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Abstract: Interaction problems of a finite-length crack with plane and antiplane dislocation 

dipoles in the context of couple-stress elasticity are presented in this study. The analysis is 

based on the distributed dislocation technique where infinitesimal dislocation dipoles are 

used as strain nuclei. The stress fields of these area defects are provided for the first time in 

the framework of couple-stress elasticity theory. In addition, a new rotational defect is 

introduced to satisfy the boundary conditions of the opening mode problem. This formulation 

leads to displacement-based hyper-singular integral equations that govern the crack problems, 

which are solved numerically. It is further shown that this method has several advantages 

over the slope formulation. Based on the obtained results, it is deduced that in all cases the 

cracked body behaves in a more rigid way when couple-stresses are considered. The effect of 

couple-stresses is highlighted in a small zone ahead of the crack-tip and around the 

dislocation dipole, where the stress level is significantly higher than the classical elasticity 

prediction. Further, the dependence of the energy release rate and the configurational force 

exerted on the defect on the characteristic material length and the distance between the defect 

and the crack-tip is discussed. In the plane problems, couple-stress theory predicts either 

strengthening or weakening effects while in the antiplane mode a strengthening effect is 

predicted.  
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1. Introduction 

The macroscopic mechanical behavior of metals is significantly affected by phenomena that 

occur in the micro-scale. For instance, it is well accepted that crack growth is followed by 

damage formation around the main crack e.g. in the forms of microcracking and dislocation 

emission. Hence, interaction problems among cracks or between cracks and crystal defects 

have been studied with a variety of analytical and experimental techniques over the past 

decades (see indicatively Rice and Thomson (1974), Thomson (1987), Kobayashi and Ohr 

(1980), Majumdar and Burns (1981)). As discussed in Huang et al. (2006), the process of 

dislocation emission from crack-tips may manifest itself in emitted discrete dislocations 

(monopoles) or dislocation dipoles. In fact, dislocation dipoles are found in much higher 

densities than single dislocations during plastic deformation (Gilman, 1964). It is reminded 

that while discrete dislocations are line defects, dislocation dipoles are area defects of the 

crystal lattice. 

 Following our recent work on interaction problems between cracks and dislocations in 

the framework of couple-stress elasticity (Baxevanakis et al., 2017a, b), in this work we focus 

on interactions between finite-length cracks and dipoles of dislocations. The problems are 

studied in the context of couple-stress elasticity (or constrained Cosserat theory), which is the 

simplest theory of elasticity that accounts for effects induced by the material microstructure. 

It is noted that dislocation dipoles have not been studied using this generalized continuum 

theory before and so their elastic fields are derived for the first time herein. On the other 

hand, a few solutions are reported on the interaction problems under consideration in the 

context of classical isotropic elasticity. Specifically, Ballarini and Denda (1988) employed 

the complex potential method to derive the stress intensity factors at the tips of a finite-length 

crack due to the interaction with a plane dislocation dipole of random orientation. The 

analogous antiplane problem was studied by Lin et al. (1993). In addition, Wang and Lee 

(1992, 1993) identified the equilibrium states of a dislocation dipole near a semi-infinite 

crack and a criterion for emission of dipoles from its crack-tip. 

 In our previous investigations, the distributed dislocation technique (DDT) was 

employed and proved a very efficient method for the analysis of crack problems in couple-

stress elasticity. It is mentioned that the term ‘distributed dislocations’ does not restrict the 

method in using solely single dislocations to formulate a crack problem. In fact, any 

appropriate ‘strain nucleus’ that would produce a traction-free crack when distributed along 

its faces may be used. Based on these considerations, in this work we generalize the DDT in 
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couple-stress theory and use dislocation dipoles as strain nuclei to describe the interaction 

problems. In analogy to electric dipoles, a dislocation dipole is defined as a pair of parallel 

dislocations that have equal and opposite sign Burgers vectors and are separated by a 

distance. Based on the separation distance, dislocation dipoles can be identified as 

infinitesimal or finite (Kroupa, 1965), as discussed in detail in Section 3. In crack problems, 

infinitesimal dislocation dipoles are used as strain nuclei. 

 

 

Fig. 1: Modeling of a mode I crack through a continuous distribution of discrete dislocations with 

Burgers vector ydb  or through a distribution of infinitesimal dislocation dipoles of strength yyb  

[reproduced after Dai (2002)].  
 

The two approaches for the formulation of two-dimensional crack problems are 

schematically depicted in Fig. 1. As explained in Dai (2002), if the crack problem is 

formulated by a continuous distribution of discrete dislocations ( ydb ), the crack opening 

profile may be represented by a pile of narrow strips, each one corresponding to a climb 

dislocation. It is inferred that the crack opening displacement is the sum of Burgers vectors of 

all dislocations at any point along the crack faces. On the other hand, if the crack is modeled 

by a continuous distribution of infinitesimal dislocation dipoles (
yyb ), the crack opening 

displacement is formed by an array of parallel thin strips, where each strip corresponds to an 

infinitesimal dislocation dipole. In this case, the normal crack face displacement at any point 

is equal to the Burgers vector of each dislocation dipole at the same location. In either case, 

the distributed defects should not be misinterpreted as crystallographic defects but only as a 

way to create a traction-free crack. From a mathematical perspective, in the case of discrete 

dislocation distribution, the crack problem is formulated based on the gradient of the 

displacement field, which is used as the density of the governing integral equations (slope 
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formulation). On the contrary, if dislocation dipoles are used to model the crack problem, the 

defect density corresponds to the crack face relative displacement (displacement 

formulation). Hence, in the latter case, the governing integral equations are in all cases hyper-

singular which in turn means that the solution procedure is mathematically more involved 

since the evaluation of several integrals in the finite-part sense is required. However, the 

displacement-based formulation is advantageous for several reasons, as reported in the 

literature. Firstly, it is more direct and less computationally expensive than the slope 

formulation since no extra integration step is required to yield the displacement profile. This 

is particularly useful in problems where partial crack closure is observed (Bjerkén and Melin, 

2003). Also, the displacement function  iu x , 1, 2, 3i   is continuous in the interval 

a x a    while the slope is unbounded at the crack-tips. According to Chan et al. (2001), 

this formulation offers alternative and often simpler asymptotics of the integral equations 

kernels. Korsunsky and Hills (1995) compared the two methodologies and proved that fewer 

terms are required in the displacement-based method to achieve the same accuracy. It should 

be also added that this approach can be extended to axisymmetric and three-dimensional 

crack problems using dislocation loops as strain nuclei. Besides, either approach may be used 

to yield solutions in problems with complex geometries such as branched cracks and multiple 

crack configurations (TerMaath et al., 2006; Yavuz et al., 2006). Further details can be found 

in the studies of Korsunsky and Hills (1996), Dai (2002) and the treatise by Hills et al. 

(1996).  

In the present work, we examine finite-length crack interactions with climb, glide, and 

screw dislocation dipoles. In all cases, the defects are placed along the crack plane so as not 

to induce crack closure effects. Furthermore, the defects are not emitted by the crack-tip. This 

configuration might be convenient for computations, but it does not fully represent the 

physical interaction problem. In Section 3, we derive the stress fields of the plane dislocation 

dipoles that need to be distributed along the crack faces in order to obtain the influence 

functions of the crack problems. Then, the three crack problems are presented in parallel in 

each section of the paper. As discussed in Baxevanakis et al. (2017a), in order to satisfy the 

boundary conditions of the opening mode problems, both translational and rotational defects 

have to be distributed along the crack faces. Therefore, besides the distribution of 

infinitesimal climb dislocation dipoles we introduce a new rotational defect termed as 

infinitesimal ‘constrained’ wedge disclination dipole. Eventually, this problem is described 

by a system of coupled hyper-singular integral equations whereas the plane and antiplane 
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shear problems are described by a single hyper-singular integral equation. In all cases, the 

equations are solved numerically. Finally, the evaluation of energetic quantities (J-integral 

and Peach-Koehler force) reveals an interesting ‘alternating’ behavior between strengthening 

and weakening effects when the material microstructure is considered, depending on the 

distance of the defect from the crack-tip and the ratio of the characteristic material length 

over the crack length. 

 

2. Basic equations of couple-stress elasticity in plane and antiplane strain 

In this section, we summarize the basic equations of the equilibrium theory of plane and 

antiplane strain within the linearized couple-stress theory of homogeneous and isotropic 

elastic solids. Couple-stress elasticity is the simplest theory of the so-called generalized 

continuum theories in which couple-stresses arise. For detailed presentations of the basic 

concepts of linear couple-stress elasticity we refer to the fundamental papers of Toupin 

(1962), Mindlin and Tiersten (1962) and Koiter (1964). 

 

2.1 Plane strain 

In this paragraph, we summarize the basic equations under static loading conditions in the 

plane strain case. For a body that occupies a domain in the  ,x y -plane under plane strain 

conditions, the two-dimensional displacement field is described as  

 

( , ) ,      ( , ) ,      0x x y y zu u x y u u x y u    , (1) 

 

where the z axis is perpendicular to the  ,x y -plane. 

