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Abstract

Although large-volume metallic glasses (MG) are susceptible to shear
localization due to their intrinsically strain-softening response, recent exper-
iments and molecular dynamics simulations have shown that small-volume
MGs samples are able to exhibit work hardening response. Here, we seek to
address two issues regarding the mechanical response of small-volume MGs
at low homologous temperatures from a contintum-based modeling perspec-
tive: (1) are MGs capable of exhibiting a work hardening response, and (2)
what is the physical mechanism which causes its work hardening response?

Along with implementing a recently-developed finite-deformation, strain
gradient plasticity-based constitutive model for MGs into a self-developed
finite-element code, we study the tensile response of small-volume MG sam-
ples of various sizes through finite-element simulations. Our simulations show
that small-volume MG samples are capable of exhibiting a work hardening
response provided the following conditions are met: (a) the sample size is
small enough, and (b) the appropriate microscopic boundary conditions for
the free volume are imposed on the sample.
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1. Introduction

Metallic glasses (or amorphous metals) are structureless materials which
are void of point defects and line defects (dislocations) that weaken conven-
tional crystalline metals. Some of the recent major applications involving
the use of amorphous metals are in the area of micro & nano-technology,
precision tools and medical implants (Guo et al., 2007; Kumar et al., 2011;
Chen, 2011). This has resulted in a surge of experimental activity in the
area of mechanical characterization of small-volume amorphous metals (Guo
et al., 2007; Volkert et al., 2008; Dubach et al., 2009; Bharathula et al., 2010;
Jang and Greer, 2010; Jang et al., 2011; Tian et al., 2012; Wang et al., 2012).

Although amorphous metals are generally very much stronger compared
to conventional crystalline metals, they have limited macroscopic ductility
due its propensity for shear band formation and its catastrophic propagation.
This phenomenon is observed in amorphous metals since they are intrinsi-
cally strain-softening materials as a result of stress (or plastic deformation)-
induced free volume creation (Spaepen, 1977; ‘Argon, 1979; Schuh et al.,
2007). Therefore, the practical use of amorphous metals as key engineering
materials can be further popularized if they are able to possess work hard-
ening (or strain-hardening) characteristics which are desirable in avoiding
catastrophic shear localization.

Recent room-temperature monotonic and cyclic tensile experiments con-
ducted by Jang and Greer (2010) and Tian et al. (2012) on small-volume
(or nano-sized) monolithic amorphous metal samples have shown that amor-
phous metals have the ability to exhibit a post-yield work hardening stress-
strain response cf. Figures la and 1b, respectively. In our opinion, this is
a remarkable discovery for the following reasons: (a) dislocations are not
present in amorphous metals, and (b) the generation of multiple shear bands
and their interactions as a mechanism for the observed post-yield work hard-
ening response in bulk amorphous metals (Schroers and Johnson, 2004; Das
et al., 2005) are not realizable in small-volume amorphous metals due to their
limited volume (Guo et al., 2007; Jang and Greer, 2010).

The post-yield work hardening stress-strain response has also been ob-
served in the room-temperature molecular dynamics simulations of Li and Li
(2006) and Pang et al. (2010) cf. Figures lc and 1d, respectively?. The

2 Although the applied strain-rates in the molecular dynamics simulations are orders of
magnitude higher than that encountered in physical experiments, the qualitative stress-



numerically-simulated tensile stress-strain curves shown in Figure 1 were
obtained from the molecular dynamics simulations of sufficiently relaxed,
nano-sized binary-based amorphous metal systems. Since the sample sizes
modeled in these aforementioned simulations were in the order of the shear
band nucleus, no shear bands were formed in the samples during deforma-
tion (Li and Li, 2006; Pang et al., 2010), and the work hardening behavior in
the stress-strain responses shown in Li and Li (2006) and Pang et al. (2010)
is not caused by the formation & interaction of shear bands. Furthermore,
deformation-induced nanocrystallization has also been ruled out as a cause
for large plastic deformation and work hardening behavior (Guo et al.; 2007;
Pang et al., 2010). Therefore, based on the experiments and molecular dy-
namics simulations shown in Figure 1, we concur with the analysis of Pang
et al. (2010) that the physical mechanism responsible for the work hardening
response in small-volume amorphous metals is still not fully understood?.

To investigate the sample size effects on the deformation behavior of
amorphous metals from a continuum perspective, we require the usage of
non-local-based theories. Recently, Thamburaja (2011) developed a finite-
deformation, gradient-plasticity-based constitutive model which was imple-
mented into a commercially available finite-element program. Through finite-
element simulations, they have shown that amorphous metals are capable of
exhibiting the transition from catastrophic shear localization to stable shear
localization to homogeneous deformation behavior with decreasing sample
volume. As the sample volume becomes small, it is known that its deforma-
tion behavior becomes very sensitive to the types of imposed boundary con-
ditions for the microstructural variables i.e. microscopic boundary conditions
e.g. see the work of Bittencourt et al. (2003) on crystalline metals. However,
Thamburaja (2011) did not investigate the effects of different types of mi-
croscopic boundary conditions on the deformation behavior of small-volume
amorphous metal samples.

Therefore, the main purposes of this work are to: (a) implement the
finite-deformation, gradient-plasticity-based constitutive model of Thambu-
raja(2011) into a self-developed finite-element framework where each node
of ‘each element has the free volume (the microstructural variable for amor-

strain trends observed in both methods are similar.
3Tian et al. (2012) have speculated that the work hardening in small-volume amorphous
metals is caused by the delayed shear band nucleation due to the small sample size.



phous metals) and three independent displacements as degrees of freedom;
(b) investigate the effect of different types microscopic boundary conditions
on the deformation behavior of small-volume amorphous metals via finite-
element simulations; and (c) ascertain the physical causes for the observed
work hardening behavior in small-volume amorphous metals.

The structure of this paper is as follows: in Section 2, we summarize the
key equations of the finite-deformation, gradient-plasticity-based constitutive
model for amorphous metals developed by Thamburaja (2011). In Section 3,
we briefly describe the novel computational aspects of our finite-element im-
plementation of the constitutive model of Thamburaja (2011). We also pro-
vide the key steps of the time-integration procedure used to implement the
constitutive model in this section. In Section 4, we perform monotonic and
cyclic tension finite-element simulations on small-volume amorphous metal
samples to investigate the causes for the work hardening response observed
in these traditionally strain-softening materials. Finally, we present our con-
clusion in Section 5% .

2. Constitutive model

In this section, we summarize the finite-deformation, gradient plasticity-
based constitutive model for amorphous metals developed by Thamburaja
(2011). This constitutive theory was derived under isothermal conditions and
in the absence of heat fluxes/sources. For more information regarding the
development of the constitutive model, please refer to Thamburaja (2011).

Notation: Second-order temsors are denoted by bold upper-case Roman
alphabets e.g. A, A* H etc. The divergence, gradient and Laplacian op-
erators with respect to referential coordinates are denoted by Div, V and
V2, respectively. The second-order identity tensor is denoted by I. The
transpose of fensor A is written as A'. The inverse of tensors A and A"
are respectively written as A~' and A~". The determinant of tensor A is
denoted by det A. The product between two tensors A and H is denoted by
AH. The scalar product between two vectors a and b is denoted by a - b.
The scalar product between two tensors A and H is denoted by A : H. The

4For some of our recent work on the modeling of metallic glass behavior at high ho-
mologous temperatures, see Ekambaram et al. (2008, 2010). Furthermore, please refer
to Bargmann et al. (2014) for recent efforts in modeling the response of submicron-sized
metallic glasses.



symmetric part of tensor A is denoted by sym A = (1/2) (A + A"). The
trace of tensor A is denoted by trace A =1: A. The deviatoric part of ten-
sor A is denoted by dev A = A — (1/3) (trace A) I. The [*-norm of vector a
is denoted by |a] = y/a-a > 0. The Frobenius norm of tensor A is denoted
by |A| = VA : A.

