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a b s t r a c t 

In this paper numerical simulations of coiling (winding of a steel strip on itself) and uncoiling are devel- 

oped. Initial residual stress field is taken into account as well as roughness of contacts and elastic-plastic 

behavior at finite strains, considering the Tresca yield function and isotropic hardening. The main out- 

put is the residual stress field due to plastic deformations during the process. This enables to quantify 

additional flatness defects. The presented coiling simulation relies on a modeling strategy that consists 

in dividing each time step into two sub-steps. Each sub-step can be solved semi-analytically and numer- 

ical optimizations enable to obtain a general solution. Thus, reasonable computation times are reached 

and parametric studies can be performed in order to develop coiling strategies considering the process 

parameters. Comparisons with previous models from the literature are presented. Moreover, the compari- 

son with a Finite Element simulation presents the same order of magnitude, however, it shows that direct 

computations using classical FE codes are difficult to perform in terms of computation times and stability 

if an explicit integration scheme is chosen. Numerical results are also given in order to determine the 

effect of some parameters such as roughness, yield stress, applied force, strip crown or mandrel’s radius. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The coiling process consists in winding under tension a steel

trip on a cylindrical mandrel. This process is very commonly

sed for storage in the steel-making industry and takes place af-

er two main processes namely the rolling process on the one

and where the strip thickness is reduced between two rotating

olls and the run out table on the other hand where a cooling

ath is imposed in order to reach a targeted micro-structure. A

chematic view of these is presented in Fig. 1 . Large heteroge-

eous plastic deformations and phase changes occur during these

atter processes leading to significant residual stress issues. Resid-

al stress profiles are called flatness defects because they are re-

ponsible for out of plane deformations when tension is released

nd the strip is cut. Flatness prediction is one of the major issue

f the steel-making industry, thus many papers proposed numer-

cal simulations of rolling process in order to improve knowledge

f residual stresses as a function of rolling parameters. One can

ention a review of numerical simulations of rolling process pub-

ished by Montmitonnet (20 06) . Jiang and Tieu (20 01) proposed
∗ Corresponding author. Tel.: +33652836283. 
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 rigid plastic/visco-plastic FEM and Hacquin (1996) published

 3D thermo-mechanical strip/roll stack coupled model called

AM3/TEC3 developed by Cemef, Transvalor, ArcelorMittal Research

nd Alcan. Abdelkhalek et al. (2011) computed the post-bite buck-

ing of the strip, which is added to the older simulation of Hacquin

1996) . Nakhoul et al. (2014) used a coupled Finite Element Model-

ng in order to predict manifested flatness defects. The impact on

atness of heterogeneous temperature field on the one hand and

riction on the other hand is investigated. Kpogan and Potier-Ferry

2014) developed a simplified numerical method in order to pre-

ict the response of long thin strips considering residual stresses.

akhoul et al. (2015) developed a two-scaled buckling model to

redict the occurrence and geometric characteristics of manifested

atness defects. Recently Cuong et al. (2015) published an exper-

mental and numerical modeling of flatness defects. Furthermore

nverse methods dedicated to experimental evaluation of contact

onditions during the rolling process have been developed in or-

er to offer an experimental counter-part to predictive models.

or instance, Weisz-Patrault (2015) reviewed some flatness control

rocedures and proposed an inverse Cauchy method using confor-

al mapping techniques that evaluate the residual stress profile

n the strip. In addition, Weisz-Patrault et al. (2011, 2013b) pub-

ished fast inverse methods (in 2D and 3D) dedicated to contact

http://dx.doi.org/10.1016/j.ijsolstr.2016.05.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2016.05.012&domain=pdf
mailto:weisz@lms.polytechnique.fr
http://dx.doi.org/10.1016/j.ijsolstr.2016.05.012
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Fig. 1. Schematic view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Specific flatness defect. 
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stress evaluation in the roll gap in real time during the rolling pro-

cess. An experimental study based on this inverse method and op-

tical fiber measurements has also been proposed by Weisz-Patrault

et al. (2015b ). Fast inverse methods have been developed for the

thermal characterization of the contact between the strip and the

work roll during the rolling process in 2D and 3D by Legrand et al.

(2013) ; Weisz-Patrault et al. (2012a) and a thermo-elastic coupling

have been published by Weisz-Patrault et al. (2013a ). Experimental

studies showing the feasibility of temperature measurements dur-

ing the rolling process and performances of the associated inverse

methods have been led by Legrand et al. (2012) ; Weisz-Patrault

et al. (2014, 2012b) . 

Specific flatness defects occur during the coiling process as il-

lustrated by Counhaye (20 0 0) . Indeed, for rather thick strips or

small mandrels radii the curvature can generate significant plas-

tic deformations. Furthermore, the geometrical strip profile of a

cross section is not rectangular but more often parabolic, thus the

strip center is thicker than the edges. Therefore the contact of the

strip on itself is not ensured all along the coil width and a barrel

shape is commonly observed. Usually the contact length decreases

from the first layer to the last one and concentrates at the strip

center (for parabolic geometrical profiles where the strip center is

thicker). Consequently the contact pressure increases. This induces

over-tension in the strip that is responsible for plastic deforma-

tions especially for the last layers where long center defects (or

wavy center) are often observed because plastic elongations are lo-

calized at the center. Moreover, when large coils are obtained the

first layers near the mandrel are submitted to large compressions

that can also induce plastic deformations and short center defects

(or wavy edges) are observed because plastic shrinkage is local-

ized at the center. These defects are presented in Fig. 2 . In addi-

tion, when the coil cools down phase changes occur modifying the

residual stress distribution. Thus, modeling the coiling process is

part of the general effort to predict flatness defects. There are sev-

eral attempts to simulate effectively the winding of a strip on a

mandrel. 

Edwards and Boulton (2001) presented major issues related to

the coiling process as well as an interesting review of the early

models. For instance, soft or tight center collapses of coils are de-

scribed on the basis of industrial experiences, however, the present

contribution does not deal with such issues and focuses on nu-

merical coil winding simulation. Most of coil winding models use

thin or thick-walled elastic theory for hollow cylinders. Within this
 t  
rame work ( Sims and Place, 1953 ) proposed an approach based on

he theory of wire-winding of gun barrels. Based on experimental

esults, ( Wilkening, 1965 ) emphasized that the model proposed by

ims and Place (1953) fails after 55 wound wraps, because stresses

re widely overestimated. Altmann (1968) introduced an analyti-

al solution considering constant radial Young’s modulus, but tan-

ential stress could not evolve. Wadsley and Edwards (1977) fixed

he radial Young’s modulus of the coil to a very low value com-

ared with the standard value of the constituting material. This

nisotropy is an attempt to model roughness of contacts. Thus, the

oil is modeled as a hollow cylinder but the radial Young’s mod-

lus is decreased in order to take into account surfaces interpen-

tration due to roughness. However, the strip thickness variations

re not taken into account. The model proposed by Edwards and

oulton (2001) also uses a radial Young’s modulus that varies with

he number of wound wraps. However, it seems that contact is im-

osed all along the coil width, no open gaps are formed between

he wraps at any point. As detailed above, the contact length ac-

ually decreases because of the geometrical profile of the strip. It
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s considered that results in zones where the contact is effectively

nsured are not very affected by the assumption consisting in im-

osing contact all along the strip width. Hudzia et al. (1994) also

eveloped a model (for which radial anisotropy has been added

ater) that takes into account the contact length evolution during

he coil winding. However, the mid-plane radius is not inferred

rom the elastic non-linear problem but imposed a priori. Kedl

1992) proposed a model where wound wraps are computed as

hick-walled cylinders on top of one another. The radial Young’s

odulus is set as a function of contact pressure in order to model

oughness. Lee and Wickert (2002) proposed a two-dimensional

inite Element analysis. Ärölä and von Hertzen (2007) developed

 Finite Element model in a total Lagrangian formulation. An hy-

erelastic, anisotropic and radially non-linear behavior is consid-

red. Axial and radial displacements are accounted for. One can

lso mention the work of de Hoog et al. (2007) which consists

n fixing the resulting stress in the coil and inferring by inverse

ethod the winding tension profile. This study is based on hyper-

lastic non-linear material. Liu (2009) published a non-linear elas-

ic model based on displacement formulation that takes into ac-

ount radial displacement compatibility at both interfaces namely

andrel/coil and coil/last wound wrap. Hinton (2011) ; Hinton et al.

2011) developed a fast simplified coil winding model for wedge

eometrical profile based on Airy function. The model is elastic and

ssumes that contact is ensured all along the strip width. 

