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The physically-based nonlocal model is used to investigate influences of the nonlocal long-range interac-
tions on the longitudinal vibration of nanorod. The exact solution of the vibration is determined under the
condition of a uniform nonlocal kernel. Nonlocal effects in the vibration of the nanorod are examined in
detail. The results show that the nanorod becomes stiffer due to the internal long-range interactions.
Meanwhile, an upper bound of the material parameter characterizing the long-range interactions is
found. The low-frequency insulating effect induced by the long-range interactions is predicted. This effect
shows that there exists a forbidden band of basic frequency within which external excitation is not trans-
mitted in the nanorod. The Lagrangian formulations of the physically-based nonlocal theory are estab-
lished based on a new definition of nonlocal variable. By these formulations, the physically-based
nonlocal model can be conveniently expanded into beam, plate and shell.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The origin of nonlocality is due to the long-range interactions
within material. This idea was firstly advanced by Kroner (1967),
and then systematically developed into the nonlocal mechanics
theory (Edelen, 1972; Edelen et al., 1976; Kunin, 1982; Eringen,
2002; Bazant and Jirasek, 2002). So far, the nonlocal mechanics
theory has been applied to account for some phenomena that are
not explained by the classical elasticity and plasticity, such as
stress singularity at the crack tip (Eringen, 2002; Bazant and
Jirasek, 2002), softening bands in tensile specimens (Bazant and
Jirasek, 2002; Borino et al., 2003; Polizzotto, 2003) and dispersion
of acoustic waves in solids (Kunin, 1982; Eringen, 2002), etc. With
the development of nanotechnology, considerable interests to the
nonlocal mechanics are once again excited (Peddieson et al.,
2003; Wang, 2005; Reddy, 2007; Lim, 2010).

Peddieson et al. (2003) proposed the nonlocal Euler–Bernoulli
beam model to characterize mechanical behaviors of the carbon
nanotube (CNT). They concluded that nonlocal elasticity is a useful
tool in analysis related to nanotechnology applications. Wang
(2005) and Wang et al. (2006) studied the scale effect on the CNT
wave and vibration characteristics by applying the nonlocal
Euler–Bernoulli and Timoshenko beam models. The numerical sim-
ulations are qualitatively in agreement with the experimental re-
sults. The results show that the scale effect becomes more
obvious with increase of the scale parameter in wave and vibration
ll rights reserved.
of CNT. Reddy (2007) and Reddy (2010) generalized the nonlocal
models of beam. He advanced the nonlocal nonlinear model of
beam and plate. These works provide a new way to describe the
scale effects micro/nano structural elements.

Paola et al. (2009) and Paola et al. (2010) proposed a physically-
based nonlocal model in which the long-range interactions among
non-adjacent volume elements are incorporated into the balance
equation. Under the one dimensional case, the balance equation
is written as

E
d2u
dx2 þ f þ R ¼ 0; ð1Þ

where u and f are displacement and the external body force, respec-
tively. E refers to the Young’s modulus. R is a central body force rep-
resenting the long-range interactions among non-adjacent volume
elements, and it is assumed to be proportional to the volumes of
interacting elements, to a proper distance-decaying function depen-
dent on the material and to the relative displacements between the
volume elements (Paola et al., 2009, 2010). So R reads

R ¼
Z l

0
gðjx� yjÞ½uðyÞ � uðxÞ�dy; ð2Þ

where l is the length of rod. The distance-decaying function
gðjx� yjÞ is also called the nonlocal kernel.

The long-range body force R in crystal materials can attribute to
the electrostatic interactions within materials in essence. It was re-
ported that the electrostatic interactions between non-adjacent
atoms within crystal can extend about 10 lattice parameter’s dis-
tances (Edelen, 1976). For the nano-sized elements, such a acting
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extension can be considered to be of long-range. In polymer mate-
rials, the internal long-range interactions are more obvious, and
their acting range can even reach to the order of micron (Arinstein
et al., 2007; Arinstein and Zussman, 2011). This is because a poly-
mer is made of the poly-molecular networks in which the molecu-
lar chains are bonded together by the random crosslink between
different chains. The crosslinks not only produce between the adja-
cent chains but also between non-adjacent chains. The latter is the
origin of the long-range body forces governing the nonlocal effects
in polymers.