For the kinematical description of the elastic body, the following expressions are 

defined for the strain tensor, the rotation vector, and the curvature tensor components 

 

1
,      ,      

2

y yx x
xx xy yx yy

u uu u

x y x y
   

   
     
    

 , (2) 

1

2

y x
z

u u

x y
 

 
   

  
 ,  (3) 

,       xz yz
x y

 
 

 
 
 

 .  (4) 
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In Eq. (3) it is noticed that the normal component of the rotation is fully described by the 

distribution of the tangential displacements over the boundary. Therefore, the rotation vector 

i  in couple-stress elasticity is not independent of the displacement vector 
iu . 

Further, the expressions of force and moment equilibrium in the absence of body 

forces and body couples take the form 

 

0, 0, 0
yx xy yy yzxx xz

xy yx

mm

x y x y x y

  
 

    
       

     
, (5) 

 

where pq  and pqm  are the components of the stress tensor and couple-stress tensor, which 

are both asymmetric.  

Assuming a linear and isotropic material response the strain energy density takes the 

following form  

 

      
2

2 2 2 2 2 22 2 2xx yy xx xy yy xz yzW                  , (6) 

 

where  2 1 2    , μ is the shear modulus, ν is the Poisson’s ratio and  is the 

characteristic length introduced in couple-stress elasticity (Mindlin, 1963). 

Then, the constitutive equations in the plane-strain case become 

 

       

   

1 1

1

2 , 2 ,

4

xx xx xx yy yy yy xx yy

xy xy yx

           

   

 



        
   

 

 (7) 

and 

   
1 1

2 24 , 4 .xz xz yz yzm m   
 

   (8) 

 

Accordingly, the non-vanishing components of the asymmetric stress tensor pq  in 

terms of the displacement components are given as  
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u uu u

x y y x

u u uu u u
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u u uu u u

y x x x y x y y
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  

  
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                   

      
                   

 (9) 

 

Combining now Eqs. (5) with (9), we obtain the following systems of coupled partial 

differential equations of the fourth order in terms of the components of the two-dimensional 

displacement field  ,x yu u  

 

 
4 42 4 4

2

2 3 2 2 3 4

1
2 1 0

1 2

y y yx x x x
u u uu u u u

x x y y x y x y x y y




       
                         

 ,  (10) 

 
2 4 44 4

2

2 3 2 2 3 4

1
2 1 0

1 2

y y y yx x x
u u u uu u u

y y x x x y x y x y x




       
                         

 .  (11) 

 

2.2 Antiplane strain 

Consider now a body that occupies a domain in the  ,x y -plane under antiplane strain 

conditions. In this case, the displacement field reduces to 

 

0 ,      0 ,      ( , )x y zu u u w w w x y     . (12) 

 

The non-vanishing components of the strain tensor, the rotation vector, and the curvature 

tensor are defined as (Lubarda, 2003) 

 

1 1
,      

2 2
xz yz

w w

x y

 
 

 
,      

1 1
,       

2 2
x y

w w

y x
 

 
  

 
 , (13) 

2 2 2

2 2

1 1 1
,       ,       

2 2 2
xx yy xy yx

w w w

x y x y
   

  
     

   
 . (14) 

 

The strain energy density in the case of a linear and isotropic material response takes the 

following form 
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      2 2 2 2 2 22 2 2 4xz yz xx yy xy yx xy yxW                      , (15) 

 

where   has the same meaning as the shear modulus in the classical theory, and  ,   are 

the couple-stress moduli with dimensions of force. The elastic moduli must satisfy the 

following inequalities so that the strain energy density is positive definite 

 

0   ,      0   ,      1 1       .  (16) 

 

Further, the stress and couple-stress components are written in terms of the displacement 

field as 

 

   

   

2 2 2 2

2 2 2 2

,       ,

,       .

xz zx

yz zy

w w w w
x x

w w w w
y y

   

   

 
     

 

 
     

 

  (17) 

   

   

2

2

2 2

2 2

2 2

2 2

4 2 ,

4 2 ,

4 4 2 2 ,

4 4 2 2 ,

xx xx

yy yy xx

xy xy yx

yx yx xy

w
m

x y

w
m m

x y

w w
m

x y

w w
m

y x

    

    

    

    


    

 


       

 

 
     

 

 
    

 

  (18) 

 

with  
1 2

   being the characteristic material length of isotropic couple-stress elasticity. 

We also cite at this point the pertinent tractions that can be prescribed on a surface 

defined by the unit normal  0, 1 n  (Mindlin and Tiersten, 1962) 

 

  1

2

n yy

z yz yz

m
P t

x



  


,     n

x yxR m , (19) 
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where yzt  denotes the total shear stress. These expressions will be useful in the formulation of 

the antiplane crack problem. 

Finally, combining Eqs. (12)-(18), a scalar equilibrium equation is obtained in terms 

of the out-of-plane displacement 

 

2 2 4 0w w     . (20) 

 

3. Dislocation dipoles in couple-stress elasticity 

In this section, the stress fields of plane dislocation dipoles in couple-stress elasticity are 

derived. As shown in Fig. 2, the three types of translational dislocations (climb, glide, and 

screw) may be combined to create pairs of equal and opposite sign dislocations, which leads 

to three cases of horizontal and three types of vertical dislocation dipoles. The product of the 

dislocation Burgers vector and the separation distance dw  of the pair is termed strength or 

intensity of the dipole. The intensity (or strength) of a dipole is usually denoted by ijb , where 

i denotes the direction of the Burgers vector of the two dislocations and j denotes the normal 

direction to the segment dw  that separates the dislocation pair. Cases (a) and (d) correspond 

to opening type of displacement discontinuity, cases (b) and (e) to tangential displacement 

discontinuity, and cases (c) and (f) to antiplane deformation. 

  

 

Fig. 2: Horizontal and vertical dislocation dipoles. 

 

Dislocation dipoles can be distinguished to infinitesimal and finite based on the 

separation distance dw  (Kroupa, 1965). The stress field of a finite dislocation dipole is 

derived by superposing the corresponding fields of the two discrete dislocations that form the 

pair. For instance, the normal stress component 
 yyb
yy  of a finite climb dislocation dipole 
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(Fig. 2a) placed at the origin of a Cartesian coordinate system is obtained in classical 

elasticity as (Hills et al., 1996) 

 

   
 

 
 

 

        

1 2

2 2

, 0 2, 0 2, 0

2
,

2 1 2 2 1 2 1 4

yy y y
b b b

yy yy d yy d

y y y d

d d d

x x w x w

b b b w

x w x w x w

  

  

     

    

  
     

  (21) 

 

where  i
yb  are the two discrete climb dislocations that form the dipole. 

In the case of an infinitesimal dislocation dipole, it is required that 0dw   and b  while 

the quantity 
dw b  is finite, so that Εq. (21) is written as 

 

 
  2

,0 .
2 1

y d

yy

b w
x

x




 



  (22) 

 

Essentially, the stress field of an infinitesimal dislocation dipole may be derived by 

differentiating the field of the constituent discrete dislocations (in this case climb). From Eq. 

(22), it is obvious that the stress field reduces faster with respect to the distance compared to 

that of a discrete dislocation. The elastic energy of dipoles is significantly lower than that of 

discrete defects and therefore they are met in large quantities. Further details regarding the 

geometry and the nucleation method of dislocation dipoles may be found indicatively in the 

works of Tetelman (1962), Gilman (1964) and Kroupa (1966). 

Following the procedure described above, we evaluate the stress fields of infinitesimal 

dislocation dipoles which will serve as influence functions in the crack problems under 

consideration. The stress and couple-stress fields of a climb dislocation dipole are derived 

using the expressions for a discrete climb dislocation in couple stress elasticity (Baxevanakis 

et al., 2017a) as 

 

 

 

 

2

22 2 2

0 0 22

6 2
cos 4 cos 4

2 1

3 4 cos 4 ,
4

yy y d y db
xx

y d

b w b w r
K

r r r

b w r r r
K K K

  
     

   

       
               

  (23) 
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 

 

 

2

22 2 2

0 0 22

6 2
(2cos 2 cos 4 ) cos 4

2 1

3 4 cos 4 ,
4

yy y d y db
yy

y d

b w b w r
K

r r r

b w r r r
K K K

  
      

   

       
               

  (24) 

 

 

 

2

22 2 2

0 0 22

6 2
(sin 2 sin 4 ) sin 4

2 1

2 sin 2 3 4 sin 4 ,
4

yy y d y db
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y d

b w b w r
K

r r r

b w r r r
K K K

  
       

   

       
               

  (25) 

 

 

 

2

22 2 2

0 0 22

6 2
(sin 2 sin 4 ) sin 4

2 1

2 sin 2 3 4 sin 4 ,
4

yy y d y db
yx

y d

b w b w r
K

r r r

b w r r r
K K K

  
       

   

       
               

  (26) 

 
2 02

2

22

(sin sin 3 )
4

2 2
sin 3 ,

yy y db
xz

y d

b w r r
m r K K

b w r
K

r r

     
            

  
    

  

  (27) 

 
2 02

2

22

(cos cos3 )
4

2 2
cos3 .

yy y db
yz

y d

b w r r
m r K K

b w r
K

r r

     
            

  
    

  

  (28) 

 

Employing the asymptotic relations of the modified Bessel functions (Eq. (46)), we observe 

that as 0r  , the stresses pq  exhibit a quadratic singularity that arises also in classical 

elasticity. On the other hand, both couple-stress qzm  have a Cauchy type singularity. The 

stress field reduces to the corresponding solution of classical elasticity as 0  (Weertman, 

1996). 

