

k2
g þ ikp

kg

ffiffiffi
2
p

 !" #
¼ 0 ð70Þ

which can be written as

� cpC1 þ EFR/ ¼ 1 ð71Þ
spC1 þ EFI/ ¼ 0 ð72Þ

where cp ¼ cos kp, sp ¼ sin kp, E ¼
ffiffiffi
2
p

kge�k2
p=2k2

g and

FR ¼
1
2

F
k2

g þ ikp

kg

ffiffiffi
2
p

 !
þ F

k2
g � ikp

kg

ffiffiffi
2
p

 !" #
ð73Þ

FI ¼ �
i
2

F
k2

g þ ikp

kg

ffiffiffi
2
p

 !
� F

k2
g � ikp

kg

ffiffiffi
2
p

 !" #
ð74Þ

are the real and imaginary parts of F k2
gþikp

kg
ffiffi
2
p

� �
. Eq. (70) follows from

the condition j0nðkpÞ ¼ 0 with the derivative of F expressed as
F0ðxÞ ¼ 1� 2xFðxÞ, which easily follows from the definition of Daw-
son function (68).

Solving for C1 and /, we obtain

C1ðkp; kgÞ ¼ �
FI

FRsp þ FIcp
¼

F k2
gþikp

kg
ffiffi
2
p

� �
� F k2

g�ikp

kg
ffiffi
2
p

� �
e�ikp F k2

g�ikp

kg
ffiffi
2
p

� �
� eikp F k2

gþikp

kg
ffiffi
2
p

� � ð75Þ

/ðkp; kgÞ ¼
sp

EðFRsp þ FIcpÞ
¼

ffiffiffi
2
p

kg

i sin kpek2
p=2k2

g

eikp F k2
gþikp

kg
ffiffi
2
p

� �
� e�ikp F k2

g�ikp

kg
ffiffi
2
p

� � ð76Þ

As usual, the solution is parameterized by the dimensionless
size of the plastic zone, kp. For a given value of kp, the correspond-
ing load parameter / is given by (76) and the distribution of plastic
strain is obtained by substituting C1 given by (75) and C2 ¼ 0 into
(67).

4.2. Solution based on variational formulation

For the variational formulation, the yield condition is used in
the form (21) instead of (60), and Eq. (61) is replaced by

e�n2=2k2
g en2=2k2

g jnðnÞ0
� �0

þ jnðnÞ ¼ 1� /e�n2=2k2
g ð77Þ

As shown in Appendix D, the general solution of the corresponding
homogeneous equation is a linear combination of functions

jn;1ðnÞ ¼ e
� n2

2k2
g 1F1

1� k2
g

2
;
1
2

;
n2

2k2
g

 !
ð78Þ

jn;2ðnÞ ¼ e
� n2

2k2
g

nffiffiffi
2
p

kg
1F1

2� k2
g

2
;
3
2

;
n2

2k2
g

 !
ð79Þ

where 1F1 denotes the so-called confluent hypergeometric function
of the first kind (Sneddon, 1956), defined by formulae (D.12) and
(D.13) in Appendix D. A particular solution of the non-
homogeneous Eq. (77) could be constructed by variation of
constants. Following the same procedure as in Section 4.1, we ob-
tain a particular solution

~jnðnÞ ¼ eC 1ðnÞjn;1ðnÞ þ eC2ðnÞjn;2ðnÞ ð80Þ

with

eC1ðnÞ ¼
Z jn;2ðnÞ

j0n;1ðnÞjn;2ðnÞ � jn;1ðnÞj0n;2ðnÞ
1� /e

� n2

2k2
g

 !
dn ð81Þ

eC2ðnÞ ¼ �
Z

jn;1ðnÞ
j0n;1ðnÞjn;2ðnÞ � jn;1ðnÞj0n;2ðnÞ

1� /e
� n2

2k2
g

 !
dn ð82Þ

Unfortunately, these integrals cannot be evaluated analytically.
An alternative approach can be based on the Green function of

the differential operator on the left-hand side of (77). Formally, the
Green function represents the solution of the differential equation
with the right-hand side replaced by Dirac distribution centered at
a point g. At points n different from g, the right-hand side is zero
and the solution is a linear combination of functions (78) and
(79). Due to the singularity at n ¼ g, different coefficients of linear
combination must be used for n 6 g and for n P g. Moreover, these
coefficients depend on the specific value of g. Therefore, we can
write the Green function as