Previous models do not take into account the strip curvature,

he coil winding being seen as a stack of cylindrical layers. Weisz-

atrault et al. (2015a ) developed a very fast 1 elastic non-linear

odel that takes into account both curvature and contact pres-

ure under tension. Moreover, initial residual stress profile is con-

idered in order to account for previous rolling and run out table

rocesses. Two types of non-linearity are identified, finite strains

uring the curvature phase on the one hand and perfect contact

roblem on the other hand. This model is based on the idea that

or each time-step an infinitesimal strip portion is wound on the

est of the coil by following two distinct steps. The first step con-

ists in imposing a simple curvature to the strip (whose mid-plane

s initially flat). The trial radius of curvature is unknown. The sec-

nd step consists in making contact between the curved infinites-

mal strip portion and the rest of the coil underneath. Both sub-

teps are fully analytical and an explicit relationship between the

ontact pressure varying along the coil width and the trial radius

f curvature is obtained. Finally, displacements, strains and stresses

ue to both successive steps are computed as a function of the trial

adius of curvature, thus the resultant force of tensions along the

ircumferential direction is calculated. The radius of curvature is

hen optimized so that the latter resultant force matches the force

mposed by the user (actually a torque is applied and character-

zes the applied force). Although this optimization is performed

umerically, computation times are very short because each step

s solved analytically. The main weaknesses of this model are: 

• To rely on a purely elastic behavior, that does not enable to

estimate precisely the irreversible plastic deformations (even

though the yield criterion can be computed and projected on

the yield surface) causing the evolution of residual stresses dur-

ing the coiling process. 

• To model perfect contacts (i.e., surfaces interpenetration is not

allowed) avoiding roughness issues even though an extension

considering anisotropic material with radial Young’s modulus

depending on the contact pressure could be developed. 

This paper extends the ideas developed by Weisz-Patrault et al.

2015a ). An elastic-plastic behavior is considered using the Tresca
1 Since optimizations are used, computation times are not as short as the model 

eveloped by Hudzia et al. (1994) . 

S  

w  

p  
ield function with isotropic hardening. Roughness is introduced

y allowing surfaces interpenetration as a function of contact pres-

ure for each interface of the coil. A significant issue of the model-

ng strategy is to obtain satisfying computation times for both sub-

teps (simple curvature of the infinitesimal strip portion on the

ne hand and contact with the rest of the coil on the other hand).

he curvature involving large rotations an analytical solution at fi-

ite strains (multiplicative formalism) has been derived by Weisz-

atrault and Ehrlacher (2015) considering von Mises and Tresca

ield functions, isotropic hardening and initial residual stress pro-

le. In the following, the second sub-step, that consists in making

ontact between the infinitesimal strip portion and the rest of the

oil, is solved semi-analytically considering the Tresca yield func-

ion and isotropic hardening. Then a global coil winding model is

roposed and relies not only on both sub-steps but also on nu-

erical optimization procedures. Indeed, contact pressures for all

nterfaces in the coil are determined as a function of the trial ra-

ius of curvature by numerical optimization. A relationship be-

ween surfaces interpenetration and the contact pressure repre-

enting the material roughness is used as a simple input. Indeed

his contribution does not aim at developing any roughness model,

ut only extracts from the literature a simple contact law. A brief

iterature survey is addressed in Section 5 . Finally the radius of cur-

ature of the infinitesimal strip portion is also determined by min-

mizing the difference between the resultant tangential force in the

nfinitesimal strip portion and the applied force (known as a func-

ion of the applied torque). Thus displacement, stress and elastic

nd plastic strain fields are determined all along the coiling pro-

ess and irreversible plastic deformations are precisely obtained.

esidual stresses are finally inferred by developing a simple purely

lastic uncoiling model. 

The paper is organized as follows. In Section 2 a general de-

cription fixes notations, reference and actual configurations and

akes explicit the assumptions and the general model strategy.

he optimization problem that arises in determining contact pres-

ure in the whole coil is broached in Section 2.3 . The final opti-

ization that enables to satisfy the weak boundary conditions (re-

ultant forces) is detailed in Section 2.4 . Then, practical solutions

or both sub-steps are broached in Sections 3 and 4 . At that point

he global model needs a contact law that accounts for rough-

ess, thus details and a brief literature survey concerning rough-

ess models are given in Section 5 . Some comparisons with ex-

sting models are presented in Section 6 showing the influence of

lastic deformations (for different yield stresses). The influence of

oughness is detailed in Section 7 . Finally a very simple uncoiling

odel is proposed in Section 8 in order to compute the residual

tress field after unwinding the strip and releasing tension. Some

umerical tests showing the influence of coiling parameters such

s applied force, strip crown and mandrel’s radius are presented

n Section 9 . Conclusive remarks are addressed in order to discuss

omputation times and improvements. 

. General description 

.1. Preliminaries 

The Cartesian basis is denoted by ( e X , e Y , e Z ) and the associated

oordinates are ( X, Y, Z ). As shown in Fig. 3 , the incoming strip in

he reference configuration is modeled as a semi-infinite domain

enoted by: 

0 = 

{
(X, Y, Z) ∈ R 

3 , X ∈ [0 , + ∞ [ , Y ∈ [ −δ(Z) , δ(Z) ] , Z ∈ [ −L, L ] 
}

(1) 

 0 denotes the strip cross section in the reference configuration,

hich is assumed to be symmetrical with regard to e Z . Thus up-

er and lower surfaces are defined by a function of Z denoted by
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Fig. 3. Reference configuration. 

Table 1 

Nomenclature. 

�0 Semi-infinite domain 

S 0 Cross section 

e X , e Y , e Z Cartesian basis 

X, Y, Z Cartesian coordinates (reference configuration) 

δ( Z ) Strip geometrical profile through thickness 

L Strip half-width 

t c Strip thickness at the center 

t e Strip thickness at the edges 

R ext 
mand 

External mandrel radius 

R int 
mand 

Internal mandrel radius 

e r , e θ , e z Cylindrical basis 

r, θ , z Cylindrical coordinates (actual configuration) 

k 0 , μ0 Bulk and shear moduli 

σ 0 Initial yield stress 

γ Hardening parameter 

� (0) Residual stress tensor 

E (0) Elastic tensor related to the residual stress 

J 0 = det 
(
E (0) 

)
Determinant of the residual elastic tensor 

R ∗( X ) Trial radius of curvature 

R ( X ) Radius of curvature obtained by numerical optimization 

P ∗( X, Z ) Trial vector of contact pressures in all interfaces 

P ( X, Z ) Contact pressures obtained by numerical optimization 

� r i � (X, Z) Vector of surfaces interpenetration 

σ (1) Cauchy stress tensor of step 1 

σ (2) Cauchy stress tensor of step 2 

σ = σ (1) + σ(2) Cauchy stress tensor at the end of coiling 

F ∗( X ) Trial resultant tangential force 

F a ( X ) Applied resultant tangential force 

ε p Additional plastic strain tensor of step 2 

u (2) Displacement of step 2 

A ( � r C � ) Composite Abbott curve 

P C = f ( � r C � ) Contact law 

E u 0 Elastic tensor before uncoiling 

σ u Cauchy stress tensor before uncoiling 

E u Elastic tensor after uncoiling 

σ res Residual Cauchy stress tensor after uncoiling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�  

t  

u

 

c  

s  

v  

u  

s  

t  

s  

f  

i  

d

2

A  

w

A  

C  

s

 

c  

X  

d  

d  

e  

t  

s

A  

s  

c

�  

F  

t  

d  

t  

d  

i

A

e  

a

 

fi  

fi  

e  

a  

c

Z �→ δ( Z ). In the following, capital letters and the index zero indi-

cate that the quantity is related to the reference configuration. All

notations are listed in Table 1 . 

During the winding transformation, the observer is fixed to the

mandrel. The latter does not rotate in this description and the strip

wraps around the mandrel. Polar coordinates ( r, θ , z ) are used for

the description of the actual configuration, as shown in Fig. 4 . The

rotation speed is denoted by ω so the already wound wraps are

clearly defined by θ ∈ [ 0 , −ωt ] and the remaining part is submitted

to a rigid rotation. It should be noted that θ is negative and strictly

decreasing when X is positive and strictly increasing. 

Residual stresses are taken into account in this contribution. In-

deed previous processes such as rolling process and run-out table

are responsible for significant residual strains that are not com-

patible, thus an elastic field is needed so that the total deforma-

tion is compatible (i.e., is related to the gradient of a displace-

ment field) leading to residual stresses. In this paper, it is assumed

that the normal residual stress in the rolling direction is prevail-

ing (all other normal stresses, including in-plane shear stresses are

neglected). Moreover, this rolling-directed normal stress can vary

throughout the strip. Thus, the residual stress tensor is denoted by
(0) = �(0) 
XX 

(X, Y, Z) e X � e X . The equilibrium is guaranteed, that is

o say that over each cross section the resultant force of the resid-

al stress profile vanishes. 

