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Heterogeneous materials can show size-dependent behaviour in which the bending modulus depends on
sample size. In fibre composite materials the interaction between fibre and matrix can lead to such a size
effect.Then the effective modulus calculated by the rule of mixtures can either underestimate or overes-
timate the bending modulus of the laminate, depending on the fibre/matrix material mismatch, the
microstructural morphology (fibre distribution) and the laminate thickness. In this work, the bending
behaviour of a laminate comprising unidirectional fibre composite plies is considered using Euler-
Bernoulli beam theory and the influence of size on the bending modulus is investigated. The effective
bending modulus of each ply is calculated and used to formulate the overall bending modulus of the lam-
inate. The results show that the laminate bending modulus depends on the number of plies, the number
of fibres through the thickness of each ply, the fibre spacing and radius, and the mismatch of fibre and
matrix material properties in each ply. Our analysis shows that accounting for the ply microstructure (fi-
bre spacing and radius and number of fibres per ply) can lead to a 10% difference in the predicted bending
modulus in a three ply laminate, when there are less than four fibres through the thickness in each ply.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Heterogeneous materials can show size dependent behaviour
under bending in which the effective modulus depends on size
(Nourmohammadi et al., 2020; Wheel et al., 2015). The term ‘pos-
itive size effect’ has been used when the modulus increases with
decreasing size and ‘negative size effect’ for the case when modu-
lus decreases with decreasing size. Materials such as polymeric
foams (Lakes, 1983), lattices (Bažant and Christensen, 1972), and
materials with spherical voids in a matrix (Yang and Lakes,
1982), have been shown to have a positive size effect under bend-
ing. The bending behaviour of heterogeneous media can be mod-
elled through Cauchy elasticity theory in which the contribution
of each component on bending stiffness is analysed separately
and simply added together to obtain the total stiffness. In previous
work (Nourmohammadi et al., 2020), the bending stiffness of fibres
and matrix through thickness of a thin-ply composite with uniform
fibre spacing was calculated separately using Euler-Bernoulli beam
theory and accumulated to achieve the total stiffness. As analysing
heterogeneous media is computationally expensive, it is desirable
to provide an equivalent homogenised model. Work done by
Bigoni and Drugan (2007) showed that the elastic strain energy
of a heterogeneous representative volume element (RVE) under
uniform loading is equal to that calculated using the effective
material properties from standard homogenised Cauchy methods.
However, when loading is no longer uniform, a mismatch in elastic
strain energy calculated from the two models arises. To address
this problem, an equivalent model using generalised continuum
models is proposed in which additional material constituents
account for the difference in the strain energies. The concept of
the generalised continuumwas initially introduced by the Cosserat
brothers in which a series of substructures in classical Cauchy
media rotate independently from each other (Cosserat, 1970).
Micropolar and modified couple stress theories (Eringen, 1972;
Yang et al., 2002; Park and Gao, 2006) are two widely used gener-
alised continuum models that represent a heterogeneous Euler-
Bernoulli beam under bending. The simplicity of their constitutive
equations is desirable as there is just one length scale parameter
responsible for the size effect. In other words, in the classical
homogenisation methods, the length scale parameter is essentially
zero (Ma et al., 2011). In the micropolar theorem, rotations and
micro-moments are additional degrees of freedom to translations
and forces. In the modified couple stress theorem, the couple stress
tensor is symmetric and there are equilibrium expressions for
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List of Symbols

dk Fibre spacing in ply k
lk Distance from neutral axis of ply k to laminate neutral

axis
rk Fibre radius in ply k
t Laminate thickness
tk Thickness of ply k
v fk Fibre volume fraction ratio of ply k
w Width of the laminate
ak Dimensionless geometry parameter for ply k, rk=dk
bk Dimensionless material mismatch ratio for ply k, Efk=Emk
j Laminate curvature
kk Ratio of fibre spacing in ply k to fibre spacing in ply 1
Ak Cross sectional area of ply k
Dlam Laminate bending stiffness
Dk Bending stiffness of ply k with respect to the laminate

neutral axis
Efk Elastic modulus of fibre for ply k
Emk Elastic modulus of matrix for ply k
�Ek Effective tensile modulus of ply k using the rule of mix-

tures
Êbk Effective bending modulus of ply k with respect to its

neutral axis

~Ebk Effective bending modulus of ply k with respect to the
laminate’s neutral axis

Ê lam
b Effective bending modulus of a laminate

�E lam
b Effective bending modulus of a laminate using homoge-

nised ply properties
�E lam Effective tensile modulus of a laminate based on the

rule of mixtures
Efc Elastic modulus of carbon fibre
Efg Elastic modulus of glass fibre
Ilam Second moment of area of a homogenised laminate
Ik Second moment of area of homogenised ply k
M Bending moment
Nk Number of fibres in ply k
P 2P even number of plies and 2P þ 1 odd number of plies

in a laminate
R Relative difference between bending modulus of lami-

nate and modulus from rule of mixtures
Rp Relative difference between bending modulus and mod-

ulus from rule of mixtures of a ply
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moments as well as forces that arise at a material point. Both
micropolar (Bigoni and Drugan, 2007) and the modified couple
stress theorem (Park and Gao, 2006) contribute more strain energy
than that calculated using standard Cauchy elasticity. As a result,
they only capture a positive size effect in which material becomes
stiffer with decreasing size. In this work, the formulation of a
micropolar Euler-Bernoulli beam model (Beveridge et al., 2013) is
used in which there is just one length scale parameter. In this
model, three-point bending analysis of a beam with a rectangular
cross-section is performed which is the simplification of previous
work (Lakes, 1995) in which all out-of-plane effects were consid-
ered. As a result, both micropolar and modified couple stress the-
orems are indistinguishable from each other. In previous work
(Nourmohammadi et al., 2020), the bending characteristic length
was shown to be defined only for the case when fibres are more
compliant than the matrix. Finally, the calculated bending charac-
teristic length can be used to define the new constitutive parame-
ters of the micropolar theorem.

Current work focuses on modelling the bending behaviour of
composite materials. The heterogeneity innate to these materials
not only arises because of the mismatch of fibre/matrix material
and geometric properties but also due to the arrangement of fibres
in the matrix and distribution of voids. In literature, the most
prevalent RVE shapes are hexagonal or square (Keane et al.,
2008). By having a hexagonal array, i.e. fibre centres are located
on an equilateral triangular grid, higher volume fractions can be
achieved. The maximum Vf for a rectangular array is 78.5%, while
the maximum for a triangular array is 90.3%. Studies by Adams and
Tsai (1969) have shown that under transverse loading, for the same
volume fraction, the elastic modulus is higher for a square array
than for a hexagonal (triangular) array. Such information is not
available in the literature for longitudinal loading, as examined
here, so without analysing the particular case it is difficult to spec-
ulate on the expected trend. This will be examined in future work.
In addition the mechanical response under bending differs due to
the change of fibre arrangement from hexagonal to square RVEs.