The full-field solution for a glide dislocation dipole is obtained using the expressions 

for a discrete glide dislocation in couple stress elasticity (Baxevanakis et al., 2017b) 

 

 

 

 

2

22 2 2

0 0 22

6 2
(sin 2 sin 4 ) sin 4

2 1

2 sin 2 3 4 sin 4 ,
4

xyb x d x d
xx

x d

b w b w r
K

r r r

b w r r r
K K K

  
       

   

       
               

  (29) 
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 

 

 

2

22 2 2

0 0 22

6 2
(sin 2 sin 4 ) sin 4

2 1

2 sin 2 3 4 sin 4 ,
4

xyb x d x d
yy

x d

b w b w r
K

r r r

b w r r r
K K K

  
       

   

       
               

  (30) 

 

 

 

2

22 2 2

0 0 22

6 2
cos 4 cos 4

2 1

3 4 cos 4 ,
4

xyb x d x d
xy

x d

b w b w r
K

r r r

b w r r r
K K K

  
     

   

       
               

  (31) 

 

 

   

2

22 2 2

0 22

6 2
cos 4 cos 4

2 1

3 1 cos 4 4 cos 2 cos 4 ,
4

xyb x d x d
yx

x d

b w b w r
K

r r r

b w r r
K K

  
     

   

     
            

  (32) 

 
2 02

2

22

(3cos cos3 )
4

2 2
cos3 ,

xyb x d
xz

x d

b w r r
m r K K

b w r
K

r r

     
            

  
    

  

  (33) 

 
2 02

2

22

(sin sin 3 )
4

2 2
sin 3 .

xyb x d
yz

x d

b w r r
m r K K

b w r
K

r r

     
            

  
    

  

  (34) 

 

Asymptotic analysis shows that as 0r  , the stresses pq  retain the quadratic singularity 

observed in classical elasticity while the couple-stresses qzm  have a Cauchy type singularity. 

For 0 , the classical elasticity solution is recovered. 

Accordingly, the stress and couple-stress expressions of a screw dislocation dipole are 

derived using the relations for a discrete screw dislocation in couple stress elasticity 

(Baxevanakis et al., 2017b) 

 

   2

2 4

3 1
sin 2 sin 4 ,

2

zyb z dz d
xz

b wb w

r r


     (35) 

   2

2 4

3 1
cos 2 cos 4 ,

2

zyb z dz d
yz

b wb w

r r


    (36) 
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       

   
 
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2
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2

0 22

2 1 12 1 2
cos3

1
cos5 cos3 6 9 cos5

4

1
2cos cos3 cos

32

zy zyb b z d z d
yy xx

z d

z d

b w b w r
m m K

r r r

b w r r r
K K K

r

b w r r
r K K

    
       

  

        
                

      
            

 5 ,

 

   (37) 
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yx

z d z d

z d

b w b w r
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r r r

b w b wr r
K K

r r

b wr r r
K r K K

    
      

  

       
           

       
                

 

 
 

2

0 22

in 3

1
sin 3 sin 5 ,

32

z db w r r
r K K

      
           

  

  (38) 
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4 4

1
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z d z d

z d

b w b w r
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r r r

b w b wr r
K K

r r

b wr r r
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    
      

  

       
           

       
                

 

 
 

2

0 22

n 3

1
sin 3 sin 5 .

32

z db w r r
r K K

      
           

  

  (39) 

Based on the asymptotic behavior of the modified Bessel functions we conclude that 

the shear stresses exhibit an 4r  singularity, whereas the couple-stresses behave as 3r  at the 

dislocation core. Also, the classical elasticity solution is obtained for 1  , i.e.    . 

 

4. Formulation of the crack problems and influence functions 

In this section we formulate the interaction problems of a finite-length crack with plane and 

antiplane defects. In all cases, we consider a straight crack of finite-length 2a  in an infinite 

elastic microstructured domain characterized by couple-stress elasticity theory. The crack 
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interacts with a horizontal climb ( yyb ), glide ( xyb ), or screw ( zyb ) dislocation dipole (as 

defined in Fig. 2) lying at the crack plane ( 0y  ) at a distance d from the crack center, as 

shown in Fig. 3. Plane strain conditions prevail in the first two cases and antiplane strain in 

the latter one while there is no other loading applied in the body. The crack faces are 

described by the outward normal unit vector  0, 1 n  and are assumed to be traction-free. 

The solution procedure consists of decomposing the main crack problem to two auxiliary 

problems and superposing their solutions. In the first auxiliary problem, an uncracked domain 

subjected to the loading of a horizontal (climb, glide, or screw) dislocation dipole that lies 

along the crack line at a distance d from the crack center is considered. In the second 

auxiliary problem (usually referred to as corrective solution), a geometrically identical body 

to the initial cracked one without the dislocation dipole is studied. In this case, the only 

loading is applied along the crack faces and consists of equal and opposite tractions to those 

generated in the first auxiliary problem. 

 

 

Fig. 3: Interaction of a finite-length plane crack with a horizontal climb, glide, or screw dipole. 

 

4.1 Interaction of a finite-length crack with a climb dislocation dipole 

The boundary conditions along the crack faces for the opening mode problem have the 

following form 

 

   , 0 0 , , 0 0 , 0yx yy yzx x m     ,      for     x a  . (40) 

 

Further, the regularity conditions at infinity are  

 

0 , 0pq qzm          as      r  , (41) 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

15 
 

where    , ,p q x y  and  
1 2

2 2r x y   is the distance from the origin. Εq. (41) suggests 

that the only loading induced in the problem is that of the climb dislocation dipole. 

According to Eqs. (24) and (28), a climb dislocation dipole (either infinitesimal or 

finite) in an infinite isotropic couple-stress medium induces both normal stresses    ,0yyb
yy x  

and couple-stresses    ,0yyb
yzm x  along the slip plane ( 0y  ). On the other hand, there are no 

shear stresses produced by this defect at the slip plane, so that    ,0 0yyb
yx x  .  

Now, the boundary conditions of the corrective solution along the crack faces take the 

following form 

 

       

     

, 0 , 0 , , 0 0 ,

, 0 , 0 ,           for    ,

yy

yy

b

yy yy yx

b

yz yz

x x d x

m x m x d x a

     

   

 (42) 

 

augmented with the regularity conditions (41). The same problem in the context of classical 

isotropic elasticity theory is described by the first two conditions of Eq. (42) only. To solve 

that problem, a distribution of infinitesimal horizontal climb dislocation dipoles would be 

sufficient (Hills et al., 1996). However, as discussed in Baxevanakis et al. (2017a), in couple-

stress theory it is not possible to satisfy simultaneously all three boundary conditions of Eq. 

(42) by a distribution of a single nucleus of strain (either discrete dislocations or dislocation 

dipoles) only. In fact, it is necessary to distribute along the crack faces not only 

discontinuities in the displacement yu  (i.e. infinitesimal climb dislocation dipoles) but also 

discontinuities in the rotation vector. In light of the above considerations, we introduce the 

infinitesimal ‘constrained’ wedge disclination dipole ( zy ) as the necessary rotational defect 

that needs to be distributed along the crack faces so that the boundary conditions of the 

problem are satisfied. This defect consists of two opposite sign constrained wedge 

disclinations with the distance between them approaching zero (details about the derivation of 

its full-field solution are provided in Appendix A). Then, the influence functions of the crack 

problem are obtained from the superposition of the stress and couple-stress fields of the 

translational and rotational defects described above (Εqs. (A2) and (A6), Appendix A). These 

are expressed as 
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                   , 0 ,0 ,0 , , 0 ,0 ,0 ,yy zy yy zyb b

yy yy yy yz yz yzx x x m x m x m x  
 

      (43) 

where 

              

           

2

11 22 12

12 22

,0 , ,0 Ω ,

,0 , ,0 Ω ,

yy zy

yy zy

b

yy y d yy z d

b

yz y d yz z d

x b w L x L x x w L x

m x b w L x m x w L x

 




   
 

 

  (44) 

and 

 
 

 

 

2 2

11 2 12 22 2 2 2

22 0 2

6 2 2 2
, ,

2 1

,

x x
L x K L x K

x x x x x

x x
L x K K

  

   





      
          

          

    
     

     

  (45) 

 

where  iK x  is the i
th

 order modified Bessel function of the second kind.  

The following points are of notice regarding the characteristics of the stress field 

described in Eqs. (43)-(45): 

 (i) As 0x  , the asymptotic relations below are derived for expressions involving the 

modified Bessel functions 

 

     

  

2 2
1 2

2 22 2 2

2

0 2

1 2 1 2
2 , 2 ,

2 ln .

x x
K O x K O x

x x x x

x x
K K O x x

 



      
         

      

    
       

    

  (46) 

 

Based on these relations, it can be deduced that as 0x  , the normal stress yy  (Eq. (43)1) 

exhibits a quadratic and a logarithmic singularity due to the climb dislocation dipole and a 

Cauchy type singularity due to the constrained wedge disclination dipole. On the contrary, 

the couple-stress yzm  (Eq. (43)2) has a quadratic and a logarithmic singularity due to the 

constrained wedge disclination dipole and a Cauchy type singularity due to the climb 

dislocation dipole.  