The governing variables in the constitutive theory are (a) the Helmholtz
free energy per unit reference volume, v ; (b) the total deformation gra-
dient, F with J = detF > 0; (c) the Cauchy stress, T = T"; (d) the
plastic distortion, F? with J’ = det F? > 0. It describes the cumulative
deformation due to plastic shearing and free volume generation; (e) the
elastic distortion, F¢ = FFP~! with J¢ = detF°¢ > 0. It describes the
elastic deformation of the interatomic structure. The elastic distortion is
further decomposed into F¢ = R°U°® where R® denotes the elastic rotation
and U¢ the elastic stretch. The tensors R® and U° have the properties
R = R ", detR® = 1, U¢ = U°" and det U® > 03 (f) the elastic right
Cauchy-Green strain, C¢ = FF¢ = U®; (g).the elastic Hencky strain,
E¢ = (1/2)InC°® = InU*®; (h) the elastic stress, T¢ = JR'TR; (i) the
plastic shear strain, v > 0; and (j) the free volume, £ > 0. It represents a
measure of the defect density in amorphous metals.

e Flree energy
The Helmholtz free energy density, ¢ is given by
¥ =B, VE€) = 0° + 90 + ¢

~

The elastic free energy density, ¢ = ¢°(E€) is given by the classical relation
V¢ = i ||dev E°||* 4 (1/2) & (trace E°)?

where the constants ¢ > 0 and x > 0 denote the shear and bulk moduli,
respectively.” The quantity 9 = 19(VE) represents the gradient free energy
density, and it is taken as

V! = (1/2) s V|

where the constant sg; > 0 represents the gradient energy coefficient (units
of ‘energy per unit length). The gradient energy penalizes the formation
of shear bands and introduces a material length scale into the constitutive
model. Finally, the defect free energy density, ¢¢ = ¢(€) is given by

P& = (1/2)8628” — sl
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where the constant sg; > 0 represents the defect energy coefficient (units
of energy per unit volume) and the constant & > 0 represents the fully-
annealed value for the free volume.

e Constitutive equation for elastic stress

The constitutive equation for the elastic stress is given by

9y

T¢ =2U° ——
aCe

U° = 2u (dev E®) + & (trace E°) I.
o Flow rule
The flow rule provides an evolution equation for the plastic distortion F?,

and it is taken as
Fr — DPFP,

1 (1 dev T*®
DP = /= N7 )L NPt
7\/; +¢ <3> ! [dev'Te|

The tensors DP and N? respectively denote the rate of plastic stretching and
the direction for plastic flow. The scalar variables ¥ > 0 and 5 represent
the plastic shearing rate and the free volume generation rate, respectively.
The rate of free volume generation and plastic shearing rate are coupled by
the relation £ = ¢y + £ where the dimensionless material constant ¢ > 0
denotes the free volume creation parameter, and the quantity £* represents
mechanisms for free volume generation other than plastic shearing (more on
this later).

e Fvolution equation for the plastic shear strain

The constitutive relation for the plastic shearing rate is

’7:’70< c ) )

fr=0 — i — ([se2(§ — &r) + D]
The scalar variable fP denotes the driving force for plastic shearing with
variables = /1/2 ||devT¢|| > 0 and p = —(1/3) trace T® being the equiva-
lent shear stress and the hydrostatic pressure, respectively. With the vectors

m = V¢ and h = the quantity ;,; = —¢ Divh = —(s¢1(VZ) denotes

9%
om’



the long-range interaction stress between defects®. The material parameter
c = ¢(§) > 0 represents the intrinsic resistance to plastic shearing i.e. the
cohesion of the material (units of stress). Finally, the material constants
Yo > 0 and a > 0 respectively denote the reference shearing rate and the
rate-sensitivity parameter.

e Fvolution equation for the free volume

The rate of free volume generation is given by

€= K (V%) + ¢ — (”*p) - (”—f) (€ - &r). (1)

853 853

With regards to the terms on the right-hand side of equation (1), the first
term is the diffusion of free volume with parameter K =w,(s¢1/s¢3) repre-
senting the free volume diffusion coefficient, the second term is the plastic
shearing-induced free volume generation, the third term is the generation
of free volume caused by the effect of hydrostatic pressure, and the fourth
term is the annihilation of free volume due to structural relaxation. From
equation (1), we can clearly see that

& = K (V%) — (ﬂ’) > (ﬂ) (€ —&r)

S¢3 S¢3

since £ = (¥ 4 €. The material constant s¢3 > 0 represents the resistance
to free volume generation due to mechanisms other than plastic shearing
(units of energy per unit volume), and v, = 7,(§) represents a frequency-
like term (units of time inverse). From Thamburaja (2011), we have v, =
vor/exp(—p/€) where the material parameter v, > 0 represents a constant
reference frequency (units of time inverse) with the dimensionless geometric
constant ¢ > 0.

e Fvolution law for the cohesion

The evolution law for the the cohesion is taken as

t=qcé = c=coexp{q(E —&)}

5The definition for the long-range interaction stress between defects adopted in this
work differs slightly from the definition used in Thamburaja (2011).
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where ¢, > 0 and &, > 0 represents the initial values for the cohesion and
free volume, respectively, and the dimensionless constant ¢ < 0 ensures that
the cohesion decreases when free volume is created i.e. when £ > 0.

3. Computational procedure

We have implemented the constitutive model described in Section 2 into
a self-developed finite-element code using an explicit® finite-element formula-
tion. In this Section, we will briefly describe the main aspects of our explicit
finite-element algorithm.

3.1. Finite-element discretization of the free volume evolution equation

Consider a body which occupies a region R in the reference configuration
with n denoting the outward unit normal vector on the boundary surface S
of R. Let dA and dV denote the area element and velume element, respec-
tively, in the reference configuration. The microscopic boundary conditions
imposed on the body are

Vén=0on 8", £=0on S? (2)

where the boundary surfaces S* C S and 8 C S with S"NS? = @ and
S"US? = S. Equation (2); represents a natural (or Neumann-type) bound-
ary condition, and equation (2), represents an essential (or Dirichlet-type)
boundary condition. In strain-gradient plasticity terminology e.g. Gurtin
(2002), equation (2); resembles a microscopically free boundary condition,
and equation (2), resembles a microscopically hard boundary condition.

In our finite-element formulation, the displacement and free volume are
treated as nodal degrees of freedom, and the standard Galerkin weak form
method is used to discretize the free volume evolution equation

=K (V%) + f* (3)

6 As metallic glasses are susceptible to (catastrophic) shear banding, we have chosen
to numerically implement the constitutive model presented in Section 2 into an explicit
finite-element formulation since explicit approaches exhibit an advantage over the implicit
approaches when it comes to the ease of treating material instabilities. Furthermore,
the presently developed numerical tool can be used to aid our future studies on impact
& dynamic fracture of BMGs, and also contact-dominated simulations of small-volume
amorphous metals where frictional effects become very important. Recently, explicit-based
finite-element algorithms are also finding increased use in strain gradient plasticity-type
modeling work cf. Lee and Han (2010, 2012) and Bittencourt (2014).

8



where for convenience, we have written

. V*ﬁ ViSe2
ffzm—( )—(—5)@—&).
S¢3 5¢3
Using the variation of the free volume ¢ as a trial function, we can write
equation (3) in the wvariational form

/ (£)66dV = / (KV?¢ + f£)6¢dV. (4)
R R
From the boundary condition given by equation (2)s, we have

66 =0 on S% (5)
It is important to note that d¢ is arbitrary except on 8.