Gðn;gÞ ¼
A1ðgÞjn;1ðnÞ þ A2ðgÞjn;2ðnÞ for � kp 6 n 6 g
B1ðgÞjn;1ðnÞ þ B2ðgÞjn;2ðnÞ for g 6 n 6 kp

�
ð83Þ

and impose at n ¼ g the continuity condition for the value and the
unit jump condition for the first derivative. This leads to two
equations,

A1ðgÞjn;1ðgÞ þ A2ðgÞjn;2ðgÞ ¼ B1ðgÞjn;1ðgÞ þ B2ðgÞjn;2ðgÞ ð84Þ
A1ðgÞj0n;1ðgÞ þ A2ðgÞj0n;2ðgÞ ¼ B1ðgÞj0n;1ðgÞ þ B2ðgÞj0n;2ðgÞ � 1 ð85Þ

In usual problems solved on a fixed interval, the Green function
should also satisfy two boundary conditions (one at each boundary
point). However, in our case the exact position of the boundary
points is not specified and the number of conditions to be satisfied
at each boundary point is two (vanishing value and vanishing first
derivative). Making use of symmetry, we can restrict attention to
non-negative values of n and g and impose only one condition of
vanishing derivative at n ¼ 0, while at n ¼ kp we still need to satisfy
two conditions. One of them can be incorporated into the Green
function, and the other will be imposed aposteriori on the resulting
solution and will provide a link between the load parameter / and
the dimensionless size of the plastic zone, kg .

Based on the foregoing discussion, we constrain the Green func-
tion by conditions of vanishing derivative at n ¼ 0 and vanishing
value at n ¼ kp, which gives two additional equations,

A1ðgÞj0n;1ð0Þ þ A2ðgÞj0n;2ð0Þ ¼ 0 ð86Þ

B1ðgÞjn;1ðkpÞ þ B2ðgÞjn;2ðkpÞ ¼ 0 ð87Þ

Since j0n;1ð0Þ ¼ 0 (see Appendix D) and j0n;2ð0Þ– 0, Eq. (86) gives
A2ðgÞ ¼ 0. Combining Eqs. (84), (85) and (87), we can express

A1ðgÞ ¼
jn;2ðgÞjn;1ðkpÞ � jn;1ðgÞjn;2ðkpÞ

DðgÞ ð88Þ

B1ðgÞ ¼ �
jn;2ðkpÞjn;1ðgÞ

DðgÞ ð89Þ

B2ðgÞ ¼
jn;1ðkpÞjn;1ðgÞ

DðgÞ ð90Þ

with the auxiliary function D given by

DðgÞ ¼ jn;1ðgÞj0n;2ðgÞ � j0n;1ðgÞjn;2ðgÞ
h i

jn;1ðkpÞ ð91Þ
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and construct the Green function by substituting this back into (83).
The solution of (77) is then given by

jnðnÞ ¼
Z kp

0
Gðn;gÞ 1� /e�g2=2k2

g

� �
dg

¼
Z kp

0
Gðn;gÞdg� /

Z kp

0
Gðn;gÞe�g2=2k2

g dg ð92Þ

This solution always satisfies conditions j0nð0Þ ¼ 0 and jnðkpÞ ¼ 0,
which have been incorporated into the Green function. The remaining
condition to be satisfied, j0nðkpÞ ¼ 0, provides a link between the load
parameter and the size of the plastic zone. As usual, it is more conve-
nient to express the load parameter / in terms of the dimensionless
plastic zone size kp than vice versa. Indeed, we can formally write

j0nðnÞ ¼
Z kp

0
G0ðn;gÞdg� /

Z kp

0
G0ðn;gÞe�g2=2k2

g dg ð93Þ

where, for simplicity,

G0ðn;gÞ ¼ @Gðn;gÞ
@n

¼
A1ðgÞj0n;1ðnÞ for 0 6 n < g
B1ðgÞj0n;1ðnÞ þ B2ðgÞj0n;2ðnÞ for g < n < kp

(
ð94Þ

denotes the partial derivative of the Green function G with respect
to its first argument. From condition j0nðkpÞ ¼ 0 we obtain

