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Abstract 

A new failure theory based on the material configuration forces associated with the 

invariant M-integral is proposed to describe the content and evolution of the 

multi-defects localized in the body. The physical interpretation of the global 

M-integral is explored as the sum of the local energy release rate due to the 

self-similar expansion for each specific defect. It does provide an effective measure 

for the evaluation of damage level. It is found that the unique parameter of the 

M-integral cannot be used as a unified failure criterion to predict the damage 

evolution and the final failure due to the major obstacle that the critical value of the 

M-integral is not a problem-invariant constant and shows an apparent defect 

configuration-dependence. Consequently, a new failure parameter referred as the 

Configurational Damage Parameter (abbreviated as  -parameter) is proposed by the 

appropriate formulation via the M-integral, the remote uni-axial load, and the inner 

variable of the damaged area. A series of numerical examples are carried out to 

demonstrate that the critical value of  -parameter is a material constant regardless of 

defect configurations. Furthermore, it is performed to validate the applicability of the 

 -parameter as a failure criterion to predict the final failure of the locally damaged 

materials. Finally, a protocol of experimental measurement of the  -parameter is 

proposed by method of digital image correlation to facilitate the wide application of 

the new failure criterion. It is concluded that the present failure theory via the 

configurational forces associated with the M-integral provides some outside variable 

features and has the advantage of predicting the structural integrity of damaged 

materials containing the locally distributed defects.  

Keywords: Failure theory; Jk-integral; M-integral; L-integral; Material configurational 

force; Configurational damage parameter 

 



  

 

1. Introduction 

The lifetime, strength, and integrity of structural components are substantially 

limited by the existence of microdefects such as microcracks, microvoids, 

micro-inclusions, or dislocations. The severe inhomogeneity caused by such defects 

may induce damage evolution, macroscopic crack, and even final failure. In order to 

predict the failure of materials, there are several failure criterions proposed by many 

researchers in past decades. The pioneering one is the linear elastic theory of strength. 

That is, the body is supposed to fracture when the maximum stress  max in the body 

reaches the strength of material  b (Ford, 1963; Kanninen and Popelar, 1985). For the 

ductile material with defects, the classical strength theories, e.g., the maximum 

principle stress theory max  b, are still widely used in both mechanical and civil 

engineering. However, the linear elastic theory of strength is hard to use in practice 

since the maximum stress in a body is sensitive to the shape of defects and the 

procedure assumes that the strength of a material is independent of the sample used in 

the experiment. In reality, material strengths measured from different samples are 

diverse due to the various configurations of intrinsic defects.  

The real materials are generally assumed to contain a multitude of defects 

uniformly distributed in the body in the initial state. The internal defects may grow 

and coalesce by the creation of new microdefects at stress concentrators. This will 

cause a change of the macroscopic material properties and the decrease of strength. It 

leads to a complete failure of material’s integrity and the formation of a macroscopic 

crack. Within the framework of damage mechanics, the state (extent) of damage is 

represented by a so-called damage variable, such as the damage volume fraction f 

(internal variable) or the effective elastic moduli E (outside variable). They are used 

to characterize geometric quantification of brittle and ductile damage, respectively. 

Macroscopic strains and stresses are represented by the volumetric averages over the 

whole representative volume. Such damage model is able to describe the material 

failure behaviors during the process of deformation until total loss of the stiffness. 

The final failure could be described by the critical value of damage variables f=fc, or 

the effective elastic moduli E=Ec for instance (Kachanov, 1986).  

In the course of a deformation process, the growth and coalescence of internal 

microdefects leads to the formation of a macroscopic crack. The linear elastic fracture 

mechanics is emerged based on the concept of stress intensity factors and energy 



  

 

release rate. The stress field is quantified by the stress intensity factor, or K-factor for 

short (Irwin, 1957). The fracture criterion based on the K-factor is formulated as the 

crack propagation starts when the K-factor reaches the material-specific critical value 

KC. Base on the viewpoint of energy balance, the concept of energy release rate is 

proposed by Griffith (1921). The material specific value called G criterion, or crack 

resistance, is proposed to predict the crack stability. In the framework of linear elastic 

fracture mechanics, the failure criterions of K=KC and G=GC are equivalent for the 

pure crack mode in linear elasticity.  

For elastic-plastic materials containing one or more macroscopic cracks, the crack 

tip fields have to be determined by considering the plastic behaviors near the crack 

tips. The stress intensity factors and the energy release rate determined by the crack 

tip fields have to be adopted with cautions under the large scale yielding assumption. 

The so-called invariant integrals such as the J-integral have been widely applied in 

fracture mechanics to determine the crack tip parameters. The intensity factors and the 

energy release rate can be represented in terms of field variables by the J-integral 

calculated along the remote contours away from the plastic zone near the crack tips. 

Furthermore, by replacing the intensity factors and the energy release rate, the 

J-integral can be used as an effective fracture parameter to predict the crack stability 

and growth in elastic-plastic materials. It is well known that the ductile fracture could 

be governed by J JIC, i.e., the so-called J-dominant criterion (Cherepanov, 1967; Rice, 

1968).  

Actually, the introduction of the J-integral is referred to the mechanics in material 

space in contrast with Cauchy stress in Newtonian space. The other series of 

well-known invariant integrals derived from Neother’s theorem in plane elasticity 

include the J1 (J)-, J2-, M-, and L-integral (Knowles and sterberg, 1972; Budiansky 

and Rice, 1973; Eshelby, 1975; Freund, 1978). These invariant integrals can be 

obtained by the corresponding material configurational forces which are obtained by 

the gradient, divergence, and curl operation of the Lagrangian function, respectively. 

For instance, deduced from the gradient of Lagrangian function, the configuration 

forces associated with the Jk-integral can be derived, which is well-known as the 

Eshelby tensor. The invariant integrals including the Jk-, M-, and L-integral are widely 

researched in previous literatures (see the reviews by Chen, 2002; Chen and Lu, 2003). 

