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a b s t r a c t

We investigate sandwich composite beams using a direct approach which models slender bodies as
deformable curves endowed with a certain microstructure. We derive general formulas for the effective
stiffness coefficients of composite elastic beams made of several non-homogeneous materials. A special
attention is given to sandwich beams with foam core, which are made of functionally graded or piecewise
homogeneous materials. In the case of small deformations, the theoretical predictions are compared with
experimental measurements for the three-point bending of sandwich beams, showing a very good agree-
ment. For functionally graded sandwich columns we obtain the analytical solutions of bending, torsion
and extension problems and compare them with numerical results computed by the finite element
method.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The mechanical behavior of composite beams is a topic of con-
tinued and increasing interest because this kind of slender struc-
tures are widely used in engineering devices. The emergence of
new advanced materials, such as functionally graded foams, has gi-
ven a new impulse to the research studies in this field.

In our work we employ a Cosserat-type approach for rod-like
bodies to investigate the mechanical behavior of composite elastic
beams. In this approach, also called the theory of directed curves,
the slender body is represented as a deformable curve endowed
with a triad of rigidly rotating unit vectors (also called directors)
attached to each point. The motion of these triads of directors ac-
counts for rotations of the cross-sections about the middle axis
of the beam.

The theory of directed curves has been presented by Zhilin
(2006, 2007). An extension of this model for porous and thermo-
elastic rods has been recently established by Bı̂rsan and Altenbach
(2011a,b). We mention that the approach of directed curves is re-
lated to the so-called Cosserat theory for rods, which uses a set of
deformable directors attached to the curve, see e.g. Green and
Naghdi (1979), Rubin (2000). If one imposes certain constraints
on the set of directors, then the theory of directed curves can be
ll rights reserved.
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regarded as a special case of the nonlinear theory proposed by
Antman (1972, 1995), Simo (1985). These latter theories are special
cases of the nonlinear theory proposed by Green et al. (1979). In
Section 2 we briefly present the kinematical model, the equilib-
rium equations, and the structure of constitutive equations for
composite elastic rods, using the direct approach.

The main goal of this paper is to determine the analytical
expressions of the effective stiffness coefficients for various types
of composite beams, in terms of the three-dimensional parameters
of the thin structure. To determine the effective stiffness coeffi-
cients, we compare the analytical solutions of bending, torsion,
and extension problems for directed curves with the corresponding
results for three-dimensional rods. This general procedure for non-
homogeneous beams is described in Section 3. In Section 4 we gen-
eralize the results to the case of composite beams made of several
different non-homogeneous materials. We present general formu-
las for the effective stiffness coefficients, which are expressed in
terms of the solutions to some boundary-value problems formu-
lated on the cross-section domain. These formulas (namely the
relations (29), (30)) are applicable for a large variety of situations,
including sandwich beams made of functionally graded materials
and foams. Another type of important structures are the metal-
ceramic composites. The mechanical response of polycrystalline
ceramics containing metallic intergranular layers has been investi-
gated in Sadowski et al. (2005, 2006), Postek and Sadowski (2011).
In the next sections we illustrate the usefulness of our formulas by
considering different types of sandwich beams.

http://dx.doi.org/10.1016/j.ijsolstr.2012.10.011
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http://dx.doi.org/10.1016/j.ijsolstr.2012.10.011
http://www.sciencedirect.com/science/journal/00207683
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Sandwich structures are widely used because of their ability to
provide high bending moment stiffness coupled with light weight.
Because of this, sandwich panels are often used in applications
where weight saving is critical: in aviation, ship building and con-
struction (Zenkert, 1995). In most applications the sandwich panel
must have some required minimum stiffness, it must not fail under
some in service loading and it must be as light as possible. Its de-
sign can be formulated as an optimization problem: the goal is the
panel with minimum weight which meets the requirements for
stiffness and strength. For this purpose it is very important to used
accurate solutions in order to estimate the stiffness of such
structures.

In Section 5 we focus our attention to sandwich beams with
foam core and determine the analytical expressions for effective
bending stiffness, shear stiffness, and torsional rigidity. We com-
pare our results with the classical expressions taken from Allen
(1969), Zenkert (1997), Gibson and Ashby (1997), Timoshenko
and Goodier (1951). Moreover, we verify the (new and classical)
theoretical results by comparison with experimental measure-
ments obtained for the three-point bending of sandwich beams.
In Section 6 we extend our analysis to sandwich beams with dis-
similar faces.

Section 7 is concerned with circular sandwich columns. For
functionally graded sandwich columns obeying an exponential
law of material distribution, we find the effective bending, shear,
extensional, and torsion stiffness coefficients. Then, we compare
these theoretical results with numerical solutions for some elasto-
static problems solved by the finite element method.

The good agreement between the analytical, experimental, and
numerical results shows that the proposed formulas for effective
stiffness coefficients are correct, and they can be successfully used
in applications.
2. Theoretical background

Let us present briefly the kinematical model of directed rods,
which is described in details in Zhilin (2006, 2007), Bı̂rsan and
Altenbach (2011a). Let C0 be the reference (initial) configuration
of the deformable curve, and denote by s the material coordinate
along C0, which is chosen to be the arclength parameter. The con-
figuration is determined by the position vector rðsÞ and the at-
tached directors diðsÞ; i ¼ 1;2;3. We take diðsÞ to be 3 orthogonal
unit vectors, such that d3ðsÞ coincides with the unit tangent
t � r0ðsÞ (see Fig. 1). The vectors d1 and d2 belong to the normal
plane to the curve C0 and they are usually chosen along the princi-
pal axes of inertia of the cross-section.

In the deformed configuration C at time tthe position vector is
denoted by R ¼ Rðs; tÞ, and the 3 directors are Di ¼ Diðs; tÞ. The
vector D3 is no longer tangent to the curve C, since the initial
Fig. 1. The reference configuration C0 and the deformed configuration C of the
directed curve.
cross-sections are not necessarily normal to the middle curve
after deformation. Thus, the model allows for transverse shear
deformation of the rod. On the other hand, the deformation of
the cross-sections is not taken into account, which is a reasonable
assumption for thin rods.

Throughout the paper we employ the Einstein’s summation
convention and the direct tensor notation in the sense of Lurie
(2005). Greek indices range over the set f1;2g, while Latin indices
take the values f1;2;3g. We denote the material time derivative by
a superposed dot and the derivative with respect to the spatial
coordinate s by ðÞ0 ¼ d

ds.
With these notations, the rotation tensor is given by

Pðs; tÞ ¼ Dkðs; tÞ � dkðsÞ. In the linear theory of rods, the displace-
ment vector uðs; tÞ ¼ Rðs; tÞ � rðsÞ is small. The rotation tensor
can be represented as P ¼ 1þ w� 1, where wðs; tÞ is the vector of
small rotations. In the case of small strains, the deformation of
the rod is characterized by the vector of extension-shear e and
the vector of bending-twisting j, which are given by

e ¼ u0 þ t � w; j ¼ w0: ð1Þ
Remark. In order to explain the definition of the extension-shear
vector e, let us consider the three-dimensional rod, with the
position vector of a generic point in the reference configuration
given by

r�ðs; x1; x2Þ ¼ rðsÞ þ x1d1ðsÞ þ x2d2ðsÞ; ð2Þ

where ðx1; x2Þ 2 R are the material coordinates in the cross-section,
and R is a given domain. After deformation, the material point will
have the position vector

R�ðs; x1; x2; tÞ ¼ Rðs; tÞ þ x1D1ðs; tÞ þ x2D2ðs; tÞ: ð3Þ

Then, the components eij of the Lagrangian strain are given by

eab ¼
1
2
ðDa � Db � dabÞ ¼ 0; ea3 ¼

1
2
ðDa � R0Þ;

e33 ¼
1
2
ðR0 � R0 � 1Þ; ð4Þ

at the centerline. On the other hand, in view of the relations (1)1 and
Dk ¼ dk þ w� dk;R

0 ¼ t þ u0, we deduce that (in the approximation
of linear theory)

e � da ¼ Da � R0; e � t ¼ 1
2
ðR0 � R0 � 1Þ: ð5Þ

From (4) and (5) we see that the cross-sectional components of e
are the engineering shear strains (2ea3 ¼ e � da), and the axial com-
ponent of e is the axial extension (e33 ¼ e � t).

