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1. Introduction

The Partition of Unity Method (PUM) (Melenk and Babuska,
1996) allows for the addition of a prior knowledge about the solu-
tion of a boundary value problem into the space of approximating
functions. This is done through adding enrichment functions to the
space of classical finite element approximations. The eXtended Fi-
nite Element Method (XFEM) (Belytschko and Black, 1999; Moés
et al., 1999), initially considered for the fracture problems, uses a
local partition of unity where a subset of nodes are enriched to al-
low strong or weak discontinuities to be modeled within an ele-
ment. The nodes near to the crack tip can also be enriched with
near tip asymptotic fields to reach required accuracy with coarser
mesh resolutions. Discontinuity enrichment along the crack faces
allows modeling of the arbitrary curved and growing cracks in a
regular mesh. The asymptotic near tip enrichment leads to a con-
siderable increase in the accuracy of computed SIFs. The XFEM is
also successfully used in the other areas of the computational
mechanics such as the fluid-structure interactions (Legay et al.,
2006), phase transformations (Chessa et al., 2002), and biofilm
growth (Duddu et al., 2008, 2009). The XFEM is also formulated
to model the dislocations in continuum mechanics (Ventura
et al.,, 2005; Gracie et al., 2007). Another interesting application
is the combined space-time XFEM, which is developed to model
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the discontinuity propagation in dynamic problems (Chessa and
Belytschko, 2004, 2006).

In the area of fracture mechanics, the XFEM is the subject of
considerable research in the last decade. As some few examples,
the following references may be addressed; (Sukumar et al.,
2000; Moés et al., 2002; Gravouil et al., 2002) for modeling the
three-dimensional cracks, (Daux et al., 2000) for arbitrary
branched and intersecting cracks, (Moés and Belytschko, 2002; Zi
and Belytschko, 2003) for cohesive crack growth, (Sukumar et al.,
2003a) for bi-material interface crack, (Fries, 2008; Ventura et al.,
2009) for considering the blending and integration issues in XFEM,
(Bordas and Duflot, 2007; Duflot and Bordas, 2008) for error esti-
mation and recovery, (Dumstorff and Meschke, 2007) for using dif-
ferent crack propagation criteria in predicting the crack growth
path by XFEM, (Belytschko et al., 2003; Réthoré et al., 2005; Song
and Belytschko, 2009) for treating dynamic issues, (Elgued;j et al.,
2007) for elastic-plastic fatigue crack growth, (Huynh and Bely-
tschko, 2009) for fracture in composite materials and (Sukumar
et al., 2003b) for fracture in polycrystalline microstructures. Also
a nice description of an object-oriented programming for XFEM is
given by Bordas et al. (2007).

The static case of thermoelastic fracture by XFEM is investigated
in detail in (Duflot, 2008), where both 2D and 3D problems with
different crack face thermal boundary conditions are included. In
the present study, XFEM formulation is implemented in dynamic
thermoelastic fracture initiation. The crack is assumed to be sta-
tionary and the fracture initiation under impact thermo-mechani-
cal loading is considered. There are a number of elaborated works
which have considered both fracture initiation and crack propaga-
tion under dynamic mechanical loading (Belytschko et al., 2003;
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Réthoré et al., 2005). A modified version is also proposed in (Song
and Belytschko, 2009) to handle the complicated branching pat-
terns and fragmentation.

The problem of thermoelastic fracture is also well studied by the
numerical methods other than XFEM. As some few examples we
may refer to (Wilson and Yu, 1979; Shih et al., 1986) for the use of
Jintegral in the classical FEM modeling of thermal problems, (Zama-
ni and Eslami, 2009) for the coupled thermoelasticity of a function-
ally graded cracked layer by the classical FEM, (Raveendra and
Banerjee, 1992; Prasad et al., 1994) for using the boundary element
method for thermal fracture problems, (Prasad et al., 1996; Dell’Erba
et al., 1998) for the transient and 3D thermoelastic fracture with
boundary element method, and (Hosseini-Tehrani et al., 2001,
2006) for using the coupled and generalized theories of thermoelas-
ticity in thermal fracture by boundary element method.

In this study, the eXtended Finite Element Method (XFEM) is
implemented to model the effect of the mechanical and thermal
shocks on a cracked body. The robustness of the method for
dynamic conditions is studied. The effect of crack tip position with
respect to the elements edges and also the effect of adding singu-
larity enrichment, are investigated in detail for dynamic loading of
a stationary crack. Also the transient thermal conditions are mixed
with both static and dynamic mechanical conditions and several
discussions and interpretations are given about the results to
explore the XFEM more in this area.

The present paper is organized as follows. In Section 2, the for-
mulation of dynamic thermoelasticity for a cracked body by XFEM
is given. The elements of mass, damping, and stiffness matrices
obtained from XFEM discretization are presented in a simple form
directly applicable in a computer code. In Section 3, the numerical
integration is discussed and the treatment for each type of
elements is clearly addressed. In Section 3, the domain form of
interaction integral for dynamic thermoelasticity and extraction
of SIFs is briefly described. Section 4 shows and discusses the
dynamic behaviour of enrichment scheme by several thermo-
mechanical numerical examples. Finally, Section 5 provides
summary and concluding remarks.

2. Problem formulation

An isotropic homogeneous continuum 2 bounded by the
boundary I' is considered. The equations of motion and the first
law of thermodynamics in the classical uncoupled form are

(90']1' o 82u,-

8—Xj+XszW (1)
aq; oT

T&erCﬁ_R (2)

respectively. The stress tensor is related to the strain tensor by
Hooke’s law and the heat flux is related to temperature gradient
by Fourier’s law. These are

Oij = 21€; + [2€ — (34 + 2)(T — To)]0; (3)
orT
a; = _k% (4)

In these equations, u; are the components of the displacement vec-
tor, o;; are the components of the stress tensor, €; are the compo-
nents of the strain tensor, T is the temperature, g; are the
components of the heat flux vector, p is the density, c is the specific
heat, 4 and u are Lamé’s constants, o is the thermal expansion coef-
ficient, k is the thermal conductivity, X; are the components of the
body force vector, and R is the heat source. The associated boundary
conditions are

on IT,
on I7,

gni=q on Iy,
gjinj = f,‘ on I, (5)
A crack I'; is assumed in Q. The crack faces are assumed to be adi-

abatic and traction free. The space of admissible displacement and
temperature fields are defined by

U={ueH}(Q) :u=ua on I, and u discontinuous on I';}
(6)

Y={TeH(2):T=T on [I7 and T discontinuous on I';}
(7)

The weak form can be expressed as: Find u € U and T € Y such that
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where (6u, 6T) € Ug x Yy, and the subscript 0 denotes homogeneous
essential conditions.