The coiling process is fundamentally unsteady. However, this

oil winding model relies essentially on a property similar to

teady states: a unequivocal relationship between time and a space

ariable. Indeed, for each length of wound part there exists a

nique corresponding time t . Therefore the time variable t can be

ubstituted by a space variable denoted by X max ( t ), that represents

he total length already wound. The infinitesimal strip portion con-

idered in the following that lies between X and X + d X is taken

or X = X max that is to say it is an infinitesimal strip portion be-

ng added to the coil at time t . So the already wound strip part is

escribed by X ′ ∈ [ 0 , X = X max ] . 

.2. Assumptions 

The model relies on some assumptions specified here. 

ssumption 1. Once in contact, slips are not allowed between

ound wraps. 

ssumption 2. Cross sections in the reference configuration (“X =
onstant”) are transformed in the actual configuration into cross

ections (“θ = Constant”). 

Therefore, the angle representing the particle in the actual

onfiguration depends only on X , more precisely the function θ :

 �→ θ ( X ) is bijective. The assumption 1 enables to discard the time

ependence and the assumption 2 enables to discard the Y and Z

ependencies. Polar directions ( e r , e θ , e z ) are obtained from ( e X ,

 Y , e Z ) (cf Fig. 4 ). An approximate transformation � that describes

he coiling process is sought. For sake of simplicity additional as-

umptions are needed: 

ssumption 3. Plain strain assumption is made (planes “Z = Con-

tant” in the reference configuration are transformed in the actual

onfiguration into planes “z = Constant”). 

Thus, the transformation can be written as follows: 

(X, Y, Z, X max ) = r(X, Y, Z, X max ) e r + Z e Z (2)

ields r ( X, Y, Z, X max ) and θ ( X ) are unknown and should be de-

ermined. The X max dependence (or equivalently the time depen-

ence) in r ( X, Y, Z, X max ) is due to the fact that when an arbi-

rary strip length is wound, the previous wound wraps are also

eformed. Finally a very well verified assumption will be needed

n this paper: 

ssumption 4. The strip tension along the tangential direction e θ
volves very slowly with X (or equivalently with θ ( X )). Thus it is

ssumed that this tension profile is the same at X and at X + d X . 

Therefore, this model describes piecewise constant tension pro-

le according to the rolling direction X . At each time step an in-

nitesimal strip portion is wound on the coil, the latter assumption

nsures that computation does not depend on the discretization

long X which is only a matter of choice in order to have several

omputed angular positions in the coil. 
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Fig. 4. Actual configuration : observer fixed to the mandrel. 
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.3. Modeling steps 

The modeling strategy is similar to the one developed by

eisz-Patrault et al. (2015a ). At each time step an infinitesimal

trip portion is wound on the coil. In order to obtain reasonable

omputation times each time step is subdivided into two distinct

ub-steps that can be solved semi-analytically. It consists in ap-

lying a curvature transformation and then to put the curved in-

nitesimal strip portion in contact with the rest of the coil. Since

he problem is non linear (contact problem, finite strain formal-

sm and elastic-plastic behavior), the deformation path matters and

ther modeling choices could lead to different results. Thus, the

ecomposition into two successive sub-steps relies on the assump-

ion that results would differ reasonably from one deformation

ath to another. 

Step 1 : The infinitesimal strip portion is curved arbitrarily with

 trial radius of curvature R ∗( X ) ( Z -independent). Thus, this step

orresponds to a global curvature of the strip portion regardless to

he axial position Z , which will be corrected in step 2. The con-

act between the infinitesimal strip portion and the rest of the coil

s not modeled during step 1. The trial radius R ∗( X ) will be deter-

ined by applying weak boundary conditions in the end. This step

nvolves large rotations and multiplicative elastic-plastic formalism

s used. The mid-plane of the infinitesimal strip portion (initially

at) is transformed into a perfect cylinder of radius R ∗( X ). More

recisely the following transformation is imposed to the strip por-

ion: 

(1) (X, Y, Z) = (R 

∗(X ) + Y ) e r + Z e Z (3)

here the superscript (1) refers to step 1. After the transformation
(1) , the upper-plane has the radius R ∗(X ) + δ(Z) and the lower

lane has the radius R ∗(X ) − δ(Z) . This is obtained mostly by ap-

lying bending moments at both sections X and X + d X . These

ending moments are due to traction profiles through the strip

hickness (i.e., e Y direction). In the following, the associated Cauchy

tress tensor σ (1) is evaluated as a function of the trial radius

 

∗( X ). In Fig. 5 this sub-step is summarized. 

Since the transformation �(1) is imposed, unwanted body forces

 b are introduced and calculated with div σ(1) = − f b . However, the

adial stress σ (1) 
rr does not vanish at the upper and lower surfaces

f the strip portion, and the resultant force of unwanted body

orces compensates the unwanted resultant force of residual sur-

ace traction. Therefore, a global equilibrium is ensured through

he strip portion thickness. This global equilibrium enables to use
 simple transformation for modeling the curvature of the strip

ortion and is sufficient for the purpose of developing this sim-

lified model. It should be mentioned that the radial Cauchy stress
(1) 
rr is not meaningful because of this global equilibrium instead 

f a local equilibrium, but the resultant through the strip thick-

ess is meaningful. A schematic view of step 1 is presented in

ig. 5 . 

Step 2 : The infinitesimal (curved) strip portion is put in contact

ith the rest of the coil. Contact pressures depend on the axial co-

rdinate Z because of the geometrical strip profile. These contact

ressures denoted by P 

∗( X, Z ) are unknown and should be deter-

ined. An elastic-plastic model detailed in the following enables

o compute the Cauchy stress tensor σ (2) (and all other quan-

ities). Superscripts (1) and (2) are respectively related to step 1

nd step 2. Furthermore, step 2 is an additive correction under in-

nitesimal strain assumption to the multiplicative computation at

nite strains of step 1. Thus, the final state after both steps is writ-

en without superscript and for instance the final Cauchy stress

s σ = σ(1) + σ(2) . Unlike the purely elastic model developed by

eisz-Patrault et al. (2015a ) there is no analytical expression of

he contact pressure as a function of the trial radius of curvature

 

∗( X ). However, contact pressures can be determined numerically

or each value of R ∗( X ). Moreover, in this contribution roughness is

odeled as the possibility for each interface to interpenetrate each

ther via a contact law relating the contact pressure on the one

and and the interpenetration on the other hand. Thus, the rest

f the coil cannot be modeled as a solid continuous medium (for

xial positions where contact is ensured) like the previous paper

f Weisz-Patrault et al. (2015a ). In this paper, each contact should

e up-dated at each time step where a new infinitesimal strip por-

ion is added to the coil. Thus, the contact pressure P 

∗( X, Z ) is not

 scalar but a vector representing all contact pressures in the in-

erfaces between all wound wraps (and also between the mandrel

nd the first wrap). A schematic view of step 2 is presented in

ig. 6 . 

Let � r i � (X, Z) denote the vector containing interpenetration of

ll interfaces, defined as the radial position of the lower surface of

he n -th wrap minus the radial position of the upper surface of the

 n − 1 )th wrap. Thus, when a component of � r i � (X, Z) is negative

here is interpenetration at the corresponding interface, and there

s no contact when it is sufficiently positive). The contact law is

efined in each interface as follows: 

 C = f ( � r C � ) (4) 
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Fig. 5. Step 1 : curvature. 

Fig. 6. Step 2 : making contact. 
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where P C denotes the contact pressure at the considered interface

and � r C � the interpenetration of surfaces. The function f is a char-

acterization of the roughness and determined using classical liter-

ature (a proper survey is addressed in Section 5 ). Therefore, con-

sidering a trial value of R ∗( X ), contact pressures are obtained by

setting a trial value ̃  P 
∗
(X, Z) and computing the corresponding in-

terpenetration � r i � (X, Z) using the elastic-plastic model detailed in

Section 4 . Then, the contact law (4) is used for each interface and

gives an other evaluation of contact pressures denoted by ̃
 ˜ P 
∗
(X, Z) .

Thus contact pressures corresponding to the trial value R ∗( X ) are

given by the optimization problem: 

∀ R 

∗(X ) , P ∗(X, Z) = argmin ˜ P 
∗
(X,Z) ≥0 

∣∣∣˜ P 
∗
(X, Z) − ˜ ˜ P 

∗
(X, Z) 

∣∣∣ (5)

In order to be compared with other models that do not take into

account roughness, perfect contacts without surfaces interpenetra-

tion are also implemented as an option. In that case, considering a

trial value of R ∗( X ), a trial value ̃  P 
∗
(X, Z) is set and the correspond-

ing interpenetration � r i � (X, Z) is computed using the elastic-plastic

model detailed in Section 4 . Then the following optimization en-

suring that surfaces interpenetration vanishes is solved: 

∀ R 

∗(X ) , P ∗(X, Z) = argmin ˜ P 
∗
(X,Z) ≥0 

| � r i � (X, Z) | (6)

It should be noted that previous optimizations are done for each

tested R ∗( X ). Moreover, since all previous contacts are considered

for each axial position, the number of parameters involved in latter

optimizations is higher and higher. Thus, a significant issue is to

reach very short computation times for the elastic-plastic problem

of step 2. Semi-analytical solution has been developed to that end.