For elastic rods, the strain energy function U is assumed to be a
quadratic function of the arguments fe;jg, in the form

q0U e;jð Þ ¼ 1
2

e � A � eþ e � B � jþ 1
2
j � C � j: ð6Þ

Here, q0 is the mass density per unit length of C0, while A;B;C are
second order constitutive tensors, defined on the reference configu-
ration. The structure of constitutive tensors for composite rods is
(Bı̂rsan et al., 2012)

A ¼ A1d1 � d1 þ A2d2 � d2 þ A3t � t þ A12ðd1 � d2 þ d2 � d1Þ;
B ¼ B13d1 � t þ B31t � d1 þ B23d2 � t þ B32t � d2;

C ¼ C1d1 � d1 þ C2d2 � d2 þ C3t � t þ C12ðd1 � d2 þ d2 � d1Þ:
ð7Þ

The constitutive coefficients Ai; Ci;A12;C12; Ba3 and B3a describe the
effective stiffness properties of thin rods. The following energy
equation holds in the linear theory, for all motions (Zhilin, 2007;
Bı̂rsan and Altenbach, 2011a)
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q0
_U ¼ N � _eþM � _j; ð8Þ

where N is the force vector field, M is the moment vector field, and
a superposed dot denotes the time derivative. Thus, e is the conju-
gate variable to N and j is the conjugate variable to M. Then, the
constitutive equations for composite elastic rods are written as

N ¼ @ðq0UÞ
@e

; M ¼ @ðq0UÞ
@j

: ð9Þ

The equations of motion have the form

N 0 þ q0F ¼ q0ð€uþH1 � €wÞ; M0 þ t � N þ q0L

¼ q0 €u �H1 þH2 � €w
� �

; ð10Þ

where F and L are the external body force and moment per unit
mass, while HaðsÞ are the inertia tensors in the reference configura-
tion. To write the boundary conditions, we denote the length of the
rod by l and the two endpoints by �s1 ¼ 0 and �s2 ¼ l. We consider
general boundary conditions of the mixed type

uð�scÞ ¼ uðcÞ or Nð�scÞ ¼ NðcÞ; for c ¼ 1;2;

wð�scÞ ¼ wðcÞ or Mð�scÞ ¼ MðcÞ; for c ¼ 1;2;
ð11Þ

where the values uðcÞ;wðcÞ;NðcÞ;MðcÞ are prescribed.
The condition that the strain energy density defined by (6) and

(7) is a positive-definite function of the strains fe;jg is equivalent
to the following restrictions on the constitutive coefficients

A1 > 0; A1A2 � ðA12Þ2 > 0; A3 > 0; A3C1 � ðB31Þ2 > 0;

A1 A12 B13

A12 A2 B23

B13 B23 C3

�������
������� > 0;

A3 B31 B32

B31 C1 C12

B32 C12 C2

�������
������� > 0:

ð12Þ

The relations (1), (6), (7), (9) and (10) are the basic equations of the
linear theory for directed curves, which are applicable to curved
composite rods. In what follows, in order to simplify these equa-
tions, we restrict our attention to the case of straight composite
rods (without natural twisting). We can chose the Cartesian coordi-
nate frame Ox1x2x3 such that the reference curve C0 is situated on
the axis Ox3, between the limits x3 ¼ 0; l. The axis Ox1 and Ox2 are
chosen along the direction of the vectors d1 and d2, which coincide
with the principal axes of inertia of the cross-section. If we denote
by R the domain occupied by the cross-section of the rod in the
x1Ox2 plane, it follows thatZ

R
qx1dx1dx2 ¼

Z
R
qx2dx1dx2 ¼ 0;

Z
R
qx1x2dx1dx2 ¼ 0; ð13Þ

where q is the mass density in the three-dimensional rod. Let ei

be the unit vectors along the axes Oxi (i ¼ 1;2;3). Then we have
d1 ¼ e1 , d2 ¼ e2 , d3 ¼ e3 ¼ t and s ¼ x3. We designate the inertia
moments of the cross-section by

I1 ¼ hqx2
2i; I2 ¼ hqx2

1i; ð14Þ

where we use the notation hf i ¼
R
R f dx1dx2 for any field f.

Let us write now the basic equations for composite straight rods
in components forms. To distinguish between the extensional (ax-
ial), torsional, bending, and shear deformation, we decompose the
vectors u;w;N;M;F and L by the axial direction e3 and the normal
plane ðe1; e2Þ:

u ¼ ue3 þw; w ¼ we3 þ e3 � #;

N ¼ Fe3 þ Q ; M ¼ He3 þ e3 � L; F ¼ F ae3 þF n;

L ¼ Lae3 þLn: ð15Þ

The vectors w; #;Q ; L;F n and Ln are orthogonal to e3. Here uis the
longitudinal displacement, w ¼ waea is the vector of transversal
displacement, w is the torsion, #0 ¼ #0aea is the vector of bending
deformation, F is the longitudinal force, Q ¼ Qaea is the vector of
transversal force, His the torsion moment and L ¼ Laea is the vector
of bending moment. With the notations (15), the constitutive Eqs.
(6)–(9) can be put in the component form

Q 1 ¼ A1ðw01 �#1Þ þA12ðw02 �#2Þþ B13w
0;

Q 2 ¼ A12ðw01 � #1Þ þA2ðw02 �#2Þþ B23w
0;

F ¼ A3u0 � B31#
0
2 þ B32#

0
1; H ¼ C3w

0 þ B13ðw01 � #1Þ þ B23ðw02 � #2Þ;
0 0 0 0 0 0
L1 ¼ C2#1 � C12#2 þ B32u ; L2 ¼ �C12#1 þ C1#2 � B31u : ð16Þ

In this paper we consider non-homogeneous rods which properties
are independent of the axial coordinate x3. Then, the constitutive
coefficients Ai;Ci;A12;C12; Ba3 and B3a are constants, which describe
the effective stiffness properties of composite rods. In order to char-
acterize their mechanical behavior, we will express these constitu-
tive coefficients in terms of the three-dimensional elasticities, for a
large variety of composite rods.

3. Effective stiffness properties for non-homogeneous rods

The relations (16) shows that C1 and C2 represent the bending
effective stiffness coefficients, C3 characterizes the torsional rigid-
ity, A1 and A2 are the shear effective stiffness coefficients, A3 ex-
presses the extensional effective stiffness, while Ba3; B3a;C12;A12

are coupling coefficients. To determine the effective stiffness coef-
ficients Ai;Ci;A12;C12;Ba3 and B3a we compare the solutions of some
extension, bending and torsion problems for directed curves with
the corresponding results obtained for three-dimensional rods,
see e.g. Ies�an (2009). The comparison procedure is described in de-
tails in Bı̂rsan et al. (2012). The relationship between the fields de-
fined in the direct approach and the three-dimensional fields is
given by

q0wa ¼ hqu�ai; q0u ¼ hqu�3i; q0 ¼ hqi;

#1 ¼ �
hqx1u�3i

I2
; #2 ¼ �

hqx2u�3i
I1

; w ¼ hqðx1u�2 � x2u�1Þi
I1 þ I2

;

Qa ¼ ht�3ai; F ¼ ht�33i; La ¼ �hxat�33i; H ¼ hx1t�32 � x2t�31i;
ð17Þ

where u�i and t�ij are the components of the displacement vector u�

and the Cauchy tensor T� for three-dimensional rods.