In the XFEM formulation, a standard local displacement approx-
imation around the crack is enriched with discontinuous jump
function across the crack faces and the asymptotic crack tip dis-
placement field around the crack tip (Belytschko and Black,
1999; Moés et al., 1999) (Fig. 1). The same procedure is used for
the temperature enrichment (Duflot, 2008). The formulation of
the XFEM for displacement components can be written as

u(X,y) => Nu(x.y)a, + > Na(x,y)[H(X,¥) — H(Xn,y,)]by

neN n€eNer
M
+ 37 Na,y) S [Fn(r.0) = Fn(Ta, 00))Com (10)
neN, m=1

where N, is the set of nodes whose support is crossed by the crack
faces, while Ny, is the set of nodes inside a predefined area around
the crack tip. Here, {F,} is a basis that spans the singular term of
near tip asymptotic fields

{Fn} = {\/F sing, VT cosg, \/Fsing cos0, T cosg cosH}

(11)
where r and 6 are the usual crack-tip polar coordinates. In this study
the crack faces are assumed to be adiabatic so the temperature is dis-
continuous along the crack faces and the heat flux is singular at the
crack tip (Sih, 1962). The leading term of the asymptotic field for tem-
perature of an adiabatic crack can be written as (Duflot, 2008)

Fig. 1. Selection of enriched nodes for 2D crack problem. Circled nodes (set of nodes
N¢) are enriched by the discontinuity function whereas the squared nodes (set of
nodes Ny;,) are enriched by the crack tip functions. The gray elements are those cut
by the crack.
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T_f? ESUI(?) (12)

Thus, the temperature field is discretized similar to the displace-
ment field, but with only the first branch function (11), which is
the only discontinuous branch function

XY) =D Na(X.Y)an + > Na(x,y)[H(X,y) = H(Xn,y,)]bn
neN neNer
+ > Na(X,Y)[F1(r,0) = Fy (ra, 0)]cy (13)

neNp

Egs. (10) and (13) are substitute into the weak form of the govern-
ing equations, Eqs. (1) and (2), and the element matrices are ob-
tained by standard Bubnov-Galerkin procedures. Eqs. (10) and
(13) can be written in the following compact form

XY)=> No(x,y)as+ > ®n(x,y)by (14)
neN Nn€Nen

Y) =Y Na(®.y)tn+ Y Pa(x,y)bn (15)
neN Nn€Nen

where &, (x,y) and ¥,(x,y) stand for the enriched parts of the dis-
placement and temperature fields, respectively. They can be related
to either face or tip enrichment. Based on this compact notation, we
now drive the element matrices of the thermal and elastic parts of
the problem. First, the thermal part of the problem and then the
elastic part are considered. The vector of unknowns for temperature
is assumed in the form Unknowns = {a;, b;}". In this notation the
damping matrix, stiffness matrix, and the force vector of thermal
part of the problem are

Chemaly {[C‘m} c”
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We now turn to the elastic part. The vector of unknowns for
displacement is assumed in the form Unknowns = {a},a?,
b,”,b,} . The superscripts u and v refer to x and y components
of displacement, respectively. In this notation the mass matrix,
stiffness matrix, and the force vector of elastic part of the prob-

lem are
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The formulations presented for the element matrices and force vec-
tors are used in the computer code in four steps:

. The classical part of finite element is computed for all elements.

. The tip enrichment is computed for related elements.

. The face enrichment is computed for related elements.

. The interaction between tip and face enrichments is computed
for elements containing both types of enrichments. In this case,
the nomenclature in the vector of unknowns and the formula-
tions presented above should be changed accordingly.

AW N =

After the system matrices are constructed, the Crank-Nicolson
scheme (trapezoidal rule) and the Newmark integration algorithm
are used to obtain the dynamical response for the thermal and
elastic parts respectively.

Following (Eslami, 2003), for time integration of the transient
heat conduction problem, the unknown vector {X} at time t + At
is approximated as
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Fig. 2. Sub-triangles used for numerical integration. Left: undeformed. Right: deformed under vertical tension.

XY eeae = (X34 [(1= DX} + B{XD e (AL), (22)

where different values of the parameter B are associated with
various numerical schemes. For =1 the Crank-Nicolson scheme
(trapezoidal rule) is obtained which is unconditionally stable and
do not introduce numeric dissipation into the solution results.

For the elastic part of the problem the Newmark method is used
(Newmark, 1959). Following (Eslami, 2003), the unknown vector
{X} and its derivative {X} at time t + At are approximated in terms
of their values at time t as

Kheoae = )+ 11 - 2R, + 2{K), AL 23)
Kl = K)o+ 000+ | (5= 8) 00, + 00 007

where the coefficients o and 8 are parameters which determine the
accuracy and stability of the numerical technique. For o > § and
p = % the scheme is unconditionally stable. In this study, these
two parameters are chosen to be o =1 and g =1 (implicit mean
acceleration scheme). For these values of these two parameters,
the numeric dissipation due to the scheme is zero and the total en-
ergy 3 ({X} [M]{X} + {X}"[K]{X}) remains constant in the absence of
external forces (Hughes and Belytschko, 2000; Réthoré et al., 2004).
Thus the stability and discretized energy balance are guaranteed by
these values of o and f for our application which includes dynamic
thermo-mechanical loading of a stationary crack. For the case of a
dynamically growing crack, the stability and discretized energy bal-
ance need much more elaboration for both standard FEM (Réthoré
et al., 2004) and XFEM (Réthoré et al., 2005).

A C++code is developed to do the different stages of the calcula-
tions from mesh generation to the calculation of interaction inte-
grals. For solving the system of matrix equations, the conjugate
gradient method from the efficient iterative solver package,
IML++ (Dongarra et al., 1998) is used in combination with the nice
sparse matrix class library, SparseLib++ (Pozo et al., 1998).