2.4. Weak boundary conditions 

As mentioned in the introduction, a final optimization is

needed in order to satisfy boundary conditions. A torque is ap-
lied to the mandrel, therefore a tangential force applied to the

nfinitesimal strip portion is inferred. It should be noted that the

etailed tension profile through the strip thickness and width can-

ot be imposed and should be considered as an output. Therefore,

he resultant force of tangential Cauchy stress in the infinitesimal

trip portion denoted by F ∗( X ) should match the applied force de-

oted by F a ( X ). Actually F a ( X ) is time dependent because the ap-

lied torque decreases during the coiling process in order to avoid

verstretch since the tension profile tends to concentrate because

f the evolution of the contact length. However, time can be re-

laced by a space variable as mentioned in Section 2.1 . Bound-

ry conditions are weak (because of the integration through strip

hickness and width of the local stress field). 

 

∗(X ) = 

∫ L 

−L 

∫ δ(Z) 

−δ(Z) 
σθθ (X, Y, Z) d Y d Z (7)

hus the final optimization that determines the radius of curvature

 ( X ) solution of the winding problem is: 

 X, R (X ) = argmin 

R ∗(X ) 

| F ∗(X ) − F a (X ) | (8)

hen, the contact pressure vector solution P ( X, Z ) is determined

sing (5) , and all fields such as displacement, stress, elastic and

lastic strains and hardening are determined through the elastic-

lastic models of step 1 and step 2. 

. Elastic-plastic model of step 1 

The elastic-plastic problem where the transformation (3) is im-

osed has been solved in details by Weisz-Patrault and Ehrlacher

2015) . Multiplicative elastic-plastic behavior has been considered

ith isotropic hardening. All quantities such as the Cauchy stress
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ensor, plastic strain etc... are computed straightforwardly. The so-

ution relies on finding the only real root of a polynomial of

egree three that can be calculated very effectively by using clas-

ical analytical solutions. However, considering the complexity of

his analytical form, the elastic-plastic model of step 2 relies on

nterpolations of numerical results given by the present model of

tep 1 instead of a fully (and very extensive) analytical form. It

as been emphasized by Weisz-Patrault and Ehrlacher (2015) that

elds resulting from the present solution of step 1 are continu-

us but not differentiable (not smooth) at elastic/plastic interfaces.

herefore numerical results are interpolated by piece-wise polyno-

ials of low degree (1 or 2) so that non differentiable points are

ot smoothed by the interpolation. 

. Elastic-plastic model of step 2 

The elastic-plastic model of step 2 is an additive correction

nder infinitesimal strain assumption. In Fig. 6 it can be seen

hat a single model embraces all wound wraps. Since the assump-

ion 4 ensures that tension profiles are the same at both sections

 and X + d X the model reduces to a cylindrical tube under plane

train assumption with inner and outer pressures considering pre-

tress and the Tresca yield function. Many contributions focus on

his kind of mechanical configuration because of its numerous en-

ineering applications for vessels and piping for instance. Bree

1967) proposed an uni-axial elastic-plastic stress model in order

o design nuclear reactor fuel elements. Then, Bree (1989) de-

eloped a bi-axial analytical solution for an elastic-plastic pres-

urized tube using the Tresca yield function and where stresses

re averaged through the thickness. Gao (1993) developed an an-

lytical solution based on one-dimensional elastic-plastic behav-

or of a closed end thick-walled cylinder. Chu (1972) proposed a

umerical approach to solve an elastic-plastic pressurized thick-

alled cylinder. Durban (1988) proposed a model at finite strains

sing finite logarithmic strains and neglecting elastic compress-

bility. Then, Durban and Kubi (1992) developed a more general

nalytical solution based on the Tresca yield function, however,

onsidering the simple internal pressure loading only. One plastic

echanism and the corresponding corner solution are addressed.

onn and Haupt (1995) proposed a solution for a thick-walled

ube under internal pressure at finite strains based on the nu-

erical approximation of elliptic partial differential equations. The

utofrettage problem (i.e., generating residual stresses by plastic

eformation and then shaping the thick walled cylinder by ma-

hining at the inner and outer surfaces) has been investigated by

arker (2001) (using numerical method) and Perry and Aboudi

2003) (using finite difference method). Several extensions of the

nitial thick-walled pressurized tube have been investigated. For

nstance Eraslan and Akis (2004) developed an analytical solution

or a two-layers tube. Eraslan and Akis (2006) gave an analytical

olution for a functionally graded elastic-plastic pressurized tube

nd Chatzigeorgiou et al. (2009) published an homogenization of a

ultilayer elastic-plastic pressurized tube with discontinuous ma-

erial properties. Pronina (2013) developed an analytical solution

f an elastic-plastic pressurized tube considering mechanochemical

orrosion. 

In this paper, a semi-analytical solution, for a thick-walled

ylinder with inner and outer pressure and considering initial

esidual stress, is needed and derived in the following. In this sec-

ion, for sake of clarity, polar coordinates ( r, θ , z ) are used and r =
 

∗(X ) + Y . Moreover, the upper and lower surfaces of the wound

rap are respectively represented in the polar coordinates by r =
 + and r = R −. The imposed pressures at the upper and lower sur-

aces are respectively denoted by P + and P −. Several mechanisms

hould be studied. 
.1. Elastic mechanism 

The first possible mechanism is purely elastic (one can under-

tand this calculation as an elastic test in order to check if the

ield stress is exceeded). The elastic problem is computed ana-

ytically using for instance the complex formulas established by

uskhelishvili (1953) : 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 μ0 u 

(2) 
r = 

R 

2 
+ R 

2 
−

R 

2 + − R 

2 −

((
P −
R 

2 + 
− P + 

R 

2 −

)
3 μ0 

3 k 0 + μ0 

r − P + − P −
r 

)

σ (2) 
rr = 

R 

2 
+ R 

2 
−

R 

2 + − R 

2 −

(
P −
R 

2 + 
− P + 

R 

2 −
+ 

P + − P −
r 2 

)

σ (2) 
θθ

= 

R 

2 
+ R 

2 
−

R 

2 + − R 

2 −

(
P −
R 

2 + 
− P + 

R 

2 −
− P + − P −

r 2 

)

σ (2) 
zz = 

3 k 0 − 2 μ0 

2(3 k 0 + μ0 ) 

(
σ (2) 

rr + σ (2) 
θθ

)
(9) 

Since σ ( j) 
rθ

= σ ( j) 
rz = σ ( j) 

θz 
= 0 principal stresses are σ ( j) 

rr , σ ( j) 
θθ

and
( j) 
zz (where j ∈ {1, 2}). Thus the Tresca yield function is written as

ollows: 

 f = max 
α∈ { rr,θθ,zz } 

(
σ (2) 

α + σ (1) 
α

)
− min 

α∈ { rr,θθ,zz } 
(
σ (2) 

α + σ (1) 
α

)
−k ( p cum 

+ 
p cum 

) (10) 

here p cum 

is the cumulative plastic strain calculated during step 1

ccording to Weisz-Patrault and Ehrlacher (2015) and 
p cum 

is the

ncrement of the cumulative plastic strain calculated during step 2,

hus at the beginning of step 2, 
p cum 

= 0 . Furthermore it is as-

umed that the yield surface can be written as follows: 

 ( p cum 

+ 
p cum 

) = k ( p cum 

) + σ0 γ
p cum 

(11)

he yield criterion computed using the elastic test (9) can be neg-

tive and therefore the solution is purely elastic and given by (9) ,

ut it can also be positive and therefore plastic transformations oc-

ur. Several plastic mechanisms can be distinguished depending on

hich components of the principal stresses are the max and the

in involved in (10) . There are six possible plastic mechanisms

orresponding to the six edges of the Tresca hexagon: 

max 
∈ { rr,θθ,zz } 

(
σ (2) 

α + σ (1) 
α

)
− min 

α∈ { rr,θθ,zz } 
(
σ (2) 

α + σ (1) 
α

)

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

σ (2) 
θθ

+ σ (1) 
θθ

− (σ (2) 
rr + σ (1) 

rr ) (mechanism 1) 

σ (2) 
rr + σ (1) 

rr − (σ (2) 
θθ

+ σ (1) 
θθ

) (mechanism 2) 

σ (2) 
θθ

+ σ (1) 
θθ

− (σ (2) 
zz + σ (1) 

zz ) (mechanism 3) 

σ (2) 
zz + σ (1) 

zz − (σ (2) 
θθ

+ σ (1) 
θθ

) (mechanism 4) 

σ (2) 
rr + σ (1) 

rr − (σ (2) 
zz + σ (1) 

zz ) (mechanism 5) 

σ (2) 
zz + σ (1) 

zz − (σ (2) 
rr + σ (1) 

rr ) (mechanism 6) 

(12) 

The main activated plastic mechanisms are the first and the

econd. Thus in a plastic zone defined by r = r 
p 
− and r = r 

p 
+ , an an-

lytical solution is derived for this mechanism. Boundaries of each

lastic zone are unknown and should be determined in order to

erify displacement and traction continuity through elastic/plastic

nterfaces. The evaluation of the yield function (10) on the basis of

he elastic test (9) indicates the presence of a plastic zone where a

articular mechanism is activated, but not the precise boundaries

usually obtained with incremental computations). 