(ii) As x , it may be shown that both 0yy   and 0yzm  . Therefore, the constrained 

wedge disclination dipole does not induce normal stresses at infinity. 
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(iii) As 0 , the couple-stress yzm  vanishes. Thus, the constrained wedge disclination 

dipole induces stresses and couple-stresses only for 0 , i.e. when the material 

microstructure is considered. On the other hand, as 0 , the normal stress yy  reduces to 

the expression    
2

2 1yyb

yy y db w x     , which is the influence function for the opening 

mode problem in classical elasticity, when dislocation dipoles are used in the formulation.  

 

4.2 Interaction of a finite-length crack with a glide dislocation dipole 

The boundary conditions that describe the plane shear problem are given in Eq. (40) 

accompanied by the regularity conditions (41). According to the full field solution of a glide 

dislocation dipole (Eqs. (29)-(34)), it is observed that for 0y   this defect induces only shear 

stresses    ,0xyb
yx x  along the crack faces, so that    ,0 0xyb

yy x   and    ,0 0xyb
yzm x  . 

An analogous procedure to the one described in the previous section is followed to 

obtain a solution for this crack problem. We first consider an uncracked medium subjected to 

the loading    ,0xyb
yx x d  of a horizontal glide dislocation dipole that lies along the crack 

line at a distance d from the crack center. The solution to this problem is obtained based on 

Εqs. (29)-(34) in the case of an infinitesimal defect or by following the procedure described 

in Εq. (21) in the case of a finite dislocation dipole. Accordingly, the boundary conditions of 

the second auxiliary problem read as 

 

       

 

, 0 0 , , 0 , 0 ,

, 0 0 ,           for    ,

xyb

yy yx yx

yz

x x x d

m x x a

     

 

 (47) 

 

augmented with the regularity conditions (41). The boundary conditions in Eq. (47) are 

satisfied by a distribution of infinitesimal horizontal glide dislocation dipoles along the crack 

faces, contrary to the opening mode problem discussed earlier. It is also noted that Eq. (47)1 

and (47)3 are automatically satisfied since this strain nucleus does not generate any normal 

stresses or couple-stresses along the crack plane (see Eqs. (30) and (34)). In the context of 

isotropic classical elasticity, the same problem is governed by the first and second conditions 

of Eq. (47), which are also satisfied by a distribution of infinitesimal horizontal glide 

dislocation dipoles along the crack faces. In that case, the interaction problem is described by 

a hyper-singular integral equation with quadratic singularity.  
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 Finally, from Eqs. (30), (32), and (34), we obtain the following relations for 0y    

 

   
 

2

2 22 2 2 2

6 22
, 0

2 1

xyb x d x d x d
yx

x xb w b w b w
x K K

x x x

  


   

    
       

      

 , (48) 

       , 0 0 , , 0 0 .xy xyb b

yy yzx m x     (49) 

 

Eq. (48) is the influence function for the plane shear mode problem in couple-stress elasticity 

in a displacement-based framework formulation.  

 

4.3 Interaction of a finite-length crack with a screw dislocation dipole 

The interaction problem of a finite-length crack and a screw dislocation dipole zyb  in couple-

stress elasticity is studied next. Hence, the boundary conditions of this interaction problem 

are given in view of Eq. (19) as 

 

     
1

, 0 , 0 , 0 0 , 0
2

yz yz x yy yxt x x m x m      ,      for     x a  , (50) 

 

along with the regularity conditions at infinity  

 

0 , 0pz pqm          as      r  , (51) 

 

where    , ,p q x y  and  
1 2

2 2r x y   is the distance from the origin. 

 The full field solution for an infinitesimal horizontal screw dislocation dipole (Eqs. 

(35)-(39)) shows that for 0y   this defect generates shear stresses    ,0zyb
yz x  and couple-

stresses    ,0zyb
yym x  along the crack plane, while it holds that 

   ,0 0zyb
yxm x  .  

For the solution of the antiplane crack problem, we follow the decomposition in two 

auxiliary configurations introduced earlier in the plane crack problems: i) the uncracked 

geometrically identical to the initial body subjected to the loading 
   ,0zyb
yzt x d  of a 

horizontal screw dislocation dipole placed at a distance d from the crack center along the 

crack plane, ii) the corrective solution problem described as 
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             

   

1
, 0 ,0 , 0 , 0 ,

2

, 0 0 ,               for ,

zy zy zy

zy

b b b

yz yz yz x yy

b

yx

t x t x d x d m x d

m x x a

        

 

 (52) 

 

supplemented by the regularity condition (51). These boundary conditions are satisfied by a 

distribution of infinitesimal horizontal screw dislocation dipoles along the crack faces. From 

Eq. (38), it is inferred that the couple stress 
 zyb

yxm  vanishes at 0y  , so that Eq. (52)2 is 

automatically satisfied. Accordingly, the same problem is described in classical elasticity by 

Eq. (52)1 which is satisfied by the distribution of infinitesimal horizontal screw dislocation 

dipoles along the crack faces. In that context, the interaction problem is described by a hyper-

singular integral equation with quadratic singularity.  

 Finally, from Εqs. (36) and (37), the total shear stress for 0y   becomes 

 

           
 

   

 

2

2 4

2 22 2

24 4 2

2

2 0 2 02

6 11
, 0 , 0 , 0

2 2

30 1 3 12

4

1
9 5 .

4

zy zy zyb b b z dz d
yz yz x yy

z d z d

z d

b wb w
t x x m x

x x

b w b wx
K

x x x

b wx x x x
K K K K


    

   
    

  

           
                        

  (53) 

 

Eq. (53) is the influence function for the antiplane shear mode problem in couple-stress 

elasticity in a displacement-based formulation framework. The previous expression behaves 

as  4O x  as 0x   while for 1    it reduces to the corresponding influence function of 

classical elasticity theory. 

 

5. Integral equation approach 

5.1 Interaction of a finite-length crack with a climb dislocation dipole 

The corrective stresses (Eq. (42)) are developed by a continuous distribution of climb 

dislocation dipoles and constrained wedge disclination dipoles along the crack faces, as 

discussed in Section 4.1. The elastic field generated by this distribution is derived by 

integrating the influence functions of the problem (Εqs. (43)-(45)) along the crack faces. It is 

reminded that the boundary condition described in Eq. (42)2 is automatically satisfied since 
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none of the distributed defects induces shear stresses along the crack plane 0y  , as 

observed in Εq. (A3). On the other hand, the simultaneous satisfaction of the first and third 

conditions of Eq. (42) leads to a system of coupled integral equations. Using asymptotic 

analysis, the singular parts of the kernels are separated from the regular and we eventually 

obtain the following system of hyper-singular integral equations  

 

   
 

 

 

 

 

     

   

1

1

1

1

2

12

2

3 2
, 0 F.P.

2 1

ln
4

,         ,

yy

a a
b I

yy

aa

aa

I I

a a

a

a

B t W t
x d dt dt

a x tx t

x t
B t dt B t R x t dt

W t R x t dt x a
a

  


  

 

 







 




   

 


  

  

 




 
 





  (54) 

   
 

 

 

     

   

1

1

1

1

2

2

2

3

2
, 0 F.P.

ln

,        ,

yy

a a
b I

yz

aa

aa

I

a a

a

a

W t B t
m x d dt dt

a x tx t

x t
W t dt B t R x t dt

a

W t R x t dt x a
a

 

 

 

 







 



    



  

  

 




 
 





  (55) 

 

where the symbol _F.P.  denotes a Hadamard finite-part integral (see e.g. Monegato 

(1994)). The densities of climb dislocation dipoles and constrained wedge disclination 

dipoles,  IB t  and  W t , are defined as 

 

 
 

   
 

 ,          
yy zy

I y

db t d t
B t u x W t a a t

dt dt



         . (56) 

 

In these expressions,  yu x  is the relative opening displacement and  x  the relative 

rotation between the upper and lower crack faces respectively. Hence, the climb dislocation 

dipole density corresponds to the relative displacement and the constrained wedge 

disclination dipole density is equal to the relative rotation at any point of the crack faces.  

Further, the kernels  qR x t , for 1, 2, 3q  , are defined as 
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 
   

 
 

 
 

2

1 22 2

0 22

2

2 22

2

3 0 22

6 2 1

6

1 1
ln ,

4

1 4
1 ,

2
ln .

x t
R x t K

x t x t

x t x t x t
K K

x t
R x t K

x t x t

x t x t x t
R x t K K

x t

   
     

    

         
        

       

   
      

    

        
         

      

  (57) 

 

Employing the asymptotic relations of the modified Bessel functions (Εq. (46)), it may be 

shown that the kernels in Εq. (57) are regular as x t  and 0 . 

 Next, the unknown defect densities,  IB t  and  W t , should be expressed in such a 

way to account for the asymptotic behavior of the displacement and the rotation at the crack-

tips. In the framework of couple-stress elasticity, both the displacement yu  and the rotation 

  behave as 1 2r  near the crack-tips, where r is the radial distance from the crack-tip (Huang 

et al., 1997). Therefore, the densities are expressed as the product of a regular and bounded 

function with a singular function as follows  

 

         
1 2 1 2

2 2

0 0

1 ,     1 ,     1I n n n n

n n

B t b U t t W t c U t t t
 

 

       , (58) 

 

where  nU t  are the Chebyshev polynomials of the second kind,  ,n nb c  are unknown 

parameters and t t a . It is noted that in the formulation of crack problems based on 

infinitesimal dislocation dipoles (displacement-based), no extra closure conditions are 

required to ensure that the normal displacement and the rotation are single-valued, which is 

the case in the formulation based on discrete dislocations (Baxevanakis et al., 2017a, b). 