/ðkp; kgÞ ¼
R kp

0 G0ðkp;gÞdgR kp

0 G0ðkp;gÞe�g2=2k2
g dg

ð95Þ
4.3. Results and discussion

For illustration, the solution has been evaluated and plotted for
a range of values of parameter kg . Fig. 9 indicates that the plastic
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Fig. 10. Evolution of plastic strain profile for a smooth (Ga
zone evolves continuously from the weakest section and its size
grows monotonically, which confirms admissibility of the solution.
Evolution of the plastic zone profile is shown in Fig. 10 for kg ¼ 1
and 10, and the plastic part of the normalized load–displacement
diagram is in Fig. 11.

In all these figures, solid curves correspond to the variational
formulation from Section 4.2 and dotted curves to the standard
one from Section 4.1. For large values of kg , e.g. 10, both formula-
tions give almost identical results. Initially, the plastic zone quickly
expands and the load parameter / increases only slightly from its
value 1 at the onset of plastic yielding. The softening part of the
load–displacement diagram is almost linear and as the load
approaches zero, the plastic zone size tends to 2pl (for the standard
formulation) or to a value very close to 2pl (for the variational for-
mulation). For intermediate values of kg , e.g. 2 or 1.15, the harden-
ing due to structural effects is more pronounced for the variational
formulation than for the standard one, and the load–displacement
diagram becomes more ductile. Finally, for small values of kg , e.g.
1.01 or 0.95, the variational formulation gives unlimited hardening
and unlimited expansion of the plastic zone, while the standard
formulation still leads to limited hardening up to a finite peak load,
followed by softening and expansion of the plastic zone to its
maximum size 2pl.

The strong hardening effect of the variational formulation for
small values of kg can be attributed to the fact that the stabilizing
second term in (21) can be expanded into Hl2AðxÞj00ðxÞþ
Hl2A0ðxÞj0ðxÞ. The second part, dependent on the derivative of the
sectional area, is neglected by the standard formulation but taken
into account by the variational one. For the problem considered
here, the product A0ðxÞj0ðxÞ is always negative (because AðxÞ is
decreasing in the left half of the plastic zone and increasing in the
right half, while jðxÞ does the opposite), and so the additional term
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Fig. 11. Plastic part of normalized load–displacement diagram for a smooth (Gaussian) stress distribution: (a) kg ¼ 1:15, 2, 10 and (b) kg ¼ 0:95, 1.01 (from top to bottom).

266 M. Jirásek et al. / International Journal of Solids and Structures 50 (2013) 256–269
has a similar effect as negative j00ðxÞ. Such a term increases the yield
force and thus causes structural hardening accompanied by an
expansion of the plastic zone.

It is important to note that cases shown in Figs. 9(b) and
Fig. 11(b) correspond to an extreme nonuniformity of sectional
area. Indeed, kg ¼ 1 means that the sectional area at point x ¼ pl,
which would be the right boundary of the plastic zone, is
ep2=2 � 139 times the area of the weakest section at the center of
the plastic zone. So this case is only of academic interest, and is in-
cluded here for completeness.

5. Summary and conclusions

In this paper, localization of plastic strain induced by a negative
plastic modulus has been studied using a variational formulation of
a gradient-enriched plasticity model. The main points can be sum-
marized as follows:

1. Mathematical description of one-dimensional gradient plastic-
ity has been derived using a consistent variational approach,
which naturally provides not only the differential equation that
represents the yield condition and needs to be satisfied inside
the plastic zone, but also the appropriate form of the boundary
and jump conditions.

2. Taking into account the jump conditions following from a vari-
ational principle, a prototype problem with discontinuous data
(in this specific case, with discontinuous distribution of the sec-
tional area) has been handled successfully. It has been shown
that the problem has a physically reasonable solution, which
can be constructed analytically.