The application of the integration by parts technique on equation (4)
results in

A(£)5§dV=/S{K(V§-n)}5§dA—

/K(V(éé)-vg) dv - /(VK-vg) s¢dV +

R R

/(fg)(Sde- (6)
R

Since K = v.(s¢1/S¢3) = Vor/€xp(—p/E) (Se1/Se3), we have

VK = KV¢ (7)

where the quantity K = (1/2)(p/¢*)K. Using equations (2); and (5), we
can see that the first term on the right-hand side of equation (6)

/ (K(VE n)}ocdA = | {K(VE-n)}de dA+/ {K(VE-n)} 66 dA =0,
S Sn Sd
and hence equation (6) is then reduced to

/R (€)6¢dV = /R (€~ VI -VE)§¢ — K(V(56)-VEdV.  (8)



el
The body R is then discretized into n.; elements i.e. R = U R, where R,,

m=1
represents the domain occupied by element m in the reference configuration

with integers m = 1,2,...,ny. Let vector x = (21, x9,z3) denote the refer-
ence position of an arbitrary material point in R. We label the nodes of each
element by integers i = 1,2, ...,n, where n,, is the total number of nodes for
each element, and the shape function associated with node i of each element
by N; = N;(x). The free volume and rate of free volume generation atiany
point within an element are determined by the respective relations

N, n

§= Z N;&  and f = Zn Nz& (9>
i=1 i=1

where & is the free volume at node i of the element, and &; is the rate of free
volume generation at node ¢ of the element. We also have

0§ = isz;& (10)

=1

where 0&; is the variation of the free volume at node 7 of an element. From
equations (5) and (10), we can see that 6¢; = 0 if node i of the element is
located on 8. Furthermore, it is also important to note that §¢; is arbitrary
except if node i of the element is located on S¢.

Finally, we substitute equation (7) and the element level relations given
by equations (9);2 and (10) into equation (8), and employ standard tech-
niques used in finite-element analysis to obtain the global level finite-element
relation

M&vE = —K&vE + f¢ (11)

where M$ = Ail M¢ is the global level free volume mass-like matrix with

M§, = me NN dV being the element level free volume mass-like matrix of

element m, K¢ = Aill Kfn is the global level free volume stiffness-like matrix
with
K = / B'KB + N' (KV¢)BdV (12)

being the element level free volume stiffness-like matrix of element m, and

10



¢ = Kl £¢ is the global level free volume force-like vector with

m
m=

o = NTf4dV (13)
Rm
being the element level free volume force-like vector of element m. The
global level vectors v¢ and v¢ contain the body’s nodal free volumes and free
volume generation rates, respectively, and A is the finite-element assembly
operator cf. Belytschko et al. (2000). The element level matrices N-and B
are respectively given as

N=[N N, - N,],
ON N, 0N,
83@1 83@1 @xl

po| oM oN o,
| Ozy Oz 01rs
on on, ([ 7von,
L 81'3 81’3 81'3 |

Equation (11) is then used to calculate the rate of free volume generation at
the nodes of the body.

3.2. Calculation of the gradient and Laplacian of the free volume at the Gauss
points

We label the Gauss points for each element by integers j = 1,2,...,n,
where ng, denotes the total number of Gauss points for each element. In
the present work, we have used continuum three-dimensional hexahedral ele-
ments for our finite-element simulations where each element has eight nodes
and eight Gauss points i.e. n, = 8 and n, = 8. In this subsection, let {#},,
represent a quantity # of element m where integers m = 1,2,... ng.

Following a similar methodology proposed by Park et al. (2012), we cal-
culate the Laplacian of the free volume at each Gauss point of each element
by the following steps:

DO m = 1,n,, (Begin loop over the elements)

11



Step 1. Evaluate the first-order derivative of the free volume with respect

8l’k j

N | [ ON; o -
{<8_wk)} _Z(axkl{g’}m’ J=12,.ny k=123

J

) g
to material coordinate z, at Gauss point j of element m, { ( 3 ) }

ON; o
The quantity ( 8_) denotes the value of the first-order derivative of the
Tl .

element level shape function associated with node ¢ with respect to material
coordinate xp at Gauss point j for each element. We write the gradient of
the free volume at Gauss point j of element m, {(V§);}, as

o= [{(GE)} {(5))
()] ] Setam

Step 2a. Determine the first-order derivative of the free volume with

a n
respect to material coordinate x; at each node i of element m, { ( a—g) }
1 i) m

by solving the set of linear equations

g;(Ni)j{( g_:i)j}m: {( ;—i)j} . J=1,2,. 0,

Step 2b. Determine the first-order derivative of the free volume with

4 . . oE\"
respect to material coordinate x5 at each node i of element m, { ( 8—5) }
i) m

)

by solving the set of linear equations

;an(Nﬂj{( ;—i)j}mz {( g—ix} . i=12,...,n,

Step 2c. Determine the first-order derivative of the free volume with

. . . oEN\"
respect to material coordinate x3 at each node ¢ of element m, { ( a—f) }
T3 m

i

12



by solving the set of linear equations

g;(Ni)j{( g_i)j}m: {( %)j} . J=12,. 0,

The quantity (NV;); denotes the value of the element level shape function
associated with node ¢ at Gauss point j for each element.

END DO (End loop over the elements)

By using the nodal averaging technique analogous to the method proposed
by Zienkiewicz and Taylor (2000) and more recently Park et al. (2012), we
can then calculate the refined value for the free volume gradient vector at
each node of the body. Once this is done, we perform the following final step:

DO m = 1,n,, (Begin loop over the elements)

Calculate the Laplacian of the free volume at Gauss point j of element m,

{(v2),}

[ ON, EN™" o
{(wg)j}m_' kzl(axk>j{<8_u> }m j=1,2,...,n, (14)

=1 i

where ﬁ represents the refined value of ﬁ with

integersizl,Q,...,rthL and k=1,2,3.

END DO (End loop over the elements)

Note: The nodal averaging technique is a standard method used in finite-
element analysis, and it can be explained as follows: let node O denote a
common node between four elements cf. Figure 2a. We are interested in
finding the refined value of a variable A at node O i.e. \},. Let A3 represent
the calculated value of A\ at node O of element o where integers o = 1, 2, 3, 4.
With w, representing a geometric quantity associated with element «, the
refined value of variable A at node O, \f) is defined to be

4
*O o Za:l wa)\aO
== .
Za:l Wa

13



3.3. Time-integration procedure

A central part of our finite-element program is the time-integration pro-
cedure for the constitutive model. With ¢ denoting the current time, At is
an infinitesimal time increment, and 7 = ¢t + At. Recall that integers m
represent the element index where m = 1,2, ..., n. , and integers j represent
the Gauss point index where j = 1,2,...,n,. The nodes of each element are
labeled by integers ¢t =1,2,...,n,.

In addition to the previous notations, we also use the following notations:
Let s denote an arbitrary time. A quantity # at time s is denoted by #(s). A
quantity # at Gauss point j of element m at time s is denoted by #(m, 7, s).
A quantity # at node i of element m at time s is denoted by #;(m,s). A
quantity # at Gauss point j of element m is denoted by #(m,j).

The main details of the time-integration procedure for the constitutive
model are given as follows:

Given: (1) { M, K8(t), v&(t), £5(t) }.
Calculate: (a) { K&(7), v&(7),£5(7) }.
Step A. Construct the global finite-element relation given by equation (11):
MVA () = —KS(t)ve (L) + £4(¢). (15)
Step B. Solve equation (15) to determine vector v&(t).

Step C. Assign the value of zero to the components of vector v¢(¢) which
represent the free volume generation rate at time ¢ at nodes located on S¢.

Step D. Update the vector v&(7):
V(1) = vE(t) + vE(t)AL.
Step  E. Using the steps listed in Section 3.2, calculate the free volume
gradient VE&(m, j,7) and the Laplacian of the free volume V2£(m, j,7) for

integers m = 1,2,...,ng and j =1,2,...,n,.

