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Abstract

Complex materials, often encountered in recent engineering and material sciences applications, show
no complete separations between solid and fluid phases. This aspect is reflected in the continuous
relaxation time spectra recorded in cyclic load tests: As a consequence the material free energy
can not be defined in a unique manner yielding a significative lack of knowledge of the maximum
recoverable work that can extracted from the material. The non-uniqueness of the free energy
function is removed in the paper for power-laws relaxation/creep function by using a recently
proposed mechanical analogue to fractional-order hereditariness.

Keywords: Fractional derivatives, Power-law creep /relaxation, Free energy, Dissipation rate,

Material state.

1. Introduction

Recent applications in engineering and physical sciences have involved reticulated polymers, foams,
hydrogels soft matter as well as biological tissues as shown in several papers ((1),(2),(3),(4)). These

materials show significative deviations of their mechanical and rheological features from well-studied
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conventional materials.

The differences are mainly due to the presence of a marked microstructure with material cross-
links, Wan der Waals interactions and/or dipole-dipole bonds that lead to unpredictable behavior
with the well-known tools of continuum mechanics, material rheology and thermodynamics . In-
deed, in the rheology framework studied in the paper, complex materials involve different states of
the matter that can not be separated at the macroscopic observation scale. Such a consideration
suggests that a rheological description in terms of mechanical arrangements of linear springs and
linear dashpots, representing the solid and the fluid phases, respectively, is not acceptable. This is
confirmed by experimental relaxation spectra (see e.g. paper (5)) that shows a continuous distribu-
tion of relaxation times. Continuous relaxation times spectra are not deseribed by single or multiple
exponential-type relaxation functions, corresponding to arrangements of springs and dashpots, and

they may be described, instead, by power-law relaxation functions.

As a matter of fact creep and relaxation tests show' that experimental data may be fit with
extraordinary precisions by power-laws with real-order exponents 0 < g < 1 ((6),(7)) yielding,
by the Boltzmann superposition integral, constitutive equations in terms of fractional operators
((8),(9)(10),(11)). Fractional differential calculus may be thought as a generalization of the well-
known, integer-order, calculus operators that turns the order j € N of differentiation of a function
f(z) into a real-order value j < 3'< 4 +1'so that d’ f(x) — d” f(x). Incorporating such fractional-
order operators into the governing constitutive equations produces new viscoelastic models for Frac-
tional Hereditary Materials (FHM) that exhibit power-law relaxations. Mechanical and geometrical
representations of the fractional differentiation have been reported in several scientific fields, such

as, mechanics ((12),(13)) , thermodynamics ((14),(15),(16),(17),(18)) beside rheology ((19),(20)).

The main gap in the use of alternative relaxation functions with respect to the widely used
linear combination of exponential relaxations is related to the lack of an unique definition of the
free energy function. This is the consequence to the incomplete separation of the materials’ elastic
and viscous phases at the scale of the tensile tests, yielding non-conventional creep and relaxation
functions. Indeed if the two phases of the material may be clearly identified, as in conventional

applications, then an exponential-type relaxation function is observed in creep/relaxation tests and



no differences among the existent versions of the free energies exist.

In this regard, free energies, defined upon phenomenological relaxation/creep functions must
satisfy the fundamental properties described in classical papers by ((21),(22),(23)) and, as those
properties are satisfied, several well-known different expressions for free energies may be found in
scientific literature ((24),(25),(26),(27),(28)). Despite their equivalence in terms of the correspon-
dent stress, very different configurations, each corresponding to the same material state, may have
the same value of the free energy. Indeed the mechanical tests usually introduced to define the
relaxation/creep function of the material do not allow for the evaluation of the material stored
energy nor of the dissipated energy. This is a severe drawback since the maximum recoverable work
from the material can not be evaluated using relaxation functions other than‘the exponential-type.
The use of power-law relaxation functions =P with 0 < 0 < 1 undergoes the same limitation,
restricting the use of power-laws for the representation of creep and relaxations of unconventional
materials.

In a general context, the aforementioned considerations may be overcome, allowing for only one
definition of the material free energy, as the elastic (solid) and viscous (fluid) phases of the material
may be separated. In this regard it has been recently shown that power-law creep/relaxations may
be obtained with a mechanical analogue to the fractional-order springpot with a complete separation
of solid and fluid phases ((29),(30),(31)).-This model served, also, as a guide to introduce a fractal
material microstructure yielding a macroscopic power-law relaxation with the order of the power-law
corresponding to the Hausdorff dimension of the microstructure ((32)).

In this paper the model is further investigated to provide an unique expression of the free energy
functional of FHM. It s shown that the evaluation of the dissipation rate of FHM, obtained with
the mechanical analogue to the power-law relaxation, coincides after some algebraic manipulations,
with the well-known dissipation rate of the Stavermann-Schwarzl formulation.

Additionally, the complete characterization of parameters of FHM, requires specific care in the
definition of the equivalence classes of the stress (or strain) histories undergone by the material,
namely to the knowledge of the state of the material ((33)). Indeed, it has been shown recently

that the correct evaluation of FHM parameters requires the knowledge of the entire strain histories



undergone by the material specimen ((34)), and then, the correct definition of the material state is
crucial for the general derivation of the free energy functional ((35),(36)). This latter problem is not
so evident for relaxation functions given as linear combination of exponential laws since a discrete
number of state variables are involved for the definition of the material state. The expression of
the free energy in terms of the material state for the power-laws relaxation functions has also been
provided in the paper.

The paper is organized as follows: In the next section the authors will provide some basic defi-
nitions involving power-laws creep/relaxations, the corresponding definitions of fractional integrals
and derivatives and the definition of material free energy. In sec.(3) the rheological description of
power-laws creep/relaxations will be briefly outlined for EV and VE material models. Sec.(4) will
be devoted to the evaluation of the elastic energy stored in the mechanical model showing that
it coalesces with a specific form of the free energy based upon the phenomenological power-law
relaxation function. The expression for the material free energy in terms of the state of FHM is
reported in sec.(5) with some comments reported in sec.(6). Mathematical details about fractional-
order calculus have been introduced in appendix A and some additional informations concerning

the mathematical derivations reported in the paper have been discussed in appendix B.
2. Power-law relaxation (creep) function: The free energy function of FHM

In the subsequent derivations we recall that two hypotheses are considered while analyzing vis-
coelastic materials (see e.g:(10)): ¢) invariance under time translation and ) causality. With the
first requirement we mean that a time shift in the input is reflected as the same shift in the output;
with the second we mean that the material response depends on previous histories only, reflecting
the memory of such materials. The discussion about the power-law relaxation (creep) function in

integral material hereditariness is reported in this section with regards to the issues:

1. Power-law relazation (creep) functions yielding the constitutive relations among the stress
measure and the strain measure in terms of fractional-order operators.
2. The free energy function of FHM that represent a scalar measure of the stored material

energy.