3. Two additional prototype problems, one with continuous but
non-smooth data and the other with smooth data, have been
analyzed, and analytical or semi-analytical solutions have been
provided. The results have been compared to an alternative
model that does not have a variational format.

4. The influence of various parameters on the evolution of the
plastic zone, on the shape of the plastic strain profile and on
the resulting load–displacement diagram has been investigated
for all three cases mentioned above. It has been shown that the
plastic zone evolves from the weakest section and monotoni-
cally expands, which is in most cases initially accompanied by
an increase of the axial force over its elastic limit value. This
means that the structural response exhibits hardening despite
the softening character of the material model, which is related
to the expansion of the yielding process into stronger parts of
the structure induced by the gradient enrichment.

5. The variational approach adopted here is based on the condition
of non-negative first variation of a certain energetic functional.
States that satisfy this condition are considered as valid
solutions of the problem. It is expected that stable solutions
correspond to local minima of the functional. A rigorous analy-
sis of the second variation, leading to an explicit stability crite-
rion, is presented in Appendix A for the simplest case of a bar
with uniform properties.

Finally, let us note that the approach elaborated here for the
second-order gradient model and for variable cross section can
be extended to the fourth-order gradient model and to variable
material properties (such as the yield stress or plastic modulus).
The latter extension could be useful in studies of the development
of plastic zone near the interface of two materials with different
properties.
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Appendix A. Second variation and stability conditions

All analyses presented in the main body of the paper have been
based on the condition of non-negative first variation of functional
P. Of course, this is only a necessary but not a sufficient condition
for a local minimum. Intuitively it can be expected that solutions
corresponding to a non-negative first variation but not to a local
minimum are unstable. Therefore, it is useful to investigate in more
detail the changes of P in the immediate neighborhood of a ‘‘point’’
ðu;jÞ that represents a valid solution, i.e., leads to a non-negative
first variation dP for all admissible variations du and dj.

If dP > 0 for given du and dj, the value of P increases at least
locally (for sufficiently small variations), and the second variation
does not need to be evaluated. However, for those du and dj that
give a vanishing first variation dP, the sign of the increment is
determined by the second variation. So, as a first step, we restrict
attention to those combinations du and dj for which dP ¼ 0. Since
the solution ðu;jÞ satisfies the equilibrium condition (18), which is
an equality, the first integral in (16) vanishes for an arbitrary dis-
placement variation du. On the other hand, the yield condition
(19) is an equality satisfied in the plastic zone Ip only. Outside
the plastic zone, the plastic admissibility condition (20) becomes
an inequality. Leaving aside some degenerated cases of neutral
loading, this condition is typically satisfied as a strict inequality.
To make sure that the first variation dP vanishes, the plastic strain
variation dj must be set to zero outside the plastic zone. By similar



M. Jirásek et al. / International Journal of Solids and Structures 50 (2013) 256–269 267
arguments based on the jump terms, it can be shown that the val-
ues of dj and of its derivative on the boundary of the plastic zone
must vanish.

Since functional P given by (12) is quadratic, its second varia-
tion is easily expressed as

d2Pðdu; dj; u;jÞ ¼
Z
L

EAðdu0 � djÞ2 dx

þ
Z

HA dj2 � l2dj02
� �

dx ðA:1Þ

Taking into account that dj vanishes outside Ip, as justified above,
the integration domains can be reduced. After simple rearrange-
ments (with moduli E and H considered as constants), the resulting
stability condition can be written asZ
LnIp

Adu02 dxþ
Z
Ip

Aðdu0 � djÞ2 dx� H
E

Z
Ip

A l2dj02 � dj2
� �

dx P 0

ðA:2Þ

In a loading test performed under displacement control, the dis-
placements on the physical boundary @L are prescribed and the
variations du vanish on @L. Condition (A.2) should be satisfied for
all such du and for all variations dj with vanishing values and van-
ishing first derivatives on the elasto-plastic boundary @Ip.

