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a b s t r a c t

This paper presents a comprehensive study of the lateral compressive response of hexagonal honeycomb
panels from the initial elastic regime to a fully crushed state. Expanded aluminum alloy honeycomb pan-
els with a cell size of 9.53 mm, a relative density of 0.026, and a height of 15.9 mm are laterally com-
pressed quasi statically between rigid platens under displacement control. The cells buckle elastically
and collapse at a higher stress due to inelastic action. Deformation then first localizes at mid-height
and the cells crush by progressive formation of folds; associated with each fold family is a stress undu-
lation. The response densifies when the whole panel height is consumed by folds. The buckling and crush-
ing events are simulated numerically using finite element models involving periodic domains of a single
or several characteristic cells. The models idealize the microstructure as hexagonal, with double walls in
one direction. The nonlinear behavior is initiated by elastic buckling while inelastic collapse that leads to
the localization observed in the experiments occurs at a significantly higher load. The collapse stress is
found to be mildly sensitive to various problem imperfections. The subsequent folding can be reproduced
numerically using periodic domains but requires a fine mesh capable of capturing the complexity of the
folds. The calculated crushing response is shown to better resemble measured ones when a 4 � 4 cell
domain is used. However, the average crushing stress can be captured with engineering accuracy even
from a single cell domain.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Honeycomb is a two-dimensional cellular material that is rela-
tively strong and stiff along the normal to the microstructure but
compliant and weak in-plane. It is widely used as core in sandwich
construction where its role is to transfer shear loads between the
faceplates (Allen, 1969, Marshall, 1982). Hexagonal cells are most
common but circular, square and other cell geometries including
ones that are auxetic and others that can accommodate bending
of a sheet exist (Hexcel, 2010). Honeycomb is made from most
materials, metals, polymers, paper, etc., to fit the application. Their
wide use stems from their excellent specific stiffness and weight,
their outstanding energy absorption characteristics and their cost
effectiveness (Gibson and Ashby, 1997).

The wide use of honeycomb in practice generated a need for
establishing their mechanical properties and this spawned an
extensive literature on the subject starting from the anisotropic
elastic properties, the onset of ‘‘yielding’’ and collapse, and the
crushing response (e.g., Gibson and Ashby, 1997). Of all honey-
combs, metallic ones with hexagonal cells have received the most
ll rights reserved.
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attention. The extensive literature on the out of plane mechanical
behavior was motivated first by the design needs of sandwich con-
struction (e.g., Kelsey et al., 1958; Penzien and Didriksson, 1964;
Grediac, 1993; Zhang and Ashby, 1992; Gibson and Ashby, 1997).
The second motivation comes from the use of such honeycombs
for energy absorption in a variety of quasi-static and dynamic
applications (e.g., McFarland, 1963, 1964; Wierzbicki, 1983; Wie-
rzbicki and Abramowicz, 1983; Goldsmith and Sackman, 1992;
Mohr and Doyoyo, 2003, 2004a,b; Aktay et al., 2008; Yamashita
and Gotoh, 2005; Zhao and Gary, 1998; Chen et al., 2009).

A similarly large literature on the in-plane properties is mainly
motivated by the similarities between the behavior of three-
dimensional cellular materials, namely foams, and that of
honeycombs loaded and crushed in-plane; in other words, here
the honeycomb represents a two-dimensional model for the more
complex foams with space-filling three-dimensional microstruc-
tures (e.g., Gibson et al., 1982; Klintworth and Stronge, 1988; Papka
and Kyriakides, 1994, 1998; Triantafyllidis and Schraad, 1998).

The present study is concerned with the more traditional prob-
lem of transverse compression. In particular, we aim to establish
all aspects of the compressive response of honeycomb sandwich
panels; that is, the initial linearly elastic behavior, the onset of
instability, the onset of collapse, its localization, and the progres-
sive folding and crushing under persistent compression. Of these
properties, the crushing behavior, or in other words the energy

http://dx.doi.org/10.1016/j.ijsolstr.2010.11.014
mailto:skk@mail.utexas.edu
http://dx.doi.org/10.1016/j.ijsolstr.2010.11.014
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


804 A. Wilbert et al. / International Journal of Solids and Structures 48 (2011) 803–816
absorption capacity, has received the most attention experimen-
tally (e.g., McFarland, 1963, 1964; Goldsmith and Sackman, 1992;
Mohr and Doyoyo, 2004a) and analytically; early on using
kinematically admissible collapse mechanisms (e.g., Wierzbicki,
1983; Wierzbicki and Abramowicz, 1983), and more recently more
representative numerical models (e.g., Mohr and Doyoyo, 2004b;
Yamashita and Gotoh, 2005 among others).

The study performed is based on a Hexcel Al alloy honeycomb
bonded to Al faceplates. The honeycomb is manufactured as de-
scribed in Papka and Kyriakides (1998) (see also Hexcel, 2010):
lines of epoxy of chosen width and spacing are ‘‘printed’’ on thin
metal foils. The foils are stacked together in a manner that places
the bond lines of adjacent foils half a period out of phase as shown
in Fig. 1a. The foil stacking is placed in a press with hot platens
where the epoxy lines are cured. Axial strips of the required hon-
eycomb thickness are then cut from the stacking and the strips
are mechanically expanded to form the hexagonal cell honeycomb
as shown in Fig. 1a. The initial width and spacing of the bond lines
determines the cell diameter (c). Honeycomb made in this fashion
Fig. 1. (a) Laminate of periodically bonded aluminum foils and hexagonal honeycomb
honeycomb geometry.
has double wall thickness in one direction (L); in other words, it is
anisotropic with two principal directions, L and W. Papka and
Kyriakides (1998) discuss other effects of the process such as
changes to the mechanical properties of the foil material, introduc-
tion of residual stresses, small rounding of the expanded corners of
the hexagonal cells, and geometric imperfections introduced by
small deviations in the bond line spacing and under or over
expansion.