However, the latter two integrals, the M-integral and the L-integral, received much 



  

 

less attention than the J-integral does. The available applications of both the 

M-integral and L-integral are limited for problems with a single crack (Herrmann and 

Herrmann, 1981; Chen, 1986; Eischen and Herrmann, 1987; Choi and Earmme, 1992; 

Seed, 1997; Chen, 2003; Chen and Lee, 2004). They did provide some numerical 

techniques to determine the crack tip parameters. For example, Lee and Im (2003) 

examined the stress intensities of the three-dimensional wedges, and proposed a 

general scheme to compute the singular stress states near the vertices using two-state 

M-integral. However, the M-integral and L-integral were rarely used to give some 

engineering applications to estimate the failure or the life of engineering components. 

The successful application of the J-dominant criterion in fracture mechanics really 

puts the M-integral and the L-integral in the shade in past decades.  

The main purpose of this paper is to propose a new failure theory via the concept 

of configurational forces associated with the invariant integrals. The innovative idea is 

originated from two aspects of considerations. On one hand, if one estimates the 

stability or integrity of materials containing the locally distributed defects as shown in 

Fig. 1(a), where there are neither major macroscopic cracks nor the uniformly 

distributed defects, the traditional failure theories will be challenged to determine the 

critical failure load and predict the structural integrity. For example, the classic 

fracture mechanics based on the stress intensity factors, the energy release rate, or the 

J-integral near the crack tips is hard to use in practice since they require one or more 

macroscopic cracks with the measured length and configuration. It is obviously a 

challenge to distinguish the specific crack tips in the multi-damaged material in Fig. 

1(a). The classic damage mechanics relying on the inner variables requires the 

uniformly distributed defects in materials, which is not suitable for the present locally 

damaged materials either. On the other hand, the damage procedure can be 

demonstrated by the total energy release rate due to the configurational evolution of 

defects. Indeed, the Jk-, M-, and L-integral have the apparent physical interpretations 

and they can be explained as the energy release rates due to the translation of defects 

along xk-direction, the self-similar expansion, the rotation of defects, respectively. 

When the contour enclosing all defects is selected to calculate the invariant integrals, 

as depicted in Fig. 1(b), the energy release rate can be totally represented by the 

calculated invariant integrals. Such a flexibility physical interpretation of invariant 

integrals implies that they have potential applicability to predict the failure of 

multi-defect materials and structures. It is encouraged to provide an appropriate 



  

 

failure theory via the concept of the configurational forces associated with these 

invariant integrals. 

It should be pointed that the direct application of the Jk-integral in fracture 

mechanics to the multi-defect materials will be limited by the well-known 

conservation laws of the Jk-integral concluded by Chen and Hasebe (1998). That is, 

both two components of the Jk vector vanish under remote uniform loads when the 

closed contour completely encloses all the defects. It means that the Jk-integral make 

little effort to construct the failure parameter via the invariant integrals for such 

multi-defect problems. Consequently, the M-integral and the L-integral would play the 

key role instead of the Jk-integral. Recently, Chen (2001a, 2001b) proposed an 

M-integral description to study a cloud of microcracks in an infinite plane brittle solid. 

Instead of working in the continuum damage mechanics, his investigation started from 

the Eshelby’s energy momentum tensor and the associate invariant integrals. 

Particularly, it is concluded that the M-integral is inherently related to the change of 

the total potential energy for a 2D linear damaged elasticity regardless of the detailed 

damage characterizations. Following Chen’s work, the M-integral analysis was 

performed by Chang and Chien (2002), Chang and Peng (2004), Chang and Wu 

(2011). A problem-invariant parameter in those works was defined by performing the 

M-integral with respect to a coordinate system originating at the geometric center of 

all the singular points enclosed by the integration contour. The distinguished work by 

Chang et al (2002, 2004 and 2011) is greatly appreciated. They also suggest that 

M-integral might be proposed as a possible damage parameter for describing the 

degradation of material and structural integrity caused by the irreversible evolution of 

multiple defects. They considered the formulation to be suited for fracture analysis in 

rubbery material problems which subject to large elastic deformation.  

More recently, Hu and Chen (2009a, 2009b) performed some finite element 

analyses for a plane strip containing two neighborly located voids or cracks, and 

demonstrated the change of M-integral before and after the coalescence of the defects. 

It is concluded that there is a jump of the M-integral when the coalescence of the two 

cracks or voids occurs and the M-integral can be used to describe the damage 

evolution. In addition, Wang and Chen (2010) proposed a new parameter d(M+L)/dN 

based on the M-integral and L-integral concepts to solve the fatigue damage problem 

of an Aluminum plane strip with neighborly and symmetrically located voids under 

cyclic tensile loading. The technique proposed by the previous work demonstrates that 



  

 

the invariant integrals did play an important role in the description of the 

multi-damage problems. Following this conclusion, a number of subsequent analysis 

of invariant integrals in nano-mechanics were applied to measure the damage levels of 

nano-porous membrane in which the surface effects were taken into account(e.g., Li 

and Chen, 2008; Hui and Chen, 2010; Hu et al, 2012). All studies demonstrate that the 

configurational forces associated with the M-integral emerge as a failure criterion 

which is capable of describing the damage behavior of a multi-damaged mechanical 

system similar as what the J-integral does in fracture mechanics. It can provide some 

outside variable features which might introduce a new technique or framework to 

evaluate material damage evolution. 

The present work is to address a new failure theory for the multi-defects system, 

especially the locally damaged solid. The framework of the new failure theory is 

referred to the apparent physical interpretation of the invariant integrals. The total 

energy release involving the microdefects cloud translation, expansion, and rotation 

can be represented by the Jk-, M-, and L-integral, respectively. A series of 

multi-defects examples are considered. The inherent relation between the M-integral 

and the reduction of effective elastic moduli is studied by both numerical and 

theoretical analysis. The critical values of the M-integral (MC) and L-integral (LC) are 

numerically evaluated. It is found that the L-integral has the negligible contribution 

compared with the remarkable M-integral does. Therefore, we pay more attention to 

the M-integral in describing damage evolution. In order to clarify whether MC is a 

critical problem-invariant constant for the materials with multiple voids or cracks, the 

possible dependence of MC on the multi-defect configurations is carried out. It is 

found that the critical value of the M-integral is not a material-specific constant. 