In previous work (Nourmohammadi et al., 2020), the bending
behaviour of a thin-ply composite with a square fibre array of uni-
form spacing (due to its relative simplicity in the modelling) was
2

investigated. We showed that size effects arising from the bending
of a fibre reinforced composite ply can be described using Euler-
Bernoulli beam theory. It was shown that the bending modulus
depends on the geometry ratio, a ¼ r=d, where r is fibre radius
and d is fibre spacing, the material mismatch ratio, b ¼ Ef =Em,
where Ef and Em are fibre and matrix elastic modulus, respectively,
and N, the number of fibres through the thickness of the ply. Finite
element (FE) validation of the results was achieved by modelling
an RVE under pure bending and then subjecting it to periodic
boundary conditions. An RVE was modelled and the effective bend-
ing modulus was calculated. Results showed that FE predictions
and analytical solutions were in close agreement.

Wheel et al. (2015), examined a problem focusing on the bend-
ing stiffness of a symmetric laminate comprising plies with two
different moduli, without considering the ply microstructure. Their
results showed that if the outer ply (located furthest from the neu-
tral axis of the laminate) has the higher modulus a positive size
effect results (laminate modulus increasing with decreasing size)
while a negative size effect is predicted if the outer ply has the
lower modulus. In this work, the bending behaviour of a symmetric
laminate, composed of an arbitrary number of unidirectional com-
posite plies, is studied, extending our previous work
(Nourmohammadi et al., 2020), which examined a single ply. The
effect of material and geometry properties of the individual plies
on the overall laminate response is considered, particularly in rela-
tion to size effects and the results are compared to that of Wheel
et al. (2015).

2. Formulation of effective bending modulus of a laminate

A laminate of width, w, length, l, and thickness, t, under bending
moment,M, about the X2 axis, is considered, as shown in Fig. 1. The
laminate is symmetric, with either an even or odd number of uni-
directional plies, noting that each ply can have an even or odd
number of circular cylindrical fibres through the thickness. For
simplicity, the case of an even number of plies and an even number
of fibres is presented in the following. Details of the calculations for
an odd number of plies and an odd number of fibres are provided in
Appendix A. The cross-section of the laminate is shown in Fig. 2(a).



Fig. 1. Centro-symmetric laminate made up of unidirectional plies under pure
bending moment, M.
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Ply k has thickness tk and lever arm lk, which is the distance
between the neutral axis of the ply (the a-axis in Fig. 2)) and the
neutral axis of the laminate (the b-axis in Fig. 2(a)). The cross-
section of a ply is shown in Fig. 2(b). Each ply has Nk fibres through
the thickness in a rectangular array with fibre spacing dk and fibre
radius rk. The ply thickness, tk ¼ Nkdk. For each ply we define the
geometry ratio ak ¼ rk=dk and the material mismatch ratio
bk ¼ Efk=Emk, where Efk and Emk are the elastic modulus of fibre
and matrix, respectively. Note that the fibre volume fraction ratio,
v fk ¼ pa2

k .
From Euler-Bernoulli beam theory, the relation between

moment, M, and curvature, j, of the laminate shown in Fig. 1 is:

M ¼ Dlamj; ð1Þ
Fig. 2. Configuration of plies in the laminate and fibres in ply kwith width ofw and thickn
fibres.

3

where Dlam is the bending stiffness of the laminate and the curva-
ture, j, is the second derivative of deflection, u3, with respect to
position x1 along the beam,

j ¼ d2u3

dx21
: ð2Þ

The effective bending modulus Ê lam
b of the laminate is defined as

Ê lam
b ¼ Dlam

Ilam
; ð3Þ

where Ilam is the second moment of area of the homogenised
laminate,

Ilam ¼ wt3

12
; ð4Þ

where thickness, t, for a laminate with an even number of plies, 2P,
is:

t ¼ 2
XP
k¼1

tk ¼ 2
XP
k¼1

Nkdk: ð5Þ

Defining kk as the fibre spacing ratio of ply kwith respect to the first
ply,

kk ¼ dk

d1
; ð6Þ

Eq. (5) can be rewritten as,

t ¼ 2d1

XP
k¼1

Nkkk: ð7Þ

and the second moment of area of the laminate, Ilam, can be written
as,

Ilam ¼ 2wd3
1

3

XP
k¼1

N3
kk

3
k ; ð8Þ

noting that k1 ¼ 1. We seek to write the effective bending modulus

of the laminate Ê lam
b in Eq. (3), in terms of the properties of the indi-
ess of tk: (a) Laminate with 2P even number of plies; (b) Ply with Nk even number of



Table 1
Bending rigidity per unit width Dlam=w (N:m) for a six ply laminate with different ply
thickness.

Configuration Dlam=w ðN:mÞ
ðNc ¼ 8;Ng ¼ 2Þ

Dlam=w ðN:mÞ
ðNc ¼ 16;Ng ¼ 4Þ

Ratio

CCCCCC 1:175 9:41 8:01
CGCCGC 1:025 8:21 8:01
CCGGCC 1:129 9:04 8:01
CGGGGC 0:98 7:84 8:01
GCCCCG 0:61 4:89 8:01
GGCCGG 0:46 3:69 8:02
GGGGGG 0:414 3:32 8:02
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vidual plies. Following Nourmohammadi et al. (2020), Dk, the bend-
ing stiffness of ply k is written as (see Appendix A),

Dk ¼ ÊbkIk þ �EkAkl
2
k : ð9Þ

In Eq. (9), Êbk is the effective bending modulus with respect to the
ply neutral axis, Ik is the second moment of area of the homogen-
sised ply,

Ik ¼ wt3k
12

¼ wðNkkkd1Þ3
12

; ð10Þ

�Ek is the tensile modulus, based on the rule of mixtures,

�Ek ¼ Emk pa2
kðbk � 1Þ þ 1

� �
; ð11Þ

Ak is the ply cross-sectional area,

Ak ¼ wtk ¼ wNkkkd1; ð12Þ
and lk is the lever arm of the ply (see Fig. 2),

lk ¼
Xk
j¼1

tj � tk
2
¼

Xk
j¼1

Njkj � Nkkk
2

 !
d1: ð13Þ

In Eq. (9), Êbk is the effective bending modulus of ply k. In previous

work (Nourmohammadi et al., 2020), we derived Êbk for a ply with
Nk fibres, geometry ratio, ak, and material mismatch ratio, bk as,

Êbk ¼�Ek þ pa2
kð3a2

k � 1Þðbk � 1Þ
N2

k

Emk ð14Þ

¼ �Ek þ pa2
kdkð3a2

k � 1Þðbk � 1Þ
t2k

Emk: ð15Þ

The bending stiffness Dlam of the laminate is the summation of the
bending stiffness of each ply k with respect to the laminate neutral
axis, Dk . For a laminate with an even number of plies,