Remark. The relations of identification for displacements and
rotations of the type (17) are obtained in the theory of directed
curves (Zhilin, 2007) by imposing the condition that the linear
momentum and the moment of momentum (per unit length of C0)
are equal to the corresponding linear momentum and moment of
momentum of the three-dimensional rod. This is the reason why
the displacement and rotation fields are mass weighted in the
comparison with three-dimensional fields (17). This is particularly
significant for composite rods, when the difference between the
mass densities of the constituents can be considerably, see the
examples treated in the next sections.

It should be mentioned that the relations (17) are not the only
possibility to relate the displacement and rotation fields with the
three-dimensional quantities. Indeed, in view of the relations (2),
(3) and (13), we see that the three-dimensional displacement
u� ¼ R� � r� satisfies

hqxau�i
hqx2

ai
¼
hu�;ai

AreaðRÞ ; a ¼ 1;2: ð18Þ

In the theory of Cosserat rods see Rubin (2000) the identification
relations of the type (17) are expressed with the help of the inte-
grals hu�;ai. Note that the value of the shear correction coefficient de-
pends generally on the specifications like (17), cf. (Rubin, 2003).
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Fig. 2. (a) The cross-section of a general composite beams; (b) The separation curve
between the domains Sl and Sr .
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We assume that the three-dimensional rod is made of an isotro-
pic and non-homogeneous material, characterized by the mass
density q ¼ qðx1; x2Þ and the Lamé’s moduli k ¼ kðx1; x2Þ and
l ¼ lðx1; x2Þ. We mention that the three-dimensional solutions
used for comparison are exact solutions of the Saint–Venant re-
laxed problem for the bending, torsion and extension of solid com-
posite cylinders, presented in Ies�an (1987, 2009). Even if the
deformation of cross-sections is not taken into account for directed
curves, the displacement fields in the two approaches should coin-
cide, when calculated in the average sense (17).

It is known that the solution of the extension-bending-torsion
problem for three-dimensional rods is expressed in terms of the
solution to some auxiliary plane strain boundary-value problems,
see e.g. Ies�an (2009), Sections 3.3 and 3.4. More precisely, let us de-
note by Dð1Þ, Dð2Þ and Dð3Þ the plane strain problems defined on the
domain R by

DðcÞ :
kuq;qdab þlðua;b þ ub;aÞ
� �

;b
¼ �ðkxcÞ;a in R;

kuq;qdab þlðua;b þ ub;aÞ
� �

nb ¼ �kxcna on @R;

(
ðc ¼ 1;2Þ

Dð3Þ :
kuq;qdab þ lðua;b þ ub;aÞ
� �

;b
¼ �k;a in R;

kuq;qdab þ lðua;b þ ub;aÞ
� �

nb ¼ �kna on @R;

(
ð19Þ

where dab is the Kronecker symbol. The solution of the problem DðkÞ
will be denoted by uðkÞa ðx1; x2Þ, for every k ¼ 1;2;3. On the other
hand, the torsion function uðx1; x2Þ is the solution of the Neumann
type boundary-value problem

lu;a

� �
;a
¼ l;1x2 � l;2x1 in R;

@u
@n
¼ x2n1 � x1n2 on @R; ð20Þ

where the vector n ¼ naea is the outward unit normal to @R.
Taking into account the relations (17), we find that the solutions

of the extension-bending-torsion problems coincide in the two ap-
proaches (direct and three-dimensional) provided the effective
stiffness coefficients are given by Bı̂rsan et al. (2012)

A3 ¼ ðkþ 2lÞ þ kuð3Þc;c

D E
; Ba3 ¼ 0; B31 ¼ x2ðkþ 2lþ kuð3Þc;cÞ

D E
;

B32 ¼ � x1ðkþ 2lþ kuð3Þc;cÞ
D E

; C1 ¼ x2 ðkþ 2lÞx2 þ kuð2Þc;c

h iD E
;

C2 ¼ x1 ðkþ 2lÞx1 þ kuð1Þc;c

h iD E
; C12 ¼ � x1 ðkþ 2lÞx2 þ kuð2Þc;c

h iD E
;

C3 ¼ l½x1ðx1 þu;2Þ þ x2ðx2 �u;1Þ�
D E

:

ð21Þ

To determine the shear effective stiffness coefficients A1 and A2 we
consider the shear vibrations of rectangular rods in the two ap-
proaches (direct and three-dimensional). By identifying the lowest
natural frequencies, we obtain the expressions (Bı̂rsan et al., 2012)

Aa ¼ jhli hqx2
aiAreaðRÞ
hqihx2

ai
;

A12 ¼ 0; a ¼ 1;2ðnot summedÞ; ð22Þ

where the factor j ¼ p2

12 is similar to the shear correction factor
introduced first by Timoshenko in the theory of beams (see Timo-
shenko, 1921, where the value j ¼ 5

6 is proposed).

Remark. We mention that the relations (22) have been derived by
approximation of more detailed formulas obtained for rectangular
beams. We present next the exact formulas for shear stiffness in
the case of non-homogeneous rectangular rods. Let R ¼ fðx1; x2Þjx1

2 ð� a
2 ;

a
2Þ; x2 2 ð� b

2 ;
b
2Þg be the cross-section domain and qðx1; x2Þ

be the mass density such that qðx1; x2Þ ¼ qðx1;�x2Þ. Then, the
shear stiffness coefficient A2 is expressed by Bı̂rsan et al. (2012)
A2 ¼ jhli hqx2
2i AreaðRÞ

hqðx1; bÞihx2
2i
; ð23Þ

where bðx1; x2Þ 2 ð� b
2 ;

b
2Þ is an intermediate point such that

qðx1;bÞh i ¼ �p
b

Z a
2

�a
2

Z b
2

�b
2

cos
px2

b

� ��1 Z x2

�b
2

qðx1;nÞsin
pn
b

dn

 !
dx2dx1:

ð24Þ

A similar formula holds for A1. In most cases, we can use the
approximation hqðx1; bÞi ’ hqðx1; x2Þi and the exact relation (23) re-
duces to the simplified expression (22).
4. Effective stiffness properties for composite beams

In this section we generalize the results of the previous section
to the case of composite rods. More precisely, we consider that the
composite beam is made of n different non-homogeneous materi-
als. We consider separately the cases when the n constituent mate-
rials are isotropic or orthotropic.

Let the rod-like body be denoted by B ¼ fðx1; x2; x3Þj
ðx1; x2Þ 2 R; x3 2 ð0; lÞg. For composite beams, the cross-section R
is partitioned into nsub-domains S1,. . .,Sn with Sk \ Sl ¼ ;, for
k – l. As shown in Fig. 2(a), the generic cross-section R may include
a number of m‘layers’ S1,. . .,Sm (with 0 6 m 6 n) and an arbitrary
number of ‘inclusions’ Smþ1,. . .,Sn. Then the beam B is decomposed
into nregions Bk ¼ fðx1; x2; x3Þjðx1; x2Þ 2 Sk; x3 2 ð0; lÞg, such that
each domain Bk is occupied by a different non-homogeneous mate-
rial characterized by the mass density and the Lamé’s moduli

q ¼ qðkÞðx1; x2Þ; k ¼ kðkÞðx1; x2Þ;
l ¼ lðkÞðx1; x2Þ in Sk ð1 6 k 6 nÞ: ð25Þ

We consider that the bodies Bk are welded together and there is no
separation of material during deformation. The displacement vector
field and the stress vector field are continuous in passing from one
material to another.