Applying the physically-based nonlocal model, in this paper we
investigate nonlocal effects of the longitudinal vibration in nano-
rod. These effects maybe occur in micro/nano-electro-mechanical
system (MEMS/NEMS)and bio-micro-structures (e.g. DNA). In fact,
ones have observed the effect of long-range interactions within
supramolecular on polymer nanofibre elasticity (Arinstein et al.,
2007; Arinstein and Zussman, 2011). In theory, the physically-
based nonlocal model has been used to analyze the wave and
vibration of elastic bar. Cottone et al studied the fractal behaviors
in the wave propagation of bar (Cottone et al., 2009). Zingales
investigated the features of wave in 1-dimensional elastic solids
by means of a distance-decaying exponential kernel (Zingales,
2011). Huang reported a dispersion relation of elastic wave in an
infinitely long bar (Huang, 2011a). Distinguished from the existing
results, here we solve the longitudinal vibration equation of nano-
rod under a simplified condition that the nonlocal kernel is uni-
form. An exact solution is given. the free and forced vibrations of
the nanorod are examined in detail. Moreover, we derive the
Lagrangian formulations of the physically-based nonlocal theory
based on a new definition of nonlocal variable.

The paper is divided into four parts. This introductory section is
Part 1. In Part 2, the longitudinal vibration of nanorod is investi-
gated based on the physically-based nonlocal model. The nonlocal
effects in the vibration are analyzed and predicted. In Part 3, the
Lagrangian formulations for the physically-based nonlocal theory
are established based on a new definition of nonlocal variable.
Finally, this paper is closed after some conclusions are drawn.

2. Nonlocal effects in the longitudinal vibration of nanorod

2.1. Free vibration

Consider a nanorod free of external body forces. The equation
governing the longitudinal vibration of the nanorod can be given
by inserting Eq. (2) and inertial term in Eq. (1):

E
@2u
@x2 � q

@2u
@t2 ¼

Z l

0
gðjx� yjÞ½uðxÞ � uðyÞ�dy: ð3Þ

For simplicity, we assume that the long-range interactions are
homogeneous within the nanorod, i.e., gðjx� yjÞ is a constant. Let
gðjx� yjÞ ¼ a=l, where a is called the micro-force factor, being a
parameter dependent of the intrinsic scale of material. Thus, Eq.
(3) reduces to

c2 @
2u
@x2 �

@2u
@t2 ¼

a
q

u� 1
l

Z l

0
uðxÞdx

" #
; ð4Þ

where c ¼
ffiffiffiffiffiffiffiffiffi
E=q

p
being the wave velocity.

It should be emphasized that kernel gðjx� yjÞ is a function
diminishing with distance jx� yj in physics. So gðjx� yjÞ ¼ a=l is
a simplification. Owe to this simplification, we can find the exact
solution of Eq. (4). This solution benefits to verify the numerical
algorithm solving Eq. (3) under the case that gðjx� yjÞ takes a gen-
eral form. On the other hand, it was reported that the long-range
interactions between non-adjacent atoms within crystal can ex-
tend about 10 lattice parameter’s distances, after becoming extre-
mely small (Edelen, 1976). So the action extent of the long-range
interactions is finite. Due to this fact, the total long-range interac-
tions exerting on every atom are same on each other if the distance
of these atoms to the ends of the nanorod is larger than the size of
the action extent of the long-range interactions. When the nanorod
is enough long, its end effects can be neglected. Thus, we can use a
constant kernel to approximately characterize the long-range
interactions in the nanorod.

Let the solution of Eq. (4) be represented as

uðx; tÞ ¼ f ðxÞe�iðxj tþhjÞ; ð5Þ

where xj and hj are the eigenfrequency and initial phase angle,
respectively. Substituting Eq. (5) into (4) leads to

d2f
dx2 þ

xj

c

� �2
f ¼ a

E
f � 1

l

Z l

0
f ðxÞdx

" #
: ð6Þ

Let

b ¼ � a
El

Z l

0
f ðxÞdx; s2

j ¼
xj

c

� �2
� a

E
: ð7Þ

By means of Eq. (7), Eq. (6) is rewritten as

d2f
dx2 þ s2

j f ¼ b: ð8Þ

The general solution of Eq. (8) can be represented as

f ðxÞ ¼ p cosðsjxÞ þ q sinðsjxÞ þ
ac2

Elsjx2
j

fq½cosðsjlÞ � 1� � p sinðsjlÞg;

ð9Þ

where p and q are two arbitrary constants.
For a nanorod with one end clamped and another end free,

boundary conditions of free vibration are written as

f ð0Þ ¼ 0;
df
dx

����
x¼l

¼ 0: ð10Þ

Substituting Eq. (9) into (10) yields

p½1� ac2

Elsjx2
j

sinðsjlÞ� þ q
ac2

Elsjx2
j

½cosðsjlÞ � 1� ¼ 0:

�p sinðsjlÞ þ q cosðsjlÞ ¼ 0:

8><
>: ð11Þ

Nonzero p and q exist if and only if the coefficient determinant of
Eq. (11) is equal to zero. As a result, we have the characteristic
equation below:

cosðsjlÞ �
ac2

Elsjx2
j

sinðsjlÞ ¼ 0: ð12Þ

Similarly, we can also determine the characteristic equation of the
nanorod with two ends clamped, which reads

sinðsjlÞ �
2ac2

Elsjx2
j

½1� cosðsjlÞ� ¼ 0: ð13Þ

Inserting Eq. (7)2 in (12), we have

cos l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj

c

� �2
� a

E

r !
� ac2

Elsjx2
j

sin l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj

c

� �2
� a

E

r !
¼ 0: ð14Þ

If a ¼ 0, Eq. (14) will revert to the characteristic equation of the lon-
gitudinal vibration in the classical rod model. So the magnitude of a
has direct influences on the nonlocal features of the eigenfrequency.
Noticing the physical dimension of a, we have a=E � 1=d2, where d
is an intrinsic size of nanorod. In general, d is at the order of nano/
micrometer.

For a given a=E, a series of xi=c; ði ¼ 1;2;3 . . .Þ can be deter-
mined by solving Eq. (14). Thus, we can calculate the change of



Fig. 1. The change of eigenfrequency with the micro-force factor.
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xi=c; ði ¼ 1;2;3 . . .Þ with a=E. Fig. 1 shows x1=c;x2=c and x3=c
changing with a=E. It can be seen that first three eigenfrequencies
increase with a rise in the micro-force factor, and a sudden change
in the eigenfrequencies will appear when a=E exceeds 2. x1 jumps
into x2;x2 into x3 and so on. In physics, this effect may be
interpreted as the self-excitation of phonons due to the internal
long-range interactions. When the phonons are excited under the
condition that a=E > 2, the phonons in the first energy level with
x1 will jump to the second energy level with x2, the phonons in
the second energy level with x2 will jump to the third energy level
with x3, and so on. Therefore, if a=E > 2, the lowest eigenfrequen-
cy will correspond to the second-order mode, and no first-order
mode exists in the vibration of nanorod. This is a prediction await-
ing verification. Before it is verified by experiments, a reasonable
conclusion is that a=E does not exceed 2. This gives an upper bound
of the micro-force factor a.

Let a=E ¼ 0:5. Solving Eq. (14), we have x1=c ¼ 1:6003,
x2=c ¼ 4:7605 and x3=c ¼ 7:8847. Corresponding to them, first
three modes of the nanorod vibration are depicted in Fig. 2. Form
it, we can see that the long-range interactions only have the obvi-
ous influences on the first-order vibration mode of the nanorod.
Compared with results in the classical rod model, the normalized
amplitude given by the physically-based nonlocal model decreases
in magnitude. So the long-range interactions make the nanorod
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Fig. 2. First three modes of longitudinal vibration in nanorod.
stiffer. This accords with the conclusion reported by Zingales
(2011).

2.2. Forced vibration

Let a sine stimulus S ¼ rE sinðntÞ is prescribed on the free end of
the nanorod.

Under this case, the solution of Eq. (4) be represented as

uðx; tÞ ¼ gðxÞ sinðntÞ; ð15Þ

where

gðxÞ ¼ p0 cosðkxÞ þ q0 sinðkxÞ þ ac2

Elkn2 fq
0½cosðklÞ � 1� � p0 sinðklÞg:

ð16Þ

Here, k denotes the wave number, which reads

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
c

� �2
� a

E

r
: ð17Þ

From Eq. (17), we can find an interesting result: only when
n P c

ffiffiffiffiffiffiffiffi
a=E

p
, can vibration be excited. This means that there exists

a forbidden band of basic frequency in the nanorod with long-range
interactions. When the frequency of external excitation is in the
range of the forbidden band, no response will occur in the nanorod.
Takin a=E ¼ 0:49, we can easily see that the band-gap of n=c is
[0,0.7] according to Eq. (17). Fig. 3 depicts the change of n=c with
k when a=E ¼ 0:49. Clearly, the greater the value of a=E is, the wider
the band-gap of n=c. However, the analysis above shows that the
micro-force factor a has an upper bound, i.e., a=E < 2. Therefore,
in the longitudinal vibration of nanorod, the band-gap induced by
the long-range interactions is less than

ffiffiffi
2
p

.
In Eq. (16), the coefficients p0 and q0 are determined by the

boundary conditions below:

f ð0Þ ¼ 0;
df
dx

����
x¼l

¼ r: ð18Þ

Substituting Eq. (16) into (18) yields

p0½1� ac2

Elkn2 sinðklÞ� þ q0
ac2

Elkn2 ½cosðklÞ � 1� ¼ 0:

�p0 sinðklÞ þ q0 cosðklÞ ¼ r:

8<
: ð19Þ

Solving Eq. (19), we have
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Fig. 3. Band-gap in n=c – k curve (a=E ¼ 0:49).



Z. Huang / International Journal of Solids and Structures 49 (2012) 2150–2154 2153
p0 ¼ rac2

Elk2n2D
½1� cosðklÞ�; q0 ¼ r

kD
½1� sinðklÞ�; ð20Þ

where

D ¼ cosðklÞ � ac2

Elkn2 sinðklÞ: ð21Þ

In terms of Eq. (7)2 and (17), when n ¼ xj, we have k ¼ sj. Therefore,
comparing Eq. (12) with (21) leads to D ¼ 0. If D ¼ 0, then gðxÞ ! 1
due to p0 and q0 approaching infinity. This shows that resonance ap-
pears in the nanorod under the condition of n ¼ xj, just the same as
the conclusion in the classical vibration theory.

Inserting Eq. (20) in (16), we have

gðxÞ ¼ A sin
kx
2
þ /

� �
sin

kx
2

� �
; ð22Þ

where A is amplitude, and A and / can be written as

A ¼ 2r
kD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ C2

q
; tanð/Þ ¼ B

C
: ð23Þ

In Eq. (23),

B ¼ 1� ac2

Elkn2 sinðklÞ; C ¼ ac2

Elkn2 ½cosðklÞ � 1�: ð24Þ

Eq. (23)1 characterizes the relation between amplitude and the fre-
quency of external excitation in the forced vibration of nanorod.

3. Variational formulations

We find that Eq. (3) can be given by the Hamilton’s principle
provided the Lagrangian density function L takes the form below:

L ¼ 1
2
q _u2 � 1

2
E
@u
@x

� �2

� 1
2

Ru; ð25Þ

where R is the internal longe-range body force represented by
Eq. (2). This idea can be expanded into a general theory. For this,
let a continuum occupy the domain X in the three-dimensional
Euclidean space, and every particle in the continuum be referred
to a group of the orthogonal Cartesian coordinates x ¼ fx1; x2; x3g
specifying its position in X. u ¼ uðt; xÞ denotes a field variable de-
fined on X. Depending on circumstances, u is a scalar, vector or ten-
sor. In terms of the representation of nonlocal residual (Huang,
2011b), the nonlocal variable of u is defined as

hui ¼ uðt;xÞ
Z

X
gðjx� yjÞdvðyÞ �

Z
X

gðjx� yjÞuðt; yÞdvðyÞ: ð26Þ

Let L ¼ Lðt;x;u; _u;u;k; huiÞ; ðk ¼ 1;2;3Þ1 Then the action functional
of u reads

A½u� ¼
Z t1

t0

Z
X

Lðt;x;u; _u;u;k; huiÞdvðxÞdt: ð27Þ

By means of Eq. (27), the first variation of the action functional is
written as

dA½u� ¼
Z t1

t0

Z
X

@L
@u

duþ @L
@ _u

d _uþ @L
@u;k

du;k þ
@L
@hui dhui

 !
dvðxÞdt

¼
Z t1

t0

Z
X

@L
@u
� d

dt
@L
@ _u

� �
� @L

@u;k

 !
;k

2
4

3
5dudvðxÞdt

þ
Z

X

@L
@ _u

du
����
t1

t0

dvðxÞ þ
Z t1

t0

Z
@X

@L
@u;k

nkdudsðxÞdt

þ
Z t1

t0

Z
X

@L
@hui dhuidvðxÞdt; ð28Þ
1 If necessary, the nonlocal variables h _ui and hu;ki may be conveniently inserted
into L. But in this case, the boundary conditions will become complicated.
where @X is the boundary surface of X and nk denotes the unit nor-
mal vector on @X. Using the symmetry of kernel, we haveZ