These conditions ensure that     0y yu a u a     and     0a a    , i.e. that there 

is no remaining net dislocation along the crack length. In the current formulation, the two 

dislocations that form the dipole cancel each other out (self-annihilation) and therefore, 

closure conditions are redundant. Returning to the solution of the system of singular 
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equations (54) and (55), after introducing the dimensionless quantities x x a , d d a  and 

performing an appropriate normalization in the interval  1, 1 , we obtain 

 

     

 

  
 

  
  

       

1

1

1 1 2
2
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0

1

1 21 2 12
1 2

2

2
0 0 11

1 2

0 0

, 0 13 2
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2 1

1
1 ln

4

,         1 ,

yyb

yy n

n

n

n

n n n

n n

n n n n

n n

ax ad U t t
b dt

x t

U t t a a
c dt b U t t x t dt

x t

b Q x c Q x x

 

 






 
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 

 

 
 

 

  
    

  
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




 





 

 

  (59) 

      
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c dt
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
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




 
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 

 

 
  



  
    

  
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




 





 

 

  (60) 

 

where the functions    s

nQ x  are defined as 

 

        
1 1 2

2

1
1

s

n n sQ x U t t R ax at dt


    , 1, 2, 3s  . (61) 

 

The integrals in Εq. (61) are regular and hence are evaluated numerically using the 

standard Gauss-Chebyshev quadrature whereas the hyper-singular, singular, and weakly 

singular (logarithmic) integrals in Eqs. (59) and (60) are calculated in closed form using Eqs. 

(Β2), (Β1), and (Β5) in Appendix B. In view of this information, the system is written in 

discretized form as 
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 
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       
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 

  (62) 
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  (63) 

 

The system of Eqs. (62) and (63) is solved numerically by truncating the series at 

n N  and using an appropriate collocation technique, where the collocation points are 

selected as the roots of the Chebyshev polynomial  1NT x , viz. 

   cos 2 1 2 1kx k N      with 0,1,...,k N . Eqs. (62) and (63) form an algebraic 

system of 2 2N   equations with 2 2N   unknowns. It should be noted that the solution 

convergence is dependent on the ratio a . Finally, after calculating the constants nb  and nc  

 0,...,n N , the defect densities may be evaluated using Eq. (58). 

 

5.2 Interaction of a finite-length crack with a glide dislocation dipole 

Accordingly, in order to generate the corrective stresses (Eq. (47)) for the plane shear 

problem, it is necessary to distribute infinitesimal glide dislocation dipoles along the crack 

faces. The elastic field induced by the continuous distribution of these defects is derived by 

integrating the influence function of the problem (Εq. (48)) along the crack faces. Using 

asymptotic analysis to separate the singular from the regular part of the kernel, we derive the 

following expression 
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  (64) 

 

where      II xy xB t db t dt u t    is the glide dislocation dipole density at a point t  t a  

and    , 0 , 0x x xu u t u t     is the relative tangential displacement between the upper and 

lower crack faces. The regular kernel  4R x t  is given as 
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4 2 22 2

2 6 1 1 3
3 2 ln .

2 4
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              

           

  (65) 

 Further, since the displacement xu  behaves as 1 2r  near the crack-tips in the context 

of couple-stress elasticity (Huang et al., 1997), the unknown density of glide dislocation 

dipoles,  IIB t , may be written as  

 

    
1 2

2

0

1 ,      1II n n

n

B t b U t t t




    .  (66) 

 

Then, the hyper-singular and weakly singular (logarithmic) integrals in Εq. (64) are 

evaluated in closed form employing Eqs. (Β2) and (Β5) in Appendix B while the regular 

integral is calculated numerically using the standard Gauss-Chebyshev quadrature. Based on 

the above and after appropriate normalization in the interval  1, 1 , the integral equation 

(64) is expressed in the following discretized form 
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  (67) 

where the function    4

nQ x  is defined as 
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        
1 1 24 2

4
1

1n nQ x U t t R ax at dt


   . (68) 

 

Eq. (67) forms an algebraic system of 1N   equations with 1N   unknowns that is 

solved numerically using the same collocation technique as in the opening mode problem 

(Section 5.1).  

 

5.3 Interaction of a finite-length crack with a screw dislocation dipole 

As in the previous crack problems, the corrective stresses (Εq. (52)) are generated by a 

continuous distribution of infinitesimal screw dislocation dipoles along the crack faces. The 

elastic field that is produced in this case is derived by integrating the influence function (Εq. 

(53)) along the crack faces. In view of the above, we obtain a hyper-singular integral equation 

with fourth order, quadratic, and logarithmic singularities that describes the crack problem. 

With the use of asymptotic analysis, we separate the singular from the regular part of the 

kernel and obtain the following governing equation of the crack problem 

 

   
 

 

 

 

     
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2

1 24 2

3 52

, 0 3 F.P. F.P.

ln ,         ,
32

zy

a a

b III III

yz

a a
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III III

a a

B t B t
t x d c dt c dt

x t x t

x t
B t dt c B t R x t dt x a



 

 

    
 


   

 
 
 


 
 

  (69) 

 

where      III zyB t db t dt w t    is the screw dislocation dipole density at a point t 

 t a  and    , 0 , 0w w t w t     is the relative out-of-plane displacement between the 

upper and lower crack faces. The constants ic , for 1, 2, 3i  , are given as 

 

      
22

1 2 3

2 91 3 1
, , ,

2 16
c c c

      

  

   
     (70) 

 

and the kernel  5R x t  as 
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 
     

2 2

5 2 04 2 2
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2 3 1
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2 8

1 1 1
54 ln .

2 4 8

x t x t
R x t K K

x t x t x t

x t x t x t x t
K K K

         
           

           

             
             

           

  (71) 

 

Employing the asymptotic relations of the modified Bessel functions, it may be shown that 

the kernel  5R x t  is regular as x t  in the closed interval  ,a x t a   . Also, it is 

noted that for 1   , Εq. (69) reduces to the corresponding expression of classical elasticity. 

Next, considering that the out-of-plane displacement w behaves as 3 2r  near the crack-

tip region (Zhang et al., 1998), where r is the radial distance from the crack-tip, the unknown 

screw dislocation dipole density  IIIB t  may be written as 

 

    
3 2

2

0

1 ,      1III n n

n

B t b U t t t




    . (72) 

 

As in the plane problems, it is reminded that no closure condition is required to ensure 

uniqueness of the values of the antiplane displacement for a closed loop around the crack.  

After appropriate normalization over the interval  1, 1 , the integral equation (69) 

takes the following form for 1x   

 

   

  
 

  
 

      
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1

3 2 3 2
2 22

1
24 22

0 0

12
3 2 52

32
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b U t t x t dt c b Q x



 

 
 

 

 

  

 
 

 

 
    

 

 
 
 
 





 

 

 (73) 

 

with x x a  and d d a . The function    5

nQ x  is defined as 

 

        
1 3 25 2

5
1

1n nQ x U t t R ax at dt


    . (74) 
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The hyper-singular and weakly singular integrals in Εq. (73) are evaluated in closed 

form in Appendix B (Εq. (Β4), (Β3) and (Β6)) whereas the regular integral in Εq. (74) is 

calculated based on the standard Gauss-Chebyshev quadrature. In light of the above, the 

singular integral equation admits the following discretized form 

 

         
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

 (75) 

 

Eq. (75) is then solved numerically using the same collocation method as in previous 

sections. Finally, after obtaining a solution for the parameters nb , we calculate the screw 

dislocation dipole density using Εq. (72). 

 

6. Energy release rate and Peach-Koehler force evaluation 

In this section, we derive the expressions for the energy release rate (J-integral) in both crack-

tips and the Peach-Koehler force exerted on the climb dislocation dipole and study their 

dependence on the material and geometrical parameters of the problem. Atkinson and 

Leppington (1974) were the first to derive the energy release rate in the context of couple-

stress elasticity and prove its path independence (Atkinson and Leppington, 1977).  
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 In order to evaluate the J-integral, we use a rectangular shaped integration path that 

surrounds the (left or right) crack-tip and has vanishing height along the y-direction, while 

0   (Fig. 4). The benefit of this approach is that only the asymptotic near tip stress and 

displacement fields suffice for the evaluation of the J-integral. This computationally 

convenient concept was introduced by Freund (1972) to calculate the energy flux during 

dynamic crack propagation and has been later adopted to compute energy quantities in the 

vicinity of crack-tips (see e.g. Burridge, 1976; Georgiadis, 2003; Gourgiotis and Piccolroaz, 

2014; Baxevanakis et al., 2017a).  

 

 

Fig. 4: Rectangular shaped contour for the calculation of J-integral around the right crack-tip. 

