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Abstract

In this paper, finite element method based micromechanical analysis is used to understand the fracture behavior of func-
tionally graded foams. The finite element analysis uses a micro-mechanical model in conjunction with a macro-mechanical
model in order to relate the stress intensity factor to the stresses in the struts of the foam. The stress intensity factor at the
crack tip of the macro-mechanical model can be evaluated using either the J-contour integral or the stresses in the singu-
larity-dominated zone. The fracture toughness is evaluated for various crack positions and length within the functionally
graded foam. Then the relationship between the fracture toughness of the graded foam and the local density at the crack
tip is studied. Convergence tests for both macro-mechanical and micro-mechanical model analysis were conducted in order
to maintain adequate accuracy with reasonable computational time. Fracture toughness of homogenous foams and func-
tionally graded foams for various cases are presented as a function of relative density. This study indicates that the fracture
toughness of functionally graded foams mainly depends on the relative density at the crack-tip.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The microstructure of cellular solids such as metallic and carbon foams can be tailored to obtain optimum
performance for use in multi-functional structures. Such multi-functional structures can be used in integral
load-carrying thermal protection systems for hypersonic vehicles due to their low thermal conductivity,
increased strength and stiffness. An excellent treatise on structure and properties of cellular solids can be found
in Gibson and Ashby (1998). They have presented approximate formulas for Mode I fracture toughness of
cellular solids as a function of relative density and the strength of the strut or cell wall material. Choi and San-
kar (2003, 2005) found that the Mode I and II fracture toughness of cellular solids strongly depend on the
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relative-density; however the cell spacing and strut dimensions also have an effect on the fracture toughness.
Although significant work has been done in modeling homogeneous cellular materials, models for functionally
graded foams or graded cellular materials, especially for strength and fracture toughness, are at their infancy,
and it will be the main focus of this paper. Functionally graded foams can be made by controlling the size of
the voids in the porous medium. The density can be varied either by changing the unit-cell dimensions or strut
cross-section or both. Graded foams can also be manufactured by dispersing hollow micro-balloons of varying
sizes in a matrix medium (Madhusudhana et al., 2004). In this paper, both cases—varying wall thickness and
varying unit-cell dimensions—are considered independently using a finite element based micro-mechanical
analysis. The finite element analysis uses a micro-mechanical model in conjunction with a macro-mechanical,
or simply macro-model, in order to relate the stress intensity factor to the stresses in the struts of the foam.
The stress intensity factor of the macro-model at the crack tip is evaluated using the J-contour integral. The
fracture toughness is evaluated for various crack positions and crack lengths within the functionally graded
foam. Then the relationship between the fracture toughness of the functionally graded foam and the local den-
sity at the crack tip is studied. In addition, convergence tests for both macro- and micro-models were conduct-
ed. The results will help in understanding the fracture behavior of functionally graded foams.
2. Overview of the procedures

The method of determining the fracture toughness of the graded foam described in this paper is similar to
that discussed by Choi and Sankar (2003, 2005) for homogeneous foams. In the present case, the cellular mate-
rial is inhomogeneous in the macro-scale. That is, the microstructure is graded and the foam is treated as a
functionally graded material in macro-scale. The foam can be modeled either as an inhomogeneous continu-
um, or as a frame consisting of beam elements to model the struts. The former model (continuum model) will
be referred to as the macro-model and the latter (frame model) as the micro-model. In the finite element anal-
ysis solid element are used in the macro-model and beam elements in the micro-model.