X

@L
@hui dhuidvðxÞ ¼

Z
X

@L
@hui du�

Z
X

gðjx� yjÞdudvðyÞ
� 	

dvðxÞ

¼
Z

X

@L
@hui �

Z
X

gðjx� yjÞ @L
@huidvðyÞ

� 	
dudvðxÞ

¼
Z

X
h @L
@huiidudvðxÞ:

ð29Þ

Here, a shortened form similar to Eq. (26) is used,

@L
@ui


 �
¼ @L
@hui

Z
X

gðjx� yjÞdvðyÞ �
Z

X
gðjx� yjÞ @L

@huidvðyÞ: ð30Þ

Substituting Eq. (29) into (28) leads to

dA½u� ¼
Z t1

t0

Z
X

@L
@u
� d

dt
@L
@ _u

� �
� @L

@u;k

 !
;k

þ h @L
@huii

2
4

3
5dudvðxÞdt

þ
Z

X

@L
@ _u

du
����
t1

t0

dvðxÞ þ
Z t1

t0

Z
@X

@L
@u;k

nkdudsðxÞdt: ð31Þ

Let @X ¼ @X1 [ @X2, @X1 \ @X2 ¼ ;. On @X1;u takes a given value �u.
So the boundary condition on @X1 reads

uj@X1
¼ �u: ð32Þ

Similarly, at the initial and terminal time, we have

ujt0
¼ �u0; ujt1

¼ �u1: ð33Þ

Due to Eq. (32) and (33), du ¼ 0 on @X1, and at the initial and ter-
minal time. Thus, Eq. (31) reduces to

dA½u� ¼
Z t1

t0

Z
X

@L
@u
� d

dt
@L
@ _u

� �
� @L

@u;k

 !
;k

þ @L
@hui


 �2
4

3
5dudvðxÞdt

þ
Z t1

t0

Z
@X2

@L
@u;k

nkdudsðxÞdt: ð34Þ

In terms of the Hamilton’s principle, we have dA½u� ¼ 0. So in Eq.
(34), the fundamental lemma of variation yields the below results:

Euler–Lagrangian equation:

d
dt

@L
@ _u

� �
þ @L

@u;k

 !
;k

� @L
@u
¼ @L

@hui


 �
: ð35Þ

Natural boundary condition:

@L
@u;k

nk

�����
@X2

¼ 0: ð36Þ

Eq. (35) is also called the nonlocal Euler–Lagrangian equation. Its
right-side term is the so-called nonlocal traction.

According to Eq. (30), it is easy to verify that the nonlocal trac-
tion satisfies the zero mean condition below:Z

X
h @L
@huiidvðxÞ ¼ 0: ð37Þ

This result presents a notable difference between Eq. (35) and the
existing nonlocal Lagrangian formulation (Edelen, 1972). Due to
Eq. (37), The integral of Eq. (35) over X has the same expression
as the ordinary Euler–Lagrangian equation.

4. Conclusions

Applying the physically-based nonlocal model, we investigate
influences of the nonlocal long-range interactions on the longitudi-
nal vibration of nanorod. Under the condition that the nonlocal
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kernel is uniform, we solve the physically-based nonlocal equation
for the longitudinal vibration of nanorod. An exact solution is gi-
ven. By means of this solution, the nonlocal effects in the vibration
of nanorod are examined in detail. The results show that the nor-
malized amplitude given by the physically-based nonlocal model
decreases in magnitude, compared with results in the classical
elastic model of rod. This means that the nanorod becomes stiffer
due to the internal long-range interactions.

The analysis for the forced vibration of nanorod shows there ex-
ists a forbidden band of basic frequency due to the nonlocal long-
range interactions. When the frequency of external excitation is in
the range of the forbidden band, no response will occur in the
nanorod. If this prediction were experimentally verified in labora-
tory, it would be used to insulate low-frequency vibration.

The micro-force factor has a direct influence on the band-gap in
the vibration of nanorod. The greater the value of micro-force fac-
tor is, the wider the band-gap of vibration. Since the micro-force
factor has an upper bound, the band-gap is finite. In the longitudi-
nal vibration of nanorod, the band-gap induced by the long-range
interactions is less than

ffiffiffi
2
p

.
As a generalization, the Lagrangian formulations of the

physically-based nonlocal theory are established based on a new
definition of nonlocal variable. In these formulations, the nonlocal
traction characterizes the long-range interactions within material,
and satisfies the zero mean condition automatically. Using these
results, we can conveniently determine the physically-based
nonlocal model of beam, plate, shell and bio-micro-structures.
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