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Abstract

The attenuation and dispersion of elastic waves in fluid-saturated rocks due to the viscosity of the pore fluid is inves-
tigated using an idealized exactly solvable example of a system of alternating solid and viscous fluid layers. Waves in peri-
odic layered systems at low frequencies are studied using an asymptotic analysis of Rytov’s exact dispersion equations.
Since the wavelength of shear waves in fluids (viscous skin depth) is much smaller than the wavelength of shear or com-
pressional waves in solids, the presence of viscous fluid layers necessitates the inclusion of higher terms in the long-wave-
length asymptotic expansion. This expansion allows for the derivation of explicit analytical expressions for the attenuation
and dispersion of shear waves, with the directions of propagation and of particle motion being in the bedding plane. The
attenuation (dispersion) is controlled by the parameter which represents the ratio of Biot’s characteristic frequency to the
viscoelastic characteristic frequency. If Biot’s characteristic frequency is small compared with the viscoelastic characteristic
frequency, the solution is identical to that derived from an anisotropic version of the Frenkel–Biot theory of poroelasticity.
In the opposite case when Biot’s characteristic frequency is greater than the viscoelastic characteristic frequency, the atten-
uation/dispersion is dominated by the classical viscoelastic absorption due to the shear stiffening effect of the viscous fluid
layers. The product of these two characteristic frequencies is equal to the squared resonant frequency of the layered system,
times a dimensionless proportionality constant of the order 1. This explains why the visco-elastic and poroelastic mecha-
nisms are usually treated separately in the context of macroscopic (effective medium) theories, as these theories imply that
frequency is small compared to the resonant (scattering) frequency of individual pores.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Phenomena associated with the viscosity of the pore fluid represent one of the main causes of the attenu-
ation and dispersion of elastic waves in reservoir rocks and other fluid-saturated porous materials. However,
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there is some uncertainty as to the relationship between the two viscosity-related mechanisms: viscoelastic
mechanism (viscous shear relaxation) and Frenkel–Biot poroelastic mechanism (Frenkel, 1944; Biot,
1956a,b, 1962).

In this paper we investigate the effect of these two mechanisms using an idealized exactly solvable example
of a system of periodically alternating fluid and solid layers. Although such a configuration is obviously unre-
alistic, it possesses a number of the key features of real porous materials. So far, most of the research on such a
periodic layered system has been focused either on ideal and low viscosity fluids and relatively high frequencies
(Schoenberg, 1984; Schoenberg and Sen, 1986; Molotkov and Bakulin, 1996), or on the low-frequency asymp-
totes (Gurevich, 1999, 2002). In this paper we present a new approach that enables an explicit analysis of solid/
viscous fluid layers in a broad range of frequencies and of fluid viscosities.

The properties of waves in periodic layered systems at low frequencies can be studied using a long-wave
asymptotic analysis of the known exact dispersion equations (Rytov, 1956; Brekhovskikh, 1981; Christensen,
1979). For the asymptotic analysis to be valid, the wavelengths of all waves must be greater than the spatial
period of the periodic system. Note that the wavelength of shear waves in the fluid (viscous skin depth) is much
smaller than the wavelength of shear waves in the solid, or of acoustic waves in the fluid. This means that the
presence of viscous fluid layers requires a careful evaluation of all terms in asymptotic expansions as functions
of frequency, layer thickness and fluid viscosity.

2. Long-wave dispersion equation

Fig. 1 shows a system of periodically alternating solid and fluid layers of period d. The elastic solid has den-
sity qs, bulk modulus Ks and shear modulus ls. The fluid is assumed Newtonian with density qf, bulk modulus
(inverse compressibility) Kf, and dynamic viscosity g. The solid and fluid layer thicknesses are hs and hf, respec-
tively, so that hs + hf = d.