The study starts with the presentation of results from compres-
sion and crushing experiments on finite size sandwich panels, fol-
lowed by results from an analytical study of all aspects of the
response.

2. Experimental

A series of crushing experiments were performed on Hexcel
Al-5052-H39 honeycomb with nominal cell size (c) of 0.375 in
(9.53 mm), wall thickness (t) of 0.00374 in (95 lm) and height
(h) of 0.625 in (15.9 mm) (Table 1). A consistent deviation from
microstructure produced by expanding laminate strips. (b) Imperfect hexagonal



Table 1
Geometric parameters of Al-5052-H39 honeycomb used in the experiments.

c in (mm) ‘ in (mm) t in (lm) k h in (mm) LL in (mm) LW in (mm) s in (mm) q⁄/q

0.375 0.2165 0.00374 0.92 0.625 5.5 3.2 0.030 0.026
(9.53) (5.50) (95) (15.9) (140) (81) (0.76)
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Fig. 3. Axial stress-shortening response for monotonic (dashed line) and step-by-
step (solid line) crushing of honeycomb panels.
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perfect hexagon arising from a somewhat deficient bond width (k‘
in Fig. 1b) was recorded from measurements of the cell wall
lengths. The value of k quoted in Table 1 is the average from mea-
surements on 30 cells. The relative density of hexagonal honey-
comb with double walls in one direction is given by:

q�

q
¼ 8

3
t
c

� �
ð1Þ

(Papka and Kyriakides, 1994). Thus, for the present honeycomb
q�=q ¼ 0:026:

Honeycomb sections typically 8 � 15 cells (W � L) extracted
from 24 � 24 in (600 � 600 mm) sheets were bonded to Al-2024-
T3 face sheets 0.030 in (0.76 mm) thick (s) to form sandwich
panels approximately 3.2 � 5.5 in (81 � 140 mm) as shown in
Fig. 2. A high-strength film epoxy (Hysol EA-9696, 0.060 psf NW)
was used, which was cured between platens heated to 250 �F
(121 �C) for 90 min.

The panels were compressed in a screw-type testing machine
between parallel platens with a ground finish at a displacement
rate of _d ¼ 5� 10�4h s�1. The prescribed displacement and in-
duced load were recorded in a computer based data acquisition
system while simultaneously the deformations of the cell walls
on two of the sides of the panel were monitored with a video
camera.

Fig. 3 shows the stress-shortening response (r � d) recorded in
a typical crushing experiment (dashed line). The nominal stress r
is the force recorded divided by the projected area of the honey-
comb (LL � LW in Fig. 2). The initial response is stiff and nearly lin-
ear. Along the way, the sides of the hexagonal cells were observed
to buckle developing a number of axial waves. The buckling was
elastic as the waves would disappear if the panel was unloaded
early enough. At higher stress levels inelastic action takes place,
a limit load develops, and simultaneously the axial waves tend to
localize. The maximum stress achieved was 529 psi (3.65 MPa)
which represents the compressive strength, rCO, of the panel and
the onset of crushing. As compression continues the load is seen
to drop precipitously down to a local minimum that is associated
with the formation of the first local fold. Subsequently, a number
of stress undulations develop, which represent the formation of
additional folds of the cell walls. The amplitude of the undulations
is seen to decrease with d while the average crushing stress ð�rchÞ is
Fig. 2. Three-dimensional rendering of an 8 � 15 cell honeycomb panel.
at a level of 254 psi (1.75 MPa). The particular test was terminated
when the panel was crushed down to 40% of its original height and
unloaded.

Several similar tests were performed and the results were found
to be quite repeatable. A separate experiment was conducted in or-
der to document the details of the crushing behavior of cell walls. A
larger panel 6.5 � 6.2 in (165 � 157 mm) was used for this purpose
(Floccari, 2008). The r � d response recorded is drawn in Fig. 3
with a solid line. The crushing was performed in a step-by-step
fashion so that the specimen was unloaded after a certain amount
of deformation. A small section of it (about 5 � 5 cells) was then
removed from the panel by cutting along the L and W directions
with a diamond saw, keeping the remainder for further crushing.
The two cut faces of the removed sections were polished and pho-
tographed using a low magnification microscope. Thus for exam-
ple, the first unloading was performed when the stress dropped
to about 300 psi (2 MPa) following the onset of collapse (point r

on the response in Fig. 3). The corresponding pair of photographs
taken of the orthogonal faces is depicted as r in Fig. 4. From left
to right the images correspond to the W and L planes of the honey-
comb. The deformation is seen to have localized into a single wave
symmetrically deployed about the mid-height. On the left, the sin-
gle walls are bending alternately in and out of the page while on
the right the double walls are bending inwards. It is interesting
to observe that in the W plane image the double walls have deb-
onded over a length of 0.1h at mid-span (noted also in Wierzbicki
(1983) and others).

The specimen was then reloaded, crushed to point s just after
the first load trough, unloaded again, and a second small section
was removed in a similar fashion. The two internal planes were
photographed and the corresponding images are depicted as s

in Fig. 4. The mid-span deformation has now evolved into folds
with some contact developing between the fold walls (see L im-
age). This contact is responsible for the upswing in the overall load.
The debonding observed in the W image in r has been arrested
and is seen to be limited to the crease of the fold.

In the next loading step, the stress continues to increase until
point t when the stiffness of the honeycomb develops a point of
inflection. This event is short-lived and the stress quickly begins



Fig. 4. Sequence of photographs of honeycomb cells at different stages of crushing
corresponding to numbered points on response in Fig. 3 (views of W and L planes).