Dlam ¼ 2
XP
k¼1

Dk: ð16Þ

To calculate Dk, rather than using Eq. (9) directly, it is conve-
nient to define the bending modulus, ~Ebk, for ply k with respect
to the laminate neutral axis, using the parallel axis theorem, as:

~Ebk ¼ Dk

Ik þ Akl
2
k

: ð17Þ

Substituting Eqs. (9) into Eq. (17) and using Eqs. (10)–(15) we
obtain:

~Ebk ¼
Êbkt2k þ 12�Ek

Pk
j¼1tj � tk

2

� �2
t2k þ 12

Pk
j¼1tj � tk

2

� �2 ð18Þ

¼
ÊbkN

2
kk

2
k þ 12�Ek

Pk
j¼1Njkj � Nkkk

2

� �2
N2

kk
2
k þ 12

Pk
j¼1Njkj � Nkkk

2

� �2 : ð19Þ

For a laminate with an odd number of plies (see Appendix A), ~Ebk is

~Ebk ¼
Êbkt2k þ 12�Ek

Pk
j¼1tj � tkþt1

2

� �2
t2k þ 12

Pk
j¼1tj � tkþt1

2

� �2 ð20Þ

¼
ÊbkN

2
kk

2
k þ 12�Ek

Pk
j¼1Njkj � NkkkþN1

2

� �2
N2

kk
2
k þ 12

Pk
j¼1Njkj � NkkkþN1

2

� �2 : ð21Þ

Using Eq. (16) and Eq. (17), we get
4

Dlam ¼ 2
XP
k¼1

Dk ¼ 2
XP
k¼1

~EbkðIk þ Akl
2
kÞ: ð22Þ

Finally, substituting Eq. (22) into Eq. (3), the effective bending mod-

ulus for a laminate with 2P plies, Ê lam
b , is

Ê lam
b ¼ 2

t3
XP

k¼1
t3k þ 12tk

Xk

j¼1
tj � tk

2

� �2
 !

~Ebk ð23Þ

¼
PP

k¼1 N3
kk

3
k þ 12Nkkk

Pk
j¼1Njkj � Nkkk

2

� �2� �
~Ebk

4
PP

k¼1Nkkk
� �3 : ð24Þ

Similarly, the effective bending modulus for a laminate with 2P þ 1
plies is:

Ê lam
b ¼ 2

t3
XPþ1

k¼2

t3k þ 12tk
Xk
j¼1

tj � t1 þ tk
2

 !2
0
@

1
A~Ebk þ Êb1

t1
t

� �3

ð25Þ

¼
2
PPþ1

k¼2 N3
kk

3
k þ 12Nkkk

Pk
j¼1Njkj � N1þNkkk

2

� �2� �
~Ebk þ Êb1N

3
1

2
PPþ1

k¼2Nkkk þ N1

� �3 :

ð26Þ
In summary, we have used the effective bending modulus of an

individual ply with respect to its neutral axis, Êbk, and the effective
tensile modulus of each ply, �Ek, to calculate the effective bending
modulus of each ply with respect to the neutral axis of the laminate,
~Ebk. ~Ebk, is then used to calculate the bending stiffness of the lami-

nate, Dlam, and thus the effective bending modulus of the laminate,

Ê lam
b is obtained. Ê lam

b depends on the number of plies (2P or 2P þ 1)
in the laminate, the geometry and material mismatch ratios (ak;bk)
of the individual plies, the relative fibre spacing of each ply, kk, and
the number of fibres in each ply, Nk.

3. Application of method: Six ply (P ¼ 3) laminate of carbon and
glass fibre reinforced epoxy

To illustrate the application of the method, different configura-
tions of six-ply laminates, comprising carbon fibre-epoxy plies (c)
and glass fibre-epoxy plies (g), shown in Table 1, have been consid-
ered. Typical values for the material mismatch ratio, bc , and geom-
etry ratio, ac , are considered for the carbon-fibre epoxy plies:

bc ¼
Efc

Em
¼ 230 GPa

3 GPa
¼ 76:67; ð27Þ

ac ¼ rc
dc

¼ 5 lm
11:4 lm

¼ 0:44; ð28Þ

where Efc and Em are the elastic modulus of the carbon fibre and
epoxy matrix, respectively, and rc and dc are the fibre radius and
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fibre spacing, respectively. Similarly, a typical glass fibre epoxy ply
is characterised by bg and ag ,

bg ¼
Efg

Em
¼ 80 GPa

3 GPa
¼ 26:67; ð29Þ

ag ¼ rg
dg

¼ 20 lm
45:45 lm

¼ 0:44; ð30Þ

where Efg is the elastic modulus of the glass fibre. We consider the
case when the carbon and glass fibre plies have the same thickness
so tc ¼ tg and therefore Ncdc ¼ Ngdg (see Fig. 2(b)). Therefore,

Nc

Ng
¼ dg

dc
¼ 45:45

11:40
¼ 4: ð31Þ

Note that in Eq. (31) we have rounded to the nearest integer. To
examine the effect of laminate thickness on the bending stiffness,
two cases of, Nc ¼ 8;Ng ¼ 2 (Case 1) and Nc ¼ 16 and Ng ¼ 4 (Case
2) are considered. For Case 1, tc ¼ tg ¼ 90:9 lm; for Case 2,
tc ¼ tg ¼ 181:8 lm, as such the number of fibres per ply and ply
thickness doubles, while fibre radius and spacing remain fixed. To
obtain the bending modulus of the laminate, the first step is to cal-
culate the equivalent effective modulus, ~Ebk, for each ply. For the
first ply, the effective elastic modulus, ~Eb1, is:

~Eb1 ¼ Êb1N
2
1 þ 12�E1

N1
2

� �2
N2

1 þ 12 N1
2

� �2 ð32Þ

¼ Êb1 þ 3�E1

4
; ð33Þ

For subsequent plies,

~Eb2 ¼ Êb2N
2
2k

2
2 þ 12�E2

N2k2
2 þ N1

� �2
N2

2k
2
2 þ 12 N2k2

2 þ N1
� �2 ; ð34Þ

and

~Eb3 ¼ Êb3N
2
3k

2
3 þ 12�E3

N3k3
2 þ N2k2 þ N1

� �2
N2

3k
2
3 þ 12 N3k3

2 þ N2k2 þ N1
� �2 : ð35Þ

The bending stiffness per unit width of the laminate, Dlam=w, is then,

Dlam

w
¼ t3

6
4~Eb1 þ 13~Eb2 þ 49~Eb3

� �
: ð36Þ

Dlam=w for different configurations of glass and carbon fibre plies
can be calculated from Eq. (36) and the results for both cases are
shown in Table 1. The results show that, as expected, the highest
bending stiffness per unit width is for the all carbon laminate and
the lowest stiffness is the all glass laminate with other combina-
tions falling in between. It may also be noted that the thicker lam-
inate, as expected for a larger laminate, has the higher bending
stiffness. In the first case, a laminate with plies of thickness t and
in the second case, plies of 2t are studied (i.e. the numbers of fibres
are doubled for case 2). For a homogeneous ply (not heterogeneous
material) of thickness t, then by increasing the ply thickness to 2t,

the second moment of area (I ¼ bt3=12) for the second case is eight
times that of the first case. However, for the cases examined in
Table 1, the ratio of bending stiffness is not a fixed value (8), due
to the size effect in the calculation of ~Ebk. In other words, there is
a size effect by scaling the thickness of plies, though the effect is
small for this particular example. This example shows a somewhat
minor size effect due to ply scaling which is most pronounced in the
hybrid laminate (approximately 0.25%).
5