We analyze the propagation of a shear wave in the x direction parallel to the layering, with the displace-
ment in the direction y normal to x but also parallel to the bedding (SH wave). For a given frequency x
the solution can be sought in the form of a plane wave uy = uy0 exp i(ax � xt). We seek to obtain the phase
velocity c = x/a as a function of x for long waves, i.e., for frequencies where ja(x)dj � 1. To do this, one can
utilize known results for solid layered systems, regarding the viscous fluid as another solid with a complex
shear modulus lf = �ixg. Propagation of an SH wave in a periodic system of solid layers denoted by s
and f is governed by Rytov’s exact dispersion equation (Rytov, 1956; Brekhovskikh, 1981):
p tan2 bshs

2
þ tan2 bfhf

2

� �
þ ð1þ p2Þ tan

bshs

2
tan

bfhf

2
¼ 0. ð1Þ
Here b2
s ¼ x2ð1=c2

s � 1=c2Þ, b2
s ¼ x2ð1=c2

s � 1=c2Þ, b2
f ¼ x2ð1=c2

f � 1=c2Þ, where cs = (ls/qs)
1/2, and cf = (lf/qf)

1/2

are shear velocities in the materials s and f, respectively, and p = lfbf/lsbs.
Fig. 1. Medium of alternating solid and viscous fluid layers.
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Our aim is to solve the dispersion Eq. (1) on a macroscale, that is for long waves. In this case the arguments
of the tangents in Eq. (1) are small, and the tangents can be replaced by their respective arguments. The result-
ing equation
p
bshs

2

� �2

þ bfhf

2

� �2
" #

þ ð1þ p2Þ bshs

2

bfhf

2
¼ 0 ð2Þ
can be solved analytically to give a simple averaging formula
c2 ¼ hsls þ hflf

hsqs þ hfqf

. ð3Þ
Assuming that layers of type f are composed of Newtonian fluid, we can write its shear modulus as lf = �ixg
this yields
c2 ¼ ð1� /Þls � ixg/
q

¼ c2
0 1� /

1� /
ixg
ls

� �
; ð4Þ
where / = hf/d is the volume fraction of the fluid layers (porosity), q = (1 � /)qs + /qf is the average density,
and
c0 ¼ lim
x!0

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� /Þls

q

s
ð5Þ
is the static shear velocity in the system. Due to the effect of viscosity, the velocity is now complex, implying
that attenuation will occur.

Eq. (4) is the result given in textbooks and is termed as the low-frequency, or long-wavelength approxima-
tion (see e.g., Brekhovskikh, 1981) with the obvious requirement that bshs and bfhf must be small. However,
the wavelength of the viscous wave in the fluid is much shorter than that of the shear wave in the solid. Thus,
the decrease of frequency x also increases the relative magnitude of the terms containing bf, and thus simple
replacement of tangents by their arguments is no longer possible. Furthermore, the replacement of tan(bfhf/2)
by bfhf/2 implies that thickness of the fluid layers is small compared with the viscous skin depth in the fluid
(wavelength of the viscous wave). This unnecessarily restricts the range of frequencies or fluid viscosities. To
avoid these restrictions, it is necessary to carefully evaluate all the terms in asymptotic expansions as functions
of frequency, layer thickness, and fluid viscosity. Therefore, we define two characteristic frequencies: the
viscoelastic characteristic frequency
xV ¼
ls

g
; ð6Þ
which is the frequency at which the absolute value of the complex shear modulus of the viscous fluid equals the
solid shear modulus. In turn,
xB ¼
g

qfh
2
f

; ð7Þ
defines a so-called Biot’s characteristic frequency, at which the wavelength of the viscous wave (viscous skin
depth in the fluid) equals the thickness of the fluid layers hf. By introducing the permeability of the system of
parallel slits (Biot, 1956a,b; Bedford, 1986):
j ¼ /h2
f

12
; ð8Þ
xB can be also written as
xB ¼
g/

12qfj
. ð9Þ
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The expressions for the two characteristic frequencies may be multiplied to give
xVxB ¼
ls

h2
f qf

¼ Ax2
r ; ð10Þ
where A = q/4p2/2(1 � /)qf is a dimensionless parameter of order 1 depending only on the porosity and the
ratio of solid-to-fluid densities, while xr is the fundamental frequency of the layered periodic system,
xr ¼
2pc0

d
; ð11Þ
at which the wavelength of the shear wave equals the period d of the system.
The three characteristic frequencies xV, xr and xB lead to the introduction of three dimensionless