Table 2
Average values of collapse and crushing stresses from experiments performed.

rCO psi (MPa) �rch psi (MPa)

Average 539 241
(3.72) (1.66)

Standard deviation 38.1 8.3
(0.263) (0.0572)
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to rise again, reaching point u at d/h � 0.22. As pointed out above,
in the neighborhood of s initial contact occurred on the bottom
side of the folds in L. As crushing progresses, that side of the fold
comes into full contact so that at t, there is no longer any gap
underneath the fold. Subsequently, the other half of each cell col-
lapses until by u contact is achieved on both sides. Between these
points, the stiffness dropped slightly because crushing occurred
where the microstructure was not in self-contact. With the fold
in full contact the load increases once more.

With further crushing the load reaches a second peak that is
associated with the initiation of a second fold at the top half of
the cells, thus breaking the symmetry of the deformation. The load
drops tracing another valley at the bottom of which the specimen
is unloaded once more and a new small section is removed. The
formation of the second fold is clearly seen in images v. (Events
reminiscent of those observed in progressive crushing of single
tubes—e.g. see Wierzbicki et al. (1992), Bardi et al. (2003))

As the panel is crushed further the load goes through a third
peak and is unloaded at w. The beginning of the formation of a
third fold in the upper half can be seen in images w. By point x,
the third fold is fully developed and a new one starts in the bottom
half that hitherto stayed essentially intact. The formation of the
new fold is again associated with a stress peak but, as evidenced
in Fig. 3, the amplitude of the stress undulations is decreasing as
crushing progresses further.

It is worth noting that the progressive removal of a small sec-
tion of the panel to facilitate observation of the evolution of crush-
ing was undertaken in order to analyze crushing in the interior of
the specimen. It was thought that free edges might crush some-
what differently. After each section was removed the area of the
specimen was adjusted and this was accounted for in evaluating r.

It is interesting to observe that the incremental response in
Fig. 3 is in very good agreement with the one corresponding to
monotonic crushing despite the difference in the size of the two
panels. This agreement was generally repeated for most of the pan-
els tested despite some variation in the folding patterns that devel-
oped in each. That is, in some specimens the folding developed in
the upper half of the honeycomb height first and in others in the
bottom. In some cases, part of the specimen crushed in the former
manner, part in the latter, and the two zones were joined by a tran-
sition with inclined folds. No significant effect from the size of the
panel was noticed at least in the range of sizes considered (8 � 15
to 15 � 15 cells).

A total of 8 such experiments were conducted and the differ-
ences between them were relatively small. In Table 2 we report
the mean values of the collapse stress and of the average crushing
stress. The average collapse stress is 539 psi (3.72 MPa) with one
standard deviation being 38.1 psi (263 kPa). Since among other fac-
tors the onset of collapse is influenced by small initial geometric
imperfections specific to each test, the variation is considered to
be rather small. The average crushing stress �rch is defined as the
mean value of the stress level measured starting from d/h corre-
sponding to the inflection point in the response following the first
load depression to d/h of 60% as shown in Fig. 5. The average of the
crushing stresses and one standard deviation from 8 experiments
are reported in Table 2.

The mechanical properties of the honeycomb Al-5052-H39 foil
were measured using tensile tests on small dogbone specimens ex-
tracted from the single wall sides of the hexagonal cells. The elastic
modulus was found to be very close to 104 ksi (69 GPa) and the
yield stress 36 ksi (248 MPa). Because of their relatively small wall
thickness (95 lm), soon after yielding the specimens developed
shear bands and failed at average strains of about 5% (see Sec-
tion 2.1.3 in Floccari, 2008).
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Fig. 6. (a) Honeycomb unit cell used in the calculations and (b) three-dimensional
rendering of the cell.
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3. Analysis

The complex compressive response and crushing of honey-
combs observed in the experiments is simulated using representa-
tive finite element models. The problem complexity is reduced by
neglecting the mechanical property changes and residual stresses,
left behind by the mechanical expansion process through which
the honeycomb is manufactured. Furthermore, the small rounding
of the corners of the actual cells is also neglected (these issues are
addressed separately in Jang and Kyriakides (2010)). Thus, we will
consider the idealized geometry shown in Fig. 6a that consists of
perfect hexagonal cells of diameter c ¼

ffiffiffi
3
p

‘
� �

and foil thickness t.
The double wall thickness of the sides in the L direction is retained
but the bonding of the two walls is neglected making them instead
monolithic of thickness 2t. Because of the periodicity of the ideal-
ized microstructure, many of the mechanical characteristics of
interest can be simulated using a representative unit cell assigned
appropriate periodicity conditions. The unit cell chosen is drawn
with a dashed line in the L–W plane in Fig. 6a and is depicted in
a three-dimensional rendering in Fig. 6b. It has a cross sectional
area of

ffiffiffi
3
p

‘� 3‘=2. (The ‘‘Y’’ representing one half of this domain
and even one half of the Y can also serve as periodic unit cells.
Our choice is made in order to provide more degrees of freedom
during crushing).

The main elastic properties can be easily evaluated from simple
considerations. Thus, the elastic modulus E�3 is given by

E�3
E
¼ 8t

3c
¼ q�

q
; ð2Þ

where E is the modulus of the base material. The two Poisson’s ra-
tios are equal to that of the base material m (Zhang and Ashby, 1992)

m�31 ¼ m�32 ¼ m: ð3Þ

The shear moduli were first evaluated by Kelsey et al. (1958) using
energy methods and shear flow analysis that neglect bending of the
cell walls. They are given by

3
2
ffiffiffi
3
p t

‘
6

G�13

G
6

5
3
ffiffiffi
3
p t

‘
or

9
16

q�

q
6

G�13

G
6

5
8

q�

q
ð4aÞ

and
G�23

G
¼ 1ffiffiffi

3
p t

‘
¼ 3

8
q�

q
: ð4bÞ

The performance of these expressions was evaluated using FE mod-
els and the honeycomb parameters listed in Table 1 (perfect hexag-
onal cell). In the models the honeycomb upper and lower surfaces
were restrained to remain plane. The two expressions were found
to yield shear moduli that were in very good agreement with those
from the numerical results. In the case of G�13 the upper bound was
found to be closer to the numerical result than the lower bound (see
also Grediac, 1993).
3.1. Finite element models

We will start by considering just one fully periodic unit cell;
limiting effects of this choice of domain will be discussed subse-
quently. The unit cell is discretized within the nonlinear FE code
ABAQUS using S4 shell elements. S4 is a fully integrated 4-node
element that allows for finite membrane strains. Progressive fold-
ing that characterizes the crushing calculations is numerically
intensive so the shell element selection and the discretization
adopted were guided by computational efficiency. A regular mesh
with nearly square elements was adopted, while the number of
elements used was selected from convergence studies that follow.