The section is devoted to the introduction of power-law relaxation/creep functions and their rela-
tions with fractional-order derivatives and integrals (sec.2.1). The definition of the material free

energy and its relation with the stress measure are discussed in sec.(2.2)
2.1. Power-law relazation (creep) function : Fractional-order calculus

Let us assume, in this section, to deal with virgin materials, namely either the strain or the'stress
are known from the very beginning of the observation of their behavior, conventionally set at ¢ = 0,
and hence no past histories with respect to such a time need to be taken into account.

Creep and relaxation tests are performed to detect the memory of the material: in the first case,
the stress is held constant and the strain is measured, whereas in the second one the strain is held
constant and the stress is measured. Whenever either a unit stress or a unit strain is utilized, the
creep compliance J(t) and relaxation modulus G(t) are found as'the strain and stress response to

the imposed unit stress and strain respectively, i.e.

e(t) = U(t) — alt) = G(t) (1a)

a(t) = U(t) <3%e(t) = J(1), (1b)

where U (o) is the unit Heaviside step function. When either the creep or the relaxation function is
known, the Boltzmann superposition principle allows writing convolution-type Riemann-Stieltjies
integrals to express the relationships between o and e. Whenever either the strain or the stress are
prescribed, the constitutive relations for the corresponding derived quantities read as follows:
t
o(t) = G(t — 7)de(T), (2a)

0+
t

e(t) = /0 J(t —7)do(T). (2b)

+

Smoothness assumptions on €(t) and o(t) will be discussed in the sequel.
Creep compliance and relaxation modulus are not independent. Indeed they are linked to each

other by the relationship

T (@)Gy(w) = —— 3)

(iw)?’

where the symbol " denotes the right-sided Fourier transform (see eq.6, equation eq.(70).



Experiments on polymeric materials performed (see paper by Nutting, (1)) at beginning of the

twentieth century showed that their relaxation function was well fitted by power-laws, i.e.

where I'(o) is the Euler-Gamma function, Cg and [ are characteristic constants of the material:
The exponent 8 must be enclosed in the range 0 < 8 < 1 because of thermodynamics restrictions
((37),(30)). At the extrema of the range, asymptotic behaviors are obtained: S — 0 corresponds
to purely elastic solid whereas § — 1 to purely viscous fluid. The values of 0 < < 1 correspond
to an intermediate behavior between elastic solid and viscous fluid, allowing it to describe both
complex-structured materials and soft matter. As we expect, the creep compliance of the given
material can be determined through (3) from the relaxation modulus assumed in (4). Furthermore,

the right Fourier transform of the relaxation function (4) yields

Gy (w) = Cpliw)" 7, (5)
which may be replaced in (3) yielding, after inverse transform:

J(t) = m& (6)

It is worth analyzing the material behavior with the aid of normalized functions, G(t) and J(t)
defined as follows G(t) := G(t) (C’g)_1 I(1-8) =t and J(t) :== J(t)CsI'(1+ ) = t* and plotted
in fig.(1). A careful observer will notice immediately that all the curves share the common point
(1,1), which represents a key value. Indeed, the blue curves (0 < 8 < 1/2) show that the elastic
phase prevails on viscous one with decreasing 3, whereas the red ones (1/2 < 8 < 1) show that
the viscous/phase prevails on elastic one as increases as (3. This consideration provides a mean
for identifying the former as ElastoViscous (EV) materials while the latter as ViscoElastic (VE)
ones; the value § = 1/2 is clearly common to both kinds of materials, thus it may be obtained as
a limiting case of both models described above. The constitutive equations of fractional hereditary

materials may be obtained with the substitution of (4) and (6) into Boltzmann integrals in (2) and



in (2b) yielding:

e(t) o(t) elr
)= [ Gt = [ Gt =6 (Ph) 0.
_ /[ _ @Gyt : _ 1
(t)= [ J(t=myolr) = 125 /O+ (t =)o = o= (1.0) (), (7b)

which represent the constitutive relations in terms of fractional-order integrals and derivatives
defined in the positive real axis [0,00[. In eq.(7) the terms (CDg+ e) (t) and (IgJr 0') () so-called
Caputo’s fractional derivative and Riemann-Liuville fractional integrals, respectively (see 6). We
conclude that as soon as the creep and/or the relaxation function is assumed to be a power-law
type, then the constitutive laws involves fractional operators. The constitutive equations in terms
of fractional-order calculus assume that the considered material is at rest for ¢ = 0 a condition that
is seldom available in engineering and physical applications. It has been shown in previous paper
that the presence of an history of strain/stress undergone by the material up to the time instant ¢,
that is the initial time of the strain/stress process must be included in the constitutive equations
to provide accurate estimations of the decaying and the force coefficients of the material, namely 3
and Cjs ((38)). In this latter case the complete stress measure in virgin FHM may be obtained by

extending the initial time instant to —oo yielding:

o(t) = [ ; Gt — 7)de(r) = FL [ too (té_(TT))BdT = ¢ (“Die) ). (82)

(1-5)
(0= [ <as(r) - r(fi% | _t=rsar - & @)oo

In the following section the definition of free energy of fractional hereditary materials will be
discussed. The fundamental definitions necessary to evaluate the free energy associated to the

power-law creep/relaxation from a mechanical perspective will be shortly summarized.
2.2. The free energy functionals of FHM