 

6.1 Interaction of a finite-length crack with a climb dislocation dipole 

Taking into account that in the opening mode problem the shear stress yx  vanishes for 0y   

and the crack faces are defined by  0, 1 n , the J-integral admits the following form (see 

also Baxevanakis et al. (2017a)) 

 

 
 

 
 

0

,0 ,0
2 lim ,0 ,0 .

a
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yy yz

u x x
J x m x dx

x x





 




 
 

 



 

    
    

     






  (76) 

 

The dominant near crack-tip behavior for the normal stress yy  and the couple-stress 

yzm  is attributed to the hyper-singular integrals of quadratic singularity in Eqs. (54) and (55), 

respectively. The asymptotic behavior of these quantities near the right  x a  and left 

 x a  crack-tips is given as (see Eq. (Β8) in Appendix B) 
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. (78) 

 

Accordingly, based on the definitions of the defect densities  IB t  and  W t  (Εq. 

(56)), we derive the following relations for the gradients of the displacement and rotation 
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Based on Eqs. (77)-(80), the J-integral at the right crack-tip is written under the form 
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where  
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and 1x x  . Note that for any real number  , excluding the values 1, 2, 3, ...     , the 

distributions of the bisection type x

  and x

  in Eq. (81) are defined as (Gelʹfand and Shilov, 

1964) 

 

, 0

0 , 0

x x

x

x
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 
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 
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          and         
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, 0

x

x

x x







 


 




 . (83) 

 

The integral in Εq. (81) is evaluated using Fisher’s theorem for products of distributions of 

the bisection type (Fisher, 1971). Specifically, we use the relation

       
11

2sinx x x
 

 
 

       , where 1, 2, 3, ...      and  x  is the Dirac delta 

distribution, together with the fundamental property of the Dirac delta distribution, i.e., 

  1x dx






 .  

 A similar procedure is followed to derive the J-integral value at the left crack-tip, 

which is given by the expression  
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In the framework of classical elasticity, the J-integral value may be derived in closed 

form using a similar integration path to the one employed earlier and the elastic fields of the 

problem. Based on this procedure, we derive the expressions for the J-integral at both crack-

tips as 
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To the best of our knowledge, these expressions were not available in the literature and are 

provided herein for the first time. 

 Moreover, we evaluate the configurational Peach-Koehler force that is exerted on the 

climb dislocation dipole. To this aim, considering a contour that surrounds both the crack and 

the infinitesimal climb dislocation dipole (Fig. 5) and using the equilibrium relation between 

Peach-Koehler force and J-integral around a discrete dislocation (Eshelby, 1951), we may 

write the expression 

 

 1 2dd sd sd

x x x rF F F J J      ,  (87) 

 

where 
dd

xF  is the Peach-Koehler force exerted on the dislocation dipole along the x-direction, 

1sd

xF  and 
2sd

xF  (or equivalently 
1dJ  and 

2dJ ) are the Peach-Koehler forces exerted on the 

closer and farther to the crack constituent dislocations of the dislocation dipole, while 
rJ  and 

J  are the J-integral values at the right and left crack-tip. In Section 7.1, the Peach-Koehler 

force exerted on the dipole is calculated based on its definition and verified using Eq. (87). 

Finally, the corresponding Peach-Koehler force for this problem in classical elasticity is 

derived in the form 

 

   
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, .

2
2 2 22 1

y ddd clas

x

b w d
F

d a d a



 
 

  
 . (88) 

 

 

Fig. 5: Contour for the calculation of the Peach-Koehler force around the climb dislocation dipole. 
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6.2 Interaction of a finite-length crack with a glide dislocation dipole 

In the plane shear case, considering that the normal stress yy  and the couple-stress yzm  

vanish for 0y  , the J-integral is given by the following form (see also Baxevanakis et al. 

(2017b)) 
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The dominant near crack-tip behavior for the shear stress yx  is attributed to the 

hyper-singular integral of quadratic singularity in Εq. (64). The asymptotic behavior of this 

stress near the right  x a  and left  x a  crack-tips is given as (see Eq. (Β8) in 

Appendix B) 
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Accordingly, based on the definition of the glide dislocation dipole density  IIB t , the 

following asymptotic relations are obtained for the gradient of the tangential displacement 
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Using the same rectangular shaped contour as in the previous section and employing 

the asymptotic results of Eqs. (90) and (91) in conjunction with Fisher’s theorem for products 

of singular distributions, we eventually derive the following forms for the J-integral in the 

right and left crack-tips 
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where 
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Finally, the J-integral expressions in classical elasticity are analogous to Eq. (86). 

 

6.3 Interaction of a finite-length crack with a screw dislocation dipole 

In the antiplane crack problem, the couple-stress yxm  vanishes for 0y   so that the J-integral 

takes the following form 
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The dominant near crack-tip for the shear stress yzt  is attributed to the hyper-singular 

of the fourth order in Εq. (69). The asymptotic behavior of this stress component near the 

right  x a  and left  x a  crack-tips is given as follows (see Eq. (Β10) in Appendix B) 
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Further, based on the definition of the screw dislocation dipole density  IIIB t , the 

following asymptotic relations are deduced for the gradient of the antiplane displacement 
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Based on the previous results, we derive the expression for the J-integral in both crack-tips as  
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where 
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It is noted that the distributions of the bisection type 
3/2x

  and 
1/2x  in Eq. (97) are defined in 

Eq. (83). In addition, for the evaluation of the integral in Eq. (97), we employ Fisher’s 

theorem so that the product of distributions is computed as      
3 2 1 2 12x x x

 

    . 

Finally, the J-integral value in classical elasticity may be calculated in closed form 

utilizing a similar contour as the one used earlier and the expressions of the elastic fields of 

the problem (Lin et al., 1993). Based on this procedure, we obtain the following forms for the 

J-integral at the right and left crack-tips 
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7. Results and discussion 

In this section, we present and discuss characteristic results obtained for the three interaction 

problems. It is noted that an exhaustive parametric study was not conducted in this work, 

however, comments for limit cases are provided where appropriate. The objective of this 

section is to highlight the deviations from the classical elasticity theory when couple-stresses 

are considered. 
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7.1 Interaction of a finite-length crack with a climb dislocation dipole 

In Fig. 6a, the effect of the ratio a  on the normal crack face displacement (Εq. (56)) is 

explored for a climb dislocation dipole lying at a distance 2.5d a   in a couple-stress 

material with Poisson’s ratio 0.3  . We observe that the displacements become smaller in 

magnitude as the characteristic length becomes comparable to the crack length, i.e. the 

material exhibits a stiffer behavior. Due to the nature of the loading, the obtained 

displacement profile is always asymmetric, which becomes more evident when the defect is 

placed close to the crack-tip. It is also noted the classical elasticity solution (dashed line) is an 

upper bound for couple-stress elasticity. 

Accordingly, using Εq. (56), we evaluate the upper-half crack rotation for the same 

configuration. In Fig. 6b the variation of the rotation with respect to the ratio a  is 

presented. It should be emphasized that the results in couple-stress theory are bounded and 

tend to zero in both crack-tips. On the contrary, the classical elasticity solution (dashed line) 

exhibits a square-root singularity at the crack-tips. We also note that as 0 , the rotation in 

couple-stress elasticity becomes pointwise convergent to the classical elasticity unbounded 

solution. Both the displacement and the rotation of the crack faces are significantly affected 

by the distance of the dipole from the crack-tip. In general, the produced fields are smaller in 

magnitude compared to the interaction of a finite-length crack with a discrete climb 

dislocation (Baxevanakis et al., 2017a). This response is expected since the stress field of a 

dislocation dipole diminishes more rapidly over the distance than that of a discrete 

dislocation. 

 

    

a b 
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Fig. 6: a) Normalized upper-half crack displacement and b) rotation profiles for various ratios a  

due to the interaction with a climb dislocation dipole lying at 2.5d a   in a material with 0.3  . 

Moreover, we study the behavior of the normal stress yy  and the couple-stressς yzm  

ahead of the crack-tip. From the superposition of the two auxiliary problems, we derive the 

expressions (see Eqs. (54) and (55)) 
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For x a , the integrals in Εqs. (100) and (101) are not singular and are evaluated in closed 

form in Appendix B (Εqs. (Β8), (Β7) and (Β11)). Also, in view of Eqs. (77) and (78) it is 

deduced that both the normal stress yy  and the couple-stress yzm  exhibit a square-root 

singularity ahead of the crack-tips.  

The distribution of the normal stress yy  (Eq. (100)) due to the interaction with a 

climb dislocation dipole placed at a distance 2.5d a   is plotted in Fig 7a, in a medium with 

10a   and Poisson’s ratio 0.3  . In the x-axis, the distance is measured from the right 

crack-tip where a new variable, x x a  , is introduced for convenience. Comparing this 

response with the classical elasticity solution, we observe that the couple-stress effects are 

visible within a zone of 10  around the defect center and 3  near the crack-tip. Outside this 

range, the stress distribution approaches the classical elasticity response. The width of these 

zone varies with the distance between the defect and the crack-tip. In general, the normal 

stress distribution depends on the ratio a  and the Poisson’s ratio (see Εq. (100)), however, 

the response is always qualitatively similar to the one reported in this plot. It is also 
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mentioned that the square-root singularity induced by the dislocation dipole is retained in 

couple-stress theory. 

The distribution of the couple-stress yzm  is presented in Fig7b. In this example, the couple-

stress effects are evident in a zone of length 15  around the dipole center and 2  ahead of 

the crack-tip. Again, the length of these zones will extend if the dislocation dipole is placed 

farther from the crack-tip. It is also noted that for 15x   (dipole center), the couple-stress 

field exhibits a Cauchy type singularity, as described in Eqs. (44)-(46). 