General analysis of condition (A.2) for variable sectional area A
would be very tedious. However, the case of a uniform bar (with
A = const.) is manageable, because (A.2) simplifies toZ
LnIp

du02 dxþ
Z
Ip

ðdu0 � djÞ2 dx� H
E

Z
Ip

l2dj02 � dj2
� �

dx P 0

ðA:3Þ

In this case, the plastic zone Ip is an interval of length Lp ¼ 2pl (see
Section 2.1), and the elastically unloading zone L n Ip is a union of
two intervals of total length L� Lp. Individual integrals in (A.3) can
be estimated from below. For the second integral, we can exploit
the Cauchy–Schwarz inequality, which implies thatZ
Ip

ðdu0 � djÞ2 dx P
1
Lp

Z
Ip

ðdu0 � djÞdx

 !2

¼ Lpðd�e� d�jÞ2 ðA:4Þ

where

d�e ¼ 1
Lp

Z
Ip

du0dx; d�j ¼ 1
Lp

Z
Ip

djdx ðA:5Þ

are constants that represent the mean values of du0 and dj over the
plastic zone. The first integral in (A.3) can be estimated in a similar
fashion, taking into account that the mean value of du0 in L n Ip is
directly related to d�e, because of the compatibility constraintR
L du0 dx ¼ 0:Z
LnIp

du0dx ¼ �
Z
Ip

du0dx ¼ �Lpd�e ðA:6Þ

Z
LnIp

du02 dx P
1

L� Lp

Z
LnIp

du0dx

 !2

¼
L2

p

L� Lp
d�e2 ðA:7Þ

Finally, the last integral in (A.3) can be estimated using the Wirtin-
ger inequality, which is a one-dimensional case of the Poincaré
inequality, with explicitly known optimal constant. The theorem
is applicable to the zero-mean part of dj and implies that

Lp

2p

	 
2 Z
Ip

dj02 dx P
Z
Ip

ðdj� d�jÞ2 dx ¼
Z
Ip

dj2 dx� Lpd�j2 ðA:8Þ

Since Lp=2p ¼ l, we getZ
Ip

l2dj02 � dj2
� �

dx P �Lpd�j2 ðA:9Þ
Substituting (A.4), (A.7) and (A.9) into (A.3), we obtain condition

L2
p

L� Lp
d�e2 þ Lpðd�e� d�jÞ2 þ H

E
Lpd�j2 P 0 ðA:10Þ

which means that a certain quadratic form of variables d�e and d�j
should be positive semidefinite. This leads to the following restric-
tions on the parameters:

L2
p

L� Lp
þ Lp P 0 ) L P Lp ðA:11Þ

Lp þ
H
E

Lp P 0 ) Eþ H P 0 ðA:12Þ

L2
p

L� Lp
þ Lp

 !
Lp þ

H
E

Lp

	 

� L2

p P 0 ) Lp

L
P �H

E
ðA:13Þ

The first restriction corresponds to our tacit assumption that bar is
longer than Lp, so that the full plastic zone can develop (for shorter
bars, the analysis would have to be modified). The second restric-
tion excludes snapback of the stress–strain diagram with no gradi-
ent effects. The third restriction is the most stringent one. It
guarantees stability of the localized solution under displacement
control and can be interpreted e.g. as a constraint on the maximum
length of the bar (with respect to the characteristic length l,
reflected by the plastic zone size Lp ¼ 2pl). It is reassuring that this
condition exactly coincides with the condition of negative slope of
the post-peak load–displacement diagram. Indeed, the total elonga-
tion of the bar after the onset of plastic yielding can be expressed as
a sum of the elastic and plastic parts:

utot ¼
Z
L
edx ¼

Z
L

F
EA

dxþ
Z
Ip

jdx ¼ FL
EA
þ up ðA:14Þ

Substituting the plastic strain distribution according to (25), which
refers to the plastic zone Ip ¼ ð�pl;plÞ, the plastic part of elonga-
tion turns out to be

up ¼
Z pl

�pl

F=A� r0

H
1þ cos

x
l

� �
dx ¼ F=A� r0

H
2pl

¼ FLp

HA
� r0Lp

H
ðA:15Þ

The slope of the post-peak part of load–displacement diagram is the
reciprocal value of the tangent structural compliance L=EAþ Lp=HA.
Snapback occurs if the tangent compliance (and thus also the tan-
gent stiffness) is positive, i.e., if

L
E
þ Lp

H
> 0 ðA:16Þ

This is of course equivalent to Lp=L, which holds if and only if the
stability condition (A.13) is violated.