The specific Helmoltz free energy 1 (e, ¢!, T) with T the absolute temperature, €'(7) = €(t — 7)
with —oo < 7 < t the strain history, is, by definition, a thermodynamic state function whose
gradient, with respect to the actual value of the deformation € yields the measured stress. The

rate of increments of the material free energy is expressed in terms of the rate of increments of the
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specific internal energy % and of the entropy production as:
i=1u—Ts (9)

where $ is the specific entropy production rate that must satisfy the thermodynamic restriction
provided by the second principle of thermodynamics § > ¢/T, where ¢ is the rate of change of
the specific thermal energy. The rate of change of the internal energy function is related to the
specific mechanical work done on the system and to the thermal energy exchange as (first principle
of thermodynamics) @ = eyt + ¢. The free energy function in eq.(9) may be expressed in a more
explicit form if we introduce the entropy production rate due to irreversible transformations, namely
5(0) > 0 so that the second principle of thermodynamics may be written as: § = G/T + §' yielding,

upon substitution in the expression of the free energy in eq.(9)
P = et — T = tbegi(t) — D(t) (10)

where we used the balance equation of the first principle and we introduced the specific dissipation

rate D(t) = T5%) > 0 due to irreversible thermodynamical transformations in the material.

Assuming isothermal processes, the free energy function 1 for simple hereditary material depends
on the current value of the strain and on the past history undergone by the material ¥ (e (¢), €' (7)).
The free energy function must be a state function and it must fulfill the following thermodynamical

restrictions thermodynamic restrictions as (see paper (33)):
e For any time instant the following thermodynamic restriction holds true:

a(t)é(t) = (e(t), €' (7)) (11)

e For the entire set of strain histories €(t — 7) sharing the same value at the time instant ¢
as €(0) = ¢g the minimum free energy must be achieved for the uniform strain history as

€(t —7)=const =€y Vit

e The derivative of the free energy with respect to the actual value of the strain must correspond



to the measured stress as

o(t) = 8'@/](6;?(75 (7)) (12)
e For any strain ¢g
(o, €p) — ©(0,0") = 1/2G o€ (13)

where €} denotes a constant history of value €.

e Any free energy is a state function and, therefore the following equality must be fulfilled for

any pair of strain histories €, (7) and €’ (7) corresponding to the same material state as:
U(e(t), €a(T)) = Y(e(t), (7)) (14)

Under the assumption of linear hereditary behavior the stress value o(t) is provided by the Boltzmann-
Volterra integral as reported in the first equality of eq.(8). An explicit dependence of the stress
measure on the actual value of the strain and of the strain histories may be easily introduced as we

perform an integration by parts yielding the the following expression:

o(e, et) = G0)elt) + /0 T G (r)dr (15)

The latter may be substituted in eq.(13) to yield a general expression of the free energy functional

explicitly dependent on the current value of the strain as well as on the strain histories as follows:

B(E(ONE () = GG +e(t) [ G (i + R () (16)

where R(e'(7)) must be a functional of the past strain history only. The presence of the functional
R(e'(7)) is a source of indeterminacy for the free energy function; This leaves room to several
choices for 4)(t) the expressions proposed in papers ((24),(25),(26),(27),(28)), among others.

In other words the measure of the relaxation/creep function of the material is not sufficient,
by itself, to predict the amount of energy available during any strain/stress process. If, instead,
a rheological description of relaxation/creep function of a material may be identified accounting

for viscous and elastic phases, then the dissipation rate (or the free energy rate) may be uniquely

10



evaluated.

Indeed, it is well-known that, for simple rheological models such as the Kelvin, the Maxwell as
well as for their combinations, the expression of the specific free energy of the system may be ob-
tained evaluating the specific energy stored in the elastic springs (see e.g. (24),(25)). Alternatively,
the free energy function may be evaluated in terms of the specific dissipation rate of the viscous
dashpots in the rheological model. The evaluation of the free energy function, in these cases, may
be directly obtained by the physics of the model separating the fluid (purely viscous) and the solid
(purely elastic) phases in the rheological model of the material relaxation function. It may be ar-
gued that, as an exact rheological representation of the relaxation function is involved, then the free
energy of the material may be obtained in a mechanical setting evaluating either the elastic energy
stored or the viscous dissipation rate. The choice of a specific form for the free energy function,
although corresponding to the same representation for the stress function, may correspond to very

different material state significantly affecting the mathematical predictions.

In the sequel of the paper we refer to a specific functional class of the free energy reported in
eq.(16) that, assuming a linear material behavior, may be expressed as a quadratic functional of

the strain measures for the free energy 1 (¢) (see ((25))) as :

z/)(t):/_t /_t K(t— 11,1 — 70)é()é(ra)dradrs (17)

with K(o,0) > 0 any non-negative and symmetric, i.e., K(71,72) = K(72,71) continuous and
differentiable function with respect the two arguments 71 and 7. In this setting, the explicit
dependence of the energy from the current value of the strain and of the strain histories may be

performing some straightforward integration by parts and variable substitutions in eq.(17) yielding:

Ve, €) = K(0,0)e(t)? 4 2¢(t) /t K(0,t — 7)e(r)dr + /t /t K(t —71,t — 72)e(r1)e(mo)dridro,

- T (18)
where we used the symmetry of the K (o,0) > 0. Inspection of the free energy functionals in eq.(16)
and in eq.(18) shows that, under the assumption of v(t) in eq.(17) the kernel function K(o,o0)

may be related to the relaxation function obtained by stress measures as 2K(0,0) = G(0) and

11



K(0,t) = K(t,0) = G(t). This identification yields the following expression for the integration
term R(e'(7)):
R(e'(1)) = / / K (71, m)€' (1) (r2)drydr (19)
o Jo

This expression shows that the integration term is explicitely dependent on the choice of the Kernel

function K (o, o) whose restriction to the time axis 71 and 7o coincides with the relaxation function

G(t).