4. Comparison with results of Wheel et al. (2015)

4.1. Comparison of effective bending modulus

As discussed in Section 2, Wheel et al. (2015) did not examine
underlying ply microstructure and used the tensile modulus from
the rule of mixtures, �Ek, to represent the homogenised ply bending
modulus. For a laminate of the type shown in Fig. 2 with 2P plies,
the effective laminate bending modulus consistent with the Wheel

et al. (2015) approach, here designated �E lam
b , is obtained by replac-

ing ~Ebk in Eqs. (23) and (24), by �Ek to obtain,

�E lam
b ¼ 2

t3
XP
k¼1

t3k þ 12tk
Xk
j¼1

tj � tk
2

 !2
0
@

1
A�Ek ð37Þ

¼
PP

k¼1 N3
kk

3
k þ 12Nkkk

Pk
j¼1Njkj � Nkkk

2

� �2� �
�Ek

4
PP

k¼1Nkkk
� �3 : ð38Þ

Similarly for a laminate with 2P þ 1 plies,

�E lam
b ¼ 2

t3
XPþ1

k¼2

t3k þ 12tk � t1 þ tk
2

þ
Xk
j¼1

tj

 !2
0
@

1
A�Ek þ �E1

t1
t

� �3

ð39Þ

¼
2
PPþ1

k¼2 N3
kk

3
k þ 12Nkkk � N1þNkkk

2 þPk
j¼1Njkj

� �2� �
�Ek þ �E1N

3
1

2
PPþ1

k¼2Nkkk þ N1

� �3 :

ð40Þ

In order to quantify the difference between the two approaches, a
relative modulus variation, R, is defined as:

R ¼ Ê lam
b � �E lam

b
�E lam
b

: ð41Þ

The difference between the effective moduli Ê lam
b and �E lam

b is due to

the dependency of Ê lam
b on the number of fibres in each ply while

�E lam
b depends only on ply thickness. This is due to the fact that

Ê lam
b in Eqs. (23) and (24) depends on ~Ebk (which depends on Êbk)

while �E lam
b in Eqs. (37) and (38) depends only on �Ek. Thus ~Ebk has

an additional dependence on the number of fibres in each ply, while
�Ek in Eq. (11) depends only on ply thickness. In other words, lami-
nates with the same number of plies and the same ply thickness,
but with different numbers of fibres in each ply, can have a different

bending modulus, Êlam
b . Thus, R, defined in Eq. (41) quantifies the

effect of microstructure at the ply level (number of fibres) not cap-
tured by the Wheel et al. (2015) approach.

In order to show the difference between the two approaches,
two simple examples of a three ply (P ¼ 1) laminate, illustrated
in Fig. 3, have been considered. The plies have the same number
of fibres, N1 ¼ N2 ¼ N, the same geometry ratio, a1 ¼ a2 ¼ a, and
the same material mismatch ratio, b1 ¼ b2 ¼ b, but different fibre
spacing, k2 – 1. In Fig. 3, a ¼ 0:48 and four cases of b ¼ 0;0:2;2
and 20 have been considered. The dependence of R on N, for differ-
ent values of k2, is shown. Fig. 3(a) and (b) show that for b < 1;R is
positive and as b increases (approaches 1), the magnitude of R
decreases. From Fig. 3(c) and (d) it is noted that for b > 1;R is neg-
ative and as b increases, the magnitude of R increases. Fig. 3 shows
that for some ply configurations, j R j> 5%, indicating that the ply
microstructure significantly affects the bending stiffness of the
laminate.



Fig. 3. Modulus variation R for three-ply laminate for constant geometry ratio of a ¼ 0:48 as function of material mismatch ratio of b and number of fibres N in a ply for
different values of k2; (a) For b ¼ 0; (b) For b ¼ 0:2; (c) For b ¼ 2; (d) For b ¼ 20.
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4.2. Effect of fibre spacing ratio, k2, on modulus variation, R

Fig. 4 considers a three-ply laminate, where the thickness of the
second ply, t2, is varied. Again a1 ¼ a2 ¼ a ¼ 0:48. In this case we
consider b1 ¼ 50 (very stiff fibres) and b2 ¼ 0 (no reinforcement)
and the fibre spacing in the first ply, d1=t1 ¼ 0:5. Two cases of fibre
spacing ratio, k2 ¼ 0:1 and 10 are considered. By selecting a fixed
value of t2=t1 in Fig. 4, the ply thickness, t2, and volume fraction
ratio, v f , remain constant (as t1 and a are constants). Each curve
has a different value of k, which is related to fibre spacing, d, and
identical value of a (a ¼ r=d), resulting in each curve having a dif-
ferent r value. As thickness (t ¼ Nd) is constant and d is different
for both curves, they have different values of N. Thus for a fixed
value of t2=t1, while v f is the same for both curves, N; d and r are
different for each curve. As a result, for a fixed value of t2=t1 on

each curve, while �E lam
b is identical (from Eq. (40)), they have differ-

ent Ê lam
b values (from Eq. (25)) which cause to have different R

values.
6

The size effect is related to either ply thickness or internal ply
microstructure. In each curve of Fig. 4, the effect of normalised
thickness, t2=t1, on modulus variation, R, can be investigated. A
large R means a large size effect. We can consider t1 as fixed and
then increasing t2=t1 means increasing the thickness of ply 2. As
shown by increasing t2=t1;R decreases and reaches zero, i.e. the
size effect disappears. By comparing the value of R for a fixed value
of thickness, t2=t1, (the same thickness for t2, if t1 is fixed.) the
influence of internal ply microstructure on the size effect can be
explored. As shown in Fig. 4, R is higher for k2 ¼ 10 compared to
k2 ¼ 0:1 for the same thickness. Thus increasing fibre spacing,
while keeping the ply thickness constant, leads to a size effect.
However, from Eq. (26), two different values for effective bending

modulus, Ê lam
b , are obtained. It may be noted for the case

k ¼ 0:1;R � 0, which implies that, in this case, the effective bend-

ing modulus of the laminate is closely approximated by �E lam
b ,

through Eq. (40), while for k2 ¼ 10;R > 4% when t2=t1 < 10.