DO m = 1,n,, (Begin loop over the elements)

14



DO j =1,n, (Begin loop over the Gauss points)

Given: (1) { F(m, ),J)? m,j,7) }; (2) { T(m, j,t), FP(m, j,t) };

(
3) {(m,j,t),v(m, j,t) }.

Calculate: (a) { T(m,j,7),FP(m,j,7)}; (b) {¥(m,j,7),v(m,5,7) }.

Step 1. Calculate the elastic distortion F¢(¢) and compute the polar
decomposition of F¢(¢):

Fe(t) = F(m, j,t) (F*(m, j,1) ",
Uc(t) = \/Ce(t) with C°(t) = (F°(t)) F(¥),
Re(t) = F*(t) (U(1))
Step 2. Calculate the elastic stress T¢(?):

3(t) = det F(m, jit):

Te(t) = J(t) (R*(1))" T(m, 5, )R"(1).
Step 3. Update the plastic distortion F?(m, j,7):

dev Te(¢) : o

NP(t) = Tdeve @) 5@)22( D) &Gi(m,t),

D?(myj,7) = 4(m, j, t \/>Np ) + &t ()

F?(m,j,7) = {1 + D?(m, j, 7)At } F*(m, j, t).

Step 4+ Calculate the elastic distortion F¢(7) and elastic Hencky strain
E°(7):

F(7) = F(m, j,7) (F"(m, j,7)) ",
U¢(1) = /Ce(r) with C¢(7) = (F(7)) F°(7),
E°(1) = (1/2) InC(1) = n U*(7).
Step 5. Calculate the elastic stress T¢(7):
T¢(1) = 2 (dev E®(7)) + & (trace E¢(7)) L.

15



Step 6. Update the Cauchy stress T(m, j,7):
Re(r) = F(7) (U(r))"", J(7) =detF(m,j,7),

T(m,j,7) = (J(r)) " R () T*(7) (R*(7))".
Step 7. Calculate the free volume &(m, j,7) and cohesion ¢(7):

Nn

’S(m>j77—> = Z (Nl>j £i<m77—)7

i=1

C(T) = Co(m,j) exXp {q (f(majv T) - go(mvj))} :

Step 8. Calculate the equivalent shear stress ¢ (7), hydrostatic pressure
p(m, 7, 7), and the long-range interaction stress between defects 7;,,(m, j,7)

o(r) = /1/2 [|ldev T*(7) |

p(m, j,7) = —(1/3) trace T(7),

a—int(ma j7 T) = —CS§1(V2£(m, ja 7_))
Step 9. Calculate the driving force for plastic shearing fP(7):

fA(r) = 0a(7) = Gini(m, 5, 7) = ([$e2(E(m,5,7) = &r) + p(m, 7, 7) .

Step 10. Update the plastic shearing rate 4(m, j, 7) and the plastic shear
strain y(m, j,7) :

)\
7(m7]77_) - 70( C(T) ) 9
,}/(m’ j’ 7—) = ,Y(m7 j’ t) + ;Y(m7j7 T)At'
END DO (End loop over the Gauss points)
END DO (End loop over the elements)

Step F. Update the quantities K¢(7) and f¢(7):

3

Ki(r) = A K&(7), £(r)= A £5(r).

m=1 m=1
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The quantities K¢, (7) and £ (7) for the integers m = 1,2,...,n are evalu-
ated using equations (12) and (13), respectively, at time 7. The right-hand
side of equations (12) and (13) are calculated using the Gaussian quadrature
integration procedure.

Remark 1: For the present work, we have developed full-integration ele-
ments and used the B-bar method proposed by Simo et al. (1985) and
Moran et al. (1990) to address the volumetric locking issue caused by the
nearly incompressible response during plastic deformation. For stable time-
integration, we ensure that the time increment At obeys the restriction
At < min (L./Cy, (1/2)L?/K) where L, is the smallest characteristic length
of an element in the mesh, and Cj is the dilatational wave speed of the ma-
terial. To speed up the computations, we use mass scaling. Furthermore, all
of our numerical simulations were conducted under quasi-static conditions
by ensuring that KF << IFE where KE and IF represents the total ki-
netic energy and the total internal energy, respectively, of the sample during
deformation.

4. Numerical simulations

4.1. Material parameters and verification of the presently developed finite-
element code

Before verifying our presently developed finite-element code, it is im-
portant to briefly depict amethod for determining the value for the gradient
energy coefficient, s¢; which is responsible for introducing the material length
scale in our constitutive model. Note that the material parameters used in
our simulations are generally for Zr-based metallic glasses.

Following Zheng and Li (2009) and Zheng and Shen (2009), we take the
gradient energy coefficient, s¢; = I'l. where I' is the fracture surface energy
(units of energy per unit area), and [. the fracture process zone size (units
of length). From Kumar et al. (2011), we take l. ~ 100um. By choosing
' =9Jm™? (Dubach et al., 2009), we obtain sg = 900 #J/m. For values of
the other material parameters in the constitutive model, we use the list of
material parameters employed by Thamburaja (2011) given in Table 17.

“In our continuum-based numerical simulations, we have imposed strain-rates which
are typically encountered in physical experiments. Since the stress-strain responses at
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Table 1: List of material parameters at room temperature.

nw = 35.7 GPa k = 166.7 GPa & = 0.06%

¢ =0.02 v, =323 57! q = -250

Se2 = 2800 GJ/m? | se3 =240 GJ/m? | ¢ =0.15
Yo = 0.00173 571 a = 0.02 ¢, = 1.0 GPa

For convenience, we shall recap the physical meaning of the other mate-
rial parameters listed in Table 1: (a) u and x are the shear and bulk moduli,
respectively; (b) &r is the fully-annealed (thermal equilibrium) free volume;
(c) € is the free volume creation coefficient; (d) v, is a constant reference fre-
quency for free volume relaxation and diffusion; (e) ¢ is the cohesion softening
coefficient; (d) se2 is the defect energy coefficient; (e) se3 is'the resistance to
free volume generation due to mechanisms other than plastic shearing; (f) ¢
is a geometric factor (Spaepen, 1977); (g) *, is the reference plastic shearing
rate; (h) a is the plastic strain-rate sensitivity parameter; and (i) ¢, is the
initial cohesion.

Remark 2: Using the values for the material parameters listed in Table 1,
we perform a simple compression finite-element simulation of a large-volume
sample® using a single three-dimensional brick element under homogeneous
deformation conditions. The stress-strain response and the variation of free
volume with respect to applied strain obtained from this simulation is plot-
ted in Figures 2b and 2c, respectively. From the results shown in Figures 2b
and 2c, it can be seen that the post-yield plastic deformation consist of a
strain-softening response followed by a saturation of the stress with contin-
ued deformation. The strain-softening response is due to the creation of free
volume, and once the creation of free volume is offset by free volume struc-
tural relaxation, a steady-state free volume is attained in the sample and the
stress saturates with applied deformation.

Consider the initially undeformed sample shown in Figure 3a which has

low-homologous temperatures are (nearly) rate-independent cf. Lu (2002), we have used
a relatively low strain-rate sensitivity of a = 0.02 to model the nearly rate-insensitive
behavior of metallic glasses.