Instead of the directly applying the M-integral as the failure criterion, the new failure 

theory via the Configurational Damage Parameter ( -parameter) is established, 

which is determined by both inner and outside variables of the damaged materials 

such as the M-integral, the external load, and the damaged area. The present analysis 

illustrated in a number of numerical examples demonstrates that the proposed failure 

theory is effective and convenient for the locally damaged materials. To this end, an 

efficient protocol to experimentally measure the configurational damage parameter is 

introduced by method of digital image correlation.  

 



  

 

2. Material configurational forces associated with the Jk-, M-, and L-integral 

The derivative of material configurational forces can be generally referred to 

Noether’s first theorem for a multi-defects system. It turns out to be an effective way 

to explicitly define the invariant integrals formulated by the corresponding material 

configurational forces. The present methodology for establishing material 

configurational forces associated with the Jk-, M-, and L-integral is based on the 

Lagrangian energy density.  

 In the absence of inertia terms and body force, the Lagrangian function Λ  may 

be looked upon as a potential. It can be identified as the negative of the strain energy 

density of system which depends, in general, on the independent variable of 

coordinates and the first derivatives of displacement i.e., 

, ,( , ) ( , ).i k j i k jx u W x uΛ = −             (1) 

The fundamental concepts of material configurational forces regarding the Jk-, M-, 

and L-integrals are reviewed and summarized in Table 1 for the convenience of 

readers. The detailed descriptions can refer to the references (Knowles and Sternberg, 

1972; Eshelby, 1975; Chen and Shield, 1977; Kienzler and Herrman, 1997; Lee and 

Im, 2003; Li et al, 2012 among many others).  

In order to clarify the physical interpretation of the configurational forces Mj 

associated with the M-integral, a self-similar expansion of the element with the unit 

thickness is studied such that points (x1, x2) on the surfaces move with the distance of 

( x1dt,  x2dt). Fig. 2(a, b) depicts the transformation from the original element 

indicated by the solid black square into the expanded element by the dash square 

along the x1- and x2-direction, respectively. The physical interpretation of the 

configurational forces regarding the M-integral can be deduced by the potential 

energy change during the self-similar expansion motion of element. That is, the 

component of Mj is the change of the potential energy at a point of an elastic 

continuum due to a self-similar expansion in xj-direction of a unit surface. A 

straightforward physical interpretation of the M-integral for a multi-damage system 

can be made based on the present physical meaning of configuration forces. The 

M-integral is associated with the integration of the configuration force Mj along a 

close contour. If we calculate the M-integral over the specific contour Cs (s=1, 2, ….., 

N) surrounding only the s-th defect, as shown in Fig. 2(c), the local M-integral for the 

specific s-th defect over Cs and the global M-integral for all defects over Γ can be 



  

 

expressed as: 
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The physical interpretation of local M(s) can be given as the energy release due to the 

self-similar expansion for the specific s-th defect. Therefore, the global M-integral 

over the contour Γ enclosing all defect can be interpreted as the sum of local energy 

release due to the self-similar expansion for each specific defect.  

Similarly, the physical interpretation of the configurational forces bji (i, j=1, 2) 

can be explained as the change of the total energy density at a point of an elastic 

continuum due to a material unit translation in xj-direction of a unit surface with 

normal in xi–direction (Kienzler and Herrmann, 1997). The physical interpretation of 

local Jk
(s)-integral over the specific contour Cs (s=1, 2, ….., N) only surrounding the 

s-th defect can be given as the energy release due to the translation ( )
0
s

kx  along 

xk-direction for the specific s-th defect. And the global Jk-integral over the contour Γ 

enclosing all defect is interpreted as the sum of local energy release due to the 

translation of defects along xk-direction.  

The physical meaning of the configurations forces Lml will be related to the 

change of the potential energy of the element associated with the specific rotation 

motion. Assume that a rotational movement of the infinitesimal element is under 

consideration with respect to the reference point. After rotation, an ordinary point (x1, 

x2) in the element has the displacements along both horizontal and vertical direction. 

The point (x1, x2) on the element surface is moving with the following velocity 

vi=-e3ijxjω (i, j=1, 2), where   is a positive constant and represents the angular velocity 

with respect to the specific point. The real physical interpretation of the component L3i 

of the configurational forces is indentified as the change of potential energy of one 

infinitesimal element on the surface with normal direction along xi if the material 

element has the rotation motion with respect to the reference point. The physical 

interpretation of local L(s)-integral is given as the energy release due to the rotation  0(s) 

for the specific s-th defect. And the global L-integral is interpreted as the sum of 

energy release due to the rotation for each specific defect.  

 



  

 

3. The proposed failure criterion  

3.1 Numerical examples 

In order to propose the failure criterion via the concept of material 

configurational forces, finite element analyses are performed to consider the multiple 

microdefects in materials. It should be emphasized that the Jk-integral enclosing all 

defects satisfies the conservational laws and would vanish during damage evolution. 

Consequently, only the M-integral and L-integral will be calculated without further 

consideration of the Jk-integral. A series of numerical examples are carried out to 

provide necessary evidences of the role which the material configurational forces 

associated with the M-integral and L-integral plays in predicting the failure of 

multi-damaged materials.  

Fig. 3 shows the configuration of the damaged zone locally located at the center 

of an elastic plate. The damaged zone is distributed with multiple defects, including 

microvoids or microcracks. The dimensions of the inner damaged zone are 

12mm 12mm (length width) while the full dimensions of the plate are 160mm 40mm 

(length width) with w1, w2, l1, l2 being the width, length of the plate and the damaged 

zone as indicated in Fig. 3. The elastic plate is made of Aluminum alloy LY-12 with 

the Young’s elastic modulus E=71 GPa and the Poisson’s ratio  =0.33 while the 

damaged zone localized in the body is assumed to shows a typical nonlinear curve of 

stress-strain relation (see Fig. 4) with a typical power hardening feature.  

In this paper, two different defect patterns are considered. One defect pattern is 

concerned with the microvoids which are locally distributed in the inner damaged 

zone. Each void has the same diameter of 0.5mm. Various numbers of microvoids are 

taken into account to represent the various defect densities, i.e., 9, 16, 25, 36, 49, 64, 

81, 100, 121, 144, 169 voids as depicted in Fig. 5. The other pattern is filled with 

microcracks which are locally distributed in both position and relative orientation. 