A more specific expression of the free energy functional is obtained as the kernel function is

related to the relaxation function as ((24)):

G(t— t— G2t —m —
K(mm) = Sonriom)  CRCR=D) (20)

then the free energy expression in eq.(17) is obtained in the form:

wss (t):% / / G(2t77-1*TQ)é(Tl)é(TQ)dTldTQ (21)

—00 —o0
where the suffix SS stands for Stavermann and Schwartzl free energy. In eq.(21) we made the
replacement of the strain variable in terms of shear strain to be consistent with subsequent deriva-
tions. The introduction of the first principle of thermodynamics, yields that the specific mechanical
work must equate the rate of increment of specific free energy added to the dissipation rate of the

material as:

J(t)é(t)=2é(t)/K(O,t—T)é(T)dT—l—/ /K(t—Tl,t—Tg)é(ﬁ)é(Tg)dﬁdTQ+D(t)

:é(t)/G(t—T)é(T)dT-i—%/ /G'(2t—71—Tg)é(Tl)é(Tg)dﬁdTg+D(t)

(22)
where we neglected non-essential dependency on the actual value of the strain only e(t). The

observation of the energy rate reported in eq.(22) shows that the dissipation rate associated to the

12



free energy in eq.(21) reads:

t ot
D)=~ [ [ G@t-n-r):(m)mdndn (25)

—00 —o0
, that is, a quadratic form of the strain histories with measure provided by the relaxation function
G(t). Different choices of the kernel K (11,72) in eq.(17) yield different choices for the dissipation
rates, each corresponding to the same stress at time t. The explicit expressions of the free energy

1 (t) and of the dissipation rate of D(¢), in egs.(21, 23) for the power-law relaxation function is

obtained as:

b )= gy | [ @ m- e SR (212
D(t) = 26’;;(6) / / (215*7'1 *7'2)‘(14_5)6:(7'1)6.(7'2)d’l’ldTQ (24b)

Summing up, in this section we observed that the definition of the free energy in the presence of
hereditary material behavior is affected by a pathological drawback: The presence of an integration
term that is not known by relaxation (or creep) measures. In this regard, the residual term is related
to the dissipation rate of the material during the strain history and, assuming a specific expression
of the free energy functional it may be evaluated. Different kinds of expressions of the dissipation
rate may be obtained for the different expressions of the free energy functional each corresponding to
the same measures of stress relaxation, thus providing non-unique relations among stress measures
and the material dissipation. In passing we observe that some thermodynamical restrictions about

the fractional model of creep/relaxations have been reported in a recent paper (39).

In the following sections we show that for the power-law creep/relaxation function, a proper
mechanical model that separates the elastic (solid) phase and the viscous (fluid) phase may be used
to introduce a unique expression of the free energy for FHM. Thus, the exact amount of energy

stored in the material for any strain process can be evaluated.

13



3. Rheological models of Fractional Hereditary Materials

The use of a mechanical model to pursue power-law hereditariness of material response is an old
topic of rheology and it has been treated, in exact form, only for the case of power-law decay
8 = 1/2 ((19),(40)). Several other approximate expressions have been obtained in the scientific
literature for 0 < 8 < 1 holding for specific time intervals ((20),(41)).

In recent studies, the authors proposed an exact mechanical description of power-laws for decay
exponent in the entire range 0 < 3 < 1 possessing a clear separation between the viscous and the
elastic material phases (30). The behavior of elasto-viscous material has been separated from visco-
elastic one: Both are ruled by S-order differential equation, but in the former case 0 < 8 < 1/2
while in the latter 1/2 < 8 < 1. The different range of fractional-order involved in constitutive
equations is linked to a different mechanical model. In this section 'we show two different mechanical

arrangements to describe the material behavior. The rheological scheme of Elasto- Viscous material

a(t) ()
— —
nv(2)
VA

Figure 2: Rheological continuum models: (a) ElastoViscous (EV) and (b) ViscoElastic (VE).

(EV) is represented by an indefinite massless plate resting on a column of Newtonian fluid supported
on a side by a “bed" by way of independent elastic springs, whereas the model of Visco-FElastic
material (VE) is represented by an indefinite massless plate resting on a column of elastic solid
linked to a rigid support through independent viscous dashpots, as depicted in fig.(2). In both cases,

we consider a cross-section with area A; moreover, we assume that the material elastic modulus

14



k(z) and viscous coefficient c(z) spatially decay with a power-law, resembling a functionally graded

microstructure. Thus, in the case of EV material, they read as follows:

b (2) = AG oy (2) = Ar(fja)za (25a)
Cov(2) = Ay (2) = Aﬁ , (25b)
whereas in the case of VE material they become:
kyp(z) = AGys(2) = Aiz*a (26a)
I(1—a)
cvi(2) = Anyp(z) = Aﬁz—“. (26D)

In equations eq.(25), eq.(26) the subscripts EV and V E indicate ElastoViscous and ViscoElastic
case, respectively, and 0 < a < 1 is the decay parameter. In these models the equilibrium is

governed by a differential equation in the following form:

(EV) : % [CEv(Z)(gZ] =krv(2)v(z,t) (27a)
VE): o [ ] = v, (271)

where (z,t) represent the transverse displacement imposed to the shear layer at depth z and
0

A(z,t) = a’y(zﬂf) is its time rate of change. In order to solve the problems above, we make use

of the boundary conditions related to the mechanical schemes in fig.(2), expressed in the form of

limits as follows:

lim (2, ) = (1) o)

lim ~(z,t) =0.
By using such boundary conditions it is shown in (30) that eq.(27a) (or eq.(27a)) delivers a re-
lationship between the force o arising in the top layer in both models and the Caputo fractional

derivative of displacement -, i.e.

o(t) = Cs (DG, ) (1) (29)

15



where we assumed the parameters as:

Cp :CEEV) = r(2- 256);1(-)‘3/6;) 3)21-28 (TéEV))ﬁ (30a)
7EV) = g_f; Eg i__Z§ (30b)
and a = 1 — 2 for the EV material, whereas:
©o=C8'™ = s g B1a)
&= Z—ZH (31b)
and a = 203 — 1 for the VE materials. The terms TéEV), T(ELVE) are relaxation times. The result

expressed by eq.(29) highlights that these rheological models are capable to yield a force on the top
layer relaxing with a power-law, ultimately resembling the macroscopic material behavior. In this

respect, the boundary of such rheological models reproduces the material response.

A different, mechanical-type perspective of the rheological models of EV and VE materials is
related to the evaluation of the overall stress in the external springs oV (z,7 + t)dz of the EV

model and of the external dashpots in the VE model oV (z, 7 + )dz (see fig.3) that reads:

<«
<«
o (2:1)
<«
<«
<«

. .(C.L). . | . .(I.))