For the panels tested a thin film of epoxy is used to bond the
faceplates to the honeycomb. When cured the epoxy tends to form
meniscus-like fillets at the corners between the cell walls and the
plate. After looking into the effect of the fillets on the calculated re-
sponse it was decided that including them would make the
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calculation numerically cumbersome without adding significantly
to the accuracy of the predictions. Thus, the top and bottom edges
of the unit cell are assumed to be fixed, except that the top can
translate in the x3-direction.

The following periodicity conditions are used for the four lateral
edges of the unit cell. Define the edges as (A1,A2) and (B1,B2 ) as
shown in Fig. 6b. The displacements and rotations of points on
these edges are respectively denoted by (ui1,ui2) and (hi1,hi2) i = 1,
3. The following relationships are prescribed for the degrees of
freedom of points on each pair of faces:

ui1 � ui2 ¼ uref
i1 � uref

i2 and hi1 � hi2 ¼ 0; i ¼ 1;3; ð5Þ

where uref
ij are displacements of conjugate points on opposite sides

chosen as reference points. Eqs. (5) hold for every node on the four
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Fig. 8. First (a) and second
lateral edges, with the exception of the 8 nodes that are also con-
tained in the top and bottom edges, which are required to satisfy
the prescribed boundary conditions.

The material is modeled as a finitely deforming J2 solid that
hardens isotropically. The model is calibrated to a bilinear
stress–strain response that was fitted to measured tensile tests
on the honeycomb foil. It has an elastic modulus of 104 ksi
(69 GPa), a yield stress of 36 ksi (248 MPa), a post-yield modulus
of 57 ksi (394 MPa) up to a strain of 10% and is perfectly plastic
at higher values (true stress-logarithmic plastic strain version).

3.2. Buckling and initial postbuckling behavior

The cell is loaded by prescribing incrementally the normal dis-
placement of the top surface d. A typical calculated compressive
stress-displacement (r � d/h) response is shown in Fig. 7, where
r is the force divided by the cell’s projected area (3

ffiffiffi
3
p

‘2=2, see
Fig. 6a; calculations of this type are performed in ABAQUS standard
with a mesh of 18254 elements). The response is initially stiff and
linear with stiffness E�3 as quoted in (2). At some level of stress
(rC = 428 psi—2.95 MPa) the plate-like walls of the cell buckle into
the mode shown in Fig. 8a. It has three half waves along the height
of the cell and is symmetric about the mid-height. Interestingly,
the second buckling mode shown in Fig. 8b is anti-symmetric
about the mid-height and occurs at the only slightly higher stress
of 434 psi (2.99 MPa). It is worth noting that higher modes are
separated by larger stress levels. Buckling is clearly elastic as the
honeycomb yields at a much higher stress level marked on the
extended trivial response with a square symbol (ry = 947
psi—6.60 MPa). The critical buckling stress of 428 psi (2.95 MPa)
compares with the upper bound value developed by Zhang and
Ashby (1992) of 1249 psi (8.61 MPa) (see also §4.5 Gibson and
Ashby, 1997). The bound was developed using a long strip of foil
width ‘ and thickness t with fixed boundary conditions along the
long edges. It is interesting to note that even if the sides had been
(b) buckling modes.
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assumed to be simply–supported, the buckling stress from this
approach would still be significantly higher than the numerical va-
lue (717 psi—4.85 MPa; using K = 3.29 in Ref. Eq. (7)). Since the cell
corners are not rigid, neighboring cells buckle in a compatible
manner (see Fig. 8), which apparently makes the structure more
flexible.

Elastic buckling of plates has a stable postbuckling response
and consequently the initial change in stiffness of the buckled
structure is relatively small. Fig. 9 shows deformed configurations
corresponding to three points on the response marked with num-
bered bullets in Fig. 7. Configuration r is in the pre-bucking re-
gime and so the honeycomb does not exhibit out of plane
deformations. In configuration s the symmetric deformation of
mode 1 is clearly discernible. The postbuckling response is of
course nonlinear but the structure remains elastic until a higher
stress level is reached. With further compression, the combination
of bending and membrane stresses yields the material and the re-
sponse starts to lose stiffness deviating from the elastic one
(drawn with dashed line). Plastification eventually results in the
development of a load maximum in the response that represents
the collapse load of the structure (rCO = 714 psi—4.93 MPa). This
value of collapse stress is somewhat higher than the average value
measured in the experiments of 539 psi (3.72 MPa). Various
imperfections present in real structures tend to reduce the col-
lapse load (see imperfection sensitivity studies in Section 4). The
effects of the size of the domain analyzed and of the mesh will
be discussed in Section 4.

With further compression the deformation starts to localize
while the average stress follows a downward trajectory. In config-
uration t in Fig. 9 the deformation is seen to localize, but remains
symmetric about the mid-height (compare amplitude of displace-
ments at mid-height and elsewhere). The continuation of the col-
lapse of the structure and the subsequent progressive folding of
the walls will be discussed in the next section.