frequencies:
XV ¼ x=xV ¼ xg=ls; ð12Þ
Xr ¼ x=xr ¼ xd=2pc0; ð13Þ
and
XB ¼ x=xB ¼ xh2
f qf=g. ð14Þ
Note that for our long-wave analysis, Xr is small since the period d is small compared with the wavelength
k = 2pc0/x. Furthermore, Newtonian fluid model can only be valid if ixg� Kf (Landau and Lifshitz,
1987). Assuming that Kf is of the same order as the shear modulus ls of the solid layers, we can conclude that
XV = xg/ls must also be small. Seeking a solution to the dispersion Eq. (1) as a Taylor series in XV and Xr, we
obtain the following expression for the complex velocity of the shear waves propagating parallel to the layer-
ing (Appendix A)
1

c2
¼ qsð1� /Þ þ qf/L�1 tan L

lsð1� /Þ 1þ iKXV
/

1� /

� �
; ð15Þ
or
1

c2
¼ 1

c2
0

1þ /qf

q
tan L

L
� 1

� �� �
1þ i

/
1� /

KXV

� �
. ð16Þ
where
L ¼ 1

2
ðiXBÞ1=2 ¼ hf

2

ixqf

g

� �1=2

ð17Þ
and
K ¼ 1þ L�1 tan Lþ tan2 L
2

. ð18Þ
Eq. (15) is the central result of this paper. It expresses the long-wave velocity
v ¼ ðRe c�1Þ�1 ð19Þ

and attenuation
Q�1 ¼ Im c�2

Re c�2
ð20Þ
of the shear wave propagating parallel to the layering, as a function of the frequency x. This frequency depen-
dence is controlled by two physical mechanisms associated with two characteristic frequencies xV and xB. The
long-wave approximation means Eq. (15) is valid for frequencies both below the fundamental frequency,
x� xr, and the characteristic viscoelastic frequency, x� xV. As mentioned earlier, this last condition must
be satisfied for the fluid to be considered Newtonian.
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3. Asymptotic analysis

To analyze the dispersion Eq. (15), we define a fundamental parameter of the layered solid/fluid system
B ¼ xB

xV

¼ g2/
12lsjqf

. ð21Þ
This parameter shows which of the two viscosity-related dissipation mechanisms dominates at frequencies
x� xr, when the macroscopic description is realistic. We emphasize that the parameter B does not depend
on the frequency, but only on the physical and geometrical properties of the layered system (or a porous rock).
For a permeability of 1 darcy and a viscosity of that of water, the parameter B is about 10�8. However, this
may be much larger for more viscous fluids (heavy oil, bitumen) and/or lower permeabilities.

Note that L! 0, tanL! 0, L�1tanL � 1 + L2/3 for low frequencies, x� xB, and L�1! 0, tanL! i,L�1

tanL! 0 at higher frequencies x� xB.

3.1. Poroelastic case

For high-permeability reservoir rocks and soils, B� 1,
xB <
ffiffiffi
A
p

xr < xV ð22Þ
so that XV is negligible compared to XB. Thus, Eq. (15) reduces to
1

c2
¼ qsð1� /Þ þ qf/L�1 tan L

lsð1� /Þ . ð23Þ
Eq. (23) can be rewritten in the form
1

c2
¼ 1

l
q� q2

f /
2

~q12ðxÞ

� �
. ð24Þ
In Eq. (24)
l ¼ lsð1� /Þ ¼ qc2
0 ð25Þ
is the static shear modulus of the system, and ~q12 is the generalized virtual mass coefficient of the porous med-
ium, which, for a system of plane slits, is given by Bedford (1986). In our notation ~q12 can be written in the
form
~q12ðxÞ ¼ /qfð1� L�1 tan LÞ�1. ð26Þ

Eq. (24) is identical to the dispersion equation for shear waves in a saturated porous medium with the vir-

tual mass (26) and frame shear modulus (25), as obtained from the theory of poroelasticity (see e.g., Berryman,
1985). Thus, when viscoelastic effects are negligible, XV! 0, the shear wave attenuation and dispersion as
described by Eq. (15) are identical to the attenuation and dispersion predicted by the theory of poroelasticity.