8In large-volumed (bulk) samples, we can neglect the effect of the non-local term V2¢
in our calculations.
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dimensions of 408nm by 816nm by 17nm when measured along axes-1, 2 and
3, respectively. The undeformed sample is assumed to be initially in the fully-
annealed state i.e. £, = & throughout the undeformed sample, and initially
stress-free. We mesh the sample shown in Figure 3a using 16000 continuum
three-dimensional hexahedral elements, and Figures 3b and 3c represent the
different views of the initially undeformed finite-element mesh of the sample
shown in Figure 3a. Using the Abaqus (2012) and presently developed finite-
element implementation of the constitutive model presented in Section 2,
we perform a plane-strain compression simulation of the sample shown in
Figure 3a®. The following loading conditions and macroscopic/micrescopic
boundary conditions are imposed on the sample shown in Figure 3a: (a) the
nodes located on the top surface are given a displacement profile along axis-2
to match the desired testing rate, (b) the nodes located on the bottom surface
are prevented from motion along axis-2, (¢) the nodes located on the external
surfaces of the sample which have an outward unit normal vector parallel to
axis-3 are prevented from motion along axis-3, and (d) V& -n = 0 at the
external surfaces of the sample. Additional nodal displacement boundary
conditions are also imposed on the sample to suppress rigid body motions.

Both the plane-strain compression simulations were conducted at a con-
stant (absolute) true strain rate of 1 x 1073 §7! using the material parameters
listed in Table 1. An imperfection is introduced in the sample shown in Fig-
ure 3a by giving a few elements a lower value of initial cohesion (0.98 GPa)
cf. Figures 3b and 3c. This imperfection will serve as nucleation sites for
shear localization (Anand and Su, 2005). For convenience, we shall label the
numerical simulation using the Abaqus (2012) finite-element implementation
as Simulation A, and‘label the numerical simulation using the presently de-
veloped finite-element implementation as Simulation B.

Figure 4 shows the absolute-valued nominal stress vs. nominal strain
response obtained from Simulations A and B. Note that the stress-strain
curves determined from Simulations A and B qualitatively match the major
features of the compression stress-strain curves determined from the molec-
ular-dynamics simulations of small-volume metallic glass samples cf. Shi
and Falk (2006). From Figure 4, we can also see that the stress-strain re-

9In the Abaqus (2012) finite-element simulations, we have used reduced integration
elements and calculated V¢ using a finite-difference scheme. For more details regarding
the Abaqus (2012) implementation of the constitutive model, refer to Thamburaja (2011).
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sponse obtained from Simulation B accurately reproduces the stress-strain
response obtained from Simulation A. Furthermore, the contours of the plas-
tic shear strain in the sample determined from Simulations A and B at an
applied nominal strain of 4.2% match each other accurately, and the pre-
dicted fully-developed shear band width from both numerical implementa-
tions are identical as well cf. the contour plots shown in Figure 4. It is also
worth noting from the contour plots drawn in Figure 4 that the predicted
fully-developed shear band width of approximately 84nm agrees well with the
experimentally-observed shear band widths of 10 ~ 100nm (Li et al.; 2002;
Yang et al., 2005).

Therefore, we have verified the presently-developed finite-element imple-
mentation of the constitutive model presented in Section 2, and we shall per-
form all ensuing numerical simulations using the presently-developed finite-
element algorithm.

4.2. Mechanical response of small-volume amorphous metal samples in ten-
ston

Consider an undeformed nanotensile test sample with the geometry shown
in Figure 5a. The undeformed nanotensile test sample is assumed to be ini-
tially in the fully-annealed state i.e. &, = & throughout the undeformed
sample, and initially stress-free. With regards to test sample shown in Fig-
ure ba, we also make the following medeling assumptions: (a) the free volume
in the grip sections is always fixed at {r; and (b) the grip sections only de-
form elastically whereas the gage section is able to undergo elastic-plastic
deformations.

For simplicity, we only model the gage section of the test sample. Fig-
ure 5b shows the initially undeformed geometry of the test sample’s gage
section. The cuboid-shaped gage section shown in Figure 5b has a length
[ (measured along axis-3), width w (measured along axis-1) and breadth w
(measured along axis-2) i.e. the gage section of the test sample shown in
Figure 5b has a square cross section. For our numerical simulations, we have
taken [/w = 8 following the experiments of Jang and Greer (2010). The
top (bottom) surface of the test sample’s gage section cf. Figure 5b coincides
with the interface between the top (bottom) grip section and the gage section
of the test sample shown in Figure 5a.

The nanotensile sample’s gage section shown in Figure 5b is then meshed
using 1728 continuum three-dimensional hexahedral elements cf. Figure 5c,
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and each element has eight nodes and eight Gauss points. All of our numeri-
cal simulations were conducted using the initially undeformed finite-element
mesh shown in Figure Hc.

The following displacement/macroscopic boundary conditions are then
imposed on the finite-element mesh shown in Figure 5¢ to simulate a simple
tension loading condition: (a) the nodes located on the bottom surface are
prevented from motion along axis-3; and (b) the nodes located on the top
surface are given a displacement profile along axis-3 to match the desired
testing rate. Additional nodal displacement boundary conditions are also
imposed on the sample to suppress rigid body motions.

We also impose the following microscopic boundary conditions on the
finite-element mesh shown in Figure 5c¢:

e MBC1: The free volume at the top (bottom) surface is always fixed
at & since the top (bottom) surface is constantly in contact with the top
(bottom) grip section i.e. £ =& — 5 = (0 at the nodes located on the top
and bottom surfaces.

e MBC2: No free volume is allowed to enter or leave through the lat-
eral/free surfaces i.e. V& -n = 0 at the nodes located on the lateral/free
surfaces.

Hence, the MBC1 and MBC2 microscopic boundary conditions represent
a Dirichlet-type and Neumann-type boundary condition for the free volume,
respectively cf. Section 3.1.

All of our simple tension simulations were conducted at a constant (ab-
solute) true strain rate of 1 x 107* s~! using the material parameters listed
in Table 1. Furthermore, the Gauss points of an element at the center of the
finite-element mesh shown in Figure 5c were given a lower value of initial
cohesion (0.94 GPa) to serve as nucleation sites for shear localization.

In this work, we have simulated the mechanical response of three different
gage section (sample) sizes: [ = 120nm and w = 15nm (Simulation Al),
[ = 96nm and w = 12nm (Simulation B1), and [ = 72nm and w = 9nm
(Simulation C1) cf. Table 2 for a summary of the sample sizes modeled in
our simulations. With [,,4 denoting the characteristic sample length used in
the molecular dynamics simulations of Li and Li (2006) and Pang et al. (2010)
and [, denoting the characteristic sample length used in the experiments
of Jang and Greer (2010) and Tian et al. (2012), note that l,,g < lsm < l_m,
where I, represents the characteristic length of the nanotensile specimens
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simulated in the present work!®. Furthermore, since the sample sizes modeled
in this work are also similar to sample sizes modeled in the simulations of
Homer and Schuh (2010), we neglect the effect of surface tension in our
simulations.

Table 2: Sample sizes modeled in the finite-element simulations.

Simulation | initial length (nm) | initial width (nm) | initial breadth (nm)
AL A2 D 120 15 15
Bl, B2, E 96 12 12
C1, C2, F 72 9 9

From the deformed finite-element mesh of the sample modeled in Sim-
ulations A1, B1 and C1 cf. Figure 6, we can conclude that each sample
has undergone homogeneous deformation in a macroscopic sense i.e. at an
applied true strain of 8.3%, the cross sectional area of each sample along
the loading axis (axis-3) can still be treated as being uniform. Furthermore,
there is no evidence of shear banding in each-deformed sample.

Remark 3. Since the nanotensile sample sizes modeled in this work have a
characteristic length of 10 ~ 100nm, it is unsurprising that sample size-scale
shear localization does not occur since the calculated incubation length scale
necessary for shear band maturation is about 100nm for Zr-based metallic
glasses (Shimizu et al., 2006).