At this stage it is also interesting to consider the response of
an imperfect version of this unit cell. The imperfection chosen
here corresponds to the first buckling mode (see Fig. 8a) with
the point of maximum transverse deflection assigned an ampli-
tude equal to t. The response of the imperfect structure, drawn
in Fig. 7 with a dashed line, is seen to be initially somewhat less
Fig. 9. Deformed configurations corresponding to number
stiff than the one for the perfect geometry. The load maximum is
6.5% lower but at higher deformations it merges with the perfect
case response.

In reviewing the literature we observed that the distinction
between ‘‘buckling’’ and ‘‘collapse’’ is rather blurred. This is partly
due to the fact that the onset of buckling in the cell walls is dif-
ficult to pinpoint experimentally. Measured responses appear
more like the one for the imperfect cell model in Fig. 7 in which
the point of buckling is impossible to identify. The best one can
do is to bracket rC by careful monitoring the development of
waves in the cell walls, something that is practically difficult to
perform and consequently not usually done. Instead, some quote
the maximum stress recorded as ‘‘buckling.’’ As reported above,
the load maximum is caused by inelastic action due to the com-
bined effect of cell bending and compression. In the present case
the nonlinearity is loss of stiffness due to plasticity; in others it
could be some type of damage that can lead to failure. In both
cases a non-trivial calculation is required to pinpoint the load
maximum. A reasonable lower bound of the collapse load may
be established by calculating the onset of yielding due to com-
bined bending and compression in the fashion proposed by
Timoshenko. Finally, we note that as c/t decreases, buckling can
occur in the plastic range of the material requiring a different
treatment from the present one.

3.3. Crushing response

Honeycomb crushing involves severe local bending of and con-
tact between the walls of the folds. Consequently, in contrast to
the prebuckling and initial postbuckling calculations described
in Section 3.2, crushing was performed using ABAQUS/Explicit
due to the computational efficiency that it affords. The basic cal-
culations involve the characteristic cell shown in Fig. 6b with a
mesh of 5850 S4 elements (convergence study will follow in Sec-
tion 4). The cell is assigned the periodicity conditions given in (5).
The top and bottom edges are fixed except in the x3-direction of
the top edge, which is prescribed a downward displacement. This
displacement was assigned a ‘‘smooth step’’ time function in order
to minimize inertial effects, thus mimicking the ‘‘quasi-static’’ rate
of crushing of the experiments. Furthermore, the computation
ed bullets on the perfect geometry response in Fig. 7.
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time was minimized by speeding up the simulation to a total
crushing time of 2 s. For this choice of crushing time, the kinetic
energy of the structure was shown to remain only a small fraction
of the strain energy, thus confirming that the simulation remained
quasi-static. The same time independent constitutive model de-
scribed in Section 3.2 was adopted for the mechanical properties
of the Al-5052-H39 alloy.

The crushing involves contact between folds of adjacent cell
walls as well as self-contact and consequently both sides of the cell
walls were considered for contact (ABAQUS’ ‘‘all exterior’’ parame-
ter). This process ensures that contact occurs at the actual surface
of the walls (i.e., at ±t/2). Suffices to say that for such problems
contact constitutes a major contributor to the total computation
time of the simulation.

A typical crushing response from such a simulation is shown in
Fig. 10 along with one of the experimental responses. Fig. 11
shows W and L pairs of views of the initial and a set of deformed
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configurations of the unit cell corresponding to the numbered bul-
lets marked on the response in Fig. 10. An initial imperfection
corresponding to the first buckling mode (Fig. 8a) with amplitude
of t was included in the model to ensure consistency in the initial
mode of collapse with the results shown above. Configurations r,
on the first descending part of the response, show localized defor-
mation symmetrically deployed about the mid-height that is asso-
ciated with the initial stages of collapse of the cell. The local
buckles that have formed are inward in the W side and outward
in the L side. Simultaneously, the walls above and below the col-
lapse are seen to be relatively undeformed. In the experiments the
first sign of some debonding of double walls was observed at this
stage. Wall separation was precluded in this model and this omis-
sion is expected to introduce some minor differences between the
calculated and measured responses.

The collapse continues with folding up the local buckles at mid-
height while the load is decreasing. In the neighborhood of config-
uration s, contact between folds in adjacent walls develops for the
first time. The structure is stabilized and this is reflected in the bot-
toming out of the response. In the neighborhood of configuration
t, self-contact in the folds takes place further stabilizing the struc-
ture and the load takes an upward trajectory (note that the images
show the mid-surface of the cell). It is reassuring that the depth of
the load trough is similar (slightly higher) to that of the
experiment.

The inflection point that was consistently seen in the experi-
ments is reproduced in the simulation but is less distinctive. We
speculate that in the physical test it may be a manifestation of
the contact of the separated parts of the double walls that can be
seen in configuration u in Fig. 4. In configuration u some of the
folds have developed self-contact and the upward trend in the load
continues. At some point the thus far intact part of the upper half
of the cell gets destabilized once more; a new load maximum
develops and a second fold is initiated from the disturbance pro-
vided by the bent walls of the first one. The new fold can be seen
at a well-developed state in v. The second load peak is at a slightly
higher level than the experimental one. By configuration w, con-
tact is fully developed in the second fold and the response takes
an upward path once more. A third load peak develops at about
the same level as the second one. This is associated with the initi-
ation of a third fold again in the upper half of the cell that can be
seen in configuration x. Contact arrests the deformation in the
third fold and the response recovers once more. Configuration y

shows the third fold fully developed and the stiffening of the cor-
responding response once more. A fourth load peak develops
which signals the commencement of folding in the lower half of
the cell which can be seen in configuration z just before the next
load valley. The folding in the lower half continues forming a total
of five folds before densification, which agrees with the experi-
ment. However, the experimental response associated with the
final folding differs from the simulation primarily because of the
presence of the epoxy fillets that form at the interfaces with the
plates.