We create the crack in the foam by removing a set of struts along the intended crack surface. We consider a
portion of the foam surrounding the crack tip for the micro-model (see Fig. 1). The dimensions of the micro-
model should be much larger than the cell size (strut spacing) so that it can be considered as a continuum.
Then we apply displacements to the boundary nodes of the micro-model such that a known stress intensity
factor (SIF) exists at the crack tip. The maximum stresses in the struts in the vicinity of the crack tip are cal-
culated from the FE micro-model. From the failure criterion for the strut material, one can calculate the max-
imum stress intensity factor that will cause the failure of the crack tip struts, and thus causing crack
propagation in a macro-scale sense. The key thing in this approach is to be able to calculate the SIF for a given
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Fig. 1. (a) Macro-model consists of plane 8-node solid elements. The region in the middle with grids indicates the portion used in the
micro-model. (b) The micro-model consists of frame elements to model the individual struts. The displacements from the macro-model are
applied as boundary conditions in the micro-model.
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boundary displacements or apply a set of boundary conditions that corresponds to a given stress intensity fac-
tor in the macro-scale sense.

For this purpose we turn to the macro-model as shown in Fig. 1. In the macro-model a much larger size of the
foam is modeled using continuum elements, in the present case, plane solid elements. The micro-model is basi-
cally embedded into the macro-model. The foam is subjected to an arbitrary boundary condition to produce a
given mode-mixity at the crack tip. In this paper, we consider only Mode I symmetric loading (mode-mixity = 0).
The stress intensity factor at the crack tip is calculated either from the crack-tip stress field or the J-integral. The
displacements of points along the boundary of the micro-model are obtained from the FE analysis of the macro-
model and applied to the boundary of the micro-model as explained in the preceding paragraph.

It should be noted that the aforementioned macro-model was not necessary in the case of homogeneous
foams (Choi and Sankar, 2003). Closed-form expressions for crack-tip displacement field are available for
orthotropic materials (Sih and Liebowbitz, 1968), and hence the displacement boundary conditions for the
micro-model for a given SIF are easily obtained.
3. Estimation of continuum properties

The macro-model of the graded foam requires continuum properties at each point or at least for each ele-
ment in the finite element model. In the following, we briefly describe the procedures to calculate the contin-
uum properties of a homogeneous cellular medium and then extend the idea to graded foams.
3.1. Homogeneous foam

Most of the open-cell foams can be considered as orthotropic materials. Choi and Sankar (2005) derived the
elastic constants of homogeneous foams in terms of the strut material properties and unit-cell dimensions. In
their model they assumed that the strut has a square cross-section and the unit-cell is a cube. In the present
approach we would like to consider a general case wherein the unit-cell is a rectangular parallelepiped of
dimensions c1 · c2 · c3. The derivation of formulas for the density and Young’s modulus are straightforward
and they are as follows:
q�

qs

¼ðc1 þ c2 þ c3Þh2 � 2h3

c1c2c3

ð1Þ

E�1 ¼
h2

c2c3

� �
Es; E�2 ¼

h2

c1c3

� �
Es; E�3 ¼

h2

c1c2

� �
Es ð2Þ
where a superscript * denotes the foam properties and a subscript s denotes the solid properties or the strut
properties.

The derivation of shear modulus is slightly involved and it is described below. We show the derivation of
the shear modulus G�12 from the unit-cell dimensions, strut cross-sectional dimensions and the strut Young’s
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Fig. 2. Flexural deformation of struts under shear stresses.
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modulus. When a shear stress is applied, struts are deformed as shown in Fig. 2. Bending moment becomes
zero at the middle of struts because the curvatures are zero due to symmetry. The struts are assumed as a beam
fixed at the end with a concentrated force at the middle at a distance c1

2
and c2

2
, respectively from the fixed end as

shown in Fig. 2. The maximum displacement can be written as,
d1 ¼
PL3

3EI
¼

F 2
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� �3

3EsI
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F 1
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ð3Þ

where I ¼ bh3

12
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The applied shear stress can be written as s�12 ¼ F 1

c1c3
¼ F 2

c2c3
. Using the relations, F 1

c1
¼ F 2

c2
, the maximum displace-

ments (Eq. (3)) can be rewritten as
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The shear strain c12 can be derived as
c12 ¼
2d2