.2. Plastic mechanisms 1 and 2 

In this paper, plastic mechanisms 3 to 6 are not detailed al-

hough there are no particular difficulties to address an analyti-

al solution. It is verified during the computation on the basis of
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the elastic formulas (9) that these plastic mechanisms are not acti-

vated. The following piece-wise polynomials interpolation is used:

χk (r) −
(
σ (1) 

θθ
− σ (1) 

rr 

)
= 

N ∑ 

j=0 

A j r 
j (13)

where A j is piece-wise constant according to r and χ = 1 if the

mechanism 1 is activated and χ = −1 if the mechanism 2 is acti-

vated. The detailed analytical solution is addressed in Appendix A .

Here only the final result is stated: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ε p 
θθ

= 

B 

r 2 
+ ξ

N ∑ 

j=0 

A j r 
j 

σ (2) 
rr = A + ( 1 + ξc ) A 0 ln (r) + ( 1 + ξc ) 

N ∑ 

j=1 

A j r 
j 

j 
− c 

B 

2 r 2 

σ (2) 
θθ

= A + (1 + ξc) A 0 + A 0 (1 + ξc) ln (r) 

+(1 + ξc) 
∑ N 

j=1 

A j (1 + j) r j 

j 
+ c 

B 

2 r 2 

σ (2) 
zz = 

3 k 0 − 2 μ0 

2(3 k 0 + μ0 ) 

[
2 A + (1 + ξc) A 0 + 2 A 0 (1 + ξc) ln (r) 

+(1 + ξc) 
∑ N 

j=1 

A j (2 + j) r j 

j 

]
u 

(2) 
r = 

C 
r 

+ 

r 

2 

(
k 0 + 

μ0 

3 

)[
A + A 0 (1 + ξc) ln (r) 

+(1 + ξc) 
∑ N 

j=1 

A j r 
j 

j 

]

(14)

where c = χσ0 γ ζ

√ 

4 
3 , ζ = ±1 depending on the sign of the plastic

strain rate as detailed in Appendix A and ξ is defined in (A.17) . 

The analytical solution given for each possible plastic zone

should be used for the global elastic-plastic problem where plas-

tic zones should be determined. The elastic test is computed with

(9) then the yield function (10) is evaluated on this basis. Plastic

zones with identified plastic mechanisms (limited in this paper to

1 and 2) are approximated on the basis of this purely elastic cal-

culation. Then, both boundaries of each plastic zones ( r 
p 
+ and r 

p 
−)

are optimized in order to verify boundary conditions (inner and

outer pressures) and displacement and normal traction continu-

ities through each elastic/plastic interfaces. Plastic strains should

also vanish at these elastic/plastic interfaces. The integration con-

stants A , B and C involved in (14) are also determined with these

latter conditions. It should be noted that integration constants A ,

B and C are also piece-wise constant according to r . Since each

zone has two boundaries, displacement and normal traction con-

tinuities and plastic strain vanishing give six conditions. There are

three integration constants and optimizations of the two bound-

aries r 
p 
+ and r 

p 
−, therefore five conditions can be satisfied and the

last condition is automatically verified because of the constitutive

equations. It should be noted that if one boundary of the consid-

ered zone is R + or R − normal traction continuity is simply replaced

by the corresponding applied normal pressure −P + or −P −. 

The Tresca yield function is not differentiable at wedges of

the hexagon, that is to say when the activated plastic mechanism

meets another plastic mechanism. This is classically refereed to as

corner plasticity. Therefore, the associated flow rule that imposes

that the plastic strain rate is normal to the yield surface, should be

understood at these non-differentiable points as the fact that the

plastic strain rate lies in the sub-differential of the yield surface.

In this paper, corner relations that determine the plastic strain rate

direction when a corner is reached, are not developed. It is verified

numerically during the simulation that corners are not reached

during step 2. 
. Contact law 

In Section 4 each wound wrap has been solved considering

rbitrary normal pressure at lower and upper surfaces. Excepted

t the upper surface of the infinitesimal strip portion where the

ressure vanishes, all other contact pressures listed in P 

∗( X, Z )

re still unknown and should be determined as functions of R ∗( X )

sing the methodology summarized by (5) . Therefore a contact

aw (4) has to be chosen. A general literature survey is given

y Antaluca (2005) . A historical paper proposed by Greenwood

nd Williamson (1966) presents a probabilistic approach for elas-

ic contacts and has been extended to elastic-plastic contacts by

hang et al. (1987) . Then, Polycarpou and Etsion (1999) corrected

he exponential approximation introduced to obtain an analyti-

al solution. More recently, a non-statistical model based on a

ultiscale approach has been proposed by Jackson and Streator

2006) . Several classical roughness studies propose a relationship

etween the average contact pressure and the contact ratio, for in-

tance Wilson and Sheu (1988) , Sutcliffe (1988) and Sheu and Wil-

on (1994) established explicit simple formulas. In this paper, the

mpirical equation proposed by Sheu and Wilson (1994) is used

 C = 

2 √ 

3 
σ0 A ( 2 . 571 − A − A ln (1 − A ) ) , where P C is the average con-

act pressure between both considered surfaces, A is the contact

atio and σ 0 is the yield stress. 

Then, the contact ratio A is calculated as a function of the al-

ebraic distance between nominal surfaces (denoted by � r C � ) by

eans of composite Abbott curves A ( � r C � ) that can be inferred

rom random geometrical rough surfaces. This approach is used by

ollette et al. (20 0 0) for the contact of two rough surfaces within

he framework of roughness transfer in rolling process. This pa-

er does not focus on roughness theories but extracts from classi-

al literature a contact law taking into account roughness parame-

ers. The method used in this paper follows the ideas of Collette

t al. (20 0 0) . The composite Abbott curve between two wound

raps characterized by the interpenetration of their nominal sur-

aces is obtained as follows. Two geometrical profiles that charac-

erize roughness ( R a in μm) of each surface are randomly gener-

ted and centered to zero (nominal surfaces are set to zero). The

iscretization can be refined since it is not correlated with the gen-

ral numerical simulation presented in this paper, it is clearly a

re-computation. Then the geometrical profile of the upper surface

s subtracted from the geometrical profile of the lower surface, this

ives the algebraic distance denoted by � h � between both surfaces

hen nominal surfaces are at the same position. For each alge-

raic value � r C � it then computed the proportion of points where

 h � is greater or equal than � r C � which represents the probability

f having contact, that is to say the contact ratio A ( � r C � ) . Random

eometrical profiles are illustrated in Fig. 7 for a roughness param-

ter R a = 5 μm. The corresponding composite Abbott curve is pre-

ented in Fig. 8 a. It should be noted that curves such as presented

n Fig. 8 b are pre-computed and interpolated by cubic splines dur-

ng the coiling simulation. Finally the contact law (4) can be writ-

en as follows and is presented in Fig. 8 b. 

 C = f ( � r C � ) = 

2 √ 

3 

σ0 A ( � r C � ) [ 2 . 571 − A ( � r C � ) 

−A ( � r C � ) ln ( 1 − A ( � r C � ) ) ] (15)

hanks to the roughness model, The coiling model is able to pre-

ict the evolution of strip roughness due to coiling using the same

pproach as Collette et al. (20 0 0) . This completes some previous

orks such as those of Collette et al. (20 0 0) that modeled rough-

ess transfer evolution at the skin pass mill. Moreover, this possi-

ility of roughness transfer evolution of the model is particularly

nteresting since coiling-uncoiling operations are present all along

he steel processes. 
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Fig. 7. Random geometrical profiles, R a = 5 μm. 

Fig. 8. Roughness. 
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Table 2 

Coiling parameters. 