We designate by Ck the boundary curve of the domain Sk which
does not belong to the cross-section boundary @R, i.e.
Ck ¼ @Sk n @R. We assume that the curves Ck (k ¼ 1; . . . ;n) are not
self-intersecting, like in Fig. 2(a). For any boundary curve Ck which
separates the domains Sl and Sr such that l < r (here either l ¼ k or
r ¼ k), we denote by n ¼ naea the unit normal to Ck pointing to-
ward Sr (Fig. 2(b)) and introduce the notation

f½ �þ� ¼ f ðrÞ � f ðlÞ on Ck; for any field f ; ð26Þ

where f ðrÞ designates the field f calculated in Sr .
In the case of composite beams, the plane strain boundary-

value problems of the type (19), (20) will have a more complicated
form, because we have to adjoin the continuity conditions on the
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curves of separation Ck between the n materials. Let us denote by
Pð1Þ, Pð2Þ and Pð3Þ the following plane strain problems defined on
the domain R

PðcÞ :
tba;b¼�ðkxcÞ;a in Sk ðk¼1; . . . ;nÞ;
tbanb¼�kxcna on @R;

ua½ �þ� ¼0; nb tbaþkxcdab

� �þ
� ¼0 on Ck ðk¼1; . . . ;nÞ;

8><>: ðc¼1;2Þ

Pð3Þ :

tba;b ¼ �k;a in Sk ðk ¼ 1; . . . ;nÞ;
tbanb ¼ �kna on @R;

ua½ �þ� ¼ 0; nb tba þ kdab

� �þ
� ¼ 0 on Ck ðk ¼ 1; . . . ;nÞ;

8><>:
ð27Þ

where we denote by tab ¼ kuq;qdab þ lðua;b þ ub;aÞ. The solution of
the problem PðsÞ will be denoted by uðsÞa ðx1; x2Þ; s ¼ 1;2;3. For the
torsion function uðx1; x2Þ we have to solve the boundary-value
problem of the Neumann type

lu;a

� �
;a
¼ l;1x2 � l;2x1 in Sk ðk ¼ 1; . . . ;nÞ;

@u
@n ¼ x2n1 � x1n2 on @R;

u½ �þ� ¼ 0; l @u
@n � x2n1 þ x1n2
� �� �þ

� ¼ 0 on Ck ðk ¼ 1; . . . ;nÞ:

8>>><>>>:
ð28Þ

The existence of solutions to the plane strain boundary-value prob-
lems (27), (28) can be shown in the same manner as in Ies�an (2009)
Section 3.6.1, where the case n ¼ 2 is considered.

Extending the procedure described in Section 5 of Bı̂rsan et al.
(2012) to the case of n materials, we find that the effective stiffness
coefficients for composite rods are expressed by

A3 ¼
Xn

k¼1

Z
Sk

kðkÞ þ 2lðkÞ þ kðkÞuð3Þc;c

� �
dx1dx2; B13 ¼ B23 ¼ 0;

B31 ¼
Xn

k¼1

Z
Sk

x2 kðkÞ þ 2lðkÞ þ kðkÞuð3Þc;c

� �
dx1dx2;

B32 ¼ �
Xn

k¼1

Z
Sk

x1 kðkÞ þ 2lðkÞ þ kðkÞuð3Þc;c

� �
dx1dx2;

C1 ¼
Xn

k¼1

Z
Sk

x2 ðkðkÞ þ 2lðkÞÞx2 þ kðkÞuð2Þc;c

h i
dx1dx2;

C2 ¼
Xn

k¼1

Z
Sk

x1 ðkðkÞ þ 2lðkÞÞx1 þ kðkÞuð1Þc;c

h i
dx1dx2;

C12 ¼ �
Xn

k¼1

Z
Sk

x1 ðkðkÞ þ 2lðkÞÞx2 þ kðkÞuð2Þc;c

h i
dx1dx2;

C3 ¼
Xn

k¼1

Z
Sk

lðkÞ x1ðx1 þu;2Þ þ x2ðx2 �u;1Þ
h i

dx1dx2:

ð29Þ

The relations (22) for effective shear stiffness in the case of compos-
ite beams become

Aa¼
jAreaðRÞ
hx2

ai
Xn

k¼1

Z
Sk

lðkÞdx1dx2

 ! Xn

k¼1

Z
Sk

qðkÞx2
adx1dx2

 ! Xn

k¼1

Z
Sk

qðkÞdx1dx2

 !�1

:

ð30Þ

where j ¼ p2

12 is the shear correction factor.
The relations (29) and (30) give the exact values for the effective

stiffness properties of beams made of ndifferent non-homogeneous
materials. These formulas apply to very general situations. How-
ever, it is not easy to use them in some practical cases, since it is
difficult to obtain the solutions to the plane strain boundary-value
problems (27), (28).

In the remaining of this paper we present some important
instances where we can apply the above formulas, including
sandwich beams with foam core, sandwich circular columns and
functionally graded beams.

4.1. Composite beams with constant Poisson ratio

Let us present an important case when the plane strain bound-
ary-value problems (27), (28) are easily solvable, and the relations
for the effective stiffness coefficients (29), (30) admit a significant
simplification. This is the case of composite beams with constant
Poisson ratio, the same constant for all material constituents.
Within the classical three-dimensional elasticity theory, the case
of non-homogeneous materials with constant Poisson ratio has
been studied in details, see e.g. Lomakin (1976).

For the non-homogeneous material occupying the domain Bk

we denote by EðkÞðx1; x2Þ the Young modulus and by mðkÞðx1; x2Þ
the Poisson ratio. In this section we assume that

mðkÞðx1; x2Þ ¼ m ðconstantÞ; for k ¼ 1; . . . ;n: ð31Þ

In this situation, the plane strain boundary-value problems PðsÞ gi-
ven by (27) admit simple solutions uðsÞa ; s ¼ 1;2;3. It is easy to prove
that

uð1Þ1 ¼ �
1
2
mðx2

1 � x2
2Þ; uð1Þ2 ¼ �mx1x2;

uð2Þ1 ¼ �mx1x2; uð2Þ2 ¼
1
2
mðx2

1 � x2
2Þ; uð3Þ1 ¼ �mx1; uð3Þ2 ¼ �mx2

ð32Þ

satisfy all the equations and conditions in (27). Inserting the func-
tions (32) into the formulas (29), we obtain in this case the follow-
ing effective stiffness coefficients

A3 ¼
Xn

k¼1

Z
Sk

EðkÞdx1dx2; B31 ¼
Xn

k¼1

Z
Sk

x2EðkÞdx1dx2; Ba3 ¼ 0;

B32 ¼ �
Xn

k¼1

Z
Sk

x1EðkÞdx1dx2; C1 ¼
Xn

k¼1

Z
Sk

x2
2EðkÞdx1dx2;

C2 ¼
Xn

k¼1

Z
Sk

x2
1EðkÞdx1dx2; C12 ¼ �

Xn

k¼1

Z
Sk

x1x2EðkÞdx1dx2:

ð33Þ

The relations (33) have a more classical form but we should empha-
size that, from a mathematical point of view, they are valid only in
the case when the Poisson ratios of the ndifferent materials are
equal. The expressions for the torsional rigidity C3 and shear effec-
tive stiffness A1;A2 remain the same as in (29)8 and (30), indepen-
dent of any assumption on the Poisson ratio.