3. Numerical integration

The integration classification is done based on the type of the
function being integrated and also the type of the element on
which the integration is performed.

For the elements that are cut by the crack and have discontinu-
ity enrichment, the standard Gauss quadrature is not adequate for
numerical integration. These elements are divided into some sub-
triangles with boundaries on the crack faces and element edges
and then the Gauss quadrature formula is implemented for each
of these sub-triangles (Moés et al., 1999). The free C++code avail-
able in Professor N. Sukumar’s homepage (Sukumar, 2000), which
generates sub-triangles for an element crossed by a straight line, is

extended here for elements containing crack kink and also for polar
configuration in elements containing crack tip. Fig. 2 shows the
generated sub-triangles for a multiple segment crack. These sub-
triangles are also used for computing the element area below
and above the crack and to set a criteria for node enrichment with
discontinuity function (Dolbow et al., 2000).

For integrands containing standard shape functions or face
enrichment functions, a bidirectional Gauss quadrature with three
order in each direction is used for the rectangular elements and a
four order direct Gauss quadrature is used for the sub-triangles.

For the integrands containing tip enrichment functions, the cor-
responding element may have the crack tip inside or outside. For
elements containing crack tip inside them, the element is divided
into a set of sub-triangles with a polar configuration having one
vertex in common with the crack tip (Fig. 3). In each sub-triangle
a singular mapping is performed (Laborde et al., 2005) and a bidi-
rectional Gauss quadrature with 15 order in each direction is used.
Use of the singular mapping increases drastically the accuracy of
integration of singular functions. In the absence of singular map-
ping, a very large number of Gauss quadrature points should be
used in elements containing the crack tip. For elements not con-
taining the crack tip but have tip enrichment, a bidirectional Gauss
quadrature with 23 order in each direction is used for rectangular
elements and a 12 order direct Gauss quadrature is used for sub-
triangles. The high order used for these elements is because the
crack tip may be too close to them while being still outside them.
For the integrands containing combinations of tip and face enrich-
ments a similar scheme is used.

At this point, let us to mention some recent efforts to facilitate
the process of numerical integration in XFEM. In the work by Ven-
tura (2006), the need for constructing sub-cells in numerical inte-
gration of discontinuity functions is removed by defining an
equivalent polynomial function whose integral over the element

Fig. 3. Gauss quadrature points in the element containing the crack tip.
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area is equal to the integral of discontinuity function. However that
method needs still further developments to treat cases in which a
quadrilateral element of an unstructured mesh is mapped onto a
parent element and also in cases in which a crack kink exists inside
an element. In another work by Ventura et al. (2009), a scheme was
proposed to reduce the computational cost of evaluating inte-
grands containing crack tip singular functions. In that work, the
integration over the element area was replaced by a contour inte-
gral over the element boundary by divergence theorem. However,
that method is applicable only to elements for which all nodes of
the element are enriched and for which all enriched degrees of
freedom at all nodes of the element are equal. In the work by Nat-
arajan et al. (2009), the Schwarz-Christoffel conformal mapping
was used to map an arbitrary polygon onto a unit disk on which
the numerical integration is performed. Integrating over a polygo-
nal is also studied by Mousavi et al. (2009). The group theory and
numerical optimization were invoked in that work to compute
appropriate quadrature rules over concave and convex polygons.
The other scheme for the numerical integration is by the use of
smoothed finite element method (Liu et al., 2006; Nguyen-Xuan
et al., 2008; Nguyen et al., 2008a; Bordas et al., 2009). In this
scheme, after dividing the element into sub-triangles, the integra-
tion is performed over the boundaries of the triangles.

4. Interaction integral and thermal dynamical stress intensity
factors

The interaction integral is formulated by superimposing the ac-
tual and auxiliary fields on the path independent J-integral. The J
integral can be written as the following integral over a vanishingly
small contour surrounding the crack tip

= jim,

[(W+1<)51, oy 2\ nydr (24)
Io 3

where W and K are the strain energy and kinetic energy densities,
respectively. The form of Eq. (24) is not suitable for numerical anal-
ysis since it is not feasible to evaluate the stresses and strains along
a vanishingly small contour. A closed contour I'* is considered as in
Fig. 4 (I"=T1+ T, +T_+1T)) Eq.(24) is written along this con-
tour with the help of a weighting function g that is unity on I'y
and zero on I';

0y 5 8”1 lqdr - (25)

ou;
.]:/ |:0','j—j— (W—&-K)éh}qmldl"—
re 0xq rear-
The crack faces are assumed to be traction free. Applying the diver-
gence theorem and using the equilibrium and strain-displacement

equations, after some manipulations, give

Fig. 4. ] integral contour around the crack tip.

J= /A { {Gv%* (W+I<)5h} gii

o*u; du; oT ou; 0*u
—! o0 kk——ij J}Q}dA (26)

* ot? 0y Ox, 0t

Two states of a cracked body are considered. State 1, corresponds to
the present state and state 2, is an auxiliary state which will be cho-
sen as the asymptotic fields for modes I or II. The J-integral for the
sum of the two states can be written as

J(1+2) :](1) +J(2) 4 [12) (27)

where I is called the interaction integral between states 1 and 2.
For general mixed-mode loading, the value of the J-integral is re-
lated to the stress intensity factors as

plane stress

28
plane strain (28)

]:ﬁ 1<,2,E*7{E
EFE E/(1-1?)

Using Eqgs. (27) and (28), the relation between the interaction inte-
gral and stress intensity factors is obtained as

2
12 =& (K"K + KK (29)
Defining the state 2 as the pure mode I asymptotic field, gives the
mode I stress intensity factor for the state 1 as

E
1 1, del

K = o e (30)
In a similar way, mode II stress intensity factor can be obtained
from the value of the interaction integral. From Eqgs. (26) and (27),
the interaction integral is obtained as

ou? ou' P
12) _ m %Y @% _wazs |94
! o /A* { |:0ij 0X1 + aij 0X1 w O aXi
oulV ou? ,oTV
{p atJZ a:& aol) x| dA (31)

where W is the interaction strain energy density

(12) _ (1) (2) _ 4(2) (1)
w =06 =0, € (32)
The term ¢; in (32) is the elastic part of the strain tensor. For ther-
moelastic plane strain conditions, the term €33 of the elastic part of
the strain tensor has nonzero value to have zero sum with thermal
part.