c2

þ 2d1

c1

¼ 2c1d2 þ 2c2d1

c1c2

ð5Þ
Using Eq. (4), the shear strain can be written as,
c12 ¼
ðc1c3 þ c2

1ÞF 3

12EsI
ð6Þ
The shear modulus G�12 can be derived as
G�12 ¼
s�12
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Substituting for I we obtain
G�12 ¼
h4

c1c2c3ðc1 þ c2Þ

� �
Es ð8Þ
The shear modulus in the other two planes can be obtained by cyclic permutation as
G�23 ¼
h4

c1c2c3ðc2 þ c3Þ

� �
Es

G�31 ¼
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c1c2c3ðc1 þ c3Þ

� �
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3.2. Graded foam

The properties of a graded foam can be represented by a function of the coordinate variables x, y and z. The
actual functional form depends on the application and also the type of information sought from the homog-
enized model of the foam. In this study, we will assume that the functions will be such that the properties cal-
culated at the center of a cell will correspond to the properties of the homogeneous foam with that cell as its
unit cell. Thus the function is actually defined only at the centers of the cells of the graded foam. Then, we will
fit an equation through these points to obtain the continuous variation of properties required in the contin-
uum model. This approach will be verified by solving some problems wherein the graded foam is subjected to
some simple loading conditions and comparing the results from the macro- and micro-models.

In this study, the strut properties are taken as that of carbon foam studied earlier (Choi and Sankar, 2003),
and they are listed in Table 1.



Table 1
Properties of strut material

Density, qs 1750 kg/m3

Elastic modulus, Es 207 GPa
Poisson’s ratio, ms 0.17
Ultimate tensile strength, ru 3600 MPa
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The relative density of functionally graded foams (FGF) depends on both the dimensions of the unit-cell
and the strut thickness. Therefore, three different cases can be considered. The first case is the one where
the dimensions of the unit-cell remain constant while the strut thickness varies along the x-axis. In the second
case the strut thickness is kept constant with varying cell length. The last case is varying both of them. In this
paper, the first two cases are studied independently. Furthermore, the material properties of functionally grad-
ed foam can be either increasing or decreasing along the x-axis. Therefore, the fracture properties of both
increasing and decreasing cases are studied and compared to the homogenous case.

For the case where the strut dimensions vary, the thickness of the square strut is assumed to vary as
hðxÞ ¼ h0 þ ax ð10Þ

where a is a parameter that determines the degree of gradation of the properties. Then the properties such as
density and elastic constants of the graded foam can be assumed to vary as given by the equations for homo-
geneous foams, but changing the constant h by the function h(x). For example, the density variation of the
foam follows from Eq. (1) and can be written as
q�

qs

¼ 3
hðxÞ

c

� �2

� 2
hðxÞ

c

� �3

ð11Þ
where the unit-cell is assumed as a cube of dimension c. Similar equations can be derived for Young’s modulus
and shear modulus as
E� ¼ hðxÞ
c
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Es
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Similarly we can consider the case where h, c2 and c3 are constants, but c1 varies as
ciþ1
1 ¼ ci

1 þ b ð13Þ

where i denotes the cell number and b is the increment in the cell length in the x direction. Again the properties
of the foam will be calculated at the center of each cell using the equations for homogeneous foams as given in
Eqs. (2)–(9) (see Fig. 3).