In the next sections we will employ the above relations to eval-
uate the effective stiffness properties of various sandwich beam
structures.

5. Sandwich beams with foam core

In this section we consider sandwich beams with rectangular
cross-section. The faces of the beam are assumed to be of equal
thicknesses and made of the same material, while the core is made
of a different material (foam). In typical sandwich structures, the
faces are usually thin and stiff, but the core is weak and light-
weight. These types of structures are widely used (for example in
aviation or automotive applications) because they provide a high
bending stiffness coupled with light weight. For a detailed descrip-
tion and analysis of sandwich structures with foam core, we refer
to the classical books of Allen (1969); Zenkert (1997); Gibson
and Ashby (1997).

Let us denote by c and tf the thicknesses of the core and the
faces, respectively, a ¼ c þ 2tf is the total thickness of the beam,
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b designates the width of the beam, d is the distance between the
middle axes of the faces, see Fig. 3(a). Assume that the materials
are homogeneous and isotropic and denote by qc , Ec , Gc the mass
density, Young’s modulus, shear modulus for the core, while qf , Ef ,
Gf designate the corresponding quantities for the faces.

The stiffness properties which are of special interest for this
sandwich beam are: the torsional rigidity C3 , the bending effective
stiffness C1 about the Ox1 axis, and the shear effective stiffness A2

in the x2 direction. Let us evaluate these stiffness properties using
the general formulas from Section 4, and compare our results with
previously known values from the literature.

5.1. Torsional rigidity

In order to calculate the torsional rigidity C3 using the Eq. (29)8

we need to determine first the torsion function uðx1; x2Þ by solving
the boundary-value problem (28) written for our configuration.
Taking into account the geometry of the cross-section (Fig. 3(a))
in this case we have

R¼ ðx1;x2Þjx1 2 �b
2
;
b
2

	 

;x2 2 �

a
2
;
a
2

� �� �
; S1¼ ðx1;x2Þjx1 2 �b

2
;
b
2

	 

;x2 2 �

a
2
;� c

2

� �� �
;

S2¼ ðx1;x2Þjx1 2 �b
2
;
b
2

	 

;x2 2

c
2
;
a
2

� �� �
; S3¼ ðx1;x2Þjx1 2 �b

2
;
b
2

	 

;x2 2 �

c
2
;
c
2

� �� �
:

Then, the boundary-value problem (28) becomes

Du ¼ 0 in S1 [ S2 [ S3;
@u
@n ¼ x2n1 � x1n2 for x1 ¼ 	 b

2 or x2 ¼ 	 a
2 ;

u½ �þ� ¼ 0; G @u
@n � x2n1 þ x1n2
� �� �þ

� ¼ 0 for x2 ¼ 	 c
2 ;

8><>: ð34Þ

where D ¼ @2

@x2
1
þ @2

@x2
2

is the Laplace operator. We search for a solution
of (34) in the form of a series

uðx1; x2Þ ¼ x1x2 þ
X1
n¼0

fnðx2Þ sinðmx1Þ; with m ¼ ð2nþ 1Þp
b

;

ð35Þ

where the function fnðx2Þ is expressed by

fnðx2Þ ¼ AðkÞn sinhðmx2Þ þ BðkÞn coshðmx2Þ in Sk ðk ¼ 1;2;3Þ:

The constants AðkÞn and BðkÞn are then determined by imposing that the
conditions (34)2,3,4 are satisfied. Finally, from the relation (29)8 we
obtain the torsional rigidity

C3 ¼
b3

3
ðcGc þ 2tf Gf Þ �

192 � b
p5

X1
n¼0

CðnÞ
ð2nþ 1Þ5

" #
; ð36Þ

where we denote by

CðnÞ ¼
Gc Gc coshðmtf Þtanhmc

2 þGf sinhðmtf Þ
� �

þ2Gf ðGc�Gf Þ 1�coshðmtf Þ
� �

tanhmc
2

Gc coshðmtf ÞþGf sinhðmtf Þtanhmc
2

:

ð37Þ

The series from (36) converges very rapidly, so that we can obtain
good approximations of C3 by keeping only few terms.
(a) (b)

Fig. 3. (a) Cross-section of a sandwich beam; (b) Three-point bending of a beam.
Remark.
1. In the case of a ‘monolithic’ beam, i.e. if we take Gc ¼ Gf in the
formula (36), then we obtain the well-known expression for the
torsional rigidity of rectangular beams, see e.g. Timoshenko and
Goodier (1951), p. 278:
C3 ¼ G
b3a
3

1� 192 � b
p5a

X1
n¼0

1

ð2nþ 1Þ5
tanh

ð2nþ 1Þpa
2b

" #
:

ð38Þ
2. Let us consider the case when the core shear modulus is much
smaller than the shear modulus of the faces: Gc 
 Gf . This
assumption is reasonable in most practical situations. If we
neglect the ratio Gc

Gf
’ 0, then the relation (37) simplifies to

CðnÞ ’ 2Gf tanhðmtf =2Þ. Then the formula (36) for the torsional
rigidity shows that in this case the beam acts like two faces
twisting independently of each other.

Let us compare the torsional rigidity found in (36) with the tor-
sional rigidity for sandwich beams given in Zenkert (1997),
Section 3.12:

eC3 ¼ Gf
b
3

a3 þ Gc

Gf
� 1

	 

c3


 �
: ð39Þ

The formula (39) is valid only for wide beams (sandwich panels), i.e.
when b is much larger than the thickness of the beam a (Zenkert,
1997; Seide, 1956). We remark that if we take Gc ¼ Gf in the rela-
tion (39) (the ‘monolithic’ case), then we obtain eC3 ¼ Gba3

=3 which
is the limiting value as b� a for the torsional rigidity of rectangular
beams. We will compare the values (36) and (39) graphically, in
terms of the ratio between the thickness and the width of the beam.
Let us denote by d; e and r the following ratios

d ¼ 2tf

b
; e ¼ c

b
; r ¼ Gc

Gf
: ð40Þ

Then the values for the torsional rigidity given by (36) and (39) can
be written as

C3 ¼ Gf
b4

3
f ðd; eÞ; eC3 ¼ Gf

b4

3
gðd; eÞ; ð41Þ

where we have introduced the non-dimensional functions

gðd;eÞ¼ðdþeÞ3þðr�1Þe3; f ðd;eÞ¼ðdþerÞ�192
p5

X1
n¼0

1

ð2nþ1Þ5

�r½tanhðkdÞþr tanhðkeÞ�þ2ð1�rÞtanhðkdÞtanhðkeÞtanhðkd=2Þ
rþtanhðkdÞtanhðkeÞ ;ð42Þ

with k ¼ ð2nþ1Þp
2 and r ¼ Gc

Gf
. We want to compare the functions f and g

for small values of d and e, since dþ e ¼ a=b and the range of appli-
cability of the formula (39) is restricted to wide beams.

Let us take an example of a sandwich beam for which
Gc=Gf ¼ 0:1 and 2tf =c ¼ 0:2. In this case we have r ¼ 0:1 and
d ¼ 0:2e, and the graphics of f and g as functions of e are depicted
in Fig. 4. From the graphic we can see that the values of f and g are
very close for e < 0:25, i.e. when the thickness-to-width ratio sat-
isfies a=b < 0:3.

Next, we compare the functions f and g in the more general case
when the ratios d ¼ 2tf

b and e ¼ c
b vary independently, and the mate-

rials are such that r ¼ Gc
Gf
¼ 0:4. We plot the difference function

ðg � f Þðd; eÞ and obtain the surface in Fig. 5(a). The level curves of
this surface are represented in Fig. 5(b), which shows that the dif-
ference between f and g is very small for dþ e < 0:3, i.e. when the
ratio a=b < 0:3.