5. Numerical examples
5.1. Internally cracked plate under mechanical shock

An elastic two-dimensional layer with an internal crack is con-
sidered, as is shown in Fig. 5. The layer is under tension stress
shock on its upper and lower surfaces. The assumed boundary con-
ditions result into a mode I crack opening problem. The SIF values
for this two-dimensional elasticity problem are obtained and com-
pared with the analytical solution given by Freund (1990). This
analytical solution is used by (Duarte et al., 2001) to investigate
the accuracy of their generalized finite element results. The plane
strain condition is assumed. As in (Duarte et al., 2001), a uniform
traction of magnitude o, = 63750.0 Pa is applied at time t = 0 as
a step function to the upper and lower surfaces. The layer dimen-
sions are h=2.0m and w=10.0m and the crack length is
a = 5.0 m. The analytical solution in (Freund, 1990) is for an infi-
nite layer. Since the assumed layer is finite, the calculations are
carried out to the point t = 0.001 s before the reflected wave from
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Fig. 5. First numerical example: internally cracked plate under mechanical shock.

the edge reaches the crack tip. The material properties are
p = 7833 kg/m?, E =200 GPa and v = 0.30.

The percentage errors are also given in some figures in compan-
ion with the SIFs figures. The percentage error is defined as follow

Ki(FEM ( t) _ K;{nalytiml (t)

Percentage error (t) = 100 x X ;‘nalyn.ml(tz)

33)

where t; is equal to 0.001 s.

Three different cases are considered. In each of these cases, three
different mesh resolutions are considered. For the first and second
cases, the number of elements in each direction are 100 x 50,
200 x 100 and 400 x 200. For the third case the number of elements
in each direction are 101 x 51, 201 x 101 and 401 x 201. For all
three cases, the number of time steps are Nyjne = 150,300 and 600.

1397

In the first and second cases, even number of elements in each
direction are used such that the crack lies on the elements edges
and the crack tip coincides with one of the nodes. In these condi-
tions, it is possible to locate the exact position of the crack tip by
using the discontinuity enrichment alone without using the singu-
larity enrichment. The only effect is the reduction of the accuracy
of the approximating space near the crack tip. Now, the effect of
using singularity enrichment could be examined. In the first case
only discontinuity enrichment is used (Fig. 6) and in the second
case nine nodes around the crack tip are enriched with singular
branch functions (Fig. 7). It could be seen from Figs. 6 and 7 that
there is about several 0.1% difference for the mean value of the er-
ror (ignoring oscillations) between the two cases.

In the third case, the crack tip position with respect to the ele-
ment edges is changed and the effects of singularity enrichment
and discontinuity enrichment are compared with the ones in the
two previous cases. In the third case, odd number of elements
are used in each direction. So the crack tip is located at the element
centroid (Fig. 8) in contrast to the cases one and two where the
crack tip was coincident to one of the nodes. As can be seen from
Figs. 7 and 8, the method shows an acceptable amount of robust-
ness to the change of crack tip position with respect to the element
edges. The noisy oscillations are larger for the case of crack tip
locating at the centeroid of an element, but some of it may be
due to the change of optimal number of time steps by changing
the crack tip position.

From Figs. 6-8, it is observed that there are some noisy oscilla-
tions in the computed SIF values specially near time t=
0.000341 s where the wave front reaches the crack tip and SIF value
begins to abruptly grow from zero. These unavoidable oscillations
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50000
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:
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Fig. 6. Stress intensity factor versus time for the case 1 of the first numerical example.
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Fig. 7. Stress intensity factor versus time for the case 2 of the first numerical example.

are also observed in (Zamani and Eslami, 2009; Belytschko et al.,
2003; Réthoré et al., 2005; Duarte et al., 2001) for the standard, ex-
tended, and generalized FEM. These oscillations are the characteris-
tic of the solution of a shock propagation problem by the finite
element discretization in the spatial domain and also by the New-
mark method in the time domain, since these two both are consid-
ered originally for smooth behaviour of the solution. As could be
seen from Figs. 6-8, increasing the mesh resolution and the number
of time steps decreases these noisy oscillations.

It seems that it is possible to choose a suitable ratio between
the mesh resolution in the direction of the wave motion and the
number of time steps to minimize the noisy oscillations (as is
done in this numerical example). But in general, they cannot be
completely eliminated in the authors’ knowledge. An effect of
changing this ratio is to place the majority of oscillations before
or after the moving shock front as could be seen by comparing
Fig. 6 with Fig. 9.

The blending effect treated in detail in (Fries, 2008; Ventura
et al., 2009) is an important issue in the extended finite element
method. A magnifying factor for these noisy oscillations may be
the blending effect. Increasing the number of nodes that are en-
riched by singularity functions would decrease the effect of blend-
ing. Also, a more systematic approach would be the use of
weighting functions (Fries, 2008; Ventura et al., 2009).

For static problems, it is proposed by Laborde et al. (2005) to
constraint the enriched DOFs at different nodes to have equal val-
ues (DOF gathering) for better conditioning of the system matrices
and also for a reduction in total number of DOFs. This scheme
would not be convenient for dynamic problems, since constraining
several layers of nodes around crack tip leads to a miss of correct
velocity for the shock motion in the region near to the crack tip.

At time t = 0.001023 s the reflected waves from finite bound-
aries reach the crack tip and invalidate the assumption of infinite
boundary for which the analytical SIFs are available. But as can
be seen from Figs. 6-8, for all three cases the numerical SIF begins
to depart the analytical SIF at some time before the predicted one.
The reason is not clear to the authors. In (Réthoré et al., 2005) this
behaviour is also observed and the reason is said to be the arrival of
the reflected wave to the domain of interaction integral. It can be
argued that this could not be the reason because there is a same
amount of departure for different sizes of interaction integral
domains.