In particular, the attenuation 1/Q corresponding to the dispersion Eq. (23) is
Q�1 ¼ qf/
lsð1� /Þ ImðL�1 tan LÞ ð27Þ
Note that the characteristic frequency of this attenuation mechanism is controlled by the frequency depen-
dence of ~q12, and equals xB.

In the theory of poroelasticity the viscoelastic phenomenon is ignored as the fluid shear stress is neglected in
the microscopic (pore-scale) constitutive equations. Pride et al. (1992) analyzed the effect of this approxima-
tion and showed that it requires the parameter XV = xg/ls to be small. Indeed, if XV is very small, the visco-
elastic attenuation is also very small (Eq. (16)). However, if at the same time the parameter XB is even smaller
than XV, i.e., XB < XV� 1, the poroelastic effects on attenuation would be even less pronounced than the vis-
coelastic ones. The condition on which the viscoelastic attenuation can be neglected relative to the poroelastic
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attenuation is B = XV/XB� 1. And, most importantly, this condition involves parameters pertaining to the
medium only, and is independent of the frequency. If this condition holds for a particular medium, poroelas-
ticity theory would apply for all frequencies below the resonant frequency of the individual pores. This is con-
sistent with the observations of Bedford (1986), who compared numerically the solutions of the exact
dispersion equation for a layered solid/fluid system (with very small parameter B) with the prediction of Fren-
kel–Biot theory of poroelasticity, and found an excellent agreement in a wide frequency range. This is not sur-
prising. Schoenberg and Sen (1986) and Molotkov and Bakulin (1996) showed analytically that in the case of
low viscosity XV� XB and small viscous skin depth XB� 1, the exact constitutive equations for a solid/fluid
layered medium represent a partial case of anisotropic equations of poroelasticity.

3.2. Viscoelastic case

For low-permeability reservoir rocks and soils, such as clays, and for porous rocks saturated with very vis-
cous fluids, such as bitumen, B� 1, and
xV <
ffiffiffi
A
p

xr < xB ð28Þ

so that at frequencies below xr the ratio XB is negligible compared to XV. Then Eq. (15) reduces to
1

c2
¼ q

lsð1� /Þ 1þ iXV

/
ð1� /Þ

� �
. ð29Þ
Eq. (29) is equivalent to the classical viscoelastic solution (4) with attenuation given by
Q�1 ¼ XV

/
1� /

¼ xg/
lsð1� /Þ . ð30Þ
3.3. Low frequencies

Suppose that both characteristic frequencies xB and xV are large and are comparable to each other. Then,
taking in Eq. (15) the limit of low frequencies, we obtain
1

c2
¼ q

lsð1� /Þ 1þ iXV

/
1� /

þ iXB

/qf

12q

� �
. ð31Þ
This equation extends the viscoelastic result (29) to low but non-zero XB, and is equivalent to the low-fre-
quency asymptotic analysis of Gurevich (1999). In particular, it shows that, at low frequencies, the viscoelastic
and poroelastic attenuation effects are additive,
Q�1 ¼ XV

/
1� /

þ XB

/qf

12q
¼ xg/

lsð1� /Þ þ
xq2

f j
qg

. ð32Þ
3.4. Static limit

In the limit of zero frequency (x = XV = XB = 0), Eq. (15) gives
c2
0 ¼
ð1� /Þls

q
; ð33Þ
which is the same as the static result (4).

3.5. General case

Finally, suppose that the parameter B is of order 1. This is an intermediate situation, when all three fre-
quencies xB, xr and xV are of the same order of magnitude. The parameter xr is primarily controlled by
the dominant grain size of the rock, and thus is very high (1 MHz for grains smaller than 1 mm size). As
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the poroelastic and viscoelastic effects are controlled by the ratios x/xB, x/xV, it is clear that at typical seismic
exploration frequencies both effects are negligible. These effects may become important, however, at the ultra-
sonic frequencies used in sonic logs and laboratory experiments. In these cases the contributions of the visco-
elastic and poroelastic effects are comparable, and the general relation (15) which accommodates both, should
be used. However, as noted before, due to the limitations of the Newtonian fluid model, xV� 1, and thus
xB� 1 as well. Therefore, K as given by Eq. (17) can be replaced by its low-frequency value,
Fig. 2.
(15)), t
circles
K ¼ 1; ð34Þ