As a conclusion of the above analysis, we deduce that the simple
formula (39) for torsional rigidity can be used for wide sandwich
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beam satisfying a
b < 0:3, but if the thickness-to-width ratio a

b is big-
ger than 0.3, the exact formula (36) should be employed.

5.2. Effective bending stiffness and shear stiffness

To obtain simple expressions for the effective bending stiffness
coefficient C1 we assume in this section that the Poisson ratios of
the two materials are equal: mf ¼ mc . Then, we can employ the for-
mula (33)5 to evaluate the effective bending stiffness C1. Taking
into account the geometry of the cross-section (Fig. 3(a)) from
(33)5 we obtain

C1 ¼ Ef
btf d2

2
þ Ef

bt3
f

6
þ Ec

bc3

12
: ð43Þ

This relation for the effective bending stiffness for sandwich
beams coincides with the classical result presented in Allen
(1969), Zenkert (1997), Gibson and Ashby (1997).

If we employ the exact formula (23) for effective shear stiffness,
in our case we find

A2 ¼ j
12b
a2

cGc þ 2tf Gf

cqc þ 2tf qf þ cðqf � qcÞFðpc
2aÞ

qf
tf d

2

2
þ qf

t3
f

6
þ qc

c3

12

 !
;

ð44Þ

where the function Fð�Þ is defined on the interval � p
2 ;

p
2

� �
by

FðxÞ ¼ cos x
x

ln
1þ sin x

cos x

	 

for x – 0; Fð0Þ ¼ 1: ð45Þ

We observe that Fð�xÞ ¼ FðxÞ and limx!0FðxÞ ¼ 1, so the function is
continuous. Also, we have limx%p

2
FðxÞ ¼ 0. The graphic of the func-

tion FðxÞ on the interval ð� p
2 ;

p
2Þ is depicted in Fig. 6.

On the other hand, the classical expression of the effective shear
stiffness A2 for sandwich beams is

eA2 ¼
bd2

c
Gc; ð46Þ

which in the case of thin faces (i.e. tf 
 c) admits the approximation
(Allen, 1969; Gibson and Ashby, 1997)eA2 ¼ bcGc: ð47Þ

Let us present a simplified (approximate) version of the exact for-
mula (44) for the effective shear stiffness A2 in the case of thin faces,
and find the correlation with the classical result (47). In this case,
the value of c

a is very close to 1 and since limx%p
2
FðxÞ ¼ 0, the term
0 0.1 0.2 0.3 0.4 0.5
0

0.02
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Fig. 4. The graphics of f and g as functions of the ratio e ¼ c=b.
F pc
2a

� �
is negligible in (44). We consider that the ratio � � tf

c is small
(since faces are thin), and we develop the expression in the right-
hand side of (44) as a power series of �. If we neglect all the terms
of order Oð�2Þ and higher, we get the approximate formula

A2 ¼ jb cGc þ 2tf Gf þ 4tf Gc
qf � qc

qc

	 

: ð48Þ

Moreover, if we neglect also the terms of first order Oð�Þ (applicable
for very thin faces), then we obtain the relation

A2 ¼ jbcGc; ð49Þ

which corresponds to the classical value (47) with the shear correc-
tion factor j included.

5.3. Three-point bending of sandwich beams

To validate the values of the effective stiffness properties ob-
tained above, we analyze a three-point bending problem and com-
pare our theoretical results with experimental data. Let us consider
sandwich beams (with polyester or epoxy faces and foam core)
subjected to a central load P, with simply supported ends, as de-
picted in Fig. 3(b). The analytical solution of this three-point bend-
ing problem is not difficult to calculate using the direct approach of
rods. We find that the maximum deflection D of the beam is given
by the well-known formula

D ¼ Pl
4

1
A2
þ l2

12C1

 !
; ð50Þ

where the effective bending stiffness C1 and the effective shear
stiffness A2 are given by (43) and (44). On the other hand,
according to the classical approach (Zenkert, 1997; Gibson and
Ashby, 1997) the maximum deflection is evaluated from the
relation

eD ¼ Pl
4

1eA2

þ l2

12C1

 !
; ð51Þ

where eA2 is given by (46). The difference resides in the effective
shear stiffness A2. Let us compare the predictions stated in (50)
and (51) with some experimental results.

The three-point bending tests were performed on the
Strength of Materials Laboratory from the Faculty of Mechanical
Engineering at Lublin University of Technology. A 25 kN MTS
static and dynamic testing machine type 858 Table Top System
was used for bending tests, using 2.5 kN load cell range.
Fig. 7(a) shows the positioning of the specimen, while Fig. 7(b)
presents the specimens used in the experiments Marsavina
et al. (2008); Marsavina et al. (2010). Tests were performed at
room temperature and with a 5 mm/min test speed, according
to ASTM C393-00 Standard Test Methods for Flexural Properties
of Sandwich Constructions (American Society of Testing and
Materials, 2000). The load and the displacement were recorded
during tests.

Two types of sandwich beams with foam core have been tested
in three-point bending: beams with polyester faces, and beams
with epoxy faces. A 200 kg/m3 density rigid polyurethane foam
was used in the experimental program for the core material. The
polyurethane foams were impregnated with polyester and epoxy
resins, which form the faces (skins of the sandwich). Polyurethane
foams are widely used as cores in sandwich composites, for pack-
ing and cushioning. They are made of interconnected networks of
solid struts or plates which form the edges and the faces of the
closed cells.

To calculate the Young’s modulus Ec and the shear modulus Gc

for foams with closed cells we use the relations (Gibson and Ashby,
1997), p. 197:
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Ec

Es
¼ /2 qc

qs

	 
2

þ ð1� /Þqc

qs
;

Gc

Es
¼ 3

8
/2 qc

qs

	 
2

þ ð1� /Þqc

qs

" #
; ð52Þ

where Es and qs are the Young’s modulus and mass density of the
solid material which constitutes the foam, while / is the volume
fraction of solid material contained in the cell edges (and 1� / rep-
resents the fraction of solid material contained in the faces of closed
Fig. 7. (a) MTS 25 kN testing machine; (b) specim
cells, see Gibson and Ashby (1997), p. 40 for details). For rigid poly-
urethane foams we have / ¼ 0:8 according to Gibson and Ashby
(1997), Reitz et al. (1984), so the material parameters are
qs ¼ 1170 Kg=m3; Es ¼ 1600 MPa.

The span length of the tested sandwich beams is l ¼ 90 mm, and
the width b ¼ 12:2 mm. Other geometrical and material parame-
ters of the sandwich beams are listed in the Table 1, cf. (Linul
et al., 2011). In Fig. 8 we represent graphically the dependence of
the load P versus the maximum deflection D, for the sandwich
beam with epoxy faces and polyurethane foam core. We have plot-
ted three different theoretical predictions: the classical solution
(51), (46), the exact analytical solution (50), (44), and the approx-
imate analytical solution (50) with the effective shear stiffness gi-
ven by (48). We have also depicted the results of experimental
measurements in the linear elastic regime. The graphic shows that
the exact analytical solution, obtained on the basis of formula (44)
for the effective shear stiffness, can describe better the experimen-
tal data, in comparison with the classical results. We observe that
the approximate analytical solution (48) is very close to the exact
analytical solution (44).

The experimental tests were performed up to failure, but in this
analysis we considered only the linear elastic region.

In the case of sandwich beams with polyester faces and poly-
urethane foam core, the dependence of the maximum deflection
D on the load P is depicted in Fig. 9. We see from the graphic that
the exact analytical solution provides a better prediction of exper-
imental measurements, also for polyester–polyurethane sandwich
beams. We observe that the exact analytical solution is intermedi-
ate between the classical and the approximate analytical solutions,
and the difference between them is very small.
ens of sandwich beams used in experiments.