5.2. Edge cracked plate under quasi static thermal shock

An elastic two-dimensional layer with an edge crack is consid-
ered, as is shown in Fig. 10. The layer is rapidly cooled by conduc-
tion at its left surface to T, which is assumed to be equal to —10 K
in this study. All other sides are assumed to be thermally insulated.
The assumed boundary conditions result into a mode I crack open-
ing problem. The plane strain condition is assumed. The SIF for this
two-dimensional thermoelasticity problem is obtained and com-
pared with the analytical solution given by Lee and Sim (1990).
This analytical solution is used by Hosseini-Tehrani et al. (2001)
to investigate the accuracy of their BEM results. The analytical
solution in (Lee and Sim, 1990) is obtained by neglecting the iner-
tia effect so the problem is static in elastic part. The problem
dimensions are h = 2.0 mm and w = 1.0 mm. The crack length is
a=0.5mm. The material properties are p = 7833 kg/m?, E =
200GPa, v=10.30, 2 =668 x 10°° K", ¢ =461.0]J/kgK and k =
17.0 W/mK. A 60 x 160 four node rectangular element mesh with
300 time steps is used. The SIF values are plotted versus time in



Fig. 11. As can be seen form this figure, the numerical results are in
good agreement with the analytical values. As mentioned earlier,
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Fig. 9. Stress intensity factor versus time for two different number of ti

me steps for the case 1 of the first numerical example.
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this problem is defined to be static in elastic part and transient
in thermal part to make comparison with the available analytical
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w

Fig. 10. Second numerical example: edge cracked plate under quasi static thermal
shock.

solution. The noisy oscillations observed in the first numerical
example are absent here. In the region near to the left edge of
the cracked body on which the thermal shock is imposed, the tem-
perature variations have some oscillations at the initial times of
simulation. But these oscillations do not reach the near crack tip
region. The quality of the results before the peak time in Fig. 11
are not quite satisfactory. But it would not be due to the imple-
mentation of the XFEM, as the same trend was observed with the
use of standard FEM by Zamani and Eslami (2009). The error
may be due to the very large gradients at the very initial times of
the simulation for which the numerical model is not able to com-
pensate until nearly the peak time.

5.3. Edge cracked plate under mixed mode mechanical shock

An elastic two-dimensional layer with an edge crack is consid-
ered, as is shown in Fig. 12. The assumed boundary conditions re-
sult into a mixed mode crack problem. The modes I and II stress
intensity factors for this two-dimensional elasticity problem are
obtained and compared with the analytical solution given by Lee
and Freund (1990). This analytical solution is used by Song and
Paulino (2006) to investigate the accuracy of their finite element
results. The plane strain condition is assumed. As in (Song and Pau-
lino, 2006), a velocity of magnitude v, = 6.5 m/s is imposed to the
upper half of the left edge and no other boundary conditions are
prescribed. The layer dimensions are h =0.15m and w = 0.1 m,

Vol h

w

Fig. 12. Third numerical example: edge cracked plate under mixed mode mechan-
ical shock.

and the crack length is a = 0.05 m. The analytical solution is for an
infinite layer so the calculations are stopped at t = 0.000027 s be-
fore the scattered wave at the crack tip bounces back from the
boundary. The material properties are p = 7850 kg/m?, E = 200
GPa, and v = 0.25. A 80 x 150 four node rectangular element mesh
with 220 time steps is used.

As can be seen from Fig. 13, there is good agreement between
the numerical and analytical SIFs. In this numerical example the
mesh resolution is finer than the first mesh resolution used for
the case 2 of the first numerical example; but the SIFs are less accu-
rate. In the first numerical example only a dilatation wave with
front parallel to the element edges affected the crack tip, but in this
numerical example a combination of the dilatation, shear, and the
Rayleigh waves propagate through the body. Also, the dilatation
waves emanating from the plate corners propagate by a curved
front. These would be among the reasons that the SIFs for this
numerical example are less accurate compared to the case 2 of
the first numerical example.

5.4. Curved crack under dynamic thermal shock

A two-dimensional cracked layer made of Bismuth at To = 3.5 K
is considered. The layer is exposed to a thermal shock. For Bismuth
at low temperature conditions (Ty = 3.5 K), the time scale for the
diffusing temperature disturbance is of the same order of the time
scale for the propagating displacement wave (Zamani et al., 2009).
Thus, in the time interval that temperature varies inside the body,
the inertia terms are also excited and the problem should be solved
dynamically both in the elastic and thermal parts. As mentioned
previously, we have used classical theory of thermoelasticity in
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Fig. 11. Stress intensity factor versus time for the second numerical example (dashed line: analytical, solid line: present).
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Fig. 13. Stress intensity factor versus time for the third numerical example (dashed line: analytical, solid line: present).

this study. To attain a more realistic model for this numerical
example, the generalized theories of thermoelasticity should be
used to define wave behaviour for the propagation of thermal dis-
turbances (Hetnarski and Eslami, 2009).

The crack is considered in curved form to invoke the ability of
the XFEM in modeling a curved discontinuity independent of the
mesh configuration. In the XFEM computer code, the curve is con-
structed by a collection of straight line segments as proposed in
(Sukumar and Prévost, 2003). This would be also a suitable treat-
ment for the case of growing cracks, as in each time step the crack
can be assumed to grow one further straight segment. The crack
kinks coordinates are given in Table 1 with the coordinate origin
located at the left lower corner of the plate in Fig. 14.

The layer is initially at To = 3.5 Kand then att = 0 a temperature
perturbation of AT = —0.2 K is applied to the left side (Fig. 14). All
other sides are assumed to be thermally insulated. No displacements
are defined at the boundaries. The plane strain condition is assumed.
The dimensions of the layer are w = 12.0 mm, h; = 10.0 mm and
h, = 15.0 mm. The material properties of Bismuth are considered
as: Young’'s modulus E = 40.0 GPa, Poisson’s ratio v = 0.3, density
p = 9780.0 kg/m?, thermal coefficient o = 6.75 x 10~° 1/K, specific
heatc = 0.052 ]J/kgK and thermal conductivity k = 875 W/mK. Two
mesh resolutions of 70 x 141 and 300 x 605 four node rectangular
elements are used in this numerical example. The number of time
steps is 90 for the first mesh resolution and 380 for the second one.