Overall, the simulated crushing response is a reasonable repro-
duction of the experimental one all be it with some differences.
The crushing stress (�rch ¼ average r between 0.225 6 d/h 6 0.60)
is 257 psi (1.77 MPa), that is 8.4% higher than the mean value
from the experiments. The period of the folds is somewhat differ-
ent than the experimental one and the decay in the amplitude of
the stress undulations was not captured here as stress peaks 2, 3
and 4 occur at about the same level. Furthermore, small ampli-
tude undulations associated with local events within the folds
appear in the calculated response making it more rugged. Of
course, the experimental response represents the average over
many cells (at least 8 � 15), which tends to smooth out local force
fluctuations.
4. Parametric study

We consider again separately the two major aspects of honey-
comb compressive behavior buckling and collapse, and crushing
and try to establish their sensitivity to various problem parame-
ters. The parameters considered include mesh sensitivity, the size
of the domain analyzed, and several types of geometric and other
imperfections.
4.1. Effect of mesh and domain size on buckling and collapse

The effects of the mesh density used in the characteristic cell on
the bifurcation and collapse stresses was examined and the results
are shown in Fig. 12, where the two variables are plotted against
the number of S4 elements, M, used. In all cases the mesh is nearly
square. The calculated critical loads are normalized by the bifurca-
tion buckling stress, ‘‘rC’’, for what we designate as the ‘‘basic’’
mesh of 4224 elements which is 437 psi (3.02 MPa; normalized va-
lue designated as �rC). The coarsest mesh considered has 870 ele-
ments, the second 2208, the third 4224 and so on. The buckling
stress is seen to gradually decrease with M so that for 870 elements
it is 4.5% higher than rC and for 18254 elements it is 2% lower; this
last case can be considered as converged. In other words, the basic
case is not fully converged as far as this variable is concerned; in-
stead it has been chosen for computational expediency in the exe-
cution of very large calculations that follow. It is important to note
however that the mode associated with the critical stress remained
the same for all meshes.

Unless otherwise stated, all collapse stress calculations were
performed with an initial imperfection corresponding to the criti-
cal buckling mode with an amplitude of t. The calculated
�rCOð¼ rCO=rCÞ values are seen in Fig. 12 to be less sensitive to
the mesh so that even for the coarsest mesh �rCO is only 0.6% higher
than the base case, and for M > 4224 the results can be considered
to have converged.

As is well known, in periodic structures both the mode and the
critical buckling stress can be influenced by the size of the periodic
domain considered; or in other words, criticality can involve more
than one characteristic cell. Geymonat et al. (1993) developed a
method based on Bloch wave theory that automates the search
for the critical state (see application to a Kelvin foam in Gong
et al., 2005). The method uses the stiffness matrix of the character-
istic cell, which for the present problem is large (510002 for the
unit cell) making the automation afforded by the method difficult
to exploit. For this reason here we opt for a more limited examina-
tion of the effect of the domain size that involves direct analysis of
periodic domains of different sizes.
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In the way of evaluating the effect of the domain size we calcu-
lated the critical buckling and collapse stresses of periodic rows of
N cells in the W and L directions. Results for rows of 1 to 8 cells are
plotted in Fig. 13. In the L direction the buckling stress drops
slightly as N increases but appears converged after N = 5 at a value
that is about 4.5% lower than that of the base case. In the W direc-
tion the effect of N on the buckling stress is larger so that it is re-
duced by about 10% for N P 6. Fig. 14a and Fig. 14b show
renderings of the buckling modes for NL and NW of 4. The shapes
of the modes are the same as for the single cell but the amplitude
of the waves is more pronounced in the central cells. Similar vari-
ation in amplitude was also observed for longer domains. Included
in Fig. 13 are the normalized collapse stresses for W and L rows of
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Fig. 13. Calculated buckling and collapse stresses vs. number of cells in periodic
rows along L and W directions.

Fig. 14. First buckling modes for domains with (a) 4 ce
periodic cells. Interestingly, this value increases slightly (less than
4%) with N but is essentially constant for N P 4. It is worth noting
that the collapse stress of the corresponding perfect domains re-
mained essentially unchanged with the values of NL and NW.

In the same spirit we considered periodic square domains with
NL � NW (=n) cells. The buckling and collapse stresses are plotted
against n in Fig. 15 for 1 6 n 6 64 (solid lines). Here the number
of cells in the periodic domain impacts the buckling stress more
significantly; thus, for n = 36 the buckling stress is reduced by
nearly 19% and remains essentially unchanged for larger n. The
critical buckling mode for n = 16 is shown in Fig. 14c. Once more
the mode imparts the same shape to each cell but the amplitude
is more intense in the central cells. This pattern was observed in
lls along L, (b) 4 cells along W, and (c) 4 � 4 cells.
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Fig. 15. Calculated buckling and collapse stresses vs. size of square domains with
and without periodicity conditions.
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the larger domains considered also. The collapse stress for wo = t is
seen to be insensitive to n for all but the smallest domains.

For domains larger than n = 16 calculations were also per-
formed by removing the periodicity conditions from the edges, in
other words we considered finite size square domains. The first
observation is that the buckling mode consisted of three half waves
as in the periodic domains. The corresponding buckling stresses are
included in Fig. 15 with a dashed line and are seen to be very com-
parable to the results from the periodic domains. As expected, the
two sets of results converge as n becomes larger. The collapse
stresses were also calculated for these cases using again an imper-
fection with amplitude t. The results are included in Fig. 15 and are
seen to be slightly lower than those from the periodic domains.

4.2. Effect of imperfections on collapse

As noted earlier, the collapse stress calculated for a characteris-
tic cell with perfect geometry was higher than the values measured
in all of our experiments. It is thus worth examining the effect of
various imperfections on this variable (see also Chen et al.,
2009). The most natural one is a geometric imperfection in the
form of the critical buckling mode shown in Fig. 8a. Fig. 16 shows
the collapse stress of the characteristic cell vs. the amplitude of the
imperfection wo normalized by the foil wall thickness (see inset in
Fig. 16). An imperfection with amplitude of t reduces rCO by 7% and
for 3t by 17%. In other words, the structure is modestly sensitive to
this imperfection.