Each crack has the length of 0.5mm. Various numbers of microcracks are also 

considered, i.e., 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169 cracks as depicted in Fig. 

6. Each defect pattern with the specific number of defects represents one specific 

defect configuration. It means there are totally 22 defect configurations concerned in 

numerical analyses. 

 It is emphasized that the path-independence of the M-integral and L-integral 

should be re-clarified in nonlinear elastic-plastic materials. An explicit analysis of the 



  

 

invariant integrals in the nonlinear solid reveals that the material inhomogeneity 

induced by defects together with the nonlinear strain energy within the area enclosed 

by the integration contours will be dominant contributions on the invariant integrals. 

The influence of the nonlinear strain energy will result in the path-dependence 

property of the invariant integrals (e.g., McMeeking, 1977; Kuang and Chen, 1996; 

Carka and Landis, 2011; Li et al, 2012). This is quite different from that of linear 

elasticity where the invariant integrals are always path-independent. In order to avoid 

the unexpected path-independent issues, the present study assumes that the nonlinear 

deformation is localized inside the damaged zone located at the center of the plate 

while the outer region is assumed to be linear elasticity. Therefore, the M-integral and 

L-integral are calculated along the contour in the elastic zone far away from the 

damaged plastic zone. A rectangle contour shown in Fig. 3 is selected in the remote 

elastic zone completely surrounding the elastic-plastic damaged zone. 

3.2 Numerical results of the M-integral and the reduction of effective elastic moduli 

In this section, attention is focused on the tendency of the M-integral and the 

effective elastic moduli for the increasing external loading. The relation between the 

values of the M-integral and the classical strength theory defined by the reduction of 

effective elastic moduli is addressed in multi-damaged material. This finding will 

facilitate the introduction of the proposed failure theory for the purpose of the present 

study.  

First, Fig. 7 shows the calculated values of the M-integral against the uni-axial 

remote loadings for the locally distributed microvoids, while Fig. 8 for the locally 

distributed microcracks. It can be seen from Figs. 7 and 8 that the M-integral 

monotonically increases with the increasing loading. Additionally, the values of the 

M-integral are strongly sensitive to the numbers of the defects. The more the defects 

exist, the larger value of the M-integral is. Particularly, for the defect-free material in 

which there is no defect inside the damaged zone, the values of M-integral in Figs. 7 

and 8 are still remarkable. The present study considers that the plastic deformation is 

under a single load parameter in the absence of elastic unloading. Therefore, the 

plastic deformation is approximately represented by the nonlinear elastic deformation. 

The opinion is accepted that when a body is subject to proportional loading, the 

stress-strain behavior of plastic deformation is indistinguishable from that of 

nonlinear elastic deformation. It is denoted that the nonlinear elastic energy enclosed 



  

 

by the integral contours will have a significant contribution on the values of the 

M-integral. A consistent conclusion can be analytically made regarding the 

contribution of the nonlinear elastic energy to the M-integral (see Appendix A) for the 

defect-free medium. In is denoted that the M-integral not only represents the 

discontinuities induced by the defects, but also describes the emergence of nonlinear 

elastic energy with the increasing loading. The remarkable role of the M-integral can 

be concluded that it can provide some important evidences of microstructural 

statistical information. The physical characterization actually embedded in the 

formulation of the phenomenological parameter of the M-integral could be a useful 

concept to describe the degradation of structural integrity, which is caused by 

irreversible evolution of multiple microvoids or cracks. 

Second, numerical determination of the effective properties of multi-defect 

system is performed by involving the calculation of the stress and strain fields 

averaged over the representative volume element (Banerjee and Adams, 2004). The 

effective elastic stiffness tensor eff
ijklC  is calculated from the material constitutive 

relation 

 ,eff
ij ijkl klV V
dV C dVσ ε=∫ ∫  (3) 

where σij and εkl are the local stress and strain tensor and V is the representative 

volume element. For the plane stress condition in this research, the formulation could 

be simply written as  
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 (4) 

where 11
effE , 22

effE , 12
effν , and 21

effν  are two-dimensional Young’s elastic moduli and 

Poisson’s ratios, and ij V
ε  and kl V

σ  are the average of strain and stress tensors 

over the representative volume. In the present numerical calculations, the local 

damaged zone inside the plate is considered as the representative volume to calculate 

the effective elastic moduli instead of the whole plate.  

Fig. 9 and Fig. 10 plot the vertical effective elastic moduli against the remote 

loading for the locally distributed microvoids or microcracks. It can be seen that there 

is an apparent reduction of effective moduli with the increasing loading compared 

with E=71 GPa of LY-12 matrix. The tendency of the effective elastic moduli against 



  

 

the tensile loading can be demonstrated as two variable tendencies. One is that the 

magnitude of the effective elastic moduli shows a constant value lower than the elastic 

moduli of LY-12 matrix for all defect cases when the tensile loading is lower than the 

yielding stress of elastic-plastic materials. The reduction of effective elastic moduli 

mainly results from the existence of the microvoids or microcracks, which alleviate 

the material strength. At this stage, the elastic-plastic material behavior has little 

influence on the reduction of effective elastic moduli. The other tendency of the 

effective elastic moduli shows a sharp decrease when the external loading reaches a 

certain magnitude. This strong reduction of moduli results from the elastic-plastic 

material behaviors. When the stress reaches the yielding stress of material, the 

material behavior has a transformation from linear elastic to nonlinear plastic state. 

The effective elastic moduli have a consequent transformation from the constant to a 

sharp reduction.  

Of the most importance is that there exists an implicit relation between the 

M-integral and the reduction of effective moduli for the multi-damaged solids. The 

reduction of effective elastic moduli just shows an apparent positive feature to those 

of the M-integral. Indeed, the maximum values of the M-integral occur at the 

maximum tensile load, whereas the maximum values of the reduction of effective 

moduli corresponding to the least effective modulus at the maximum tensile load. The 

inherent relation between the M-integral and the reduction of effective elastic moduli 

can be concluded for the multi-damaged problem. That is, the larger value of the 

M-integral under the certain loading is, the larger reduction of effective elastic moduli 

reduced from the microdefecting or elastic-plastic material behaviors is. 