Figure 3: Elastoviscous (E) and Viscoelastic (V) deformed models and related external microstresses.
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o(t) = /0 o (27 + Bdz = G (‘D) 1) (0<p=<1/2) (32a)

o(t) = /OOO o Pz 4+ B)dz = Cp (DI) (1) (1228 1), (32b)

with the last equality obtained from the horizontal equilibrium conditions of the EV and VE models;
respectively. The stress fields 0(FY) (2, t) and (Y #)(z,t) may be obtained in terms of the Duhamel’s

integral of the displacement at the boundary ~(t) as:

T+¥

oV (2, +1) = k(2)y(z, 7+ 1) = k(2) [ HPV (2,7 +t—7r)q(r) dr (33a)
oV (2, + 1) = c(2)Y(z, 7 +1) = ¢(2) [ HY (2,7 + T =0r)5(r)dr (33Db)

where the integral kernels in egs.(33) may be obtained as the Right inverse Fourier transform of

the frequency response fields, namely, fI(EV’(z, w) and fI(VE)(z, w), that reads (see Appendix B):

r(EV _ Go BV ; % B ?

B0 e) = s =g ) Ko (rer ) o)
. G 146

HY?(z,w) = NEIC _025)26—1 (1Y %iw) 3 18 Ki_g (Z\/TXEiw) (34b)

The achieved result is consistent with what is encountered in micromechanics, where a displacement
(in this case «) is prescribed on the boundary (namely the top plate) of a representative volume
element of heterogeneous material and a boundary value problem is solved in the interior of such
an element. This latter consideration is, in a broad sense, the result discussed in (30) where it was
found that the response of the top plate, was the convolution between the rate of change of the
imposed displacement and the relaxation functions G*" (o) or GV (o) for (EV) or (VE) material

models respectively.

4. The mechanical assessment of the free energy of FHM

The arguments in previous sections showed how the expression of free energies based on stress

relaxations are not unique and this is a very serious drawback that may considerably affect the
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mechanical derivations, such as studies about stability of either configurations or motions or both.
On the other hand it has been assessed that the stored and the dissipated energy may be computed
in unique way for Voigt, Maxwell or more refined models in which elastic springs and viscous
dashpots are involved. On this solid ground, in sec.(3) we presented exact mechanical models
corresponding to power-laws composed by springs and dashpots and in this section we aim to
evaluate the stored (free) and the dissipated energy of fractional hereditary materials. Since for
0<p< % and % < B <1 the mechanical models are different from each another, the two cases

will be discussed separately.
4.1. Derivation of the free energy for the Elasto-Viscous model

Let us consider a relaxation function G(t) o t~* with 0 < 3 <1/2 and, therefore, described by
the Elasto-Viscous rheological model presented in sec.(3). In this case the overall dissipation rate
of the material may be evaluated in terms of the energy rate dissipated by the internal dashpots

as:

Dy (1) = ;7(;(2) (5 <z,t>)2dz (3)

and the rate of shear strain reads:
OA ;
2L [ HE =i ar (30)

The dissipation rate, involving the Green’s function of the model reported in sec.3 may also be
written in terms of the Fourier transforms H(z,w) = S [H(z, )] as:

1 +00 ( ) +o0o
Cl\Z . ~ a
Dpv (t) = / / O HEY) (2,005 (1) dion
0
1

eiw?tlA{’(ZEV) (z,w2)7 (we) dwadz

S22

O\<§

+o00 40 “+o0
/ eilwitwa)t / c(z)ﬁfZEV) (z,w1) fIv(ZEV) (z,w2) dz% (wo) A (we) dwadwy
0

[}

R ANG:
eiwlt\/T? / eiw2ti/ (wlva) ’Y (WQ) dwg:y (W1) dUJ1
0
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where we defined

+oo
(wi,ws) := / c(z)ﬁfZEV) (z,w1) fAIfZEV) (z,w2) dz (38)
0

2 (EV)

and as we denote the monodimensional inverse right Fourier transform as:
+oo
ME) () : = —— [ 2t LEV) (w1, wo) 4 (wo) dws

t (39)

=7 {i(Ev) (wi,0)4 (0)] () = / LEV) (w1t — ) 4 (1) drs

where, in the latter equality the convolution theorem has been applied. Substitution of Eq.(39) into

eq.(37) allows for the dissipation rate in the form:

Dgy (t)*if/ wlt/L(EV wi,t = 7) ¥ (72)drad(ws) dewy = ;C:l MEY) (tao)’?Y(O)} (t)

(40)

that, by means of the convolution theorem yields the dissipation rate in the form:

Dgy (t /MEV) (t— 1)y (r)dry = / /L<EV> (t —71,t — T2) ¥ (12) droy (1) dT (41)

—00 —00
The expression of the dissiption rate provided in eq.(62) shows that, with the aid of the rheological

model, a unique expression-of the dissipation rate is obtained.

Summing up, the evaluation of the dissipation rate for the mechanical model of EV materials
corresponding to power-laws relaxations o< t=% and 0 < B < 1/2 may be performed accounting for
the overall energy dissipated in the purely viscous layers for applied transverse displacement ~(¢) at
the top layer. In this regard the dissipation rate involves a double integral (see eq.62) with kernel
(EV)(

provided by a two variable function, namley, L 71, T2) that is obtained by means of an inverse

double right Fourier transform of the operator L(FV)(wy,ws) reported in eq.(38).

EV)(

The explicit evaluation of operator L w1, ws) is a fundamental step to obtain an expression

for the dissipation rate in the mechanical model and, substituting eq.(34 a) into eq.(38) it yields:
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((iwlTE)l_B - (ingE)l_B) mese (m3)

LEV) - 42
(wr,ws) 27gi(w; — wa) (42)
that may be transformed to time domain yielding:
1-28 B—2_—B
L(EV)(t1, b) = — 2 (t1 4+ t2)” 215 "nomese (73) (43)

['@2-p)L(B)PrE-1)

The kernel operator in eq.(43), namely L(FV)(t;,t,) may be written, replacing the variables t; —

TEGOF(2 — 25)
I'(25)

t—71 and t3 — t—7y and substituting the expression of the viscosity coefficient 7y =

,B=1—/ with 0 <3< 1/2, in the form:

Lt —1,t—1m) = BCrv (8)(2 — T~ o) Y (44)

-2

yielding, upon substitution in eq.(62), the dissipation rate Dgy (t) in the form coalescing with

eq.(23) assuming the relaxation function in eq.(4).