 

    

Fig. 7: Variation of (a) the normal stress yy  and (b) the couple-stress yzm  ahead of the right crack-

tip due to the interaction with a climb dislocation dipole lying at 2.5d a   in a medium with 

10a   and Poisson’s ratio 0.3  . 

 

Moreover, we study the variation of the stress intensity factor (SIF) in couple-stress 

theory at both crack-tips. The SIF is defined at the right crack-tip as 

   
1 2

lim 2 , 0I yy
x a

K x a x 


    , where the asymptotic behavior of the normal stress 

 , 0yy x  is given in Εq. (77)1. The definition at the left crack-tip is similar. At this point, 

we compare the convergence of the displacement-based formulation of the opening mode 

crack problem to that of the slope formulation (Baxevanakis et al., 2017a). To achieve this, 

we revisit the interaction problem of a finite-length crack with a discrete climb dislocation 

and update the left hand side of the system of integral equations (54) and (55) to 

accommodate that loading (see Appendix A in Baxevanakis et al. (2017a)). The investigation 

of solution convergence with respect to the ratio a  based on the current approach is 

summarized in Table 1. Comparing these results to those obtained by the slope based method 

a b 
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(Table 1 in Baxevanakis et al. (2017a)), we deduce that less terms are required in the current 

formulation for a given level of accuracy. Also, the relative error in the results derived by 

coarse grids (i.e. 10N  ) is smaller than in the discrete dislocation approach. 

 

Table 1: Stress intensity factors ratio in the right crack-tip 
.

, ,

clas

I r I rK K  due to the interaction with a discrete 

climb dislocation (Baxevanakis et al., 2017a) lying at a distance 2.0d a   in a material with Poisson’s ratio 

0  . 

N  1.0a   0.8a   0.5a   0.2a   0.1a   0.05a   0.01a   0.005a   

10 2.61055 2.47282 2.11816 1.52565 1.35923 1.31378 1.29180 1.35035 

20 2.61055 2.47282 2.11816 1.52565 1.35930 1.31382 1.29898 1.28930 

30     1.35930 1.31382 1.29933 1.29880 

40       1.29945 1.29894 

50       1.29945 1.29924 

60        1.29924 

 

 

Fig. 8: Variation of the ratio of stress intensity factors in couple-stress theory and in classical 

elasticity with a  for a climb dislocation dipole lying at 2.5d a  . 

 

Returning to the interaction with a climb dislocation dipole, in Fig. 8 the variation of 

the ratio 
.clas

I IK K  in both crack-tips with respect to the ratio a  and the Poisson’s ratio ν is 

plotted, for a defect placed at a distance 2.5d a  . We notice that the response is highly 

different in the two crack-tips due to the asymmetric nature of the applied loading. In all 

cases, the stress intensity factor in couple-stress theory is significantly higher than the 

classical elasticity solution (stress aggravation effect). The right crack-tip curves (continuous 

lines) monotonically increase in the range 0 1a   and then decrease and approach 

asymptotically the value  3 2  as a  . On the contrary, in the left crack-tip response 

(dashed lines) there is an initial decreasing branch and then a monotonically increasing 
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behavior until the asymptotic value  3 2  as a  . Further, for 0a  , the SIFs ratio 

exhibits a finite jump discontinuity (i.e. 
. 1clas

I IK K  ), which is attributed to the boundary 

layer effects that arise in couple-stress elasticity in singular stress-concentration problems 

(Sternberg and Muki, 1967). It is also noted that the general trend of the SIFs ratio response 

is comparable with the single climb dislocation interaction problem (Baxevanakis et al., 

2017a). 

 

 

Fig. 9: Variation of the ratio of J-integrals in couple-stress theory and in classical elasticity with a  

for a climb dislocation dipole lying at 2.5d a  . 

 

Next, we evaluate numerically the energy release rate, based on Εqs. (81) and (84). In 

Fig. 9 the dependence of the ratio .clasJ J  on the microstructural ratio a  and the Poisson’s 

ratio ν is depicted, for a climb dislocation dipole lying at a distance 2.5d a  . We note that 

as the ratio 0a  , the J-integral in couple-stress theory tends to the corresponding results 

of classical elasticity. The response shows a similar non-monotonic trend in both crack-tips: 

as a  increases, the ratio initially decreases  .clasJ J  until a minimum value is reached for 

0.1 0.15a   (this range varies depending on the Poisson’s ratio and the defect distance 

d a ) and afterwards a monotonically increasing behavior is observed  .clasJ J . Eventually, 

the ratio .clasJ J  tends asymptotically to the value  3 2  as a  . Hence, for small 

values of a , the crack driving force is lower than the corresponding classical elasticity 

solution revealing a strengthening effect while for higher values of the microstructural ratio 
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a  a weakening effect is noticed since . 1clasJ J  . A similar ‘alternating’ behavior was 

presented in the interaction with discrete plane defects (Baxevanakis et al., 2017a, b). 

 

 

Fig. 10: Variation of the ratio 
, .dd dd clas

x xF F  with respect to a  for a climb dislocation dipole lying at 

2.5d a  . 

 

Accordingly, considering the J-integral response, we expect the configurational force 

exerted on the climb dislocation dipole to exhibit an analogous behavior. In Fig. 10, the 

variation of the ratio 
, .dd dd clas

x xF F  is given with respect to the ratio a  and the Poisson’s 

ratio v, for a climb dipole at a distance 2.5d a  . In accordance to the previous results, the 

Peach-Kohler force tends to its classical elasticity value for 0a  . Then, as a  increases, 

the ratio 
, .dd dd clas

x xF F  decreases until a finite minimum value for 0.1a   and then increases 

monotonically. For 1a  , the ratio decreases until the asymptotic value  3 2  as  

a  . Overall, the dislocation dipole driving force is increased in couple-stress elasticity 

for a large range of values of the ratio a . 

 

7.2 Interaction of a finite-length crack with a glide dislocation dipole 

We proceed with the presentation of characteristic results for the interaction of a finite-length 

crack with a glide dislocation dipole. In Fig. 11 the dependence of the tangential crack face 

displacement on the ratio a  is displayed for a glide dislocation dipole placed at a distance 

2.5d a   in a couple-stress material with Poisson’s ratio 0.3  . In this interaction 

problem, the displacement profile for a given value of a  is reduced more with respect to its 
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classical elasticity counterpart compared to interaction problems studied earlier (see Fig. 6a 

and Baxevanakis et al. (2017a, 2017b)). For instance, the maximum displacement for 

20a   is reduced by 6% compared to the corresponding maximum in classical elasticity 

while for 10a   and 5a   the maximum values are reduced by 15% and 34% 

respectively. In the interaction with a discrete glide dislocation (Baxevanakis et al., 2017b), 

the corresponding reduction percentages are 5%, 10% and 24% for the same three cases of 

a  considered here.  

Next, we examine the behavior of the shear stress yx  ahead of the crack-tip. 

Superposition of the two auxiliary problems (see Eq. (64)) yields the expression 

 

     
 

 

 

 

     
1

1

2

42

3 2
, 0 , 0

2 1

3
ln .

4

xy

a

b II

yx yx

a

aa

II II

a a

B t
x a x d dt

x t

x t
B t dt B t R x t dt

 
 

 

 

 



 


   

 


  






 
 

  (102) 

 

In light of Eq. (90) it is inferred that the shear stress yx  exhibits a square-root singularity at 

both crack-tips as in the classical elasticity case. 

 

 

Fig. 11: Normalized upper-half crack tangential displacement profile for various ratios a  due to the 

interaction with a glide dislocation dipole lying at 2.5d a   in a material with 0.3  . 
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 Further, the expression for the couple-stress 
xzm  is derived by integrating Εq. (33) 

along the crack faces  , 0x a y   and employing results from asymptotic analysis as 
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     
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 
 

  (103) 

where the regular kernel  6R x t  is given as 
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             

            
 (104) 

 

Using asymptotic analysis as x a , it can be shown that the couple-stress 
xzm  is bounded 

at the crack-tip. 

 

    

Fig. 12: Variation of a) the shear stress yx  and b) the couple-stress xzm  ahead of the right crack-tip 

due to the interaction with a glide dislocation dipole lying at 2.5d a   in a medium with 10a   

and Poisson’s ratio 0.3  . 

 

In Fig. 12a we present the distribution of the shear stress yx  for a glide dislocation 

dipole lying at a distance 2.5d a   in a couple-stress material with 10a   and Poisson’s 

ratio 0.3  . In this case, it is noted that the couple-stress effects are significant within a 

zone of 12  around the defect center whereas near the crack-tip the couple-stress result 

practically coincides with the classical elasticity solution. For different positions of the 

a b 
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dislocation dipole, a deviation from the classical elasticity solution near the crack-tip 

becomes evident. Additionally, as x d , the field exhibits a quadratic singularity due to the 

dislocation dipole, as in classical theory. Further, the distribution of the couple-stress 
xzm  is 

plotted in Fig 12b. The field has a bounded negative value ahead of the crack-tip as discussed 

earlier and vanishes rapidly to zero as x d . For certain locations of the defect, positive 

values of the couple-stress 
xzm  are reported. Finally, around the dislocation dipole  x d

, the field exhibits a Cauchy type singularity, as Eq. (33) suggests.  