and Eq. (15) reduces to
1

c2
¼ qsð1� /Þ þ qf/L�1 tan L

lsð1� /Þ 1þ iXV

/
1� /

� �
. ð35Þ
Moreover, the simplified Eq. (35) is valid for any relation between the characteristic frequencies (that is, for
any value of B). Indeed, it has just been shown to be valid for B � 1. For B� 1, K = 1 and Eqs. (15) and (35)
both reduce to the same asymptotic result (29). For B� 1 the dimensionless viscoelastic frequency XV is neg-
ligible, and thus the term containing K has no effect on the velocity or attenuation, which are given by Eq. (23).
Therefore, Eq. (35) can be considered as a simplified version of Eq. (15) for any B and for any frequencies for
which the model considered in this paper is valid.

The interplay between poroelastic and viscoelastic attenuation for different values of parameter B is shown
in Figs. 2–4, where inverse quality factor is a function of normalized frequency Xr = x/xr. Because of this nor-
malization, zero on the horizontal axis corresponds to Xr = 1, or x = xr . The solid line correspond to the full
solution, as derived from Eq. (15) or (35), the dashed line to the prediction of Frenkel–Biot theory, Eq. (24),
and the dash-dotted line to the pure viscoelastic solution, Eq. (29). For comparison, the circles in these plots
show the direct numerical solution of the exact Rytov’s dispersion Eq. (1). In Fig. 2 we show the deviation of
the derived approximation from the exact numerical solution of Rytov’s equation. This appears at frequencies
higher then xr, which validates the assumption of derived Eq. (15). Thus, we conclude that our approximate
solution is valid at all frequencies much smaller than xr and xV. At low values of B attenuation is dominated
by the poroelastic mechanism (Figs. 2 and 3), with viscoelastic attenuation beginning to build up at frequen-
cies close to xV. However, at larger values of B (Fig. 4) the viscoelastic attenuation dominates.
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Fig. 3. The same as Fig. 2 for B = 10�3. The difference between poroelastic and viscoelastic solutions decreases.
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Fig. 4. The same as Fig. 2 for B = 102. The viscoelastic solution coincides with the full solution and dominates over the poroelastic one.
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4. Discussion and conclusions

The shear wave attenuation and dispersion studied in this paper are controlled by three dimensionless fre-
quencies XV, Xr and XB. Asymptotic dispersion equations for both compressional and shear wave at low
frequencies XV� 1, and XB� 1 are given in (Gurevich, 2002). The present paper extends these results
for the shear waves to arbitrary values of XB. Apart from the macroscopic assumption x� xr, the only lim-
itation is that the viscoelastic attenuation is small, XV = xg/l0� 1, but this is not restrictive since this con-
dition must be satisfied for the fluid to be considered Newtonian (Landau and Lifshitz, 1987). Although an
assumption of a Newtonian pore fluid is quite common for porous media, it does impose a limitation on the
type of fluid, especially if a large frequency range is considered (Bird et al., 1987). Non-Newtonian fluid
effects can be incorporated using the approach of Tsiklauri and Beresnev (2003). Note also that the original
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dispersion Eq. (1) was derived for a stack of solid layers with no-slip condition on interfaces between the
layers. This condition is thus also implied when one of the solids is replaced by a Newtonian fluid. Although
recent experiments show that slip may occur on a boundary between a real fluid and solid, indications are
that this is a nonlinear effect which may only become significant at finite displacement amplitudes (Craig
et al., 2001).

The highly idealized model of a periodic system of flat parallel layers considered in this paper embeds two
mechanisms of attenuation. Which of the two mechanisms, viscoelastic or poroelastic, is dominant for a
given material depends on the parameter B, which is independent of frequency. In other words, if for a cer-
tain material at a given frequency poroelastic or viscoelastic effects are dominant, the same effects would be
dominant at all frequencies below the resonant frequency of the individual pores. This is in contrast with a
common perception that, for given material, poroelastic and viscoelastic effects may dominate at different
frequencies.