In order to verify the validity of the functional form of elastic constants that are used in the present study, a
simple mechanics problem was solved using both macro- and micro-models. A rectangular solid made of the
inhomogeneous foam was considered as shown in Fig. 1 (a). A uniform extension (70 lm) was applied along
the upper edge of macro-model, which consists of two dimensional plane stress elements (eight nodes bi-qua-
dratic, reduced integration element). The elastic constants of the inhomogeneous material varied as given by
Eq. (12). In the FE model the elastic constants within each element were considered constant. The boundary
conditions are depicted in Fig. 4. The right lower corner was fixed to prevent the rigid body motion. The
resulting displacements along the boundary of the micro-model, embedded in the macro-model, were applied
on the boundary of the micro-model by using the three-point interpolation. For the micromechanical model,
each strut was modeled as an Euler–Bernoulli beam with two nodes and three integration point element. In
order to verify the validity of properties used in the macro-model we compare the stresses in both models.
In the case of macro-model the stresses are obtained as the FE output. The outputs in micro-model are the
axial and transverse forces in the beam element. We convert these forces into equivalent stresses by dividing
the strut cross-sectional area c1 · c3.
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Fig. 3. Example of variation of elastic modulus and relative density for constant cell length c and a = �200 · 10�6.
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Fig. 5. Comparison of stresses (r22) obtained using the macro- and micro-models in graded foam with constant cell size but varying strut
cross-section.
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Fig. 4 depicts the macro-, sub-macro- and micro-models. We consider both constant cell length and con-
stant strut size cases. In the constant cell length case the cell length is assumed as 200lm. The macro-model
consists of 100 · 50 plane solid elements. The strut cross-section is assumed to vary as a function of x accord-
ing to the equation h(x) = h0 + ax, where h0 = 40lm and a = �200 · 10�6. The region corresponding to the
micro-model in the macro-model consists of 15 · 5 elements. The micro-model uses 75 · 25 beam elements.
The results for the stress component r22 from the macro- and micro-models are compared in Fig. 5. In the
second case, the strut is assumed to have a square cross-section (h = 20 lm) and the cell length c1 was varied
along the x direction with c0

1 ¼ 200 lm and b = �0.15 lm. The dimensions of the cell in the 2 and 3 directions,
c2 andc3, are kept constant (100 lm). The stress component r22 along the upper boundary of the micro-model
are compared in Fig. 6. The maximum difference in stresses between the macro- and micro-models is about
5%.
4. Fracture analysis

4.1. Macro-mechanical model

In this section, the finite element analysis (FEA) of the functionally graded foam containing a crack is per-
formed. The purpose of the analysis is to determine the displacements along the boundaries corresponding to
the micro-model for a given stress intensity factor. The macro-model for the foam is modeled using plane solid
elements. An arbitrary boundary condition is applied to the macro-model and the corresponding stress inten-
sity factor and displacements are found from the FE results. Due to symmetry about the crack plane only top
half of the foam is modeled. A constant displacement in the vertical direction is applied along the top hori-
zontal boundary as shown in Fig. 4. The J-Integral is calculated along several contours surrounding the crack
tip. The displacements at the nodes on the boundary corresponding to the micro-model are obtained from the
macro-model FEA results. The upper edge is loaded by a uniform displacement loading in the y-direction, and
the lower edge has a zero displacement boundary condition in the y-direction to account for symmetry. The
material is functionally graded by either changing the thickness of struts or changing the dimensions of the
unit-cell described as before. Relative density, elastic modulus and shear modulus vary along the x-axis cor-
responding to the equations derived in the previous section. When, functionally graded foam is modeled as a
homogeneous solid (macro-model), a material property discretization is introduced. Material properties are
discretized by assigning each region along the x-axis the value of those at the centroid of the region. For exam-
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ple, Fig. 7 shows the discrete elastic modulus for the 10-region model. However, the Poisson’s ratio is kept
constant because the effect of a variation of Poisson’s ratio is negligible (Delale and Erdorgan, 1983).