L (mm) 750 Half-width 

t c (mm) 1 Strip thickness at the center 

(Z = 0) 

t e (mm) 0 .952 Strip thickness at the edges 

(Z = ±L ) 

δ( Z ) (mm) 
1 

2 

(
t c − (t c − t e ) 

(
Z 

L 

)2 
)

Half thickness parabolic 

profile 

R ext 
mand 

(mm) 225 External mandrel radius 

R int 
mand 

(mm) 50 Internal mandrel radius 

F a / S 0 (MPa) 30 Applied force divided by the 

nominal surface 

(mean applied stress) 

E (MPa) 210 0 0 0 Young’s modulus 

ν (-) 0 .3 Poisson ratio 

k 0 (MPa) 1750 0 0 Bulk modulus 

μ0 (MPa) 80769 .23 Shear modulus 

γ (-) 1 Hardening parameter 
. Comparisons 

.1. Comparison with previous models and effect of yield stress 

In this section, the present coiling model is compared with two

urely elastic models developed by Hudzia et al. (1994) and Weisz-

atrault et al. (2015a) . Typical coiling parameters are set and listed

n Table 2 . Roughness is not taken into account for this first com-

arison. A perfect contact is modeled using (6) instead of (5) . The

ield stress is σ0 = 200 MPa for the present model. Contact pres-

ures and tangential stresses at the mid-plane (i.e., Y = 0 ) are pre-

ented in Figs. 9 a and 9 b respectively. As mentioned in the intro-

uction tensions are more and more concentrated at the center of

he strip as shown in Fig. 9 b. It can be seen that even though the

odel developed by Hudzia et al. (1994) considers the wrap radius

s known a priori (strip thickness added to the previous radius),

angential stresses are in very good agreement with the purely
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Fig. 9. Comparison with the literature. 

Fig. 10. Different yield stresses. 
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elastic model developed by Weisz-Patrault et al. (2015a ). It should

be noted that negative contact stress σ rr can be observed when

contact is lost in the model proposed by Hudzia et al. (1994) which

is excluded by construction in the present contribution and the

one developed by Weisz-Patrault et al. (2015a ). Since Hudzia et al.

(1994) do not consider the strip curvature in the elastic compu-

tation models are only comparable at the mid-plane (i.e., Y = 0 )

where curvature effects vanish. However, contact pressures are not

in excellent agreement with the previous model of Weisz-Patrault

et al. (2015a ). This is possibly due to the fact that ( Hudzia et al.,

1994 ) deals with the contact without using an explicit contact law

and geometrical mismatch appears since each wrap radius is a pri-

ori known in order to have contact of thicker parts of wound wraps

without considering displacements due to contact pressures. The
resent elastic-plastic model is in relatively good agreement with

revious models. However, it can be noted for instance that the

ontact length of the first wound wrap is enlarged with the elastic-

lastic behavior in comparison with the purely elastic behavior and

tress magnitudes are modified. The effects of plasticity explain

ifferences between the previous model of Weisz-Patrault et al.

2015a ) and the present contribution as shown in Fig. 10 where

everal yield stresses from 200 MPa to 400 MPa have been com-

ared with the purely elastic model in order to show that the

lastic-plastic model converges to the elastic model when the yield

tress increases. Furthermore, the lower the yield stress is and the

ower the contact stress amplitude is. However, at mid-plane (i.e.,

 = 0 ) this effect is inverted for tangential stress σ θθ . This is due

o the fact that plastic flow concentrates near the upper surface of
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Table 3 

Coiling parameters, comparison with FEM. 

L (mm) 750 Half-width 

t c (mm) 2 Strip thickness at the center 

(Z = 0) 

t e (mm) 1 .94 Strip thickness at the edges 

(Z = ±L ) 

δ( Z ) (mm) 
1 

2 

(
t c − (t c − t e ) 

(
Z 

L 

)2 
)

Half thickness parabolic 

profile 

R ext 
mand 

(mm) 350 External mandrel radius 

R int 
mand 

(mm) 0 Internal mandrel radius 

F a / S 0 (MPa) 30 Applied force divided by the 

nominal surface 

(mean applied stress) 

E (MPa) 210 0 0 0 Young’s modulus 

ν (-) 0 .3 Poisson ratio 

k 0 (MPa) 1750 0 0 Bulk modulus 

μ0 (MPa) 80769 .23 Shear modulus 

e  

l  

i  

a

6
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F  
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o  
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s  

i  

c  

o  

c  

μ  

e  

s  

s  

1  

p  

(  

m  
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r  

t  
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c

 

l  

s  
ach wrap which limits tangential stress in this plastic zone that is

arge when the yield stress is low. Thus, tangential stress is higher

n the remaining elastic zone (especially at Y = 0 ) in order to bal-

nce the applied force. 

.2. Comparison with Finite Element Model 

A Finite Element model considering elastic-plastic behavior

nd hard contacts (i.e., without surface interpenetration) and per-

ormed with Abaqus (2006) was available from the previous pa-

er of Weisz-Patrault et al. (2015a ). A comparison with the model

eveloped in this paper is presented in this section. The strip is

odeled with cubic elements (20 along the axial direction Z , 750

long the coiling direction X and 3 along the strip thickness Y ).

he yield stress is set to σ0 = 200 MPa and without hardening (i.e.,

= 0 ) although Weisz-Patrault et al. (2015a ) presented results for

0 = 500 MPa. Parameters are listed in Table 3 . Considering very

ong computation times only 5 cycles have been modeled. Contact

ressures that mostly determine stresses in each wound wrap are

ompared in Fig. 11 . Contacts between layers are extracted from

he FEM computation which excludes the contact between the first
Fig. 11. Contact pr
rap and the mandrel (that is why the first wrap is missing in

ig. 11 ). Reasonable agreement is observed between the FEM com-

utation and the developed model, however, discrepancies are not

egligible. It should be noted that rather large oscillations and a

lear lack of symmetry (although the problem is symmetric with

espect to Z = 0 ) lead to put in doubt the validity of this FEM com-

utation. This can be due to the fact that only three elements are

sed through the thickness which may not be enough to evaluate

roperly displacements considering that plastic zones can be much

hinner that elements thicknesses. In addition an explicit scheme

as been chosen so that computation times are not excessively

ong and a lack of stability can also explain relatively bad results

btained with the FEM. Therefore contact pressures extracted from

his FEM computation give only an order of magnitude. 

. Roughness 

In this section roughness is taken into account considering the

imple methodology proposed in Section 5 . Parameters are listed

n Table 2 with a yield stress set to σ0 = 600 MPa (no signifi-

ant plastic deformations) in order to see the effect of roughness

nly. Two computations have been done, the first one with perfect

ontacts and the second one considering roughness with R a = 5

m. This value is not realistic and has been chosen in order to

mphasize roughness effects after only 70 wraps. Contact pres-

ures and tension at mid-plane (i.e., Y = 0 ) after 10 wraps are pre-

ented in Figs. 12 a and 12 b and after 70 wraps in Figs. 13 a and

3 b. As mentioned in the introduction Wilkening (1965) gave ex-

erimental evidence that the model proposed by Sims and Place

1953) (purely elastic not taking into account roughness) overesti-

ates stresses after 55 wound wraps. The model developed in this

aper presents no significant discrepancies between perfect and

ough contacts after 10 wraps. One can observe that the overes-

imation of contact pressure and tension when roughness is not

aken into account becomes more substantial after 70 wraps. This

onfirms the significance of roughness. 

One can also mention that tension of the first wrap in Fig. 13 b

ocally decreases at the center. This is due to accumulation of pres-

ure at the center. Indeed contacts are more and more localized
essure, −σrr . 
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Fig. 12. Effect of roughness after 10 wraps. 

Fig. 13. Effect of roughness after 70 wraps. 
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at the center, thus pressures increases where contacts localize, es-

pecially for the first wound wraps that are compressed by all the

other wraps. 

8. Residual stress : uncoiling model 

As mentioned in the introduction, this paper aims at developing

a numerical tool for evaluating residual stress field after coiling,

in order to develop strategies to minimize flatness defects. Elastic-

plastic computations have been developed in order to model the

evolution of irreversible strain that causes residual stress after un-

coiling. This section presents a very simplified residual stress com-

putation that takes into account uncoiling, assuming that the latter

process is purely elastic. It consists in making the strip mid-plane

perfectly flat again. Obviously the strip is not perfectly flat after
ncoiling because residual stresses are in fact relaxed by out of

lane deformations. However, the interesting quantity is the resid-

al stress profile when the strip mid-plane is perfectly flat in order

o evaluate the flatness defect that will be created by this relax-

tion of residual stress including buckling analysis. This simple un-

oiling calculation consist in releasing contact pressure by applying

he opposite contact stress in all interfaces using the elastic formu-

as (9) . At this stage the strip mid-plane is not a perfect cylinder

ecause of the irreversible plastic deformations during step 2. A

erfect cylinder is obtained by shifting the stress profiles through

he strip thickness so that the elastic zone does not present resid-

al stresses. The stress field σu = σ u 
rr e r � e r + σ u 

θθ
e θ � e θ + σ u 

zz e z �

 z (where u means uncoiling) at the end of this step is the sum

f the stress field at the end of coiling process and the stress

eld due to releasing contact pressures (computed with (9) ) and
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Fig. 14. Residual stress through the thickness. 