Fig. 4. Modulus variation R% for different second ply thickness t2 in a three-ply
laminate.
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4.3. Difference in nature of size effect for a laminate

In Wheel et al. (2015) Wheel et al. showed that the nature of the
size effect depends on the stiffness of the outer ply of a laminated
beam. In their study a laminate is considered to comprise multiple
repeating units of a three-ply ‘sub-laminate’. As the number of

repeating units increases, the bending modulus, �E lam
b , approaches

the effective tensile modulus calculated by the rule of mixtures,
�E lam. For a laminate with 2P þ 1 plies:

�E lam ¼ 2
t

XPþ1

k¼2

�Ektk þ �E1
t1
t
: ð42Þ

For a three-ply laminate (P ¼ 1), if �E2 > �E1 it is straightforward

to show that �E lam
b is greater than �E lam, which means that the rule of

mixtures underestimates the effective bending modulus, �Elam
b . This

implies a positive size effect, since by increasing the number of

sub-laminates the value of �Elam
b decreases and approaches �E lam.

Similarly, if �E2 < �E1 then �E lam
b < �E lam, resulting in a negative size

effect.
Accounting for the microstructure at the ply level can cause the

nature of the size effect to be different from that predicted by
Wheel et al. (2015). In Tables 2 and 3, we consider two cases. Fol-
lowing the approach of Wheel et al. (2015), Case 1 predicts a pos-

itive size effect, since �E2 > �E1 and �E lam
b > �E lam. Case 2 predicts no

size effect since �E2 ¼ �E1 and �E lam
b ¼ �E lam. However, for the particular

microstructures chosen in Table 2, both cases demonstrate a neg-

ative size effect, since Ê lam
b < �E lam for both cases. This demonstrates

that the microstructure at the ply level, can influence the nature as
well as the magnitude of the size effect of the laminate as con-
firmed by the result shown in Table 2. The terms
Table 2
Size effect in the laminate due to ply microstructure for N1 ¼ N2 ¼ 2.

case a1 b1 a2 b2 k2 Em �E1
MPa MPa

1 0.2 155 0.2 170 0.01 25 508
2 0.3 25 0.2 55 0.01 25 194

7

Err1 ¼ ð�E lam
b � �E lamÞ=�E lam and Err2 ¼ ðÊ lam

b � �E lamÞ=�E lam are intro-

duced to evaluate the relative difference of Ê lam
b and �E lam. As shown,

the absolute value of error is higher for the case of Err2 due to con-
sideration of internal ply microstructure. By increasing the number

of plies for both cases the bending modulus, Ê lam
b approaches �E lam,

demonstrating a negative size effect.
5. Equivalent composite laminate model for a generalized
continuum

As discussed previously (Nourmohammadi et al., 2020), the
size-dependent behaviour of a composite ply under bending can
be represented using a generalised continuum approach (micropo-
lar theory), in which the bending modulus is represented by two
terms, one independent of size and a second, size dependent term,
with an associated characteristic length. Based on the results pre-
sented here, by rewriting Eqs. (23)–(26), the bending modulus of a

multi-ply laminate, Ê lam
b , can be represented as,

Ê lam
b ¼ �E lam 1þ l̂

t

 !2
0
@

1
A; ð43Þ

with

l̂
t
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê lam
b

�E lam
� 1

s
: ð44Þ

Previously (Nourmohammadi et al., 2020), we showed that for a
single ply with N fibres, geometry ratio, a and material mismatch
ratio, b, then

l̂
t
¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa2ð3a2 � 1Þðb� 1Þ
pa2ðb� 1Þ þ 1

s
: ð45Þ

Due to the complexity of the expression for Ê lam
b it is not possible to

provide a general closed form expression for l̂ representing an arbi-
trary laminate. As an example, consider a three-ply laminate as

shown in Fig. 5. Here, the normalised characteristic length, l̂=t, as
a function of N1 and N2 is depicted. We have already showed

(Nourmohammadi et al., 2020) that for a singe ply l̂=t increases as
N decreases (see Eq. (45)). However,for a multi-ply laminate, having

thinner plies in a laminate does not necessarily mean that l̂=t
increases. For example, in Fig. 5, when N1 ¼ 2 as N2 decreases (ply

thickness decreases) l̂=t also decreases. Conversely, for N2 ¼ 2, as

N1 decreases l̂=t increases. Thus the nature of the size effect, as

quantified by l̂, depends on the ply microstructure.

According to Eq. (44), a characteristic length, l̂ can be defined

only if the ratio Ê lam
b =�E lam > 1. For a single-ply laminate, this

implies, using Eq. (45), that l̂ can be defined only for b > 1. For

the case of a multi-ply laminate the condition Ê lam
b =�E lam > 1 cannot

be easily simplified. As an example, for the case illustrated in Fig. 5

(P ¼ 1;N1 ¼ 2;N2 ¼ 2;a1 ¼ a2 ¼ 0:1; b1 ¼ 0:01; b2 ¼ 100), l̂ only
exists if k2 < 9.
�E2 �E lam
b Ê lam

b
�E lam Err1 Err2

MPa MPa MPa MPa % %

.8 555.9 511.5 411.2 509.7 0.3 -19.3

.6 194.6 194.6 165.5 194.6 0 -15



Table 3
Effect of increasing number of plies on the laminate examined in Table 2.

case number of plies Ê lam
b

�E lam Err%

1 3 411.2 509.7 �19.3
1 7 498.5 509.4 �2.1
1 11 505.5 509.3 �0.8
1 15 507.4 509.7 �0.4

2 3 165.5 194.6 15.0
2 7 191.3 194.6 1.7
2 11 193.4 194.6 0.6
2 15 194.0 194.6 0.3

Fig. 5. Normalised characteristic length for a symmetric three-ply laminate.
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6. Conclusions

In this work, the effective bending modulus of a fibre composite
laminate comprising unidirectional plies has been calculated. The
results show that the bending modulus of the laminate depends
on the number of plies, the number of fibres in each ply, the ply
geometry ratio, the ply material mismatch ratio, and the fibre spac-
ing ratio.

The results have been compared with those in Wheel et al.
(2015), which does not consider ply microstructure, but instead
considers each ply as being homogenous. In some cases significant
differences have been identified between the two approaches. As
an example, for a three-ply laminate with two fibres through the
thickness of each ply, the bending stiffness can differ by 10%.
Indeed the opposite trend with respect to laminate size has been
identified for certain combinations of ply properties (i.e. effective
bending modulus is predicted to decrease with increasing size in
Wheel et al. (2015) while it increases with increasing size using
the current approach).