The stress-strain response obtained from Simulations A1, B1 and C1 are
shown in Figure 6. We can see that the post-yield stress-strain response de-
termined from Simulations A1 Bl or C1 cf. Figure 6 clearly demonstrates
conventional metal-like work hardening characteristics although dislocation-
based activities do not occur in amorphous metals. Furthermore, the rate of
strain-hardening is also predicted to increase with decreasing sample size.
This trend is very similar to crystalline metals experiencing dislocation-
based energetic gradient hardening effects (Gurtin et al., 2007; Niordson
and Legarth, 2010) although geometrically necessary dislocations are also
not, present in amorphous metals. Hence, the stress-strain curves shown in

10The dimension of the sample which is important in determining the transition between
shear localization and homogeneous behavior in metallic glass samples is the length cf. the
analytical calculations in Volkert et al. (2008) and Jang and Greer (2010).

22



Figure 6 are markedly different to the strain-softening-type stress-strain re-
sponse typically exhibited by bulk amorphous metals.

Let V= fR dV represent the volume of a sample in the reference config-
uration. From the contours of the plastic shear strain and free volume in the
deformed finite-element mesh of each sample cf. Figure 7, we can deduce that
the average plastic shear strain and free volume in the sample, respectively

defined as . )
Y= — dVv d £€=— dVv
Y V/RV and & V/RS :

reduces with decreasing sample size. Hence, we can also conclude from Simu-
lations A1, B1 and C1 that nanotensile amorphous metal specimens become
more resistant to plastic deformation and free volume creation with reduc-
ing sample size. It is also important to note that although the initial free
volume distribution within each undeformed sample was assumed to be ho-
mogeneous, plastic deformation causes the development of a markedly hetero-
geneous free volume distribution within each deformed sample cf. Figure 7.

To qualitatively compare the results from our theoretical and numerical
approach to physical experimental data cf. the experimental results shown
in Figure 1, we perform a cyclic tension finite-element simulation using the
amorphous metal sample modeled in Simulation A1/B1/C1, and label this
new finite-element simulation as Simulation D1/E1/F1. Starting from an
initially undeformed state, we impose the following deformation history for
the cyclic tension simulations: Loading step 1. Each sample is deformed
to a true strain of 2.96%; Unloading step 1. At a true strain of 2.96%,
reverse loading is imposed until zero applied stress is attained in each sample;
Loading step 2. Once zero applied stress is attained, each sample is then
deformed to a true strain of 5.83%; Unloading step 2. At a true strain of
5.83%, reverse loading is imposed until zero applied stress is attained in each
sample; Loading step 3. Once zero applied stress is attained, each sample
is then continuously deformed in tension until elastic-plastic deformation is
observed again.

The initially undeformed finite-element mesh shown in Figure 5c was used
to conduct Simulations D1, E1 and F1. The cyclic tension stress-strain curves
determined from Simulations D1, E1 and F1 are shown in Figure 8. From
Figure 8, we can see that the simulated cyclic tension stress-strain curves are
qualitatively similar to the experimental results of Jang and Greer (2010)
shown in Figure 1 i.e. for each stress-strain curve shown in Figure 8a, we
can determine that: (a) the residual plastic strain (the distance from the

23



origin to the intersection of the stress-strain curve and the true strain axis)
increases with increasing loading-unloading steps, and (b) the yield stress
in each subsequent loading step increases to the plastic flow stress of the
previous loading step. Thus, our finite-element simulations clearly show that
the amorphous metal samples modeled in Simulations D1, E1 and F1 have
been work-hardened.

In conclusion, our constitutive model and numerical simulations are able
to qualitatively reproduce the work hardening stress-strain response observed
in physical experiments (Jang and Greer, 2010; Tian et al., 2012) and-molee-
ular dynamics simulations (Li and Li, 2006; Pang et al., 2010) cf. Figure1.

4.3. Effect of microscopic boundary conditions on the deformation behavior
of amorphous metals

As the sample volume becomes smaller, the effect of boundary conditions
become more important. To study the effect of microscopic boundary con-
ditions on the deformation behavior of small-volume amorphous metals, we
perform the following calculations: instead of applying the MBC1 micro-
scopic boundary condition in our new numerical simulations, we impose the
Neumann-type boundary condition V& - n = 0 at the nodes located on the
top and bottom surfaces of the amorphous metal sample modeled in Simula-
tion A1/B1/C1, and label this new finite-element simulation as Simulation
A2/B2/C2.

Simulations A2, B2 and C2 were conducted using the initially undeformed
finite-element mesh shown in Figure 5¢ and also the material parameters
listed in Table 1. As done previously, the Gauss points of an element at
the center of the finite-element mesh shown in Figure 5¢ were given a lower
value of initial cohesion (0.94 GPa) to serve as nucleation sites for shear
localization.

The monetonic tensile stress-strain curves obtained from Simulations A2,
B2 and C2 are plotted in Figure 8b along with the previously-determined
stress-strain curves obtained from Simulations A1, B1 and C1. From Fig-
ure 8b, we can see that the stress-strain response obtained from Simulations
A2, B2 and C2 are identical. The uniform contours of the plastic shear strain
and free volume throughout each deformed sample cf. Figure 9 show that
the samples modeled in Simulations A2, B2 and C2 have undergone homo-
geneous deformations. Furthermore, as shown by the contour plots drawn
in Figure 9, no evidence of shear banding was observed in each deformed
sample cf. the explanation given in Remark 3.
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By redirecting our attention back to the stress-strain curves shown in
Figure 8b, we can see that the stress-strain curve determined from Simu-
lations A2, B2 or C2 show the classical post-yield strain-softening response
typically exhibited by amorphous metals (Anand and Su, 2005; Thamburaja,
2011). From the comparison between the stress-strain curve obtained from
Simulation A1/B1/C1 to the stress-strain curve obtained from Simulation
A2/B2/C2 cf. Figure 8b, we can conclude that the characteristics of the
post-yield i.e. strain-softening vs. strain-hardening stress-strain response is
determined by the types of microscopic boundary conditions imposed-on the
small-volume amorphous metal sample (more on this later). Furthermore, the
post-yield stress-strain response of a small-volume amorphous metal sample
is also significantly influenced by the types of microscopic boundary condi-
tions imposed on the sample cf. Figure 8b.

Recall that the undeformed amorphous metal samples modeled in our
finite-element simulations contain an initially uniform free volume distribu-
tion. By comparing the contour plots shown in Figure 7 to the contour plots
shown in Figure 9, we can also conclude that the free volume distribution
within the plastically deformed samples modeled in Simulations A1, B1 and
C1 cf. Figure 7 become heterogeneous due to the application of the MBC1
microscopic boundary condition.

To study the effect of free volume heterogeneity within a sample, we ana-
lyze the evolution equation for the plastic shear strain in the rate-independent
limit i.e. as a — 0, and obtain the yield function

0 = (p=0pm + (se2(§ —&r) + c (16)

The collective term on the right-hand side of equation (16) represents the
total resistance to plastic deformation. Note that the total resistance to
plastic deformation contains local terms and also the non-local quantity
Tt = —GCse1(V2E) 1e. the interaction stress. Concentrating on the one-
dimensional stress-strain response and using the value for the free volume
creation parameter given in Table 1 allows us to reduce equation (16) to

0 = Ojpt + CS£2<£ —fT) + c. (17)

Taking the time-derivative of equation (17) and using equation ¢ = qcé
results in

0 =0int + ((Se2 + qo) €. (18)
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With increasing sample volume i.e. as [ — oo, the quantities 7;,; — 0 and
Gint — 0. If the free volume remains uniformly distributed within a sample
during deformation e.g. see the contour plots obtained from Simulations A2,
B2 and C2 shown in Figure 9, we have 6;,; = 0 and 7;,; = 0 at all times.