In our experiments the panels were compressed between stiff
parallel (nearly) platens. Although care was taken to make the plat-
ens as parallel as possible, small misalignments were observed and
are thought to have influenced the measured collapse stress. The
effect of one directional platen misalignment on the collapse pres-
sure was analyzed using a 4 � 4 periodic cell. The calculated col-
lapse stresses for wo = t are plotted in Fig. 17 against the single
direction misalignment angle /. The results show that even very
small misalignments can cause a reduction in rCO. As might be ex-
pected, the direction of the misalignment also influences the col-
lapse stress with larger reduction taking place when / is
oriented in the W direction. Thus for example, for /W = 0.03� the
collapse stress drops by about 5% and for 0.06� by about 11%.

Papka and Kyriakides (1994, 1998) reported that the shape of
expanded honeycomb cells can differ from the perfect hexagonal
geometry considered this far. The bond lines that are initially
printed on the foil sheets can deviate from the ideal value so that
on expansion the hexagonal cells are distorted in the fashion
shown in Fig. 1b. In addition, honeycomb can be somewhat under-
or over-expanded. These two manufacturing ‘‘imperfections’’ affect
the density of the honeycomb as well as all its mechanical proper-
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Fig. 16. Calculated collapse stress vs. amplitude of initial imperfection correspond-
ing to the critical buckling mode.
ties. Measurements performed on the honeycomb used in this
study showed that the value of the cell width c was consistently
very close to the ideal value of 0.375 in (9.53 mm). However, some
variations in the bond line length were found. For this reason we
used unit cell calculations to examine how the bond line length
affects the buckling and collapse stresses. Fig. 18 shows plots of
calculated buckling and collapse stresses against the bond line
deviation parameter k (0.8 6 k 6 1.05 with 1 representing the ideal
bond line length). Both critical stresses decrease for k < 1 and in-
crease for k > 1 with the buckling stress being affected more by this
variable than rCO.
4.3. Parametric study of crushing

Next we conduct a limited parametric study of the crushing re-
sponse as a whole as well as the crushing stress as defined in Fig. 5.
Figure 19 compares the crushing responses of a single characteris-
tic cell using three different nearly square mesh densities. As re-
ported above, the collapse is not particularly sensitive to the
mesh densities considered here (see Table 3). The subsequent
crushing response however is seen to be the highest for 2700 ele-
ments, lower for the base case mesh of 4224 and slightly lower yet
for 5850. Consequently the crushing stresses calculated for each
also differ as shown in the table below. The formation of the sharp
folds associated with crushing requires a fine enough mesh for it to
be accommodated. Indeed, some of the details of the folding tend
to differ when the mesh is not sufficiently refined. These numbers
compare with an average crushing stress of 241 psi (1.66 MPa)
from our experiments.
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Table 3
Calculated collapse and crushing stresses for different mesh
densities.

Element No. rCO psi (MPa) �rch psiðMPaÞ

2700 668 330
(4.61) (2.28)

4224 667 267
(4.60) (1.84)

5850 667 257
(4.60) (1.77)
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The effect of the domain size on the crushing response was eval-
uated using the following periodic domains: {NW � NL} = {1 � 1,
1 � 4, 4 � 1, 4 � 4}, with each cell in each domain having the same
mesh as the base case (4224 elements). The stress-shortening re-
sults are plotted in Fig. 20 together with one of the experimental
responses. Fig. 21 shows four deformed configurations of the
4 � 4 domain corresponding to the numbered bullets on the re-
sponse in Fig. 20. Once again, the four collapse stresses differ by
a small amount (see Table 4) with the larger domains having some-
what higher values. The initial collapse responses through the first
stress trough and up to the second load peak are identical. This is
because deformation localizes in the same manner at mid-height
for all domains (e.g., compare r in Figs. 21 and 11a). The formation
of the first fold is also similar (e.g., compare s in Figs. 21 and 11a).
Differences between the responses from the three smaller domains
and the larger one (4 � 4) start with the formation of the second
fold. While for the first three domains the second fold occurs
0

200

400

600

0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6
 / h

(psi) (MPa)

Al-5052-H39

Exp.

Anal.

1

2

3 4

4x4

1x1

N
W

 x N
L

1x4
4x1

= 0.026

Fig. 20. Calculated axial stress-shortening responses for various domain sizes along
with an experimental one.
strictly on either the top or the bottom half of the height (see, v

and w in Fig. 11b), the events for 4 � 4 are different (correspond-
ing configurations from 1 � 4 and 4 � 1 domains are very similar to
the results in Fig. 11b and are not included here for brevity). Care-
ful examination of configuration t in Fig. 21 shows that the posi-
tion of the second fold differs from the left to the right. On the left
it is developing in the lower half of the cells and on the right in the
upper half. The third load peak occurs at the same displacement for
all domains but it is distinctly lower for the larger one. Configura-
tion u in Fig. 21 shows the crushing at a more developed stage,
and at the same time illustrates even more clearly the difference
in the crushing patterns across the domain. It is worth noting that
the difference in the crushing patterns develop inside the domain
as opposite edges must maintain the imposed periodicity condi-
tions. Thus, for the observed difference in folding patterns to devel-
op, several folds are inclined something that is not observed in the
smaller domains. Note that such a variation in the position of fold-
ing along the height of the specimens was also observed in most of
the crushing experiments performed albeit in much larger domains
with free edges.