Numerical results do provide necessary evidences of the implicit relation between 

the M-integral and the reduction of effective elastic moduli in the locally distributed 

damage problems. In order to further demonstrate this inherent relation, an explicit 

analysis of the infinite elastic matrix with the elastic moduli E containing a circular 

inhomogeneity with the reduced elastic moduli E0=(1- )E is performed by the classic 

complex potential theory, where   denotes the reduction of the elastic moduli of 

inhomogeneity versus the matrix. The analytical expression of the M-integral for the 

infinite elastic matrix embedded a circular inhomogeneity with the reduced moduli 

can be obtained as (see Appendix B)  
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where f( ) is the explicit function of elastic moduli reduction   formulated by 
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Eq.(5) reveals that the M-integral is inherently related with the reduction of Young’s 

moduli of inhomogeneity. Fig. 11 shows the M-integral against   according to Eq.(5) 

assuming that inhomogeneity has the same Poisson’s ratio as the matrix, i.e.,  = 0=0.33. 

It is seen that the M-integral is monotonically increased with the increase of the 

reduction of elastic moduli. This explicit analysis is consistent with the present 

numerical results. It should be pointed that the present numerical examples are carried 

out for the locally multi-damaged square zone embedding in the finite plate whereas 

the theoretical analysis is particularly introduced for the circular inhomogeneity in the 

infinite elastic plane. The numerical examples are slightly different from the appended 

theoretical problem. Nevertheless, if we assume the multi-damaged zone as a specific 

inhomogeneity, the present explicit investigation can be an approximate evidence to 

verify the inherent relation between the M-integral and the reduction of effective 

elastic moduli of the multi-damaged zone.  

3.3 Critical values of the M-integral and the L-integral  

The successful application of the J-dominant criterion used in fracture mechanics 

attributes to the critical value of JC, which is a material-specific constant regardless 

the crack size and configurations. Similar as the J-integral, a forward and straight idea 

emerges whether the direct application of the M-integral or the L-integral is able to be 

promoted where one might introduce a problem-invariant parameter MC or LC (the 

critical value of the M-integral or the L-integral when the failure happens). The key 

issue of the introduction of the M-integral or the L-integral as a failure criterion is to 

clarify the features of MC or LC. Numerical investigations are carried out to verify 

whether MC or LC is the critical problem-invariant constant for the multi-damaged 

material. In order to confirm the critical loading for multi-damaged materials, the 

classic strength theory that the reduction of elastic moduli reaches the critical values is 

under consideration as an alternative way. For this purpose, the critical values of the 

M-integral and the L-integral are defined as the reduction of effective elastic moduli 

reaches a criterion values e.g., 0.47 for the present LY-12 alloy.   



  

 

 Fig. 12 and Fig. 13 show the critical values of the M-integral and L-integral for 

the locally distributed microvoids or the microcracks problems. It is found that the 

critical values of the M-integral is always positive and represents the energy release 

due to self-similar expansion of multi-defects while the L-integral could be either 

positive or negative depending on the specific configuration microvoids or cracks. 

The magnitude of negative L-integral represents the energy absorbing due to the 

rotation of microdefects. Furthermore, it is found that the magnitudes of the critical 

L-integral are negligible comparing with those of the M-integral. It implied that the 

L-integral has little effort to control the damage evolution in present examples. Beside 

the conservation laws of the Jk-integral where the values of Jk-integral is always zero 

as long as the integral contour enclosing the multi-defects, only the M-integral among 

three well-known invariants (Jk-, M-, and L-integral) has the major effort to control 

the failure of multi-damaged materials. Consequently, special attention will be 

focused on the M-integral in the sequent discussions.  

It is found that the critical M-integral does apparently depend on the defect 

density and defect pattern. Numerical responses of MC corresponding to different 

number of multi-defects and the critical tensile loading for evolution of multi-defects 

show that the critical value of the M-integral and the extern load appears to 

monotonically decrease with the increasing number of multi-defects. That is, the less 

the number of defects is, the larger critical values of the M-integral and the critical 

loading are. For instance, the minimum value of MC is approximately 26 N with 

respect to 169 voids under the critical loading 142 MPa in Fig. 12 for the microvoids 

pattern, while the maximum values of MC with respect to 9 voids is 242 N under the 

critical loading 402 MPa. The same feature can be found for the microcracks pattern 

in Fig. 13. The present characteristic agrees with the intuitional understanding that 

more cracks or voids weaken the integrity and strength of multi-damaged materials 

and yields a higher damage level. The most important feature of MC is that they are 

essentially different for various defect configurations. They are found to be greatly 

affected by defect pattern and density. It denotes that the critical values of the 

M-integral at final failure are configuration-dependent and there is no correspondence 

between the critical values of the M-integral and the specific configuration.  

3.4 The proposed failure criterion as configurational damage parameter 

It is well known that the J-integral is widely used as energy fracture parameters to 



  

 

predict the single-cracked problem, that is J JC where J-integral is evaluated as the 

energy release rate associated with crack extension and JC is experimentally measured 

as the material-specific strength. However, the J-integral by itself is limited due to its 

local energy associated with the single distinguished crack. In many engineering 

structures, the overall strength is substantially degraded by evolution and propagation 

of a system of distributed defects rather a single continuous crack. The global 

characteristic of the M-integral calculated along the contour enclosing the overall 

defects might be proposed as a potential parameter describing the global failure state 

of the multi-defect system. The use of M-integral as a parameter in describing the 

global failure is therefore of practical important. Similar as the application of the 

J-integral, a straightforward definition of failure criterion via the concept of 

M-integral can be proposed as 

 ,CM M≥  (6) 

where M-integral is evaluated as the global energy release rates associated with 

multi-defects self-similar extension and MC is essentially the critical value of the 

M-integral at failure of materials. The efficient application of the M-integral as a 

failure criterion requires the premise that it should be experimentally measured as the 

problem-invariant constants regardless the configurations and sizes of multi-defects. 