For Simulations A1, B1 and C1, we can see that the created heterogeneity
in the free volume field within each deformed sample cf. Figure 7 has resulted
in the generation of significantly large interaction stresses cf. Figure 10a. As
shown in Figure 10a, the long-range interaction stress between defects, &
throughout each plastically deformed sample is positive-valued. This implies
that during plastic deformation, each point within the sample modeled in
Simulations A1, B1 and C1 experiences a positive rate of change of interaction
stress i.e. G, > 0. Thus, from equation (17), we can see that a positive
rate of change of the interaction stress i.e. 0y, > 0 inmecreases the total
resistance to plastic deformation (with all other terms on the right-hand side
of equation (17) being constant).

Note that for Simulations A2, B2 and C2, we have &;,; = 0 as mentioned
previously. For these cases, equation (18) reduces to

o= (Cse2 + g0) & (19)
From Figure 9, we can also see that free volume is created during plastic
deformation. Since & < 0 during plastic deformation cf. Figure 8b, we can
use equations ¢ = ¢, exp {q (£ — &)}, (19) and the material parameters listed
in Table 1 to conclude that (se < —gc for the free volume values shown in
Figure 9.

Hence, the work hardening stress-strain response observed in Simulations
A1, Bl and C1 cf. Figure 6 can be explained as follows: the MBC1 micro-
scopic boundary condition creates a heterogeneous free volume distribution
within each deformed sample, and the creation of free volume (£ > 0) during
plastic deformation (4 > 0) is also accompanied with the fulfillment of the
condition @, > — (Csea + qc)€ for the free volume values shown in Fig-
ure 7. Consequently, this will result in the work hardening behavior (¢ > 0)
during plastic deformation cf. equation (18).

Remark 4: Our combined continuum-based theoretical and computational
effort have shown that monolithic amorphous metals are capable of exhibit-
ing a work hardening response during plastic deformation if the following
conditions are satisfied: (1) the sample volume is small enough, and (2) the
appropriate microscopic boundary conditions are imposed on the sample.
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4.4. Cyclic deformation of small-volume metallic glass samples

Recall that the sample size modeled in Simulation A1, B1 and C1 is the
same as the sample size modeled in Simulation D1, E1 and F1, respectively.
The free volume distribution in the sample modeled in Simulation A1/B1/C1
cf. Figure 7 is also the same as the free volume distribution in the sample
modeled in Simulation D1/E1/F1 at (a) Instant A: the end/beginning of
Loading/Unloading step 2, and (b) Instant B: a true strain of 5.83% when
plastic flow starts to occur during Loading step 3. Therefore, our numerical
simulations show that the free volume distribution in each sample -do not
visibly change during elastic loading and unloading, and with regards to
Simulations D1, E1 and F1, the yield stress in each subsequent loading step
increases to the flow stress of the previous loading step!!.

The free volume generation during the elastic loading and unloading steps
of Simulations D1, E1 and F1 can also be investigated by the following anal-
ysis: assuming that the free volume generation term due to the effect of
hydrostatic pressure can be neglected (Yang et al., 2006), we can then write
the free volume evolution equation during the elastic loading and unloading
steps as

i K (0 - (V-6 (20)
853
Since &r is a constant, equation (20).can be rewritten as
(€ - &r) = K(V2(E — &) — <V;:§2> (€ —¢&r) (21)

where K = v,(s¢1/5¢3) and v, = v,4/exp(—p/§) as mentioned previously.

In one dimensions, the characteristic time-scales for the free volume dif-
fusion and relaxation, 7p and Tg, respectively, can be obtained from equa-
tion (21):

oo Voo (12) = Vel (Z2) 2

S¢1lo Sealo

where [, is the half-length of the sample i.e. [, = [/2. As a conservative
approach, we choose the specimen size modeled in Simulations C1/F i.e.

' The contours of the long-range interaction stress within the sample modeled in Simula-
tion A1/B1/C1 cf. Figure 10a is also the same as the contours of the long-range interaction
stress within the sample modeled in Simulation D1/E1/F1 at Instant A and Instant B.
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[, = 41.6nm, and plot the variation of 7p and Tz with respect to free volume
in Figure 10b. Next, we define the characteristic time-scale for the numerical
simulations, 75 = 1/é, where é, = 1 x 107* s~! represents the applied de-
formation rate in the numerical simulations. We also plot the value of 7 in
Figure 10b for comparison purposes. Considering that 7p > 7¢ and 7g > Tg
for the values of free volume shown in Figure 7, the effect of free volume
diffusion and relaxation can be disregarded for time-scales involving our nu-
merical simulations, and equation (1) will be further reduced to ¢ ~ (% since
the term describing the hydrostatic pressure-induced free volume generation
can also be neglected (Yang et al., 2006) i.e. the free volume is set by plastic
deformation'?. Thus, with regards to Simulations D1, E1 and F1, we can
ascertain that the distribution of the free volume and the total resistance
to plastic deformation (the collective term on the right-hand side of equa-
tion (16)) within the samples do not change significantly during the elastic
loading & unloading of the samples, and this in turn will cause the yield
stress in each subsequent loading step to increase to the plastic flow stress of
the previous loading step cf. the stress-strain curves shown in Figure 8a.

5. Conclusion

In the present work, we have implemented the finite-deformation, strain
gradient plasticity-based constitutive model for amorphous metals derived by
Thamburaja (2011) into a self=developed finite-element code. By imposing
different types of microscopic boundary conditions i.e. boundary conditions
involving the free volume/defect density on small-volume amorphous metal
samples of various sizes, we have shown through our finite-element simu-
lations that amorphous metals are capable of exhibiting a work hardening
stress-strain response if (a) the sample volume is small enough, and (b) the
appropriate microscopic boundary conditions are imposed on the sample.

To the best of our knowledge, the present combined continuum mechanics-
based theoretical and numerical effort is the first of its kind to show that
work hardening response can be exhibited by intrinsically strain-softening
materials like monolithic amorphous metals.