The response of the larger domain continues to deviate from the
others at larger values of d with the last load peak being even lower
than those of the other three domains. Another difference is that
the larger domain response is less rugged. The decay in the ampli-
tude of the stress undulations as well as the smoothness of the re-
sponse of the larger domain are both features that are observed in
the experimental responses also (e.g., see case included in Fig. 20).
Apparently, these aspects of the response are related to the varia-
tion in the crushing patterns within the domain. This variation
causes the collapse of cells and the contact between the walls of
the folds to occur at somewhat different times across the domain;
these have the effect of first smoothening the response and second
of causing a decay in the amplitude of the average stress undula-
tions. At the same time however the average stresses of the re-
sponses of the four domains considered do not differ as is
evident from the crushing stresses reported in Table 4.

The 4 � 4 domain discussed is already rather large and compu-
tationally intensive. Larger domains were considered and the trend
was similar. Crushing of large domains with free edges was not
performed as experimentally the effect of the free edges was found
to be modest at least for the sizes considered.

In summary then, the crushing of a single characteristic cell and
of small linear domains results in stress undulations of nearly the
same amplitude and in more rugged responses. Switching to a
square domain of 4 � 4 cells smoothens the response and causes
a progressive decay in the stress undulations, both features that
were observed in the experiments. However, all domains consid-
ered yielded about the same crushing stress, which happens to
be somewhat higher than the measured values. One cause of this
difference may be the debonding observed to occur at least during
the formation of the first fold in the experiments; debonding was
not included in the present calculations.
5. Summary and conclusions

The paper presented results from a comprehensive study of the
compressive response and crushing of Al-5052-H39 honeycomb
panels. The honeycomb used had a cell size of 0.375 in (9.53 mm),
a relative density of 0.026, and a height of 0.625 in (15.9 mm). Finite
size panels of the order of 8 � 15 cells or larger were compressed
quasi-statically between flat platens. Following an initial linear re-
sponse, the cell walls buckle elastically. The postbuckling response
is initially stiff and stable but inelastic action progressively softens
it leading to a limit load instability. Deformation localizes first at
mid-height in the form of a sharp buckle, which with the load



Fig. 21. Deformed configurations corresponding to numbered bullets on the response of the 4 � 4 cell domain in Fig. 20.

Table 4
Calculated collapse and crushing stresses for different periodic domain sizes.

Domain Size NW � NL rCO psi (MPa) �rch psiðMPaÞ

1 � 1 667 267
(4.60) (1.84)

1 � 4 684 265
(4.72) (1.83)

4 � 1 688 265
(4.74) (1.83)

4 � 4 699 271
(4.82) (1.87)
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continuing to drop morphs into a fold. When the walls of the fold
come into contact local collapse is arrested, the load begins to re-
cover, and a second fold develops on one side of the first one. The sec-
ond fold in turn collapses forming a new load peak and a second
trough. This progressive folding keeps repeating until the whole pa-
nel is consumed and the structure returns to a stiff response.

The compressive response including the buckling, collapse and
crushing have been simulated numerically using finite element
models of various domain sizes. The models idealize the micro-
structure as hexagonal, with double walls in one direction. Several
of the properties of interest can be extracted using a characteristic
cell that exploits the periodicity of the microstructure. Closed form
expressions for the elastic moduli from the literature were com-
pared to the numerical predictions and found sound. Buckling
was confirmed to occur in the elastic regime of the material at
stress levels that are much lower than values reported in the liter-
ature that are based on simplistic models. The postbuckling re-
sponse is stable and stiff as is expected from the plate like strips
that constitute the walls of the hexagonal cells. Combined mem-
brane and bending stresses eventually yield the material and the
response develops a limit load, which represents the compressive
strength of the honeycomb. For the particular honeycomb studied,
the collapse stress was 67% higher than the buckling stress.

The buckling and collapse stresses were found to be sensitive to
some degree to the mesh density used. The collapse stress was
shown to be mildly sensitive to geometric imperfections including
small misalignment of the compression platens used in the crush-
ing. In view of this sensitivity the predicted collapse stress is con-
sidered to be in good agreement with measured values.

Beyond the limit load, deformation localizes first into a single
sharp buckle at mid-height as was observed in the experiments.
With further compression the buckle evolves into a fold. The
downward trajectory of the response stops when the walls of the
fold come into contact. The response then returns to positive stiff-
ness and remains so until a second fold starts to develop either
above or below the first one precipitating a second load peak fol-
lowed by a stress valley. The load recovers again when a third fold
develops and this repeats until the whole domain is folded up. In
the experiments, the amplitude of such stress undulations consis-
tently decayed as the crushing progressed, whereas in the single
cell predictions it stayed nearly unchanged. The mean value or
crushing stress however was found to be about 8% higher than
the average of 8 experimental values. This level of agreement how-
ever came only with the use of a fine mesh, which is required in
order to capture the details of the sharp folds. Another difference
between the single cell predictions and the measurements is the
much more rugged nature of the calculated response. The debond-
ing observed in the experiments to occur at least during the forma-
tion of the first fold was not modeled. It is not expected to affect
the collapse stress but should have some influence on the crushing
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stress. The expansion process through which honeycomb is manu-
factured introduces small geometric variations, residual stresses,
and changes in mechanical properties. This effect will be addressed
separately in a follow up publication.

The size of the periodic domain considered in crushing calcula-
tions was found to influence the results as follows. When a 4 � 4
cell periodic domain was crushed, the buckling and initial localiza-
tion that follows collapse were found to replicate those of the sin-
gle cell. However, the height location of the subsequent folding
varied across the domain, a feature that is commonly observed in
experiments. This variation in the location of the folds had the re-
sult of first smoothening the crushing response and second of
introducing a decay in the amplitude of the stress undulations,
both features that mimic the experimental results. The mean value
of the stress undulations however, in other words the crushing
stress, remained unaffected.

In view of the results presented we conclude that the compres-
sive response of honeycomb from the initial elastic part, through
buckling, collapse and crushing can be evaluated with engineering
accuracy using one characteristic cell. We point out however that
the crushing response requires a fine mesh for it to be accurate
enough.
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