A two dimensional continuum element with 8 nodes and reduced integration points is used for the plane
stress problem. Generally, J-integral is not path independent for inhomogeneous material. Therefore, J-inte-
gral is expected to vary with contour numbers as shown in Fig. 8. The contour numbers represent incremen-
tally larger contours around the crack tip. The mesh refinement governs the size and increments of contours.
However, the value of J-integral for a contour very close to the crack-tip is related to the local stress intensity
factor as in the case of a homogeneous material (Anals et al., 2000). Thus, energy release rate, G is identical to
the value of J-integral as the path of contour approaches to zero (Gu et al., 1999). Energy release rate, G can
be found by using 4th order polynomial regression of the variation of J-integrals as shown in Fig. 8. For the
convergence test, the model is discretized into uniform meshes of 10 · 5 elements (10 regions), 20 · 10 (20
regions), 50 · 25 elements (50 regions), 100 · 50 (100 regions), 200 · 100 (200 regions) and 400 · 200 (400
regions). As the number of elements and regions increases, the energy release rate at the crack tip converges
as shown in Fig. 9. For 100 · 50 elements model, the variation of J-integral is less than 0.01% compared to the
400 · 200 element model. Therefore, 100 · 50 elements model is used for further analysis in order to maintain
adequate accuracy with reasonable computational time.

The stress intensity factor KI of a functionally graded foam (two dimensional orthotropic) can be found
from G using the relation (Sih and Liebowbitz, 1968).
G ¼ K2
I

a11a22

2

� �1
2 a22

a11

� �1
2

þ 2a12 þ a66

2a11

" #1
2

ð14Þ
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The stress intensity factor at the crack tip can also be obtained directly from the crack-tip stresses as
KI ¼ Lim
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ryyðr; 0Þ
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Fig. 10 shows the one of the example plot of ryy

ffiffiffiffiffiffiffi
2pr
p

versus distance from the crack tip. A 4th order polyno-
mial regression is also shown in Fig. 10. The y-intercept of the curve yields the value of KI.

The stress intensity factor from both methods, J-Integral and stress-matching, were compared for various
cases in Table 2. The maximum difference between the two methods is less than 6% for range of crack lengths
studied here.
4.2. Micro-mechanical model

A portion of macro-mechanical model is taken and used for micro-model as shown in Fig. 4. As the
100 · 50 elements (100 regions) for macro-model and constant cell length (100 lm) for micro-model are used,
one macro-model element can be replaced by 100 elements micro-model (10 beam elements in x and y direc-
tions). The displacements along the boundaries of micro-model are determined by using three points interpo-
lation. The corresponding three points can be obtained in previous macro-model analysis. In micro-model,
two-node beam elements are used to represent the foam ligaments/struts. The stresses at the crack tip can
be calculated from the results for force and moment resultants obtained from the micro-model as
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Table 2
Comparison between two methods

Crack length (m) 0.01 0.02 0.03 0.04 0.05

Relative density at the crack-tip 0.094582 0.085536 0.076874 0.068608 0.06075
KI From J-Integral (Pa-m1/2) 1.22381E+06 1.06997E+06 9.28935E+05 8.48869E+05 7.26919E+05
KI From crack-tip stresses (Pa-m1/2) 1.22620E+06 1.07152E+06 9.33605E+05 8.06059E+05 6.83636E+05
% difference 0.195 0.145 0.503 5.043 5.954
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The fracture toughness of the foam is defined as the stress intensity factor that will cause the crack-tip struts to
fail. We assume that the strut material is brittle and will fracture when the maximum principal stress exceeds
the tensile strength ru. Since we are dealing with linear elasticity the fracture toughness can be estimated from
the following relation,
KI

KIc

¼ rtip

ru
ð17Þ
The convergence analysis is conducted to evaluate the variation of fracture toughness with various sizes of
micro-model, 1 · 3 macro-model (300 elements in micro-model), 2 · 6 (1200), 5 · 15 (7500), 7 · 21 (14,700)
and 10 · 30 (30,000). As model size increases, fracture toughness converges as shown in Fig. 11. For 7500
beam element model, the error in fracture toughness is less than 0.3 % compared to 30,000-beam elements
model. Therefore, the 7500-model is chosen for further analysis to compromise between the accuracy and
computational time. The Mode I fracture toughness with various relative densities is conducted in two differ-
ent sets for the constant unit-cell case. The first set is controlling the crack length while the variation of mate-
rial properties remains same. The other set is shown in Fig. 12. The crack length remains constant while the
material properties are controlled to locate desired relative density at the crack tip. However, the dimensions
of models are fixed (0.1m by 0.5m for macro-model and 0.015m by 0.005m for micro-model). For the case
where the unit-cell dimensions change, the number of elements both in macro-model (100 · 50 elements)
and micro-model (150 · 50 elements) are fixed and the material properties at the crack tip is controlled by
c0

1 and b. Therefore, the dimensions of models are not fixed.