Fig. 15. Contact pressure, −σrr for the last wrap. 

c  

b  

t  

(  

e  

E  

d

E  

w  

i  

i⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
w  

i  

s  
onsidering the latter stress shift. It can be seen as an initial stress

efore applying the inverse transformation gradient corresponding

o the curvature of step 1 defined by Weisz-Patrault and Ehrlacher

2015) . This ensures that the mid-plane of the strip is flat. Thus, an

lastic tensor is responsible for this stress field σ u and denoted by

 

u 
0 which is a diagonal tensor considering that the stress tensor is

iagonal. One can obtain E 

u 
0 . 

t E 

u 
0 from the known stress field σ u : 

 

u 
0 . 

t E 

u 
0 = A 

u 
rr e r � e r + A 

u 
θθ e θ � e θ + A 

u 
zz e z � e z (16)

here (A 

u 
rr , A 

u 
θθ

, A 

u 
zz ) are known functions determined as detailed

n Appendix B . From the latter equation, the purely elastic uncoil-
ng gives the residual stress field: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σ res 
XX = 

μ0 

3 

(
J u ̃  J u 

) 5 
3 

(
2 ̃

 J 2 u A θθ − A rr − A zz 

)
+ k 0 

(
J u ̃  J u − 1 

)
σ res 

Y Y = 

μ0 

3 

(
J u ̃  J u 

) 5 
3 

(
−˜ J 2 u A θθ + 2 A rr − A zz 

)
+ k 0 

(
J u ̃  J u − 1 

)
σ res 

ZZ = 

μ0 

3 

(
J u ̃  J u 

) 5 
3 

(
−˜ J 2 u A θθ − A rr + 2 A zz 

)
+ k 0 

(
J u ̃  J u − 1 

) (17) 

here the superscript res means residual . For instance, consider-

ng coiling parameters listed in Table 2 where the applied force is

et to F a /S = 30 MPa, the yield stress is σ = 200 MPa and the
0 0 
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Fig. 16. Results for test 1. 
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Fig. 17. Results for test 2. 
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Fig. 18. Results for test 3. 
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Table 4 

Varying parameters for each 

test. 

(a) Test 1: Applied forces 

F a / S 0 (MPa) 

10 

20 

30 

40 

(b) Test 2: Strip profiles 

t e (mm) 

1 

0 .9 

0 .8 

0 .7 

0 .6 

(c) Test 3: Mandrel’s radii 

R ext 
mand 

(mm) 

100 

300 

500 
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r  

z  
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ardening parameter is γ = 1 , it is obtained (ater 5 cycles) the

esidual stress profiles presented in Figs. 14 a and 14 b. Different

ones are clearly identified with gradient discontinuities. These

ones are indicated in Figs. 14 a and 14 b for the first wound wrap.

uring step 1 that consists in a simple curvature, the lower sur-

ace is under compression and the upper surface under tension

hat lead to plastic deformations. During step 2 contact pressure is

pplied and the whole thickness is under tension. Without step 1,

his tension would not be sufficient to initiate plastic deforma-

ions however, since the upper surface is already under tension

ven very limited contact pressure is sufficient to lead to plastic

eformations in a slightly thicker plastic zone. It should be noted

hat slope changes near the lower surface and upper surface are

lmost aligned for the five wound wraps. This is due to the fact

hat these slope changes correspond to plastic deformations dur-

ng step 1 that are almost the same for these wound wraps (there

s no significant variation of the radius of curvature R ( X )). How-

ver, the slope change corresponding to plastic deformations dur-

ng step 2 occurs more and more near the strip center (i.e., Y = 0 )

ecause contact pressure at Z = 0 localize as shown in Fig. 15 . It

hould be noted that the latter figure presents the contact pressure

t the lower surface of the wound wrap n after n cycles (contact

ressure of the last wound wrap). This is different from previous

gures such as 9 a, 10 a, [11,12] a, 13 a where contact pressures for

he wound wrap n are given after that all cycles are computed giv-

ng contact pressures in the whole final coil. 

An interesting quantity (18) is the average residual profile cal-

ulated through the strip thickness and plotted along the coil

idth. This enables to understand major flatness defect as pre-

ented in Fig. 2 . 

res 
XX (Z) = 

1 

2 δ(Z) 

∫ δ(Z) 

−δ(Z) 
σ res 

XX (Y, Z) d Y (18)

. First results 

In this section several numerical simulations have been per-

ormed. The influence of three coiling parameters have been tested

amely: applied forces, strip geometrical profiles and mandrel’s

adii. Parameters are listed in Table 2 and the tested parameters

re listed in Table 4 . For each test five cycles are modeled and re-

ults for the fifth wrap are presented in Figs. 16–18 . 

Test 1. Contact pressures, tangential stress and contact length

increase when the applied force increases. Stresses keep the

same distribution along the coil width (with a scale factor),
so stresses do not localize, the increase being only due to

the applied force. Thus the higher the stress peak is and the

higher the contact length is. Plastic zones generated during

step 2 are wider and wider when plastic deformations dur-

ing step 1 do not evolve since the mandrel’s radius is the

same for all tested applied forces (thus the radius of curva-

ture does not evolve much). 

Test 2. The strip crown is increased by decreasing the thickness

t e at the edges of the strip. When there is no strip crown

(i.e., t e = t c = 1 mm) the contact is ensured all along the coil

width. The strip crown is responsible for the barrel shape

(i.e., the contact length decrease) as explained in the intro-

duction, thus the more severe the crown is and the shorter

the contact length is. Therefore contact pressure and tan-

gential stress localize where the contact is ensured which

explains that stress peaks are higher and higher. Plastic de-

formations during step 1 is similar to the test 1 since the

radius of curvature does not evolve much. At the center of

the coil where contact is ensured for all tests, plastic defor-

mations during step 2 are also similar to the test 1. However,

one can see in Figs. 16 e and 17 e that the evolution of the av-

erage residual stress through thickness defined by (18) have

different profiles along the coil width if stresses localize at

the center (test 2) or not (test 1). 

Test 3. The contact pressure and tangential stress peaks in-

creases when the mandrel’s radius decreases. This is due

to the fact that the contact length decreases so that pres-

sures localize alike the test 2. Therefore plastic deforma-

tions where stresses concentrate present significant varia-

tions during step 2 but also in step 1 because the radius

of curvature evolves significantly. For a mandrel’s radius of

500 mm the curvature is not sufficient to generate plas-

tic deformations. When the curvature increases for man-

drel’s radii of 300 mm and 100 mm plastic deformations

during step 1 are more and more severe: plastic zones are

larger and gradients are higher. But since contact pressure

and tangential stress localize more and more at the center

of the coil ( Z = 0 ) plastic elongations during step 2 are also

more and more severe with higher gradients. This gradient

increase is due to the fact that at the end of step 1 larger

plastic zones (i.e., a smaller elastic zone) are obtained for

smaller mandrel’s radii, thus the additional stress peak dur-

ing step 2 is not only higher but also applied on a smaller

elastic region. For tests 1 and 2 gradients of plastic deforma-

tions during step 2 are constant because the stress peak is

applied on the same elastic region, plastic zones being larger

and larger because of the stress peak increase. 

0. Conclusion 

This paper presents a coiling model taking into account elastic-

lastic behavior at finite strain considering isotropic hardening.

ultiplicative formalism is used as well as an additive correction

nder infinitesimal strain assumption. The modeling strategy in-

olves a fully analytical solution (step 1) and a semi-analytical so-

ution (step 2). The global simulation relies on several optimization

roblems in order to determine contact pressures and the radius

f curvature that enables to match the tangential applied force.

oughness has been considered using composite Abbott curves and

mpirical laws. This part being an external input of the model,

ne can consider other options. Comparisons with already exist-

ng models have been addressed and good agreement is observed

or large yield stress. However, for lower yield stress the numeri-

al solution presents more discrepancies with purely elastic mod-

ls found in the literature showing the interest of an elastic-plastic

omputation. A simple purely elastic uncoiling model has been
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proposed in order to quantify residual stresses after unwinding and

releasing tension. Results show that the coiling process can be re-

sponsible for significant residual stress fields due to plastic defor-

mations. Since the model is based on analytical or semi-analytical

sub-steps, reasonable computation times are obtained. For instance

five cycles are computed within 1 min with the freeware Scilab

(2012) , where a classical FEM computation using explicit integra-

tion scheme (with stability issues) takes several weeks. However,

computation times grow exponentially (due to larger optimization

problems) and 70 cycles are computed within around 24 hours.