The simulation is performed until the time t = 4.0 ps. The de-
formed shape at t = 3.68 s is plotted in Fig. 14. The numerical
SIF results for the modes I and II are given in Figs. 15 and 16,
respectively. After the thermal shock is applied at the left edge,
the stress distribution in the layer is dominated by a dilatation
stress wave which moves from left to right in the layer. This stress
wave is generated by thermal disturbance which grows in a
diffusive manner. Thus, if an observer stands at a point inside the
solution domain, at first the stresses increase diffusively to some
peak values (negative for oy, in this example) and then abruptly
change sign when the wave front is reached to the observer and

Table 1

Crack kinks coordinates.
Kink number 1 2 3 4 5 6
x (cm) 0.0 0.0833 0.1468 0.2093 0.2700 0.3279
y (cm) 1.0 1.0 1.0038 1.0153 1.0342 1.0603

7 8 9 10 11 12

x (cm) 0.3823 0.4323 0.4773 0.5165 0.5494 0.5754
y (cm) 1.0932 1.1324 1.1773 1.2273 1.2817 1.3397

/L

w FEE

Fig. 14. Fourth numerical example: curved cracked plate under thermal shock (left:
geometrical definitions, right: deformed shape at time t = 3.68 ps).

then vary smoothly after the wave front is passed. The SIFs varia-
tions versus time in Figs. 15 and 16 follow this interpretation for
the stress wave variations. The stress wave front reaches the crack
tip at t = 2.45 ps. As can be seen from Figs. 15 and 16, this corre-
sponds to the peaks for both K; and Kj; values versus time. Before
that time, the SIF values grow diffusively up to their peak values.
After the time t = 2.45 ps, the stress wave passes through the crack
tip and then abruptly changes sign. Therefore, the SIFs grow in
opposite direction and finally their variation becomes smooth by
distancing the stress wave front from the crack tip position. The
oscillations after the peak time are due to the use of Newmark inte-
gration algorithm and spatial discretization in finite element mod-
eling, as it was observed in the previous numerical examples. The
values of these unavoidable noisy oscillations depend upon the
shape of the displacement wave front which is generally different
for the thermal shocks compared to the elastic ones. These oscilla-
tions are smaller for the finer mesh resolution as is expected. Due
to the presence of the curved crack, there is a very complicated
pattern of emanating and reflecting waves traveling in the solution
domain. But It seems that the dilatation wave moving from the left
edge to the right edge has the major contribution to the SIF
variations.
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Fig. 15. Mode I stress intensity factor versus time for the fourth numerical example (curved crack). The dashed lines are for a mesh of 70 x 141 rectangular elements with
Nrime = 90 time steps and the solid lines are for a mesh of 300 x 605 rectangular elements with Ny, = 380 time steps.
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Fig. 16. Mode II stress intensity factor versus time for the fourth numerical example (curved crack). The dashed lines are for a mesh of 70 x 141 rectangular elements with
Nrime = 90 time steps and the solid lines are for a mesh of 300 x 605 rectangular elements with N, = 380 time steps.

6. Conclusions

In this study, the XFEM is implemented to model bodies with a
stationary crack under dynamic thermo-mechanical loading. Dif-
ferent numerical examples are discussed, including the elastic
and thermoelastic problems. The case of a curved crack is also
studied in the last numerical example.

While the crack tip enrichment always increases the accuracy of
computed SIFs, the error introduced by noisy oscillations, which is
inherent in the FEM modeling of wave fronts, weakens the justifi-
cation for the use of singularity enrichment in the dynamic cases.
Another rule of singularity enrichment, which collaborates with
discontinuity enrichment to exactly locate the crack tip position,
can also be introduced by using a modified version of discontinuity
enrichment discussed in (Belytschko et al., 2003). The extensions
from original XFEM to space-time XFEM enable the inclusion of
discontinuity in both space and time domains (Chessa and Bely-
tschko, 2004; Chessa and Belytschko, 2006; Netuzhylov and Zilian,
2009; Nguyen et al., 2008b). It would be an appealing topic to use
the space-time XFEM to suppress the unwanted noisy oscillations
in dynamic loading of a cracked body. However the method needs
further developments in this direction since until now, it is used

only for some simple patterns of discontinuity fronts in the solu-
tion domain. There can be a very complicated pattern of emanating
and reflecting wave fronts through the body specially for the case
of a curved crack. Also, the wave front can have discontinuity in
primary variables or discontinuity in derivatives or none of them
with only very high gradients that introduce noisy oscillations.

Acknowledgements

The financial support of the National Elite Foundation is grate-
fully acknowledged.

References

Belytschko, T., Black, T., 1999. Elastic crack growth in finite elements with minimal
remeshing. International Journal for Numerical Methods in Engineering 45,
601-620.

Belytschko, T., Chen, H., Xu, ]., Zi, G., 2003. Dynamic crack propagation based on loss
of hyperbolicity and a new discontinuous enrichment. International Journal for
Numerical Methods in Engineering 58, 1873-1905.

Bordas, S., Duflot, M., 2007. Derivative recovery and a posteriori error estimate for
extended finite elements. Computer Methods in Applied Mechanics and
Engineering 196, 3381-3399.



A. Zamani, M.R. Eslami/International Journal of Solids and Structures 47 (2010) 1392-1404 1403

Bordas, S., Nguyen, P.V., Dunant, C., Guidoum, A., Nguyen-Dang, H., 2007. An
extended finite element library. International Journal for Numerical Methods in
Engineering 71, 703-732.

Bordas, S.P.A., Rabczuk, T., Hung, N.-X., Nguyen, V.P., Natarajan, S., Bog, T., Quan,
D.M., Hiep, N.V,, 2009. Strain smoothing in FEM and XFEM. Computers and
Structures. Doi: 10.1016/j.compstruc.2008.07.006.

Chessa, J., Belytschko, T., 2004. Arbitrary discontinuities in space time finite
elements by level sets and X-FEM. International Journal for Numerical Methods
in Engineering 61, 2595-2614.

Chessa, ]., Belytschko, T., 2006. A local space time discontinuous finite element
method. Computer Methods in Applied Mechanics and Engineering 195, 1325-
1343.