Fig. 12. Location of model specimens in the global panel. Each specimen is of the same size and contains a crack of given length, but the
density at the crack tip varies from specimen to specimen.
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5. Results and discussion

The fracture toughness of graded foams are compared to that of homogeneous foams with density same as
the crack-tip density of graded foams. Both cases, increasing and decreasing densities, are considered. The
results for c = 200 lm and for different strut thicknesses are given in Tables 3 and 4, and for c = 100 lm in
Fig. 13. As seen from these tables and figure, the results from the present analysis are very close to those
of homogeneous foam. However we see an interesting trend in Fig. 13. In both deceasing and increasing den-
sity cases, the fracture toughness deviates from that of uniform density foam for higher densities. When the
density decreases along the crack path, the fracture toughness is slightly higher and vice versa.

The graded foams have constant unit-cell length (c = 200 lm) and the density is varied by changing the lig-
ament cross-sectional dimensions. Results for the case of varying unit-cell dimensions are presented in Table 5



Table 3
Fracture toughness of graded and uniform foams

h0 (lm) Relative density at the crack-tip Fracture toughness (Pa-m1/2)

Decreasing density Increasing density Uniform density

26 0.028 4.52171E+05 4.56445E+05 4.51326E+05
30 0.039744 6.56122E+05 6.57406E+05 6.56114E+05
50 0.123904 2.24739E+06 2.25108E+06 2.24928E+06
60 0.179334 3.39537E+06 3.39999E+06 3.39819E+06
70 0.241664 4.77575E+06 4.78247E+06 4.77936E+06

The unit-cell dimensions and crack length are kept constant, but the strut thickness is varied. (c = 200lm, crack length = 0.03m and
a = ±200 · 10�6).

Table 4
Fracture toughness of graded and uniform foams

Crack length (m) Relative density at the crack-tip Decreasing density Increasing density Uniform density

0.01 0.06075 1.10144E+06 1.03627E+06 1.03485E+06
0.02 0.068608 1.25052E+06 1.18201E+06 1.18004E+06
0.03 0.076874 1.33362E+06 1.33619E+06 1.33465E+06
0.04 0.085536 1.49961E+06 1.49980E+06 1.49878E+06
0.05 0.094582 1.67268E+06 1.67266E+06 1.67220E+06

The unit-cell dimension is kept constant but the crack length is varied. (c = 200 lm, h0 = 40 lm and a = ±200 · 10�6)
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Fig. 13. Comparison of fracture toughness of graded and homogeneous foams having same density at the crack-tip. The unit-cell
dimension c is kept constant at 100 lm. The strut thickness h is varied from 9.66 lm to 28.4 lm.
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and also shown in Fig. 14. The results are also verifying the quite accurate results for the case where the dimen-
sions of the unit-cell changed with constant cross-sectional area of the struts.

6. Concluding remarks

In this study, fracture toughness of functionally graded foams is predicted by employing both macro- and
micro- finite element models. The macro-model in which the foam is modeled as a continuum is used to esti-
mate the stress intensity factor at the crack tip. Both stress matching method and J-Integral are employed to
compute the stress intensity factor for a given loading of the foam. The micro-model uses beam elements to
model the struts and to determine the maximum stresses corresponding to the macro-stress intensity factor.
From the failure criterion for the strut material the fracture toughness of the foam is estimated. It is found
that the fracture toughness of functionally graded foam is approximately the same as that of homogeneous
foam of same microstructure with the same density at the crack tip.