 

 

Fig. 13: Variation of the ratio of stress intensity factors in couple-stress theory and in classical 

elasticity versus a  for a glide dislocation dipole lying at 2.5d a  . 

 

We now examine the deviation of the stress intensity factor in couple-stress theory 

from the classical elasticity prediction. For this crack problem, the SIF is defined at the right 

crack-tip as    
1 2

lim 2 , 0II yx
x a

K x a x 


    , where the shear stress  , 0yx x  is provided 

in Εq. (102). In Fig. 13, the variation of the ratio 
.clas

II IIK K  in both crack-tips with respect to 

the ratio a  and the Poisson’s ratio ν is shown, for a glide dislocation dipole placed at a 

distance 2.5d a  . In this example, there is a range where the SIF in couple-stress theory is 

smaller than the classical theory solution. More specifically, as a  increases, all curves 

initially drop until a finite minimum value in the range 0.3 0.35a   for the right crack-tip 

and 0.35 0.45a   for the left crack-tip and then monotonically increase up to the 

asymptotic value  3 2  as a  . The severe boundary layer effects of couple-stress 
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theory are manifested in this graph since for 0a  , the ratio 
. 1clas

II IIK K  . In general, for 

different locations of the defect, it may hold that 
.clas

II IIK K . 

Based on Εq. (92), we evaluate numerically the energy release rate (J-integral). In Fig. 

14, the variation of the ratio .clasJ J  in both crack-tips is given for various values of the ratio 

a  and the Poisson’s ratio v, for a glide dislocation dipole lying at a distance 2.5d a  . It is 

observed that as 0a  , the J-integral in couple-stress theory converges to the classical 

elasticity solution since the ratio .clasJ J  tends to unity. The response reported for the J-

integral ratio resembles that of the SIFs ratio behavior. Specifically, all curves have an initial 

decreasing branch until a finite minimum value is reached, which depends on the defect 

distance d a  and the Poisson’s ratio ν and is different for each crack-tip. Then, the ratio 

.clasJ J  shows an increasing behavior and reaches the asymptotic value  3 2  as a 

. Overall, this result is quantitatively similar to the opening mode problem (Fig. 9) and to the 

interaction problem with a discrete glide dislocation (Baxevanakis et al., 2017b). 

 

 

Fig. 14: Variation of the ratio of J-integrals in couple-stress theory and in classical elasticity with 

respect to the ratio a  for a glide dislocation dipole lying at 2.5d a  . 

 

7.3 Interaction of a finite-length crack with a screw dislocation dipole 

In this paragraph, we present and discuss the results of the antiplane problem. The 

effect of the ratio a  on the antiplane displacement w is shown in Fig. 15, for a screw 

dislocation dipole placed at a distance 2.5d a   in a couple-stress material with 0  . 

Looking at the magnification of the profile at the right crack-tip (see figure inset), we deduce 
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that the crack faces close in a smoother way  3 2x  than the classical elasticity prediction, as 

is supported by Eq. (96). As in the plane problems discussed earlier, we note that the material 

exhibits a more stiff behavior as the crack length becomes comparable to the characteristic 

length . Indeed, the classical elasticity solution is still an upper bound for couple-stress 

elasticity. Also, the produced displacements are smaller compared to the interaction problem 

with a discrete screw dislocation (Baxevanakis et al., 2017b), which is expected since 

dislocation dipoles produce weaker stress fields than discrete dislocations.  

 

 

Fig. 15: Normalized upper-half crack antiplane displacement profile for various ratios a  due to the 

interaction with a screw dislocation dipole lying at 2.5d a   in a material with 0  . 

 

Next, we evaluate the total shear stress yzt  based on Eq. (69) as  
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  (105) 

where for x a  the integrals are now regular and are evaluated in closed form in Appendix 

B (Eqs. (Β10), (Β9), and (Β12)). Further, it is reminded that the total stress behaves as 3 2x   

near the crack-tips (Eq. (95)). 

In Fig. 16, the distribution of the total shear stress yzt  is given due to the interaction 

with a screw dislocation dipole lying at 2.5d a  , in a medium with 500a   and three 

values of the parameter  . The obtained behavior in couple-stress theory differs significantly 
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from the classical elasticity result (dashed line). The total shear stress yzt  exhibits a cohesive-

traction character along the prospective fracture zone since it has negative values in a small 

region  0.5x  ahead of both crack-tips. Further, for 2x  , the distribution exhibits a 

bounded maximum value while for 2x   it tends to the classical elasticity solution. It is 

also worth mentioning that as 1  , the width of the cohesive-traction zone is reduced 

and the maximum value of the total shear stress increases. 

 

 

Fig. 16: Variation of the total shear stress yzt  ahead of the right crack-tip due to the interaction with a 

screw dislocation dipole lying at 2.5d a   in a medium with 500a   for different values of  . 

 

 

Fig. 17: Variation of the ratio of J-integrals in couple-stress theory and in classical elasticity with a  

for a screw dislocation dipole lying at 2.5d a  . 
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Then, we evaluate numerically the J-integral at both crack-tips according to Eq. (97). 

In Fig. 17, the variation of the ratio .clasJ J  is plotted with respect to the ratio a  and the 

parameter  , for a screw dislocation dipole lying at a distance 2.5d a  . As in the plane 

strain cases, the ratio .clasJ J  tends to unity for 0a  , that is, the J-integral result in 

couple-stress theory reduces to the classical elasticity solution. On the other hand, we observe 

that in the antiplane case, the ratio . 1clasJ J   as a  increases. Therefore, the energy release 

rate decreases when the material microstructure is considered (strengthening effect). This 

response is independent of the position of the defect. Also, contrary to the plane strain cases, 

the ratio is always higher at the left crack-tip. Another interesting observation is that the ratio 

.clasJ J  tends to zero for 0   and 0.60a  , which is attributed to the nature of the screw 

dislocation dipole loading. 

 

8. Concluding remarks 

In the present study, interaction problems between finite-length cracks and dislocation 

dipoles were investigated in the context of couple-stress elasticity. The formulation of such 

problems was achieved by generalizing the distributed dislocation technique and using as 

nuclei of strain infinitesimal dislocation dipoles. The stress fields of these area defects were 

derived for the first time in the framework of couple-stress elasticity theory. The 

displacement-based formulation presented in this work proved to be computationally efficient 

as less terms are required for a given level of accuracy compared to the classical distributed 

dislocation technique. In addition, the crack displacement profiles are readily obtained since, 

in this approach, the distributed defect density coincides with the crack displacement. Using 

this approach, both the plane strain and the antiplane crack problems were described by 

hyper-singular integral equations, which were solved numerically. It is also noted that in 

order to satisfy the boundary conditions in the opening mode problem, a new rotational defect 

was introduced, termed as infinitesimal ‘constrained’ wedge disclination dipole. 

Several interesting conclusions can be drawn from this investigation. In all problems, 

the cracked solid was found to behave in a more rigid way (i.e. the crack face displacements 

were smaller in magnitude) that the classical elasticity prediction. The generated stress and 

couple-stress fields are reduced compared to the interaction problems with discrete 

dislocations, since the loading induced by dislocation dipoles vanishes more rapidly with 

distance. It was further observed that these fields are altered by couple-stress effects in a 
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small zone ahead of the crack-tip and around the dislocation dipole while they remain 

unbounded around the defect tips. In the plane shear problem, the stress intensity factor was 

smaller than its counterpart in classical elasticity for a range of values of the microstructural 

ratio a . In addition, it was shown that the energy release rate is significantly influenced by 

the defect distance and the magnitude of the characteristic material length with respect to the 

crack length. Indeed, in the plane strain problems, the energy release rate reveals either 

strengthening or weakening effects depending on the material parameters and the geometry 

whereas in the antiplane case, the energy release rate is always decreasing, revealing, thus, a 

strengthening effect when couple-stresses are considered. The presented crack formulation 

and obtained results are expected to form the basis for more complex interaction problems of 

multiple cracks and randomly oriented defects in couple-stress theory. 
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Appendix A 

Following the procedure described in Εqs. (21) and (22), we derive the full-field solution for 

the stresses and couple-stresses that are generated from the superposition of an infinitesimal 

climb dislocation dipole (see Eqs. (23)-(28)) and an infinitesimal constrained wedge 

disclination dipole (Baxevanakis et al., 2017a) as follows 
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For 0y  , the integrals 11I  in Eq. (A6) are evaluated analytically as 
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Therefore, the influence functions for the opening mode problem in the displacement-based 

formulation are obtained in closed form and provided in Εqs. (43)-(45). Further, it is noted 

that once the two defect densities (Eq. (56)) are evaluated, the stresses and couple-stresses at 

any point of the cracked body can be obtained using Eqs. (A1)-(A6). 

 

Appendix B 

In this Appendix, we provide the closed-form expressions for the singular and hyper-singular 

integrals involving Chebyshev polynomials that were presented in Section 5. The integrals 

are calculated in the finite-part sense for 1x   (see also Chan et al., 2003). It is mentioned 

that the integral in Eqs. (Β6) and (Β12) is derived herein for the first time. 
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where  nT t  and  nU t  are the Chebyshev polynomials of the first and second kind, 

respectively. 

For 1x  , the above integrals are no longer singular and are evaluated according to 

the following expressions 
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