However, numerical analysis in the present series of examples shows that the critical 

values of the M-integral at failure are definitely configuration-dependent. The global 

M-integral without any special treat is obviously not feasible for such an analysis due 

to the configuration-dependent property of MC. In other words, the complete failure 

mechanism of the multi-damaged materials cannot be governed by a single parameter 

MC. Rather, a configuration independent failure parameter should be introduced, and 

the proposed failure criterion should be only determined by the material intrinsic 

properties regardless the detailed defects just as the KC or JC in fracture mechanics.  

According to the explicit analysis in Eq.(5), it is consistently assume that the 

M-integral can be expressed as    

 2 ,DM Aσ= Π  (7) 

where AD denotes the damaged area and consists two parts in the present analysis. 

One is the defect areas and the other the areas of plastic zone. The plastic zone is 

regards as one kind of ‘damages’. In the numerical calculation, AD is the whole area of 

the damaged zone localized at the center of the elastic specimen (as shown in Fig. 3).     



  

 

The innovative idea is that the coefficient   termed as configurational damage 

parameter (abbreviated as  -parameter) would play a significant role in evaluating the 

multi-damage medium. It should be always positive due to the positive energy release 

for the self-similar expansion of multi-defects. The newly proposed  -parameter can 

be referred as a damage driving forces which is an unknown outside variable 

determined by the material behaviors, the configuration and size of multi-defects, the 

specific geometry of specimen et al. The innovative  -parameter as anticipated will 

play a remarkable role to predict the damage evolution in the elastic-plastic material.  

The most intriguing proposal of the present study is to introduce a failure criteria 

based on the  -parameter as  

 ,CΠ ≥ Π  (8) 

where   is defined by M/( 2AD) and represents the damage level of the multi-defect 

system;  C is the critical value of the  -parameter at failure.  

The special treatment and introduction of the failure theory vial the  -parameter 

need be clarified and addressed. The most important issue arises whether  C is a 

material-specific constant which is only determined by the material itself and 

regardless the circumstance of multi-defects. In order to address the question, Tables 2 

and 3 show the critical value of  -parameter calculated by 2/ ( )C C DM Aσ  according to 

Eq.(7). Table 2 shows the critical values of the  -parameter for various numbers of 

microvoids. The average of overall values is 1.018 10-11 Pa-1, and the deviation is less 

than 0.5%. And Table 3 shows the critical  -parameter for various numbers of 

microcracks. The average of overall values is 1.018 10-11 Pa-1, and the deviation is less 

than 0.45%. Hence, we note that the invariant values of  C approximately approach a 

constant of 1.018 10-11 Pa-1 for all cases of different multi-defect systems. It is 

intriguing to find that the critical  -parameter appears to be invariant with respect to 

different defect configurations under the uni-axial tensile load. The present numerical 

results from various defect configurations support that  C is just a material-specific 

constant which is determined by the strength of material itself regardless of the 

detailed defect configurations. It means that, the damage caused by different 

configuration of defects could be unified and described by the  -parameter for its 

stiffness. The parameter could give the damage estimation of the defect zone for 



  

 

engineering application, which can be defined as a failure criterion to predict the 

evolution and degradation of such multi-defect failure condition ranging from the 

present of a finite number of microcracks and/or voids to the formation of densely and 

locally distributed microdefects with arbitrary configurations and sizes.  

For practical purpose, the pragmatic approach to design for strength via the 

 -parameter can follow the procedure as 

i) Calculate the physical fields by solving the boundary-value problem in the 

multi-defected system. Calculate the  -parameter by M/( 2AD) where M is 

numerically integrated along the contour enclosing all defects in the local damage 

region, and AD is evaluated by the areas of damaged zone. 

ii) Measure the critical values of  -parameter i.e.,  C using a simple sample of the 

material such as a tensile specimen. The critical values of  -parameter can be 

calculated by the critical M-integral, the tensile load, and the corresponding 

damaged area at failure.  

iii) Make sure that the maximum  max in the body is below the strength of the material 

 C.  

Furthermore, the critical values of the  -parameter are determined at failure 

relying that the reduction of effective elastic moduli reaches a critical value. It means 

that the proposed failure theory via the concept of the M-integral can be the 

alternative and effective way to replace the reduction of effective elastic moduli, 

which has been widely adopted in damage mechanics. Furthermore, it is widely 

accepted that the calculation of effective elastic moduli greatly depends on the 

representative volume. For the realistic case of locally damage problem, it is generally 

believed that the multiple defects are heterogeneously and locally distributued in a 

region. It would be challenging to choose the appropriate representative volume to 

evaluate the reduction of effective elastic moduli. Fortunately, the application of the 

 -parameter will overlap this issue. The intriguing feature of the proposed theory is 

that the  -parameter can be calculated along the contour which encloses the multiple 

defects concerned in engineering. Based on the path-independent property of the 

M-integral, the values of the  -parameter will be independent to the area enclosed by 

the contour. Thus the feature that the  -parameter can be carried out in the arbitrary 

remote elastic region makes it more applicable in describing the associated material 



  

 

damage characteristic than the reduction of effective elastic moduli does. The present 

studies demonstrated that the  -parameter could be used as a new failure criterion to 

describe the damage behavior of a multi-defect mechanical system similar as what the 

J-integral does in fracture mechanics. 

3.5 A protocol to experimentally measure the  -parameter 

The usefulness of the newly proposed  -parameter relies on an effective and 

convenient experimental tool to measure it. The key technique to experimentally 

measure the  -parameter is the evaluation of the M-integral in a damaged material. 

Previously, King and Herrmann (1981) proposed a nondestructive evaluation of the 

M-integral for the special simple crack cases with the proper choice of the contour C, 

and it requires only a single specimen of fixed crack length. Zuo and Feng (2012) 

improved the nondestructive technique by modifying the approximate formulas to 

calculate the M-integral and select the appropriate the integral contours. They make 

use of many strain gages to measure the displacements and strains at specific points 

on the specimen and determine the M-integral by the approximate, semi-explicit 

expression through the measured displacements. However, their techniques are 

limited by certain special specimen geometries in linear elasticity, certain simplifying 

assumption regarding the terms in the integrand (as was only true for the 

centre-cracked and edge-cracked panel).  