The bending behaviour of a heterogeneous composite ply has
been modelled in Cauchy media in which there is just translational
degrees of freedom and the stress tensor is proportional to the
strain tensor. As analysing a heterogeneous model is computation-
ally expensive, an equivalent homogenised model using a gener-
alised continuum has been introduced. For this purpose,
micropolar theory has been used in which there are independent
rotational degrees of freedom in addition to translational ones. Fur-
thermore, there are micro-moments in addition to forces to equili-
brate the non-symmetrical part of shear stress. In micropolar
8

theory, the bending characteristic length, l̂, for a multi-ply laminate
has been provided which can be used to calculate the new material
constituents.

The effect of inter-ply microstructure on the bending behaviour
of a composite laminate is considered in our future work. For this
purpose, the fibres are shifted from their regular position by e in a
symmetric cross-section. Fibre arrangement in a composite ply will
affect its bending behaviour as the position of fibres will affect the
second moment of the area used in the Euler-Bernoulli beam
model.
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Appendix A. Derivation of effective bending modulus of a
laminate

This Appendix describes in more detail the method to deter-
mine the effective bending modulus of a laminate, which is sum-
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marised in the main text. In Fig. A.1 a material region within a ply k
is defined as the region containing a single fibre of radius r with its
surrounding matrix. The area of the material region is d� d where
d is the fibre spacing in the ply. The c-axis in Fig. A.1 is the neutral
axis of the material region; the a-axis, is the neutral axis of the ply
and the b-axis is the neutral axis of the laminate. The distance l in
Fig. A.1 is the distance from the a axis of ply k to the b-axis of the
laminate. The distance si is the distance of the c axis for material
region i from the a axis for the ply. For a ply with an even number
of fibres,

si ¼ ð2i� 1Þd=2; ðA:1Þ
with i ¼ 1 corresponding to the material region closest to the a axis
and i ¼ N=2 corresponding to the material region furthest from the
a axis. For a ply with an odd number of fibres,

si ¼ ði� 1Þd; ðA:2Þ
with i ¼ 1 corresponding to the material region closest to the a axis
and i ¼ ðN þ 1Þ=2 corresponding to the material region furthest
from the a axis.

A.1. Analysis for a single ply

To determine the total bending stiffness of the laminate, we first
determine the bending stiffness for a ply with respect to the neu-
tral axis of the laminate (the b axis) by considering the stiffness
contribution of each material region within the ply. The bending

stiffness, D̂, of a single ply with respect to the ply neutral axis
(the a-axis) is given by

D̂ ¼
XN
i¼1

EmI
i
ajm þ Ef I

i
ajf ; ðA:3Þ

where Em and Ef are the matrix and fibre modulus, respectively, Iiajm
and Iiajf are the second moment of area about the a-axis for the
matrix and the fibre regions, respectively, within material region
i. For the case of N even number of fibres in a ply by symmetry,

D̂ ¼ 2
XN

2

i¼1

EmI
i
ajm þ Ef I

i
ajf

� �
: ðA:4Þ

Using the parallel axis theorem and considering Eq. (A.1), Iiajm and

Iiajf are given by
Fig. A.1. Configuration of fibres in a composite ply w
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Iiajm ¼Icjm þ Ams2i ¼ Icjm þ Am
2i� 1

2

� �2

d2
; ðA:5Þ

Iiajf ¼Icjf þ Af s2i ¼ Icjf þ Af
2i� 1

2

� �2

d2
; ðA:6Þ

where Icjm and Icjf are the second moment of area for the matrix and
fibre regions, respectively, with respect to the neutral axis of each
material region (the c-axis) and Am and Af are the matrix and fibre
areas, respectively. Note that Icjm; Icjf ;Am and Af are independent of
the position of region i within the ply. For simplicity of notation
we do not include the subscript k in these equations, e.g d in Eq.
(A.5) refers to the spacing dk for a particular ply k, illustrated in
Fig. A.1.

The bending stiffness of the ply with respect to the laminate
neutral axis (b-axis) is given by

D ¼
XN
i¼1

EmI
i
bjm þ Ef I

i
bjf ; ðA:7Þ

where Iibjm and Iibjf are the second moment of area about the b-axis
for the matrix and the fibre regions, respectively, within material
region i. For material regions above the a-axis, the second moment

of area, Iibjm and Iibjf for the matrix and fibre, with respect to the b-
axis, again using the parallel axis theorem are:

Iibjm ¼Icjm þ Am
2i� 1

2

� �
dþ l

	 
2
ðA:8Þ

¼ Icjm þ Am
2i� 1

2

� �2

d2 þ l2 þ 2i� 1ð Þdl
" #

; ðA:9Þ

Iibjf ¼Icjf þ Af
2i� 1

2

� �
dþ l

	 
2
ðA:10Þ

¼ Icjf þ Af
2i� 1

2

� �2

d2 þ l2 þ 2i� 1ð Þdl
" #

: ðA:11Þ

By substituting Eq. (A.5) into (A.9) and Eq. (A.6) into (A.11), we
have:

Iibjm ¼Iiajm þ Am l2 þ 2i� 1ð Þdl
h i

; ðA:12Þ

Iibjf ¼Iiajf þ Af l2 þ 2i� 1ð Þdl
h i

: ðA:13Þ

For material regions below the a-axis, the second moment of area,

Iibjm and Iibjf for matrix and fibre regions are:
ith even (left) and odd (right) number of fibres.
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Iibjm ¼Icjm þ Am
2i� 1

2

� �
d� l

	 
2
ðA:14Þ

¼ Icjm þ Am
2i� 1

2

� �2

d2 þ l2 � 2i� 1ð Þdl
" #

; ðA:15Þ

Iibjf ¼Icjf þ Af
2i� 1

2

� �
d� l

	 
2
ðA:16Þ

¼ Icjf þ Af
2i� 1

2

� �2

d2 þ l2 � 2i� 1ð Þdl
" #

: ðA:17Þ

By substituting Eq. (A.5) into (A.15) and Eq. (A.6) into (A.17), we
have:

Iibjm ¼Iiajm þ Am l2 � 2i� 1ð Þdl
h i

; ðA:18Þ

Iibjf ¼Iiajf þ Af l2 � 2i� 1ð Þdl
h i

: ðA:19Þ

Then from Eq. (A.7), we have:

D¼
XN

2

i¼1

Em IiajmþAm l2þð2i�1Þdl
h i� �

þEm IiajmþAm l2�ð2i�1Þdl
h i� �

þ
XN

2

i¼1

Ef Iiajf þAf l2þð2i�1Þdl
h i� �

þEf Iiajf þAf l2�ð2i�1Þdl
h i� �

ðA:20Þ

¼ 2
XN

2

i¼1

Em Iiajm þ Aml
2

� �
þ 2

XN
2

i¼1

Ef Iiajf þ Af l
2

� �
ðA:21Þ

¼ 2
XN

2

i¼1

ðEmI
i
ajm þ Ef I

i
ajf Þ þ NðEmAm þ Ef Af Þl2: ðA:22Þ

We rewrite Eq. (A.22) in terms of �E, the effective tensile modulus of
the ply calculated by the rule of mixtures,