Table 1
Geometrical and material parameters of the sandwich beam.

Face Core tf

[mm]
c
[mm]

Ef

[MPa]
Ec

[MPa]
Gf

[MPa]
Gc

[MPa]
qf

Kg
m3

h i
qc

Kg
m3

h i
Polyester Foam 0.1 12 4000 74.8 1400 28.05 1200 200

Epoxy Foam 0.17 12.03 3400 74.8 1353.5 28.05 1060 200

Fig. 8. The load P versus deflection D for a sandwich beam with epoxy faces and
polyurethane foam core: comparison between analytical solutions and experimen-
tal results.

Fig. 9. The load P versus deflection D for a sandwich beam with polyester faces and
polyurethane foam core: comparison between analytical solutions and experimen-
tal results.
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6. Sandwich beams with dissimilar faces

In this section we consider non-symmetrical sandwich beams
with faces of different thicknesses and materials. We denote by
t1;q1; E1, and G1 the thickness, density, Young’s modulus, and shear
modulus of the upper face, and by t2;q2; E2, and G2 the correspond-
ing quantities for the lower face. As in the preceding section, we
designate by c the core’s thickness, d ¼ c þ t1þt2

2 is the distance be-
tween the middle axis of the faces, and e is the distance between
Ox1 and the middle axis of the lower face, see Fig. 10(a).

The position of the axes Ox1 and Ox2 is determined by the con-
ditions (13). Then the distance e is given by

e ¼ cqcðc þ t2Þ=2þ dt1q1

cqc þ t1q1 þ t2q2
: ð53Þ

We assume that the materials have the same Poisson ratios. In this
case, the effective stiffness coefficients can be calculated using the
expressions (33). Thus, for the effective bending stiffness we obtain
the formula

C1¼b
Ecc3

12
þE1t3

1

12
þE2t3

2

12
þEcc

cþ t2

2
�e

	 
2

þE1t1ðd�eÞ2þE2t2e2

" #
:

ð54Þ

Let us calculate the effective shear stiffness A2. On the basis of the
exact formula (23), we obtain for A2 the following expression

A2 ¼ j
ab

z3
0 � z3

3

�
ðt1G1 þ t2G2 þ c GcÞ q1ðz3

0 � z3
1Þ þ qcðz3

1 � z3
2Þ þ q2ðz3

2 � z3
3Þ

� �
ðt1q1 þ t2q2 þ cqcÞ þ ðq1 � qcÞz1Fðpz1

a Þ þ ðqc � q2Þz2Fðpz2
a Þ

;

ð55Þ

where the function F is defined in (45), and z0; . . . ; z3 are given by

z0 ¼
t1
2 t1q1 þ ðt1 þ c

2Þcqc þ ðt1 þ c þ t2
2Þt2q2

t1q1 þ t2q2 þ cqc
;

z1 ¼
� t1

2 t1q1 þ c
2 cqc þ ðc þ

t2
2Þt2q2

t1q1 þ t2q2 þ cqc
;

z2 ¼
�ðc þ t1

2Þt1q1 � c
2 cqc þ

t2
2 t2q2

t1q1 þ t2q2 þ cqc
;

z3 ¼ �
ðt1

2 þ c þ t2Þt1q1 þ ðc2þ t2Þcqc þ
t2
2 t2q2

t1q1 þ t2q2 þ cqc
: ð56Þ

On the other hand, if we employ the approximate formula (30) to
evaluate A2, we get

A2 ¼ jbðt1G1 þ t2G2 þ cGcÞ � Kðt1q1; t2q2; cqcÞ; ð57Þ

where we denote by Kð�; �; �Þ the expression

Kðr1;r2;rcÞ¼
ðr1þr2þrcÞðr1t2

1þr2t2
2þrct2

c Þþ3 4r1r2d2þr1rcðt1þ tcÞ2þr2rcðt2þ tcÞ2
h i

a2ðr1þr2þrcÞ2þ3 rcðt1� t2Þ�r1ðt2þ tcÞþr2ðt1þ tcÞ½ �2
:

ð58Þ

In the thin faces approximation (i.e. when t1; t2 
 c) we neglect the
second order terms in the small parameters ðt1

c ;
t2
c Þ and hence, the

expression (57) simplifies to

A2 ¼ jb ðt1G1 þ t2G2 þ cGcÞ þ 2t1Gc
q1

qc
� 1

	 

þ 2t2Gc

q2

qc
� 1

	 

 �
:

ð59Þ

If the faces are very thin, then we can also neglect the first order
terms in ðt1

c ;
t2
c Þ and from (59) we find the approximate formula

A2 ¼ jbcGc which is in agreement with the classical approximate
result, see e.g. Gibson and Ashby (1997), p. 350.



(a) (b)

Fig. 10. (a) Cross-section of a sandwich beam with dissimilar faces; (b) Cantilever
beam with uniform distributed load q.
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The remaining effective stiffness coefficients are calculated
without difficulty by applying the general relations (30) and (33).
We obtain

A3 ¼ bðt1E1 þ t2E2 þ cEcÞ; C2 ¼
b3

12
ðt1E1 þ t2E2 þ cEcÞ; C12 ¼ 0;

B31 ¼ �b t1E1ðe� dÞ þ t2E2eþ cEc e� t2 þ tc

2

	 

 �
; B32 ¼ Ba3 ¼ 0:

ð60Þ

We notice that the coupling coefficient B31 is nonzero, due to the
non-symmetry of the beam in the x2 direction.

Remark. In the case when the Poisson ratios of the materials are
not equal, it is difficult to compute the effective bending stiffness
Ca using the relations (29), since we have to solve first the
boundary-value problem (27). On the other hand, the effective
shear stiffness Aa keep the same form even in this case, by virtue of
(23) or (30). We notice that the general formulas (30) and (33) can
also be used to calculate the effective stiffness coefficients for
multilayered beams with an arbitrary number of layers.
(a) (b)

Fig. 11. (a) Circular and rectangular sandwich columns; (b) Cross-section of a
circular sandwich column.
7. Functionally graded sandwich columns

Other types of sandwich structures with important applications
are the square columns and the circular columns, cf. (Gibson and
Ashby, 1997) Section 9.2, as shown in Fig. 11(a).

For these types of composite beams we can compute the effec-
tive stiffness coefficients by applying the general relations (29) and
(30). Assume that the cross-section R of the beam has the geome-
try presented in Fig. 11(b), and denote by mc; Ec;qc;Gc the material
parameters for the core, and by mf ; Ef ;qf ;Gf the material parame-
ters for the face.

Let us consider circular sandwich columns made of functionally
graded materials and determine its effective stiffness properties.
The generic cross-section of the beam is described in Fig. 11(b). As-
sume that the core material has the mass density qc and the Lamé
moduli kc and lc , expressed by exponential law distributions
through radial direction

qc ¼ q0 expð�rrÞ; kc ¼ k0 expð�rrÞ; lc ¼ l0 expð�rrÞ; ð61Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
is the radial distance and r is a constant expo-

nent. This kind of cylindrical inhomogeneity has been intensively
studied in classical elasticity, see e.g. Lomakin (1976). We employ

the obvious notations m0 ¼ k0
2ðk0þl0Þ

and E0 ¼ l0ð3k0þ2l0Þ
k0þl0

.