Recently, there are a few of researches concerned to experimental studies and 

measurements of the M-integral by the modern optic instruments. The present authors 

proposed a technique by using digital image correlation for evaluating the M-integral. 

The corresponding experimental procedure can refer to the reference by Yu et al. 

(2012). The experimental arrangement is depicted in Fig. 14(a). The specimens with 

changing gray values as they occur with random pattern are more appropriate. 

Therefore, the specimens are pretreated with powder sprays to obtain the high contrast 

stochastic pattern (See Fig. 14b). The method makes direct use of the definition of 

M-integral as a contour integral and involves experimental evaluation of the integrand 

at various points along an arbitrary contour and then determinates the M-integral by 

numerical integration. Determination of the integrand of M–integral involves 

knowledge of all the components in the x1-x2 plane including the strain energy density, 

the strains, the stresses, and the displacement gradient tensors. A smooth method is 



  

 

proposed to evaluate and calibrate the measured displacements which are used to 

calculate strains and the differentials of the displacements with respect to the axes at 

various points along the integration contour. Meanwhile, the Ramberg-Osgood 

nonlinear elastic-plastic theory (Ramberg and Osgood, 1943) is employed to 

determine the stresses. The total strain energy density is calculated by numerical 

integration of the evaluated nonlinear stress-strain curves for the material. 

Experimental values of the M-integral are found to agree well with the corresponding 

numerical analysis. Therefore, this appears to be a viable technique for 

non-destructive experimental evaluation of the M-integral in the locally distributed 

multi-damaged materials. The material strength for the  -parameter can be obtained by 

the derivation of the critical values of the M-integral, the critical tensile loading, and 

the damaged area including the defects area itself and the plastic area. The plastic 

zone can be evaluated by the strain beyond the residual yielding strain. The failure 

phenomenon of the multi-defects could be the growth of the microcracks, the 

coalescence of microvoids, the nucleation of microcracks and so on. They can be 

instantaneously reported by the high rate photographic instrument to determine the 

failure initiation. 

4. Conclusions and remarks 

After performing the above analysis, we summarize the following conclusions: 

1) There apparently exist the physical explanations of the configurational forces 

associated with the M-integral, which can be interpreted as the global energy 

release rate due to self-similar expansion of multiple defects provided that the 

integral contour encloses all the microdefects. Besides this, the contribution 

induced by the formation of overall microdefects in the solids to the Jk-integral 

vanishes, and the L-integral generated by the rotation of the microdefects are 

negligible compared with the remarkable values of the M-integral. The present 

findings of the invariant integrals regarding the Jk-, M-, and L-integral 

demonstrate that only the M-integral play an important role in description of 

multi-damaged solids. It can provide an effective measure for evaluating the 

damage level. 

2) Numerical results of the M-integral for some series of variable examples with 

different defect patterns and density reveal that the critical value of the M-integral 

characterized by MC is not a problem-invariant constant. MC shows an apparent 



  

 

configuration-dependence. The failure evolution cannot be governed by the theory 

of M MC. An innovative failure theory via the concept of M-integral is proposed 

by introduction of a new failure  -parameter which critical value is only 

determined by the material-specific behavior regardless of the detailed defect 

configurations. 

3) The inherent relation between the M-integral and the reduction of effective elastic 

moduli exists by the present numerical and theoretical analysis. The present useful 

findings can lead us to propose a new failure parameter as the  -parameter, which 

is defined via the concept of the M-integral, the remote load, and the damaged 

area. In contrast with the straight application of the M-integral as a failure 

parameter, the present formulation of the  -parameter can guarantee a constant 

material-specific strength whatever the damage levels are. A convenient 

framework of the proposed failure theory via the  -parameter is suggested to the 

engineers to predict the failure of multiple defect system, just like the application 

of K-factor or J-dominant criterion in classic fracture mechanics.  

4) A protocol technique achieved by method of digital image correlation provides an 

effective and convenient tool to evaluate the  -parameter. It evaluates all physical 

quantities of the integrand of the M-integral at various points along the integral 

contour enclosing the defect zone and calculates the M-integral by numerical 

integration. And then the  -parameter can be directly determined by the M-integral, 

the remote load, and the corresponding damaged area.  

5) Potential applications of the newly proposed  -parameter via the concept of 

configurational forces associated with the M-integral would be remarkable. The 

 -parameter during the evolutionary microdefects just represents the progressive 

energy release rate due to the damage growth, e.g., microcracks growth, 

microvoids coalescence, and microcracks nucleation et al. The  -parameter can 

provide an outside variable features in description of microdefects damage 

evolution. Particularly, it has advantage of predicting the failure of material with 

the locally distributed multi-defects to overlap the shortcoming of classic failure 

theory. In such special case, the local fracture parameters, such as K and J, are 

hard to calculate since there is no a single, major, continuous crack. The classic 

damage mechanic via the effective elastic moduli is either constricted since it 



  

 

would be inaccurately determined due to the sensitivity to the area without 

continuously distributed defects.  
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Appendix A: The contribution of the nonlinear elastic energy to the M-integral 

for the defect-free medium 

Here, we introduce the third path   denoted by  - Cs, which bypasses the defect 
zones and only encloses the homogeneity, as shown in Fig. 2(c). Thus, the M-integral 
over path   is defined by: 
  ( )( )

, .i i k k i
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iM M M Wx n T u x dsΩ Γ
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= − −= ∫∑ v   (A.9) 

By using Green's theorem, the first term i iWx n ds
Ω
∫v in Eq.(A.9) can be written as  
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where A( ) means the area which is surrounded by the closed path  .  
Making use of the stress equilibrium with the absence of body force, the term 
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Similarly,  
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From Eq.(A.11) and(A.12), Eq.(A.10) can reduce to be   
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Meanwhile, the second term ,k k i i
C

T u x ds∫v  in Eq.(A.9) can be written as: 
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Substituting Eq.(A.13) and Eq.(A.14) into Eq.(A.9), the M-integral integrated along 
the path   can be formulated as 
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For a nonlinear elastic state, the strain energy density W is assumed to be a 
homogeneous function of strain and can be expressed as (Chen and Shield, 1977)  

  ,
1

ij i jW u
N

σ=   (A.16) 

with N being an integer. Substituting Eq.(A.16) into Eq.(A.15), one obtain 
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For the defect-free material in which there is no defect inside the body, ( )sM∑ will 

be vanished. And then the value of M-integral can be finally reduced as 
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N=2 for linear elastic material, therefore, the M-integral is zero in the linear 

traction-free elasticity. Nevertheless, N 2 for the nonlinear elastic material. It can 

conclude that the nonlinear elastic energy enclosed by the integral contours will have 

a significant contribution on the values of the M-integral.  