Chessa, ]., Smolinski, P., Belytschko, T., 2002. The extended finite element method
(X-FEM) for solidification problems. International Journal for Numerical
Methods in Engineering 53 (7), 1957-1977.

Daux, C., Moés, N., Dolbow, J., Sukumar, N., Belytschko, T., 2000. Arbitrary branched
and intersecting cracks with the extended finite element method. International
Journal for Numerical Methods in Engineering 48, 1741-1760.

Dell’Erba, D.N., Aliabadi, M.H., Rooke, D.P., 1998. Dual boundary element method for
three-dimensional thermoelastic crack problems. International Journal of
Fracture 94, 89-101.

Dolbow, ]., Moés, N., Belytschko, T., 2000. Discontinuous enrichment in finite
elements with a partition of unity method. Finite Elements in Analysis and
Design 36, 235-260.

Dongarra, J.,, Lumsdaine, A., Pozo, R., Remington, K., 1998. IML++ version 1.2:
Iterative methods library reference guide. National Institute of Standards and
Technology, University of Notre Dame, Available from: %3chttp://math.nist.gov/
iml++%3e.

Duarte, C.A.,, Hamzeh, O.N.,, Liszka, T.J., Tworzydlo, W.W., 2001. A generalized finite
element method for the simulation of three dimensional dynamic crack
propagation. Computer Methods in Applied Mechanics and Engineering 190,
2227-2262.

Duddu, R., Bordas, S., Chopp, D., Moran, B., 2008. A combined extended finite
element and level set method for biofilm growth. International Journal for
Numerical Methods in Engineering 74, 848-870.

Dudduy, R., Chopp, D.L., Moran, B., 2009. A two-dimensional continuum model of
biofilm growth incorporating fluid flow and shear stress based detachment.
Biotechnology and Bioengineering 103, 92-104.

Duflot, M., 2008. The extended finite element method in thermoelastic fracture
mechanics. International Journal for Numerical Methods in Engineering 74,
827-847.

Duflot, M., Bordas, S., 2008. A posteriori error estimation for extended finite
elements by an extended global recovery. International Journal for Numerical
Methods in Engineering 76, 1123-1138.

Dumstorff, P., Meschke, G., 2007. Crack propagation criteria in the framework of X-
FEM-based structural analyses. International Journal for Numerical and
Analytical Methods in Geomechanics 31, 239-259.

Elguedj, T., Gravouil, A., Combescure, A., 2007. A mixed augmented Lagrangian-
extended finite element method for modelling elastic plastic fatigue crack
growth with unilateral contact. International Journal for Numerical Methods in
Engineering 71, 1569-1597.

Eslami, M.R., 2003. A First Course in Finite Element Analysis. Tehran Publication

Press.
Freund, LB., 1990. Dynamic Fracture Mechanics. Cambridge University Press,
Cambridge.

Fries, T.-P., 2008. A corrected XFEM approximation without problems in blending
elements. International Journal for Numerical Methods in Engineering 75, 503-
532.

Gracie, R., Ventura, G., Belytschko, T., 2007. A new fast method for dislocations
based on interior discontinuities. International Journal for Numerical Methods
in Engineering 69, 423-441.

Gravouil, A., Moés, N., Belytschko, T., 2002. Non-planar 3d crack growth by the
extended finite element and level sets, part II: level set update. International
Journal for Numerical Methods in Engineering 53 (11), 2569-2586.

Hetnarski, R.B., Eslami, M.R., 2009. Thermal Stresses — Advanced Theory and
Applications. Solid Mechanics and Its Applications, vol. 158. Springer.

Hosseini-Tehrani, P., Eslami, M.R., Azari, S.H., 2006. Analysis of thermoelastic crack
problems using Green-Lindsay theory. Journal of Thermal Stresses 29, 317-330.

Hosseini-Tehrani, P., Eslami, M.R., Daghyani, H.R,, 2001. Dynamic crack analysis
under coupled thermoelastic assumption. Journal of Applied Mechanics 68 (4),
584-588.

Hughes, T.J.R., Belytschko, T., 2000. Nonlinear Finite Element Analysis. ICE Division,
Zace Services Ltd..

Huynh, D.B.P., Belytschko, T., 2009. The extended finite element method for fracture
in composite materials. International Journal for Numerical Methods in
Engineering 77, 214-239.

Laborde, P., Pommier, ]., Renard, Y., Salaiin, M., 2005. High-order extended finite
element method for cracked domains. International Journal for Numerical
Methods in Engineering 64, 354-381.

Lee, K.Y., Sim, K.B., 1990. Thermal shock stress intensity factor by Bueckner’s weight
function method. Engineering Fracture Mechanics 37 (4), 799-804.

Lee, YJ., Freund, L.B., 1990. Fracture initiation due to asymmetric impact loading of
an edge cracked plate. Journal of Applied Mechanics 57, 104-111.

Legay, A., Chessa, ]., Belytschko, T., 2006. An Eulerian-Lagrangian method for fluid—
structure interaction based on level sets. Computer Methods in Applied
Mechanics and Engineering 195 (17-18), 2070-2087.

Liu, G., Dai, K., Nguyen, T., 2006. A smoothed finite element for mechanics problems.
Computational Mechanics 39, 859-877.

Melenk, J.M., Babuska, 1., 1996. The partition of unity finite element method: basic
theory and applications. Computer Methods in Applied Mechanics and
Engineering 139, 289-314.

Moés, N., Belytschko, T., 2002. Extended finite element method for cohesive crack
growth. Engineering Fracture Mechanics 69 (2), 813-833.

Moés, N., Dolbow, J., Belytschko, T., 1999. A finite element method for crack growth
without remeshing. International Journal for Numerical Methods in Engineering
46, 131-150.

Moés, N., Gravouil, A., Belytschko, T., 2002. Non-planar 3d crack growth by the
extended finite element and level sets, part I: mechanical model. International
Journal for Numerical Methods in Engineering 53 (11), 2549-2568.

Mousavi, S.E., Xiao, H., Sukumar, N., 2009. Generalized gaussian quadrature rules on
arbitrary polygons. International Journal for Numerical Methods in Engineering.
Doi: 10.1002/nme.2759.