To illustrate the difference between the condition of non-
negative first variation and the (stronger) condition of a local
minimum, let us recall that the localization problem for a uniform
bar admits not only solutions with the plastic zone of size Lp ¼ 2pl,
but also solutions with Lp equal to integer multiples of 2pl; see
Section 2.1. For instance, a plastic strain distribution given by

jðxÞ ¼
r�r0

H 1� cos x
l

� �
for x 2 Ip ¼ ð�2pl;2plÞ

0 for x R Ip

(
ðA:17Þ

satisfies differential equation (23) as well as conditions j ¼ 0 and
j0 ¼ 0 at the boundary of Ip, i.e., at points �2pl. The length of the
plastic zone, Lp ¼ 4pl, is now the double of the minimum plastic
zone length. Consider an admissible variation of j in the form

djðxÞ ¼
c sgnðxÞ 1� cos x

l

� �
for x 2 Ip

0 for x R Ip

(
ðA:18Þ
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where c is an arbitrary constant, not exceeding in magnitude the
positive constant ðr� r0Þ=H (for larger jcj, the function jþ dj
would not be non-negative and would not belong to the space of
admissible functions Vj defined in (14)). A simple calculation
reveals thatZ
Ip

l2dj02 � dj2
� �

dx ¼
Z 2pl

�2pl
c2 sin2 x

l
� 1� cos

x
l

� �2
� 


dx

¼ �4c2pl ðA:19Þ

Since the mean value of dj is zero, the displacement variation du
can be selected such that du0 ¼ dj, and then the first two integrals
in (A.3) vanish. The third integral, evaluated in (A.19), is negative
and is multiplied by a positive constant �H=E, and so the stability
condition (A.3) is always violated. This proves that solutions with
plastic zone exceeding the minimum length 2pl would be unstable,
independently of the total bar length L.

Appendix B. General solution of Eq. (46)

For negative n, Eq. (46) can be written as

j00nðnÞ �
1

kg þ n
j0nðnÞ þ jnðnÞ ¼ 1� /� /

kg
n ðB:1Þ

Using substitutions

n ¼ g� kg ðB:2Þ
jðnÞ ¼ ðkg þ nÞgðkg þ nÞ ¼ ggðgÞ ðB:3Þ

where g is a new unknown function and g is a shifted dimensionless
spatial coordinate, we can convert (B.1) into

g2g00ðgÞ þ gg0ðgÞ þ ðg2 � 1ÞgðgÞ ¼ g� /
kg

g2 ðB:4Þ

where primes denote derivatives with respect to g. The homoge-
neous counterpart of (B.4) is the Bessel equation of order m ¼ 1,
and its general solution can be written as

ghðgÞ ¼ C1J1ðgÞ þ C2Y1ðgÞ ðB:5Þ

where C1 and C2 are arbitrary constants, and J1 and Y1 are respec-
tively the Bessel functions of the first and second kind; see Korenev
(2002).

Now we need to find a particular solution for the given right-
hand side. It turns out that the expression on the left-hand side
of (B.4) gives a multiple of g if g is set simply to 1=g, and a multiple
of g2 if g is set to the Struve function H1ðxÞ; see Korenev (2002).
Therefore, we look for the particular solution in the form

~gðgÞ ¼ k1

g
þ k2H1ðgÞ ðB:6Þ

and substituting into the left-hand side of (B.4) we get the condition

k1gþ
2k2g2

p
¼ g� /

kg
g2 ðB:7Þ

from which k1 ¼ 1 and k2 ¼ �p/=2kg . Combining the particular
solution ~g given by (B.6) with the general solution of the homoge-
neous equation gh given by (B.5) and substituting this back into
(B.3), we get the general solution of (B.1) in the form

jðnÞ¼ ðkgþnÞ½C1J1ðkgþnÞþC2Y1ðkgþnÞ�þ1� p/
2kg
ðkgþnÞH1ðkgþnÞ

ðB:8Þ

Recall that (B.1) is the specific form of (46) valid for n < 0. For n > 0,
it is sufficient to replace kg þ n by kg � n. The resulting expression
valid for both positive and negative n is given in (47).
Appendix C. General solution of Eq. (61)