�E ¼ EmAm þ Ef Af

Am þ Af
; ðA:23Þ

)NðEmAm þ Ef Af Þ ¼ �EA; ðA:24Þ
where A is the total area of the ply. Substituting Eq. (A.24) in Eq.
(A.22) we get,

D ¼ 2
XN

2

i¼1

EmI
i
ajm þ Ef I

i
ajf

� �
þ �EAl2: ðA:25Þ

Using Eq. (A.4) we write,

D ¼ D̂þ �EAl2: ðA:26Þ
For N an odd number of fibres in a ply, illustrated in Fig. A.1, a

corresponding approach is followed. The bending rigidity, D̂ for a
ply with respect to the ply neutral axis, a-axis, is:

D̂ ¼ 2
XNþ1

2

i¼2

EmI
i
ajm þ Ef I

i
ajf

� �
þ EmIcjm þ Ef Icjf
� �

: ðA:27Þ

The second moment of area of material region i about the a-axis is
given by

Iiajm ¼Icjm þ Ams2i ¼ Icjm þ Amði� 1Þ2d2
; ðA:28Þ

Iiajf ¼Icjf þ Af s2i ¼ Icjf þ Af ði� 1Þ2d2
: ðA:29Þ

For a material region i above the a-axis, the second moment of area,

Iibjm and Iibjf for matrix and fibre regions are:
10
Iibjm ¼Icjm þ Am ði� 1Þdþ l½ �2 ðA:30Þ
¼ Icjm þ Am ði� 1Þ2d2 þ l2 þ 2ði� 1Þdl

h i
; ðA:31Þ

Iibjf ¼Icjf þ Af ði� 1Þdþ l½ �2 ðA:32Þ
¼ Icjf þ Af ði� 1Þ2d2 þ l2 þ 2ði� 1Þdl

h i
: ðA:33Þ

Substituting Eq. (A.28) in A.31 and Eq. (A.29) in A.33, we have:

Iibjm ¼Iiajm þ Am l2 þ 2ði� 1Þdl
h i

; ðA:34Þ

Iibjf ¼Iiajf þ Af l2 þ 2ði� 1Þdl
h i

: ðA:35Þ

For a material region i below the a-axis, the second moments of

area, Iibjm and Iibjf , for matrix and fibre regions are:

Iibjm ¼Icjm þ Am½ði� 1Þd� l�2 ðA:36Þ
¼ Icjm þ Am ði� 1Þ2d2 þ l2 � 2ði� 1Þdl

h i
: ðA:37Þ

Iibjf ¼Icjf þ Af ½ði� 1Þd� l�2 ðA:38Þ
¼ Icjf þ Af ði� 1Þ2d2 þ l2 � 2ði� 1Þdl

h i
: ðA:39Þ

By substituting Eq. (A.28) in (A.37) and Eq. (A.29) in (A.39), we have:

Iibjm ¼Iiajm þ Am l2 � 2ði� 1Þdl
h i

; ðA:40Þ

Iibjf ¼Iiajf þ Af l2 � 2ði� 1Þdl
h i

: ðA:41Þ

and for the central region (the region containing the a-axis in
Fig. A.1), designated as region 1:

I1bjm ¼I1ajm þ Aml
2 ¼ Icjm þ Aml

2
; ðA:42Þ

I1bjf ¼I1ajf þ Af l
2 ¼ Icjf þ Af l

2
: ðA:43Þ

Then, from Eq. (A.7), we have:

D¼
XNþ1

2

i¼2

Em IiajmþAm l2þð2i�1Þdl
h i� �

þEm IiajmþAm l2�ð2i�1Þdl
h i� �

þ
XNþ1

2

i¼2

Ef IiajfþAf l2þð2i�1Þdl
h i� �

þEf IiajfþAf l2�ð2i�1Þdl
h i� �

þEmðIcjmþAml
2ÞþEf ðIcjfþAf l

2Þ
ðA:44Þ

¼ 2
XNþ1

2

i¼2

Em Iiajm þ Aml
2

� �
þ 2

XNþ1
2

i¼2

Ef Iiajf þ Af l
2

� �
þEmðIcjm þ Aml

2Þ þ Ef ðIcjf þ Af l
2Þ

ðA:45Þ

¼ EmIcjm þ Ef Icjf þ 2
XNþ1

2

i¼2

ðEmI
i
ajm þ Ef I

i
ajf Þ þ NðEmAm þ Ef Af Þl2: ðA:46Þ

By substituting Eq. (A.24) in Eq. (A.46) we get:

D ¼ EmIcjm þ Ef Icjf þ 2
XNþ1

2

i¼2

EmI
i
ajm þ Ef I

i
ajf

� �
þ �EAl2; ðA:47Þ

Using Eq. (A.27) we write,

D ¼ D̂þ �EAl2: ðA:48Þ
It may be seen that the expression for D, the bending stiffness of the
ply about the laminate neutral axis is the same for an odd and even
number of fibres.
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For both cases, we write D̂ in terms of the bending modulus of

the ply with respect to the ply neutral axis, Êb, and the homoge-
nised second moment of area of the ply, I,

D̂ ¼ ÊbI; ðA:49Þ
where

I ¼ wt3

12
¼ wðNdÞ3

12
; ðA:50Þ

where w is the overall width of the ply. Then,

D ¼ ÊbI þ �EAl2: ðA:51Þ
The effective bending modulus ~Eb of the ply with respect to the neu-
tral axis of the laminate (the b-axis) is defined as

~Eb ¼ D

I þ Al2
ðA:52Þ

¼ ÊbI þ �EAl2

I þ Al2
ðA:53Þ

¼ ÊbN
2d2 þ 12�El2

N2d2 þ 12l2
: ðA:54Þ
A.2. Summing over multiple plies

In this section, the index k is re-introduced to represent ply k
within the multi-ply laminate. We calculate the effective bending

modulus of the laminate, Êlam
b , for an even number of plies, 2P.