Appendix B: The M-integral for an infinite elastic matrix containing a circular 

inhomogeneity 

The analytical solutions to the stress-strain fields in plane elasticity can be 

referred to the complex variable function method (Muskhelishvili, 1953). The stresses 

( xx, yy, xy) and the displacements (ux, uy) in an infinite elasticity can be expressed in 

terms of two complex potentials  (z) and  (z) 
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where μ=E/(2+2ν) is the shear modulus of elasticity, κ=(3-ν)/(1+ν) for the plane stress 



  

 

problem and κ=3-4ν
 
for the plane strain problem.  

Consider an infinite elastic matrix embedded with a circular inhomogeneity, the 

complex potentials of the elastic matrix can be written as  
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where   represents the remote uni-axial loading; R is the radius of the circular 

inhomogeneity;  ,  , and   are the material constants defined by 
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where the subscript prima {}0 refers to the material constants corresponding to the 

inhomogeneity.  

Alternatively, the definition of the M-integral could be expressed in terms of the 

complex potentials, 
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Substituting Eq.(B.3) into Eq.(B.4) and integrating along the remote circular path, one 

can obtain  
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Assume that the inhomogeneity has the reduction of Young’s moduli E0=(1-α)E, 

the parameters   and   can be written from Eq.(B.3) 
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    Substituting Eq.(B.6) into Eq.(B.5), we finally obtain the expression of the 

M-integral for an infinite elasticity containing the circular inhomogeneity, that is  
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Fig. 1. (a) The picture of locally damaged material; (b) The schematic of the 
integration contour enclosing all microdefects to calculate the invariant integrals in 
the locally damaged material.  
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Fig.2. Self-similar expansion of one infinitesimal x1, x2-plane element 
corresponding to the configurational forces associated with the M-integral (a) along 
x1-direction; (b) along x2-direction and (c) self-similar expansion for the specific s-th 
defect. 
 
 



  

 

 
 
 

      
Fig. 3. Detailed configuration for the elastic-plastic plate with the multiple microvoids 
or microcracks randomly distributed in the local damage zone.  
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Fig. 4. The nonlinear strain-stress curve of the Aluminum alloy LY-12 under 
monotonically increasing tensile loading.  
 



  

 

 
Fig. 5. Schematic of multiple microvoids randomly distributed in the local damage 
zone (a) 9 voids; (b) 16 voids; (c) 25 voids; (d) 36 voids; (e) 49 voids; (f) 64 voids; (g) 
81 voids; (h) 100 voids; (i) 121 voids; (j) 144 voids; (k) 169 voids. 

 

 
Fig. 6. Schematic of multiple microcracks randomly distributed in the local damage 
zone (a) 9 cracks; (b) 16 cracks; (c) 25 cracks; (d) 36 cracks; (e) 49 cracks; (f) 64 
cracks; (g) 81 cracks; (h) 100 cracks; (i) 121 cracks; (j) 144 cracks; (k) 169 cracks. 
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Fig. 7. The calculated values of the M-integral against the external load for variable 
microvoids damage patterns. 
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Fig. 8. The calculated values of the M-integral against the external load for variable 
microcracks damage patterns. 
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Fig. 9. The calculated values of the effective elastic moduli against the external load 
for variable microvoids damage patterns. 
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Fig. 10. The calculated values of the effective elastic moduli against the external load 
for variable microcracks damage patterns. 
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Fig. 11. The inherent relation between the M-integral and the reduction of effective 

elastic moduli for the infinite matrix containing a circular inhomogeneity by an 

explicit analysis. The inner figure denotes the schematic of an infinite plane 

containing a circular inhomogeneity. 
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Fig. 12. The critical values of the M-integral and the L-integral corresponding to the 
critical external load at failure for variable microvoids patterns.  
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Fig. 13. The critical values of the M-integral and the L-integral corresponding to the 
critical external load at failure for variable microcracks patterns.  

 
          

          

 
              Fig. 14(a)                           Fig. 14(b) 
Fig. 14. (a) The protocol to experimentally measure the  -parameter by method of 

digital image correlation in multi-defects materials. (b) Powder sprays on the surface 

of specimen to obtain the good high contrast stochastic pattern. 

 



  

 

Table 1. The fundamental concepts of material configurational forces regarding the Jk-, M-, and L-integrals 

Operation Definition Configurational 
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Nomenclature：kj is the stress tensor; uk denotes the components of displacements;
 
W represents the strain energy density; ni denotes the 

outside normal vector of the selected integral contour; the subscript prima{},i refers to the corresponding differentiation with respect to the 

coordinate xi;  
expl

/ iW x  denotes the explicit dependence of W on xi; m=xi,i, which is identical to 3 for three dimensions and 2 for two 

dimensions; emij is the alternating tensor depending on the arrangement of the integer indices m, i, and j. emij=0 if any two of the indices are equal, 

emij =1 when the indices form an even permutation of (123), emij=−1 when the indices form an odd permutation of (123).  
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Table 2. The critical value of  -parameter for variable numbers of microvoids 

Number of microvoids  

9 16 25 36 49 64 81 100 121 144 169 
 C 

(10-11Pa-1) 
1.019 1.020 1.020 1.019 1.022 1.018 1.017 1.014 1.018 1.017 1.015 

 
 
 
Table 3. The critical value of  -parameter for variable numbers of microcracks. 

Number of microcracks  

9 16 25 36 49 64 81 100 121 144 169 
 C 

(10-11Pa-1) 
1.017 1.018 1.018 1.017 1.019 1.019 1.017 1.017 1.015 1.012 1.014 

 
 