The integrals in (65) and (66) are most conveniently evaluated if
one introduces an auxiliary complex function

eCðnÞ ¼ eC1ðnÞ � ieC 2ðnÞ ðC:1Þ

Substituting from (65) and (66), one gets

eCðnÞ ¼ cos n� i sin nþ /
Z

e�n2=2k2
g ðsin nþ i cos nÞdn

¼ e�in þ i/
Z

e�n2=2k2
g e�in dn ðC:2Þ

Since

� n2

2k2
g

� in ¼ �
ðnþ ik2

gÞ
2 þ k4

g

2k2
g

¼ �
ðnþ ik2

gÞ
2

2k2
g

�
k2

g

2
ðC:3Þ

the last integral in (C.2) can be written asZ
e�n2=2k2

g e�in dn ¼ e�k2
g =2
Z

exp �
ðnþ ik2

gÞ
2

2k2
g

 !
dn ðC:4Þ

and substitution n ¼
ffiffiffi
2
p

kgt � ik2
g leads toZ

exp �
ðnþ ik2

gÞ
2

2k2
g

 !
dn ¼

ffiffiffi
2
p

kg

Z
e�t2

dt ¼ kg

ffiffiffiffi
p
2

r
erfðtÞ

¼ kg

ffiffiffiffi
p
2

r
erf

nþ ik2
gffiffiffi

2
p

kg

 !
ðC:5Þ

where erf is the ‘‘error function’’ defined by

erfðxÞ ¼ 2ffiffiffiffi
p
p

Z
e�x2

dx; erfð0Þ ¼ 0 ðC:6Þ

Combining (C.4) and (C.5) and substituting back into (C.2), we
obtain

eCðnÞ ¼ e�in þ i/kg

ffiffiffiffi
p
2

r
e�k2

g =2erf
nþ ik2

gffiffiffi
2
p

kg

 !
ðC:7Þ

Functions eC1 and eC2 could now be extracted from the real and
imaginary part of the expression in (C.7). But this is not even neces-
sary, because the particular solution of equation (61) given by for-
mula (62) can be presented as

~jnðnÞ ¼ Re ðeC1ðnÞ � ieC2ðnÞÞðcos nþ i sin nÞ
h i

¼ Re eCðnÞein
h i

ðC:8Þ

where Re stands for the real part. Substituting for eCðnÞ according to
(C.7), we get the particular solution in the form

~jnðnÞ ¼ 1þ /kg

ffiffiffiffi
p
2

r
e�k2

g=2Re ierf
nþ ik2

gffiffiffi
2
p

kg

 !
ein

" #
ðC:9Þ

Recalling the definition of the Dawson function (Olver, 1997),

FðxÞ ¼ e�x2
Z x

0
et2

dt ¼ � i
ffiffiffiffi
p
p

2
e�x2

erfðixÞ ðC:10Þ

and taking into account that FðxÞ ¼ Fð�xÞ (with the bar denoting the
complex conjugate), we can rewrite the result as

~jnðnÞ ¼ 1� /kge�n2=2k2
g

ffiffiffi
2
p

2
F

k2
g � inffiffiffi

2
p

kg

 !
þ F

k2
g þ inffiffiffi

2
p

kg

 !" #
ðC:11Þ

The general solution (67) of Eq. (61) is then obtained by adding a
linear combination of functions cos n and sin n with arbitrary
coefficients.
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Appendix D. General solution of homogeneous form of Eq. (77)