The result obtained in eq.(44) is of great importance since it states, clearly, that for power-law
relaxation functions, the overall dissipation rate of the material for any strain history is always pro-
vided by the quadratic expression reported by (42). This result have been obtained by means of the
rheological model correspoding to the relxation function of FHM that allows to separate,completely,
the solid (elastic) phase and the fluid (viscous) phase of the material.

Summing up we showed that, despite the non-uniqueness of the free energy and of the dissipation
rate associated to a particular functional class of the relaxation function, this is not the case of
FHM. Indeed for such-materials the relaxation function is expressed in terms of power-laws of real
order and a rheological model that possess a power-law creep/relaxation function has been obtained
in recent literature ((30)). The model has been used to define the state of FHM in aprevious paper
((43)) and in this paper it has been used to evaluate the dissipation rate. In this context has been
shown that the dissipation rate obtained from the rheological model coincides with the dissipation
rate involved in the Stavermann-Schwarzl expression of the free energy reported in(24) assuming a
power-law relaxation function. We may conclude that the Stavermann-Schwarzl expression of the

free energy function provided in (24) corresponds to the potential energy stored in the elastic solid
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phase of fractional hereditary materials.
4.2. Derivation of the free energy for the Visco-Elastic material model

The arguments of previous section led the conclusion that, at least for the EV material model
and, henceforth for decaying exponent in the range 0 < § < 1/2 the energy stored in the linear
elastic phase of a fractional hereditary material is provided by the Staverman-Schwartzl free energy
function. In this section we show that a similar consideration may be withdrawn for the VE model

of fractional hereditariness, that is for decaying exponent in the range 1/2 < 8.< 1.

Indeed the evaluation of the dissipation rate Dy g(t) for VE model is obtained by means of the

overall energy dissipated by the external viscous dashpots of the VE model as:

oo

/ ¢(2) () d2 (45)

0

Dyg(t)=

|~

and, expressing the rate of displacement function in terms of function H (VE)(Z, t) as:
t
(a0t = _JoHOP (= 1) () dr (46)

the expression of the dissipation rate reads:

+oo +oo —+oo
1 c(z Ly - oot R
Dyg(t) = B / ( )2 /e“”ltH(VE) (z,w1)7 (w1) dun / eiwat fr(VE) (z,w2)7 (w2) dwadz
0 (” 27T) 0 0
1 +00 00 +oo
= 2 / /ei(w1+w2)t/C(Z)H(VE) (%M)HWE) (Z,W2)dz’?Y(W2)ﬁY(W2)dw2dw1
2(2m) 4 J
P S A B N2 . .
:_g/ezwlti/ezwth (wl,uJQ)"y(wg)dwg”'y(wl)dwl
2V2r J 2 )
(47)
where we defined:
L (VE) e
L (w1, ws) == / c(z)ﬁ(VE) (z,wl)ff(VE) (z,w2) dz (48)
0



and as we denote the monodimensional inverse right Fourier transform as:

+oo
MYE) (1) : / ¢ L) (w1, wp) 7§ (w2) dws
0

1
N V2T

. (49)
=971 [LV) (wi,0)F ()] (8) = / LYE) (w1t = )4 (12)dr
yielding the form of the dissipation rate for the ViscoElastic material model as:
) t ) t ot
Dyp =5 [ MY (=n)imydn=5 [ [ LVP (= nt )i G)dmidn) dr (0)
The explicit expression for the operator LVE) (w1, w2) may be obtained in the form:
: B _ (s 8 <
- ((Zu)ﬂ'v) (iwaTy) )ﬂ'CbC (w5)
L = 51
(OJ170J2) QT’i(wl —LOQ) ( )
that may be transformed back in time domain, yielding for the VE case:
91=2B(p. 1 $.\B—1p =B+ _
L(VE) (tl,tg) _ ( 1+ 2) 27707—\/ ( /8) (52)
I'(8)*I(28)
The expression in eq.(52) may be'still manipulated, accounting for the transformations t; =t — 7
2
and to =t — 19 and 1 = T?Vgo_&;;))) yielding:
C o — 1 — 7o)~ (B+D)
L(VE) (t _ 7'17t _ 7_2) _ ﬂ VE(ﬂ)( 1 7-2) (53)

INCRC)
that may be substituted into eq.(50) to yield the dissipation rate in the form provided in eq.(23) for
stress relaxation measures in the form of eq.(4). This result shows that, also with the VE model of
FHM, the expression of the free energy function coincides with the functional in (24) for any strain

histories undergone by the material.

The expression of the free energy function in term of the state of FHM for the VE material

model is analogous to that provided in previous section and it has not been repeated for brevity.
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5. The state-based free energy function of FHM

The arguments provided in previous sections showed that, for the case of power-law relaxation/creep
measures of stress and strain, respectively, an unique expression of the free energy function that
corresponds to the stored energy for any strain and stress history may be withdrawn from the
mechanical equivalence of FHM.

The knowledge of the strain or stress history in a material sample, as required for virgin mate-
rials, is an ideal condition that is seldom available in applications where unknown strain histories
e® (1) may have been applied to the material; We refer to these cases as non-virgin materials.
The stress measure in non-virgin materials involves the presence of the residual stress due to the
unknown strain histories as well as the contribution of the strain process used to measure the stress.
The presence of the residual stress may introduce important deviations among the measured value
and the current value of the stress for materials with long-tails relaxation function as the power-law
of FHM

In these cases we refer to the notion of the state of simple materials ((33), (35),(44)) yielding the
definition of the equivalence class of strain histories that corresponds to the same material state.
In this regard two histories are equivalent if any arbitrary continuation (often called either process
or segment) of finite arbitrary duration yields either the same stress and/or the same mechanical
work measures.

In this section we introduce the definition the state of FHM and we will define the the material
free energy in (24) thatrepresent the energy stored in the elastic phase of the material, defined in
the following ¥gg, in terms of material state.