The fact that the dominant mechanism of attenuation is controlled by the frequency independent parameter
B has been demonstrated in the present paper for an idealized porous medium consisting of solid and fluid
layers. For a general three-dimensional periodic porous medium with a single characteristic pore size, this fact
was proved mathematically by Boutin and Auriault (1990). Their approach is based on the theory of asymp-
totic homogenization of periodic structures, the theory which explicitly uses the ratio x/xr as a small param-
eter (Levy, 1979; Auriault, 1980; Burridge and Keller, 1981). It should be emphasised, however, that real
porous materials usually have a wide range of pore sizes, and therefore for real media the scaling behaviour
of the type derived here may at best serve as zero-order approximation.

Explicit expressions for the frequency dependence of the velocity and attenuation of shear waves in a peri-
odic system of flat solid and viscous fluid layers have been derived by solving the exact Rytov’s dispersion
equation in the long-wavelength approximation. Dispersion and attenuation are related to the well known
mechanisms of wave attenuation in porous media: viscoelastic mechanism (viscous shear relaxation) and poro-
elastic visco-inertial mechanism. This is the first time the expressions describing the effects of these two mech-
anisms in a broad frequency range have been derived from the same standpoint. The asymptotic expressions
for various limiting cases coincide well with the results of previous studies. The validity of the derived approx-
imate dispersion equation has been demonstrated by comparison with the numerical solution of the exact
Rytov’s dispersion equation.

The procedure described above can also be applied to longitudinal waves propagating in the direction of
layering. This will be the subject of a future paper.
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Appendix A. Derivation of the long-wave dispersion equation

For long waves bshs is always small, and Eq. (1) reduces to
p
bshs

2

� �2

þ tan2 bfhf

2

" #
þ ð1þ p2Þ bshs

2
tan

bfhf

2
¼ 0; ð36Þ
where
bshs ¼ xhs
1

c2
s

� 1

c2

� �1=2

; ð37Þ

bfhf ¼ xhf
1

c2
f

� 1

c2

� �1=2

; ð38Þ
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and
p ¼ lfbf

lsbs

. ð39Þ
Eq. (36) must be solved for the phase velocity c, which must be close to its static value c0 (small attenuation
and dispersion), and always enters Eq. (36) in the form 1/c2. Therefore, it is convenient to make a substitution
1

c2
¼ a

1

c2
0

; ð40Þ
where a = O(1) is dimensionless quadratic slowness to be determined.
To find the asymptotic solution of Eq. (36), it is necessary to represent each of its terms in the non-dimen-

sional form. Using definitions (12) and (13), Eqs. (37) and (38) may be written in the form
bshs ¼ 2pXrð1� /Þ ð1� /Þqs

q
� a

� �1=2

; ð41Þ

bf hf ¼ 2pXr/ i
ð1� /Þqf

q
X�1

V � a

� �1=2

; ð42Þ
and
p ¼ �iXV
bf

bs

. ð43Þ
With the definitions (40)–(43) Eq. (36) becomes non-dimensional. This equation has to be solved for
XV� 1 and Xr� 1 while allowing for arbitrary value of XB, so that
XB ¼ Oð1Þ. ð44Þ

Taking into account Eq. (10), the condition (44) can be written in the form
XV ¼ OðX2
r Þ; ð45Þ
or
XV ¼ cX2
r ; ð46Þ
where c is a proportionality constant. Substitution of Eq. (46) into Eqs. (42) and (43) yields
bf hf ¼ 2p/ i
ð1� /Þqf

cq
� X2

r a

� �1=2

; ð47Þ
and
p ¼ �icX2
r

bf

bs

. ð48Þ
Substitution of Eqs. (41), (47) and (48) into Eq. (36) results in an equation for unknown a with a single
small parameter Xr. Seeking its solution in the form of a power series in Xr,
a ¼ a0 þ a1X
2
r þ � � � ; ð49Þ
yields the following result
a ¼ qsð1� /Þ þ qf/L�1 tan L
q

1þ icX2
r

/
2ð1� /Þ ð1þ L�1 tan Lþ tan2 LÞ

� �
. ð50Þ
Substituting this result back into (40) and taking into account Eq. (46), one obtains Eq. (15).
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