The homogeneous counterpart of Eq. (77) can be written as

j00nðnÞ þ
n

k2
g

j0nðnÞ þ jnðnÞ ¼ 0 ðD:1Þ

Defining a rescaled spatial variable g ¼ n=kg

ffiffiffi
2
p

and expressing the
unknown function as

jnðnÞ ¼ e
� n2

2k2
g u

n

kg

ffiffiffi
2
p

 !
¼ e�g2

uðgÞ ðD:2Þ

where u is a transformed unknown function, we can convert (D.1)
into the so-called Hermite differential equation,

u00ðgÞ � 2gu0ðgÞ þ 2muðgÞ ¼ 0 ðD:3Þ

where m ¼ k2
g � 1 is a real parameter (in our case larger than�1) and

primes denote differentiation with respect to g.
The solution of the Hermite equation (D.3) can be constructed

in terms of infinite power series

uðgÞ ¼
X1
r¼0

argr ðD:4Þ

Expressing the derivatives

u0ðgÞ ¼
X1
r¼1

arrgr�1 ðD:5Þ

u00ðgÞ ¼
X1
s¼2

assðs� 1Þgs�2 ðD:6Þ

and substituting them into (D.3), we obtainX1
s¼2

assðs� 1Þgs�2 � 2
X1
r¼1

arrgr þ 2m
X1
r¼0

argr ¼ 0 ðD:7Þ

In the first sum, s can be replaced by r þ 2, with r running from 0 to
infinity, and in the second sum, r can also run from 0 without
changing the result (because of the presence of the factor r which
annihilates the term with r ¼ 0). The equation can thus be rewritten
asX1
r¼0

arþ2ðr þ 2Þðr þ 1Þ � 2arr þ 2mar½ �gr ¼ 0 ðD:8Þ

and the term in the square brackets must vanish for each individual
value of r ¼ 0;1;2; . . .. This condition results into the recursive
formula

arþ2 ¼
2ðr � mÞ

ðr þ 1Þðr þ 2Þ ar; r ¼ 0;1;2; . . . ðD:9Þ

Note that arþ2 is expressed in terms of ar . It is therefore possible to
select arbitrary values of a0 and a1, and then express all other coef-
ficients with even subscripts in terms of a0 and all other coefficients
with odd subscripts in terms of a1. Setting a0 ¼ 1 and a1 ¼ 0, or
a0 ¼ 0 and a1 ¼ 1, leads to two linearly independent functions

u1ðgÞ¼1�2m
2!

g2þ22mðm�2Þ
4!

g4�23mðm�2Þðm�4Þ
6!

g6þ			 ðD:10Þ

u2ðgÞ¼g�2ðm�1Þ
3!

g3þ22ðm�1Þðm�3Þ
5!

g5þ			 ðD:11Þ

and every solution of Eq. (D.3) can be expressed as their linear com-
bination. The fundamental solutions can be conveniently expressed
in terms of the so-called confluent hypergeometric function of the
first kind, denoted as 1F1ða; c; xÞ (note that the symbol F has a left
subscript and a right subscript), which is defined by the infinite ser-
ies (Sneddon, 1956)

1F1ða; c; xÞ ¼
X1
r¼0

ðaÞr
ðcÞr

xr

r!
ðD:12Þ

Here, ð�Þr is the so-called Pochhammer symbol, which can be ex-
pressed in terms of Euler’s gamma function:

ðaÞr ¼ aðaþ 1Þ 	 	 	 ðaþ r � 1Þ ¼ Cðaþ rÞ
CðaÞ ðD:13Þ

It is easy to verify by simple substitution that the fundamental solu-
tions u1 and u2 from (D.10) and (D.11) can be rewritten as

u1ðgÞ ¼ 1F1ð�m=2; 1=2;g2Þ ðD:14Þ
u2ðgÞ ¼ g 1F1ðð1� mÞ=2; 3=2; g2Þ ðD:15Þ

Substituting this into (D.2) and replacing m by k2
g � 1 and g by

n=kg

ffiffiffi
2
p

, we finally obtain two linearly independent solutions of
(D.1) in the form

jn;1ðnÞ ¼ e
� n2

2k2
g 1F1

1� k2
g

2
;
1
2

;
n2

2k2
g

 !
ðD:16Þ

jn;2ðnÞ ¼ e
� n2

2k2
g

nffiffiffi
2
p

kg
1F1

2� k2
g

2
;
3
2

;
n2

2k2
g

 !
ðD:17Þ

Note that function u1 is even and u2 is odd, and so jn;1 is even and
jn;2 is odd. One useful consequence is that j0n;1ð0Þ ¼ 0.
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