The specific functional classes of equivalent strain histories for power-law relaxation functions,
is obtained as we introduce two different strain histories 6(()1‘) (r) with (i = 1,2) up to time instant

t = 0/and then continued with the null history up to time ¢ as:
6(()1-) (r) =€yt =r)U({t —71) =€) (—=r)U(=r) i=1,2 r<t (54)

where U (o) is the unit step function and the apex denotes the usual definition of the strain history

up to the time instant ¢ = 0 that is continued with the null history up to time ¢. The definition
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of material state up to time ¢ does not depend on the specific strain process e?(r) for 0 < r < ¢t

following the application of the strain histories eE?) (r) with (¢ = 1,2) on the material sample. The

strain function up to time ¢ in the definition of the state may then be expressed as the superposition:

€iy(r) == e(()i) (r)+U(-r)e’(r) i=1,2and r € (—oo,t) (55)

e s e e

1
1
1
1
5?2> ;
t

|

T

Figure 4: Past histories 521), 5%2) and deformation process eP

Following the definition of state, we say that the strain histories 6?1) (r) and 6(()2) (r) are equivalent
if they correspond to the same stress measure at any time instant ¢ with ¢ > 0 whatever continuation
process €P(r) is considered:

o(t) = o(t) Vi 0 (56)

where ;) () is the measured stress at time instant ¢ corresponding to the strain histories 5%(7‘).

The condition expressed in eq.(56), corresponds, to the condition:

/_ G(t —r)éqy(r)dr = /_ G(t —1)ée)(r)dr (57)

that for the power-law relaxation of FHM is rewritten as:
Cs (CDiGu)) (t) =Cs (CD&(z)) (t) (58)
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In other words, as we define the history €. () := €(2)(t) — €(1)(t) condition in eq.(58) implies that:

O (CDie*) (t)=0 Vt>0 (59)

It has been shown (see (43)) that the equivalence class of the extended strain histories does not
contain the trivial case e, = 0 only. In this setting the state of the material, denoted as Z°(t), is
obtained as difference among the stress at time ¢ evaluated for different histories but belonging to
the same equivalence class, namely, £(¢(t) = £, (t) and the stress obtained for the actual value of

the strain as:
Cje(0)

TR (60)

70(t) == Cp (CDiéﬂﬂ) (t) —

that corresponds to the generic element of the equivalence class as:

17 79) (¢) ¢
(e (1) = ( - Cg) = Cg;(ﬁ) /_OO T0(r)(t — )P ar. (61)

The knowledge of the residual stress for virgin material, as well as of the state of FHM for non-
virgin materials, does not allow one, in principle, to evaluate the free energy stored in the material
as observed in sec.(2.2). The main reason is that the presence of the pure elastic (solid) phase and
viscous (fluid) phase in a non-separable form for the power-law creep/relaxation functions, namely
J(t) and G(t) does not allow for the evaluation of the dissipation rate or the elastic energy rate.
In the previous section it has been shown that the indeterminacy may be removed if we use the
rheological model of power-law relaxation function of FHM presented in sec.(3). Indeed, the clear
separation of the viscous (dissipated) and elastic (stored) phases of the rheological model yields
an expression of the dissipation rate of the material that corresponds exactly with free energy in

((24)), namely, 1s5(t) (see eqs.44,52).

Under these circumstances the expression of the dissipation rate of the material may be also

obtained in terms of the state of FHM, that is in terms of the equivalence class of strain histories
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corresponding to the same stress measure as:

Dpy (t) = Dyg (t) = D(t) = 1A+ (2t — 71 —72)" PV (10) (1) I ( 1°) (72) dridrs
2 Cpl'(B)

(62)

that correspond to the dissipation rate replacing the generic strain history with eq.(61) yielding:

1 1

1/’55 (t) = im

/ / @t — 7 — ) PEP (T°) (m) I (2°) (r2) drydra (63)

that is expressed by a quadratic form of a linear operator, namely the Riemann-Liouville fractional
integral 7%(o), applied to the state measure Z°(t) as it is expected for the linear measure of strain

and stress used in the paper.
6. Conclusions

In this paper the authors discuss the free energy function for fractional hereditary materials in terms
of a recently proposed mechanical model (29). Indeed the specific expression of the free energy for a
given relaxation/creep function is not unique. This problem is well-known and several expression of
the free energy have been provided satisfying the thermodynamic restrictions about the minimum
energy rate or the maximum entropy function. However for relaxation function, characterized by
a single exponential (corresponding to an arrangement of elastic spring and a viscous dashpot) the
expressions of the free energy coincides. In these cases it has been proved, that the expression of
the free energy in (24) is the elastic potential energy stored in the solid phase of the the material.
In case of other expressions of the relaxation function, however, no information about the physics
beyond the free energy expressions have been presented in scientific literature.

The authors showed that a physical context to the free energy in (24) may be withdrawn, also,
for the case of power-law relaxation function possessed by fractional hereditary materials. This
equivalence has been obtained by means of the exact mechanical description of power-laws o< t°
provided in previous papers involving either the case of Elasto-Viscous material models 0 < g <
1/2 or the Visco-Elastic material models 1/2 < g < 1 (see for instance (29),(30)). Indeed, as

the equivalence among a power-law relaxation and a mechanical model represented by a proper
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setting of linear elastic springs (solid phase) and linear viscous dashpots (fluid phase) has been
established then the evaluation of the stored and dissipated energy is unique. In this paper we
showed that the dissipation rate of the material must be evaluated by means of the overall dissipation
of the viscous dashpots of the rheological model. Hence the energy rate dissipated during any
strain/stress history is provided, only, by the overall dissipation rate of the viscous elements of the
fluid phase. Therefore, the rheological model equivalent to power-law creep/relaxation functions is
a crucial point to evaluate the mechanical energy stored and dissipated in the material during any
strain/stress history. It has been shown that the energy rate of FHM coincides with the energy rate
in (24) for the power-law relaxation function. The free energy function corresponding to FHM has
also been formulated in terms of the material state that represents the residual stress in non-virgin

materials.
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Appendix A

In this Appendix we address some basic notions about fractional calculus. The Euler-Gamma
function z — T'(z) may be considered as the generalization of the factorial function since, as z

assumes integer values as I'(z 4+ 1) = 2! and it is defined as the result of the integral