Natarajan, S., Bordas, S., Mahapatra, D.R, 2009. Numerical integration over
arbitrary polygonal domains based on Schwarz-Christoffel conformal
mapping. International Journal for Numerical Methods in Engineering 80,
103-134.

Netuzhylov, H., Zilian, A., 2009. Space-time meshfree collocation method:
methodology and application to initial-boundary value problems.
International Journal for Numerical Methods in Engineering 80, 355-380.

Newmark, N.M., 1959. A method of computation for structural dynamics. Journal of
Engineering Mechanics Division, ASCE 85, 67-94.

Nguyen, N.T., Rabczuk, T., NguyenXuan, H., Bordas, S., 2008a. A smoothed finite
element method for shell analysis. Computer Methods in Applied Mechanics
and Engineering 198, 165-177.

Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M., 2008b. Meshless methods: a review
and computer implementation aspects. Mathematics and Computers in
Simulation 79, 763-813.

Nguyen-Xuan, H., Rabczuk, T., Bordas, S., Debongnie, J.F., 2008. A smoothed finite
element method for plate analysis. Computer Methods in Applied Mechanics
and Engineering 197, 1184-1203.

Pozo, R., Remington, K., Lumsdaine, A., 1998. SparseLib++ version 1.7: Sparse Matrix
Library. National Institute of Standards and Technology, University of Notre
Dame, Available fromt %3chttp://math.nist.gov/sparselib++%3e.

Prasad, N.N.V,, Aliabadi, M.H., Rooke, D.P., 1994. The dual boundary element
method for thermoelastic crack problems. International Journal of Fracture 66,
255-272.

Prasad, N.N.V., Aliabadi, M.H., Rooke, D.P., 1996. The dual boundary element
method for transient thermoelastic crack problems. International Journal of
Solids and Structures 33, 2695-2718.

Raveendra, S.T., Banerjee, P.K,, 1992. Boundary element analysis of cracks in
thermally stressed planar structures. International Journal of Solids and
Structures 29, 2301-2317.

Réthoré, ]., Gravouil, A., Combescure, A., 2004. A stable numerical scheme for
the finite element simulation of dynamic crack propagation with
remeshing. Computer Methods in Applied Mechanics and Engineering
193, 4493-4510.

Réthoré, J., Gravouil, A., Combescure, A., 2005. An energy-conserving scheme for
dynamic crack growth using extended finite element method. International
Journal for Numerical Methods in Engineering 63, 631-659.

Shih, C.F., Moran, B, Nakamura, T., 1986. Energy release rate along a three-
dimensional crack front in a thermally stressed body. International Journal of
Fracture 30, 79-102.

Sih, G.C., 1962. On singular character of thermal stress near a crack tip. Journal of
Applied Mechanics 51, 587-591.

Song, J.-H., Belytschko, T., 2009. Cracking node method for dynamic fracture with
finite elements. International Journal for Numerical Methods in Engineering 77,
360-385.

Song, S.H., Paulino, G.H., 2006. Dynamic stress intensity factors for homogeneous
and smoothly heterogeneous materials using the interaction integral method.
International Journal of Solids and Structures 43, 4830-4866.

Sukumar, N., 2000. Element partitioning code in 2-d and 3-d for the extended finite
element method. Available from: %3chttp://dilbert.engr.ucdavis.edu/suku/
xfem%3e.

Sukumar, N., Huang, Z.Y., Prévost, J.-H., Suo, Z., 2003a. Partition of unity enrichment
for bimaterial interface cracks. International Journal for Numerical Methods in
Engineering 59 (8), 1075-1102.

Sukumar, N., Moés, N., Moran, B., Belytschko, T., 2000. Extended finite element
method for three dimensional crack modeling. International Journal for
Numerical Methods in Engineering 48, 1549-1570.

Sukumar, N., Prévost, ].-H., 2003. Modeling quasi-static crack growth with the
extended finite element method, part I: computer implementation.
International Journal of Solids and Structures 40, 7513-7537.

Sukumar, N., Srolovitz, D.J., Baker, T.J., Prevost, ]J.-H., 2003b. Brittle fracture in
polycrystalline microstructures with the extended finite element method.
International Journal for Numerical Methods in Engineering 56 (14), 2015-
2037.

Ventura, G., 2006. On the elimination of quadrature subcells for discontinuous
functions in the extended finite element method. International Journal for
Numerical Methods in Engineering 66, 761-795.

Ventura, G., Gracie, R., Belytschko, T., 2009. Fast integration and weight function
blending in the extended finite element method. International Journal for
Numerical Methods in Engineering 77, 1-29.


http://math.nist.gov/iml++
http://math.nist.gov/iml++
http://math.nist.gov/sparselib++
http://dilbert.engr.ucdavis.edu/suku/xfem
http://dilbert.engr.ucdavis.edu/suku/xfem

1404 A. Zamani, M.R. Eslami/International Journal of Solids and Structures 47 (2010) 1392-1404

Ventura, G., Moran, B., Belytschko, T., 2005. Dislocations by partition of unity. Zamani, A., Hetnarski, R.B., Eslami, M.R., 2009. Second sound in a cracked
International Journal for Numerical Methods in Engineering 62, 1463-1487. layer based on lord-shulman theory. In: Thermal Stresses Congress,
Wilson, WK, Yu, LW., 1979. The use of the J-integral in thermal stress crack Illinois, USA.

problems. International Journal of Fracture 15, 377-387. Zi, G., Belytschko, T., 2003. New crack-tip elements for XFEM and applications to
Zamani, A., Eslami, M.R., 2009. Coupled dynamical thermoelasticity of a functionally cohesive cracks. International Journal for Numerical Methods in Engineering 57,
graded cracked layer. Journal of Thermal Stresses 32, 969-985. 2221-2240.



	Implementation of the extended finite element method for dynamic thermoelastic fracture initiation
	Introduction
	Problem formulation
	Numerical integration
	Interaction integral and thermal dynamical stress intensity factors
	Numerical examples
	Internally cracked plate under mechanical shock
	Edge cracked plate under quasi static thermal shock
	Edge cracked plate under mixed mode mechanical shock
	Curved crack under dynamic thermal shock

	Conclusions
	Acknowledgements
	References