The analysis is similar for an odd number of plies and is omitted
in the interests of space. The lever arm lk for ply k with respect
to the laminate neutral axis, the b-axis, is:

lk ¼ � tk
2
þ
Xk
j¼1

tj; ðA:55Þ

where tk is the ply thickness and k ¼ 1 corresponds to the ply clos-
est to the laminate neutral axis and k ¼ P corresponds to the ply
furthest from the neutral axis. As in the main text, the fibre spacing
ratio is defined,

kk ¼ dk=d1; ðA:56Þ
and then, from Fig. A.1,

tk ¼ Nkkkd1: ðA:57Þ
By substituting Eq. (A.57) into Eq. (A.55), we have:

lk ¼ �Nkkk
2

þ
Xk
j¼1

Njkj

 !
d1: ðA:58Þ

Writing Eq. (A.54) for each ply k and substituting for lk from Eq.
(A.58),

~Ebk ¼
ÊbkN

2
kk

2
k þ 12�Ek � Nkkk

2 þPk
j¼1Njkj

� �2
N2

kk
2
k þ 12 � Nkkk

2 þPk
j¼1Njkj

� �2 : ðA:59Þ

We define the effective bending modulus of the laminate, Ê lam
b , as:

Ê lam
b ¼ Dlam

Ilam
; ðA:60Þ

where Dlam is the bending stiffness of the laminate and Ilam is the
second moment of the homogenised laminate,

Ilam ¼ wt3

12
; ðA:61Þ
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where t is the laminate thickness,

t ¼ 2
XP
k¼1

tk: ðA:62Þ

Finally, to obtain Dlam, we sum over the bending stiffness of the
individual plies, Dk, in the laminate,

Dlam ¼ 2
XP
k¼1

Dk ¼ 2
XP
k¼1

~EbkðIk þ Akl
2
kÞ: ðA:63Þ

The bending modulus of the laminate, Ê lam
b , is then

Ê lam
b ¼2

PP
k¼1

~EbkðIk þ Akl
2
kÞ

I
ðA:64Þ

¼ 2
PP

k¼1ðt3k þ 12tkl
2
kÞ~Ebk

t3
: ðA:65Þ

By substituting Eq. (A.57) in Eq. (A.65), we can write in terms of the
number of fibres in each ply, Nk,

Ê lam
b ¼

2
PP

k¼1 N3
kk

3
k þ 12Nkkk � Nkkk

2 þPk
j¼1Njkj

� �2� �
~Ebk

2
PP

k¼1Nkkk
� �3 : ðA:66Þ

This equation thus provides an expression for the effective bending
modulus of a multiply laminate in terms of the constituent materi-
als and microstructural features, such as fibre radius and number of
fibres in each ply.
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Bažant, Z., Christensen, M., 1972. Analogy between micropolar continuum and grid
frameworks under initial stress. Int. J. Solids Struct. 8 (3), 327–346.

Beveridge, A., Wheel, M., Nash, D., 2013. The micropolar elastic behaviour of model
macroscopically heterogeneous materials. Int. J. Solids Struct. 50 (1), 246–255.
https://doi.org/10.1016/j.ijsolstr.2012.09.023.

Bigoni, D., Drugan, W., 2007. Analytical derivation of Cosserat moduli via
homogenization of heterogeneous elastic materials. J. Appl. Mech. 74 (4),
741–753.

Cosserat, E.M.P., 1970. Theory of deformable bodies. National Aeronautics and Space
Administration.

Eringen, A.C., 1972. Nonlocal polar elastic continua. Int. J. Eng. Sci. 10 (1), 1–16.
Keane, A., Mccarthy, C., O’Dowd, N., 2008. The Effect of Matrix Non-linearity on the

Properties of Unidirectional Composite Materials for Multi-Scale Analysis, vol.
88. doi:10.4203/ccp.88.312..

Lakes, R.S., 1983. Size effects and micromechanics of a porous solid. J. Mater. Sci. 18
(9), 2572–2580.

Lakes, R., 1995. Experimental methods for study of Cosserat elastic solids and other
generalized elastic continua. Continuum models for materials with
microstructure 70, 1–25.

Ma, H., Gao, X.-L., Reddy, J., 2011. A non-classical Mindlin plate model based on a
modified couple stress theory. Acta Mech. 220 (1), 217–235.

Nourmohammadi, N., O’Dowd, N.P., Weaver, P.M., 2020. Effective bending modulus
of thin ply fibre composites with uniform fibre spacing. Int. J. Solids Struct. 196–
197, 26–40. https://doi.org/10.1016/j.ijsolstr.2020.04.004. URL: http://
www.sciencedirect.com/science/article/pii/S0020768320301207.

Park, S.K., Gao, X.-L., 2006. Bernoulli-Euler beam model based on a modified couple
stress theory. J. Micromech. Microeng. 16 (11), 2355–2359. https://doi.org/
10.1088/0960-1317/16/11/015.

Wheel, M., Frame, J., Riches, P., 2015. Is smaller always stiffer? On size effects in
supposedly generalised continua. Int. J. Solids Struct. 67–68, 84–92. https://doi.
org/10.1016/j.ijsolstr.2015.03.026. URL: http://
www.sciencedirect.com/science/article/pii/S0020768315001419.

Yang, J., Lakes, R.S., 1982. Experimental study of micropolar and couple stress
elasticity in compact bone in bending. J. Biomech. 15 (2), 91–98.

Yang, F., Chong, A., Lam, D.C.C., Tong, P., 2002. Couple stress based strain gradient
theory for elasticity. Int. J. Solids Struct. 39 (10), 2731–2743.

http://refhub.elsevier.com/S0020-7683(21)00252-3/h0005
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0005
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0005
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0010
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0010
https://doi.org/10.1016/j.ijsolstr.2012.09.023
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0020
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0020
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0020
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0025
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0025
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0030
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0040
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0040
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0045
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0045
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0045
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0050
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0050
https://doi.org/10.1016/j.ijsolstr.2020.04.004
http://www.sciencedirect.com/science/article/pii/S0020768320301207
http://www.sciencedirect.com/science/article/pii/S0020768320301207
https://doi.org/10.1088/0960-1317/16/11/015
https://doi.org/10.1088/0960-1317/16/11/015
https://doi.org/10.1016/j.ijsolstr.2015.03.026
https://doi.org/10.1016/j.ijsolstr.2015.03.026
http://www.sciencedirect.com/science/article/pii/S0020768315001419
http://www.sciencedirect.com/science/article/pii/S0020768315001419
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0070
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0070
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0075
http://refhub.elsevier.com/S0020-7683(21)00252-3/h0075

	Size-dependent bending modulus of fibre composite laminates comprising unidirectional plies
	1 Introduction
	2 Formulation of effective bending modulus of a laminate
	3 Application of method: Six ply ([$]P=3[$]) laminate of carbon and glass fibre reinforced epoxy
	4 Comparison with results of Wheel et&blank;al. (2015)
	4.1 Comparison of effective bending modulus
	4.2 Effect of fibre spacing ratio, [$]{\lambda}_{2}[$], on modulus variation, R
	4.3 Difference in nature of size effect for a laminate

	5 Equivalent composite laminate model for a generalized continuum
	6 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Derivation of effective bending modulus of a laminate
	A.1 Analysis for a single ply
	A.2 Summing over multiple plies

	References