I(z) = /OOO e x* . (64)

Riemann-Liouville fractional integrals and derivatives with 0 < 3 < 1 of functions defined on the

entire real axis R have the following forms:

(177) = F(lﬁ) / ; @ ! (:))1—5 dr (652)

1 d [* f(r)
(PL) 0 - s—pa / T (o3P

whereas their counterparts defined over the whole real axis take the following forms:

(12r) ) = r(lg) / t q J (TT))l_BdT (66a)

s fa) O
(02) O = sy ey * 1) . T (66b)
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The relation (66b) is a direct consequence of Corollary of Lemma 2.1 in (11) (p.32). Besides
Riemann-Liouville fractional operators defined above, another class of fractional derivatives that is
often used in the context of fractional viscoelasticity is represented by Caputo fractional derivatives

defined as:

(D)W =P OENW) m-1<B<m (67)

and whenever 0 < 3 < 1 it reads as follows:

(02 ) 0= [ D (68)

A closer analysis of (66b) and (68) shows that Caputo fractional derivative coincides with the

integral part of the Riemann-Liouville fractional derivative in bounded domain. Moreover, the
definition in (67) implies that the function f(¢) has to be absolutely integrable of order m (in (68)

m = 1). Whenever f(a) =0 Caputo and Riemann-Liouville fractional derivatives coalesce.

Similar considerations hold true also for Caputo and Riemann-Liouville fractional derivatives
defined on the entire real axis. Caputo fractional derivatives may be considered as the interpolation
among the well-known, integer-order derivatives, operating over functions f(o) that belong to the
class of Lebesgue integrable functions. As a consequence, they are very useful in the mathematical

description of complex systems evolution.

The right-Fourier Transform of Caputo fractional derivative and Riemann-Liouville fractional

integral read as follows:

FA(12r) 0} @) = (~iw) P fi (@) (692)

F{(°D1f) ()} (@) = (iw) 1 (w) (69b)

where

Folf(0)} @) = falw) = / " fye . (70)
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Appendix B

The displacement functions along the depth of the continuum column of the mechanical models
displayed in Figure 2 (see (29) for more details) analyzed in the right Fourier domain assume the

following forms

@/

(167iw) -

7P (z,w) = ’AY(w)WzEKE <7-;)w;> (71a)

B
(18" iw)?

’?(V)(Zﬂ w) = ’A}’(W)WzﬂKﬁ (Z V T&V)Z'(U) s (71b)

for the (E) and (V) case respectively, where 4(w) is the right Fourier transform of the imposed
displacement at the top plate, K, (o) is the modified Bessel function of the second kind of order
v, 78 and 7" have been defined in equations(30b) and (31b) respectively and 3 = 1 — 3. The
relationships above are preparatory to enable us evaluating 62 and 6/, namely the time-(right)-

Fourier transforms of the microstress, arising in.the external devices for both models.

Bearing in mind that @ = 28 — 1, the right-Fourier Transform of the microstress related to the

external springs for the (E) case may be written as follows:

1
51 (2,) = 2 ka@II® (2,)

BN 7 I T A

“Tirm e Kﬁ( Tyww) (72
B—1

. Go (7{Piw) 2 3 z

BT TR PR (W%) '

The resultant of such quantities can be computed as the integral across the external devices (the
springs for the (E) case). In order to evaluate this quantity, we recall that following result holds

for a modified Bessel function of second kind integral:

/0 K, (Az)dz = 2972 AHT (’“‘ 3 V) r (” ;r ”) . (73)

By assuming f— 1 = S and v = 1 — § in (73) and with the aid of (72), the resultant of the
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right-Fourier Transform of the microstress for the (E) case arises in the following form:

B—1
% . . Go (T&E)iw)T o0 3 z
|, e =30 g e f, s ( T(gEu-w) *
B—1 (B+1)
. Go (tPiw) 7 51 1 R
=W rg s g 2 (T&E%w) re)

Go(r®)'T(B) . 5w
) 1= apra = g )’ (w)

E
Cﬂ

= (iw)i(w) CF(iw)* .

I
2>

Hence, by taking the inverse right-Fourier transform of both sides and by using Fubini’s Theorem

on the left-hand side, we have:

OOJ‘E)Z z = t — 7)¥(7)dT
/0 weni= [ G- (75)

since the right Fourier transform of the assumed relaxation function in (4) takes the form:

o gt ) = Catia . (76)

Similarly, whenever it is assumed that o = 25 — 1 the microstress for the external dashpots for

the (V) case can be evaluated as follows:

A (V) 1 2, (V)

Om (Zaw) = ZCV(Z)(iw)7 (Zﬂw)

B
(767 iw) 2

(37T

_ N —a (5 \A
—mz (iw)y(w)

Gor" T(1+a) ,. .. (TéV)iw)g -~ _
T ra a2 W K (V)

zﬂKﬁ (z T&V)iw)

2

B+2
G (Vg 2
(w) I‘(B)OI‘(z—; _Z;j;mﬁl 2 7PK, (z\/ T&V)iw)

where equation (31b) has been used in the following form:

Lo no I(1 —a)

« Go F(l + a) (78)

I'l+ o

The use of equation (77) and the assumptions 4 — 1 =1—  and v = § in equation (73) allow for
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writing the overall microstress for the (V) case in the following form:

B+2

> . Go (18"iw) =~ * s :

() — a BK (B)

/0 657 (z,w)dz v(w)r(mr(2 —o)27 /0 z 3 (2\/ To zw) dz
842

Go (T&‘”iw) 2

27 (i) T T - )

~Wrere sz 2

L Go(rW) T =B) s (i

=9 rre—aze s 9 (zw)
o

= (W) (w) O} (iw)’ .

Now, proceeding like in equation (75) we get:

/O oW (2, )z = [ too Gt — 7)3(r)dr

(79)

(80)

The results addressed by equations (74)-(75) and equations (79)-(80) show that it is possible to

compute the resultant of the microstresses in both models without knowing explicitly the transfer

function H(z,t) in the time domain.
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