There are not many experimental works available for fracture toughness of graded foams. Recently El-
Hadek and Tippur (2003) have developed a novel method to fabricate graded foams by dispersing microbal-



Table 5
Comparison of the fracture toughness for varying unit-cell dimensions with constant strut thickness (h = 20 lm)

Set b c0
1 (m) c2 (m) c3 (m) Crack length in terms of number of

elements
Relative density at the
crack-tip

Fracture toughness (Pa-m1/2) % difference

Graded foam Homogeneous

10 0.0745806 9.62060E+05 9.61172E+05 0.092
20 0.0776305 1.00630E+06 1.00531E+06 0.098

1 �0.15e�6 200e�6 100e�6 100e�6 30 0.0812704 1.05636E+06 1.05533E+06 0.097
40 0.0856898 1.11501E+06 1.11279E+06 0.199
50 0.0911693 1.18440E+06 1.18018E+06 0.356
60 0.0981422 1.26090E+06 1.25952E+06 0.109

70 0.221965 2.05336E+06 2.04649E+06 0.335
60 0.228608 2.15865E+06 2.16343E+06 0.221
50 0.236846 2.30923E+06 2.29987E+06 0.405

2 0.15e�6 50e�6 50e�6 50e�6 40 0.247332 2.47076E+06 2.46204E+06 0.353
30 0.261132 2.66760E+06 2.65985E+06 0.291
20 0.280113 2.92063E+06 2.90924E+06 0.390
10 0.307863 3.24507E+06 3.23901E+06 0.187

50 0.0912307 1.18404E+06 1.18051E+06 0.298
40 0.0982215 1.26352E+06 1.26041E+06 0.246

3 0.15e�6 50e�6 100e�6 100e�6 30 0.107422 1.36134E+06 1.35823E+06 0.228
20 0.120075 1.48715E+06 1.48204E+06 0.344
10 0.138575 1.65340E+06 1.64829E+06 0.310

70 0.0450318 7.45601E+05 7.43076E+05 0.339
4 0.15e�6 200e�6 150e�6 100e�6 50 0.0470359 7.89333E+05 7.85621E+05 0.470

30 0.0495308 8.39136E+05 8.35061E+05 0.486
10 0.0527223 9.11742E+05 8.93837E+05 1.964

70 0.0218062 3.73104E+05 3.72085E+05 0.273
5 0.15e�6 200e�6 200e�6 200e�6 50 0.0230945 3.94813E+05 3.92956E+05 0.470

30 0.0246984 4.19129E+05 4.17251E+05 0.448
10 0.0267500 4.48072E+05 4.46171E+05 0.424
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Fig. 14. Comparison of fracture toughness of graded and homogeneous foams. The graded foams have varying unit-cell dimensions, but
constant strut cross-section h = 20 lm.

0.00

0.50

1.00

1.50

2.00

0 0.2 0.4 0.6 0.8 1

Relative Density

K
Ic
 (

M
P

a-
m

1/
2 )

Fig. 15. Variation of fracture toughness of syntactic foams with relative density. The solid line represents the experimental results for
relatively higher densities (El-Hadek and Tippur, 2003). The dotted line indicates the projected trend for low-density graded foams.
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loons of varying sizes in an epoxy matrix. They measured the fracture toughness of the foam using the coher-
ent reflection gradient sensing technique and high-speed photography. Their results are shown in Fig. 15 by
the solid line.

Because the method of fabrication their material relative density ranges from 0.5 to 1.0. On the other hand
in cellular materials the density usually varies from 0.02 to 0.4 depending on the microstructure. Nevertheless
the trend seen in the present simulations (Fig. 13) agree qualitatively with available experimental results
(Fig. 15). Hence the present work can be considered as the first step in simulating fracture in graded cellular
materials in order to estimate their fracture properties.
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