12Gince 7r < Tp cf. Figure 10b, we can conclude that for the sample sizes modeled in
this work, structural relaxation has a greater effect on free volume generation compared
to free volume diffusion.
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As part of our future work, we intend to use our newly-developed numeri-
cal tool to study how the deformation behavior of small-volume metallic glass
specimens is affected by the interaction of different microscopic boundary
conditions and the heterogeneous initial free volume distribution in metallic
glass specimens caused by the quenching of annealed samples cf. the work of
Li et al. (2013). As a preview to the effect of initial free volume distribution
on the deformation behavior of small-volume metallic glass samples, please
refer to the analytical calculations performed in Appendix A.
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Figure 1: Cyclic tensile stress-strain curves obtained from the multiple loading and un-
loading of nanotensile metallic glass samples taken from the experiments of (a) Jang and
Greer (2010), and (b) Tian et al. (2012). A molecular dynamics-determined tensile stress-
strain response of a nano-sized metallic glass sample obtained from the simulations of (c)
Li and Li (2006), and (d) Pang et al. (2010).
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Figure 2: (a) The schematic diagram of four elements sharing a common node which
we denote as'node O. (b) Homogeneous stress-strain response obtained from a simple
compression finite-element simulation conducted at an (absolute-valued) true strain rate
of Lx10~* 5! and (b) the corresponding variation of free volume with respect to ap-
plied strain. Absolute values of stress and strain are plotted. Shown inset of Figure 2b
is the initially-undeformed single three-dimensional element used to perform the simple
compression simulation.
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Figure 3: (a) The plane view of an initially undeformed sample with dimensions of 408nm
by 816nm by 17nm when measured along axes-1, 2 and 3, respectively; (b) the plane view
of the initially undeformed finite-element mesh of the sample shown in Figure 3a; and (c)
the three-dimensional view of the initially undeformed finite-element mesh of the sample
shown in Figure 3a. We have meshed the sample using 16000 continuum three-dimensional
hexahedral elements. Also shown in Figures 3a, 3b and 3c are the contours of the initial
cohesion in the sample.
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Figure 4: The absolute-valued nominal stress vs nominal strain response obtained from
Simulations A and B, and the plastic shear strain contours in the sample shown in Figure 3a
at an applied nominal strain of 4.2% obtained from Simulations A and B. Simulation A
was conducted using the Abaqus (2012) finite-element implementation of the constitutive
model whereas Simulation B was conducted with the constitutive model implemented into
the presently-developed finite-element code. Note that the stress-strain responses shown in
the present figure qualitatively match the major features of the compression stress-strain
curves determined from molecular dynamics simulations of small-volume metallic glass
samples cf. Shi and Falk (2006).
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Figure 5: (a) Schematic diagram of an undeformed nanotensile specimen. (b) The initially
undeformed gage section of the nanotensile specimen shown in Figure 5a, and (c¢) the
initially undeformed finite-element mesh of the nanotensile specimen’s gage section shown
in Figure 5b, consisting of 1728 continuum three-dimensional hexahedral elements.
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Figure 6: The deformed finite-element mesh of the nanotensile specimen’s gage section
obtained from Simulations Al, B1 and C1 at a true strain of 8.3%. The dashed vertical
lines drawn on the finite-element meshes show that the cross sectional area of each gage
section along the loading axis i.e. axis-3 can be treated as being uniform. The true stress
vs. true strain curve determined from Simulations A1, B1 and C1 are also shown
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Figure 9: The contour plots of the plastic shear strain and free volume in the nanotensile
specimen’s gage section modeled in Simulations A2, B2 and C2, determined at a true
strain of 5.83%.
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Figure 10: (a) The contour plots of the long-range interaction stress between defects in the
nanotensile specimen’s gage section modeled in Simulations A1, B1 and C1, determined
at a true strain of 5.83%. (b) Variation of the characteristic time-scale for free volume
diffusion and relaxation with respect to free volume. The characteristic time-scale for the
numerical simulations is also plotted.
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Appendix A. Effect of initial free volume distribution on the yield
behavior of small-volume metallic glasses

Recently, Zhao et al. (2014) have shown through their simulations that
metallic glasses are able to exhibit the "smaller is stronger” or the ”smaller
is weaker” phenomena depending on the initial conditions for the defects (or
free volume) in the sample.

To connect the results from our present theory to the ”smaller is stronger”
or "smaller is weaker” phenomena in metallic glasses, we must first note
that the free volume distribution in amorphous metal samples are inherently
heterogeneous (Chen et al., 2011; Li et al., 2013). Prior to sample testing,
an initially heterogeneous free volume distribution which is in excess of the
thermal equilibrium free volume &7 can be induced and "frozen” within an
amorphous metal sample at room temperature (due to sluggish free volume
diffusion and relaxation kinetics) through non-equilibrium sample processing
conditions'® (Murali and Ramamurty, 2005).

Consider a cylindrical metallic glass bar with an initial diameter d, and
initial length [,. Let 3 denote the radial coordinate in the reference configu-
ration. For the purpose of the present exercise; we assume for simplicity that
the cylindrical sample has a parabolic initial free volume distribution along
its radial coordinate i.e.

50 - éo(B) = fmid - [gmzd - gout] 62 (Al)

where the normalized radial coordinate, 5 = 203 /d,. The constants &,,;q > 0
and &,,; > 0 denote the sample processing-induced initial free volume at
the center of the sample and the outer surface of the sample, respectively.
We restrict our analysis to low-homologous temperature behavior where the
effects of free volume diffusion and structural relaxation can be neglected,
and the plastic response is rate-independent. Furthermore, the generation of
free volume due to the application of hydrostatic pressure is also neglected in
our simplified analysis. Therefore, at yield point, the free volume distribution
in the bar will be identical to the initial free volume distribution given by
equation (A.1) i.e. at yield point, the free volume & = &,.

13 Although the Zr-based Vitreloy 1 metallic glass has a thermal equilibrium free volume
of 0.06% at room temperature (Yang et al., 2006), experimental measurements have shown
that ”frozen” free volume as high as 0.5% and 1% have been observed in multi-component
Zr-based metallic glasses and an NiP amorphous alloy, respectively (Li et al., 2007).
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For the cylindrical sample experiencing plastic deformation under uniaxial
tension and assuming det F ~ 1, the yield function given by equation (16)
reduces to

3v3 0% 1 ag} )
o —— | (Tl =+ —==—=p+(s — +c A2
o (~orte{ g + G+ osale —€n) (A2)
where T, > 0 represents the uniaxial tensile stress. We also assume that the
initial cohesion, ¢, = ¢,(3). Since £ = &, and ¢ = ¢, at yield point, we then
substitute equation (A.1l) into equation (A.2), and define the yield strength,
Y for a given sample as

Y =~ ;’\/_ {24grl [Emia — Eoutld,? + min [Cse, (€, — &) —i—co]}. (A.3)
+¢ 0<B<1

For bulk samples i.e. as d, — oo, we obtain

3v/3
Voo g { i e 6 miad o (A4)

from equation (A.3) where Y, represents the yield strength of a bulk sample.
Subtracting equation (A.4) from equation (A.3) results in

72\/_

0 3 n g {g [szd - gout]} d;2‘ (A5>

From equation (A.5), we can clearly see that: (a) if {iq > Eout, small-volume
samples have higher yield strengths compared to its bulk counterpart i.e. the
”smaller is stronger” phenomenon is obtained, and (b) if &,a < &out, small-
volume samples have lower yield strengths compared to its bulk counterpart
i.e. the "smaller is weaker” phenomenon is obtained.

Before making a quantitative comparison of our analytical solution to the
nanotensile experiments of Wang et al. (2012) which exhibit the ”smaller
is stronger” phenomenon, we briefly describe the experiments conducted by
Wang et al. (2012) on Al-based amorphous metal samples: with the bulk yield
strength Y, ~ 1.1 GPa (Yang et al., 2009), we can see from the experimental
data of Wang et al. (2012) plotted in Figure A.11 that the yield strength of
small-volume samples are higher than the bulk yield strength. In particular,
the yield strength generally increases as the sample diameter is reduced from
d, ~ 400nm to d, ~ 120nm. As the sample diameters are reduced from d, ~
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120nm, the yield strength approaches a ceiling of Y &~ 1.8 GPa (Wang et al.,
2012).

To make our quantitative comparison, we choose I' = 2Jm~2 (Zheng and
Li, 2009; Zheng and Shen, 2009) and [. ~ 600 gm (Suh et al., 2010). From
the orientation of the fracture surface with respect to the loading axis, 6 ~
59° (Wang et al., 2012), we can use the relation given in Zhao and Li (2009)
to obtain ( ~ 0.45.

Figure A.11 also shows the comparison of our present model i.e. equa-
tion (A.5) with respect to the experimental data of Wang et al. (2012) using
Emid — Eour = 0.07%. Despite the numerous simplifications made in our an-
alytical solution, we can see that our theory is able to quantitatively fit the
variation of the yield strength with respect to sample diameter to reasonable
accord'*. From the results obtained from our present model cf. Figure A.11,
we can conclude that very small heterogeneities in the initial free volume
distribution within small-volume samples are sufficient to cause significant
increases in its yield strength relative to the bulk value.

Since our constitutive theory do not take into account the necessary physics which
models the attainment of a yield strength ceiling, we are unable to satisfactorily fit the
experimental data for sample diameters d, < 120nm cf. Figure A.11. Within the context
of our present theory, we believe that the attainment of a yield strength ceiling could
possible stem from the lessening of the initial free volume heterogeneity in samples with
diameters d, < 120nm.
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Figure A.11: The fitted yield strength from our analytical calculations i.e. equation (A.5)
to the nanotensile experimental data of Wang et al. (2012).
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