The code should be optimized and re-written in a compiled lan-

guage such as C++ in order to obtain shorter computation times. 
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Appendix A. Analytical solution of step 2 

Thus, let consider a plastic zone where the plastic mechanism

1 or 2 is activated, thus: 

max 
α∈ { rr,θθ,zz } 

(
σ (2) 

α + σ (1) 
α

)
− min 

α∈ { rr,θθ,zz } 
(
σ (2) 

α + σ (1) 
α

)
= χ

[
σ (2) 

θθ
+ σ (1) 

θθ
− (σ (2) 

rr + σ (1) 
rr ) 

]
(A.1)

where χ = 1 if the mechanism 1 is activated and χ = −1 if the

mechanism 2 is activated. In these conditions, the Tresca yield

function (10) vanishes and reduces to: 

σ (2) 
θθ

− σ (2) 
rr = K(r) + χσ0 γ
p cum 

(A.2)

where: 

K(r) = χk (p cum 

) −
(
σ (1) 

θθ
− σ (1) 

rr 

)
(A.3)

It should be noted that K ( r ) is known from step 1 . Let ε p de-

note the plastic strain of step 2 . At the beginning of this step,

ε p = 0 . The total plastic strain of both steps (1 and 2) is obtained

by adding the plastic strain of step 1 and the plastic strain of step 2 .

The flow rule is associated therefore the plastic strain rates are

normal to the Tresca yield surface corresponding to this plastic

mechanism, thus: 

˙ ε p 
θθ

= − ˙ ε p rr and ˙ ε p zz = 0 (A.4)

Hence the cumulative plastic strain rate for this step: 

˙ p cum 

= 

√ 

2 

3 

([
˙ ε p rr 

]2 + 

[
˙ ε p 
θθ

]2 + 

[
˙ ε p zz 

]2 
)

= ζ

√ 

4 

3 

˙ ε p 
θθ

(A.5)

where ζ is the sign of ˙ ε p 
θθ

. An initial guess is of course ζ = χ
which means that tangential plastic flow is positive when the strip

is under tension. If displacement and normal stress continuity is

not verified in the end the other value is set for ζ . After integra-

tion (considering that at the beginning of step 2 , ε p 
θθ

= 0 ): 


p cum 

= ζ

√ 

4 

3 

ε p 
θθ

(A.6)

The equilibrium can be written as follows: 

d σ (2) 
rr 

d r 
+ 

σ (2) 
rr 

r 
− σ (2) 

θθ

r 
= 0 (A.7)

Using the yield criterion (A.2) , the latter equilibrium (A.7) reduces

to: 

d σ (2) 
rr 

d r 
= 

K(r) 

r 
+ χσ0 γ ζ

√ 

4 

3 

ε p 
θθ

r 
(A.8)
ence after integration: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σ (2) 
rr = A + 

∫ r K(ρ) 

ρ
d ρ + χσ0 γ ζ

√ 

4 

3 

∫ r ε p 
θθ

(ρ) 

ρ
d ρ

σ (2) 
θθ

= A + 

∫ r K(ρ) 

ρ
d ρ + χσ0 γ ζ

√ 

4 

3 

∫ r ε p 
θθ

(ρ) 

ρ
d ρ

+ K(r) + χσ0 γ ζ

√ 

4 

3 

ε p 
θθ

(A.9)

he Cauchy stress tensor can be written as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

σ (2) 
rr = 

(
k 0 + 

4 μ0 

3 

)
d u 

(2) 
r 

d r 
+ 

(
k 0 − 2 μ0 

3 

)
u 

(2) 
r 

r 
− 2 μ0 ε 

p 
rr 

σ (2) 
θθ

= 

(
k 0 − 2 μ0 

3 

)
d u 

(2) 
r 

d r 
+ 

(
k 0 + 

4 μ0 

3 

)
u 

(2) 
r 

r 
− 2 μ0 ε 

p 

θθ

σ (2) 
zz = 

(
k 0 − 2 μ0 

3 

)(
d u 

(2) 
r 

d r 
+ 

u 

(2) 
r 

r 

)
+ 2 μ0 

(
ε p rr + ε p 

θθ

) (A.10)

he equilibrium (A.7) can be written using displacements in order

o determine ε θθ : 

d 

d r 

[
d u 

(2) 
r 

d r 
+ 

u 

(2) 
r 

r 

]
= 

2 μ0 

k 0 + 

4 μ0 

3 

(
d ε p rr 

d r 
+ 

ε p rr 

r 
− ε p 

θθ

r 

)
(A.11)

y integrating the flow rule (A.4) , knowing that at the beginning

f step 2 the plastic strain tensor vanishes it is obtained: 

d 

d r 

[
d u 

(2) 
r 

d r 
+ 

u 

(2) 
r 

r 

]
= − 2 μ0 

k 0 + 

4 μ0 

3 

(
d ε p 

θθ

d r 
+ 2 

ε p 
θθ

r 

)
(A.12)

he following expression holds by adding the two first component

f the Cauchy stress tensor (A.10) : 

(2) 
rr + σ (2) 

θθ
= 2 

(
k 0 + 

μ0 

3 

)(
d u 

(2) 
r 

d r 
+ 

u 

(2) 
r 

r 

)
(A.13)

ence: 

4 μ0 

(
k 0 + 

μ0 

3 

)
k 0 + 

4 μ0 

3 

(
d ε p 

θθ

d r 
+ 2 

ε p 
θθ

r 

)
= 

d 

d r 

[
σ (2) 

rr + σ (2) 
θθ

]
(A.14)

sing (A.9) : 

d 

d r 

[
σ (2) 

rr + σ (2) 
θθ

]
= 2 

( 

K(r) 

r 
+ χσ0 γ ζ

√ 

4 

3 

ε p 
θθ

r 

) 

+ 

d K(r) 

d r 

+ χσ0 γ ζ

√ 

4 

3 

d ε p 
θθ

d r 
(A.15)

nd: 

d ε p 
θθ

d r 
+ 2 

ε p 
θθ

r 
= ξ

(
d K(r) 

d r 
+ 2 

K(r) 

r 

)
(A.16)

here: 

= 

−1 

4 μ0 

(
k 0 + 

μ0 

3 

)
k 0 + 

4 μ0 

3 

+ χσ0 γ ζ

√ 

4 

3 

(A.17)

ence: 

 

p 

θθ
= 

B 

r 2 
+ 

ξ

r 2 

∫ r 

ρ2 

(
d K(ρ) 

d ρ
+ 2 

K(ρ) 

ρ

)
d ρ (A.18)
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isplacements are then determined by combining (A.13) and

A.9) : 
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ence: 

 r = 

C 

r 
+ 

1 

r 

∫ r 

ρg(ρ) d ρ (A.20) 

nalytical close form solution is obtained with (A.18) in com-

ination with (A.20) and (A.9) . However, a simpler formulation

s needed for the practical implementation. Using the piece-wise

olynomials interpolation (13) the displacement, strain and stress

elds (14) are obtained after basic calculations. 

ppendix B. Uncoiling analytical calculations 

The hyper-elastic neo-hookean behavior considered in this pa-

er (see Le Dang (2013) for more details) leads to: 

u = 

μ0 

J 
5 
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E 

u 
0 . 

t E 

u 
0 + 
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k 0 ( J u − 1 ) − μ0 
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(
E 

u 
0 . 

t E 

u 
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3 
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1 (B.1) 

here J u = det 
(
E 

u 
0 

)
. Since σ u is known, one can determine E 

u 
0 . 

t E 

u 
0 

asily by considering the spherical and deviatoric parts: 
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(
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u 
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t E 
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1 + dev 
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(B.2) 

y considering the trace of (B.1) it is obtained: 

 u = 

tr ( σu ) 

3 k 0 
+ 1 (B.3) 

y considering the deviatoric part of (B.1) it is obtained: 

ev 
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u 
0 . 
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)
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u 
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dev ( σu ) (B.4) 

y considering the determinant of (B.1) it is obtained that

r 
(
E 

u 
0 . 

t E 

u 
0 

)
is the only real root of the following polynomial of de-

ree 3: 
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here com ( . ) represents the adjugate matrix. Thus, dev 
(
E 

u 
0 . 

t E 

u 
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)
nd tr 
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u 
0 . 

t E 

u 
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)
are known from (B.4) and (B.5) hence E 

u 
0 . 

t E 

u 
0 known

rom (B.2) and denoted as follows: 
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he inverse transformation gradient F −1 , defined in ( Weisz-

atrault and Ehrlacher (2015) ) and corresponding to the inverse of

he curvature of step 1, is applied: 

 

−1 = − R (X ) 

R (X ) + Y 
e X � e θ + e Y � e r + e Z � e z (B.7) 

he total gradient transformation E 

u of the uncoiling process is

ssumed to be purely elastic: 
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ence: 
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here ˜ J u = det 
(
F −1 

)
= 

R (X ) 
R (X )+ Y . Finally the stress field after uncoil-

ng and releasing tension, which defines the residual stress field, is

iven by: 
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