The face of the sandwich column is made of a functionally
graded material characterized by the following parameters

qf ¼ qðrÞ; Ef ¼ EðrÞ; mf ¼ m0 ðconstantÞ; ð62Þ

where qðrÞ and EðrÞ are arbitrary given functions of r.
Using the relations (61) and (62) in our particular geometry, we
obtain from the general formulas (33) the effective extensional
stiffness and bending stiffness coefficients

A3 ¼ 2p
Z R2

R1

rEðrÞdr þ 2p
r2 E0 1� ð1þ rR1Þe�rR1

� �
;

C1 ¼ C2

¼ p
Z R2

R1

r3EðrÞdr

þ p
r4 E0 6� ð6þ 6rR1 þ 3r2R2

1 þ r3R3
1Þe�rR1

h i
; ð63Þ

and B3a ¼ 0; C12 ¼ 0. Since the boundary-value problem (28) admits
in this case the solution u ¼ 0, we can easily apply the formula
(29)8 and find the torsional rigidity in the form

C3 ¼
p

1þ m0

Z R2

R1

r3EðrÞdr

þ 2p
r4 l0 6� ð6þ 6rR1 þ 3r2R2

1 þ r3R3
1Þe�rR1

h i
: ð64Þ

On the basis of relations (30), (61) and (62), we get the following
expression for the effective shear stiffness

A1¼A2

¼2pj
R2

2

�
1

1þm0

R R2
R1

rEðrÞdrþ 2
r2 l0 1�ð1þrR1Þe�rR1

� �R R2
R1

rqðrÞdrþ 1
r2 q0 1�ð1þrR1Þe�rR1½ �

�
Z R2

R1

r3qðrÞdrþ 1
r4 q0 6�ð6þ6rR1þ3r2R2

1þr3R3
1Þe�rR1

h i� �
:

ð65Þ

To conclude, all the effective stiffness coefficients for this type of
FGM sandwich column have been calculated.

Let us verify the values of the effective stiffness coefficients
(63)–(65) by comparison between the analytical solutions and
numerical results obtained with ABAQUS, for some basic elasto-
static problems: bending of cantilever FGM beam, torsion and
extension of FGM circular sandwich column.

For our numerical example, we consider a circular cylindrical
beam as described in Fig. 11, with length l ¼ 20 cm and radii
R1 ¼ 1:25 cm, R2 ¼ 1:5 cm. The core is made of a functionally
graded material having the elastic properties given by the expo-
nential distribution law (61) with E0 ¼ 343 GPa, m0 ¼ 0:3;
q0 ¼ 3880 kg/m3, which corresponds to alumina (Ootao,
2011). For the exponent r we take 5 different values:
r 2 f25;50;75;100;150g. The dependence of the Young modulus
Ec ¼ E0 expð�rrÞ on the radial distance r is depicted in Fig. 12.

We assume that the exterior layer (skin) of the sandwich
column is made of a homogeneous material (aluminum alloy)
characterized by Ef ¼ 70 GPa and qf ¼ 2688 kg/m3.
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Fig. 12. The distribution of Young modulus E in the core, for different values of the
exponent r.

(a) (b)

Fig. 13. (a) Cantilever beam with concentrated end force P; (b) Extension of FGM
sandwich column.

Table 2
Comparison of results for FGM cantilever beam with concentrated end load.

r 25 50 75 100 150

dexact [mm] 0.2527 0.3045 0.3618 0.4237 0.5551
dFEM [mm] 0.2523 0.3034 0.3600 0.4209 0.5502
Error D [%] �0.1719 �0.3532 �0.5012 �0.6658 �0.8962
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In the finite element analysis with ABAQUS we will use ele-
ments of cylindrical type, and 3D stresses. The shape of elements
is hexagonal. The functionally graded structure of the core is de-
scribed by dividing the domain into 64 cylindrical layers with con-
stant material parameters which satisfy the exponential law (61)
stepwise.
0 25 50 75 100 125 150
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Fig. 14. The relative error D in terms of the exponent r, for: (a) maximum deflection o
extension.
7.1. Bending of cantilever FGM beam by end loads

Consider a cantilever beam subject to a concentrated end force
P ¼ 616 N acting in the x1 direction, see Fig. 13(a). For the maxi-
mum deflection d, the analytical solution predicts the following
value

dexact ¼ Pl
1
A1
þ l2

3C2

 !
; ð66Þ

where A1 and C2 are effective stiffness coefficients given by (63)2

and (65). On the other hand, let dFEM denote the maximum deflec-
tion computed by the finite element analysis. The comparison be-
tween the theoretical and numerical results is presented in
Table 2 and Fig. 14(a), where we denote by D ¼ dFEM�dexact

minðdFEM ;dexactÞ the rel-

ative error. We remark a very good agreement of the two
approaches.

7.2. Torsion of FGM clamped sandwich column

Consider the circular sandwich column described above, sub-
jected to torsion by the torque (twisting moment) M ¼ 0:467 kN m
acting at one end of the beam. The other end is clamped.

Denote by w the angle of twist at the loaded end of the beam.
From the analytical solution we obtain the value wexact ¼ Ml

C3
, where

the torsional rigidity C3 is determined by (64).
In order to compare the beam-like solution wexact with the

numerical solution obtained by the finite element analysis, we cal-
culate the angle of twist wFEM in terms of the three-dimensional
displacements by means of the formula (17)6. The comparison be-
tween the theoretical and numerical values for the angle of twist is
presented in Table 3, for different values of the exponent r.

7.3. Extension of FGM sandwich column

Let us consider the extension of the circular FGM sandwich col-
umn by a given axial force F acting on its end edge. The other end of
the beam is clamped, see Fig. 13(b). Denote by uexact ¼ Fl

A3
the axial

displacement at the loaded end, as predicted theoretically, where
the extensional stiffness A3 is determined by (63)1.

For numerical calculations, we decompose the resultant force F
as a uniformly distributed load p ¼ 100 MPa over the end edge. If
we designate by ðu�3ÞFEM the three-dimensional axial displacement
computed by the finite element analysis, then in virtue of relations
(17)2,3 the corresponding beam-like axial displacement is calcu-

lated from the formula uFEM ¼
hqðu�3ÞFEMi
hqi . From Table 4 and
0 25 50 75 100 125 150
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f a FGM cantilever beam; (b) axial displacement of a FGM sandwich column under



Table 3
Analytical and numerical results for torsion of circular FGM sandwich column.

r 25 50 75 100 150

wexact [rad] 0.0185 0.0223 0.0265 0.0310 0.0406
wFEM [rad] 0.0193 0.0233 0.0276 0.0323 0.0428
Error D [%] 4.4676 4.4847 4.3323 4.0513 5.3453

Table 4
Comparison of axial displacements obtained analytically and numerically for
extension of FGM sandwich column.

r 25 50 75 100 150

uexact [mm] 0.0929 0.1110 0.1314 0.1542 0.2059
uFEM [mm] 0.09354 0.1117 0.1321 0.1547 0.2060
Error D [%] 0.7073 0.587 0.4654 0.3417 0.0846
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Fig. 14(b) we observe that the theoretical and numerical results
uexact and uFEM are in very good agreement.

8. Conclusions

In this paper we have determined the effective stiffness proper-
ties of various composite beams, in order to characterize their
mechanical behavior. The general formulas for the effective stiff-
ness coefficients of composite beams made of several non-
homogeneous isotropic materials are given by the relations (29)
and (30). From these formulas we find by particularization the
expressions of the effective bending stiffness, shear stiffness,
extensional stiffness, and torsional rigidity, for some composite
beams of interest: sandwich beams with foam core, sandwich
beams with dissimilar faces, and functionally graded columns.
Thus, for piecewise homogeneous sandwich beams we have
obtained the torsional rigidity (36), the effective bending stiffness
(43), and shear stiffness (44). These values have been compared
with classical theoretical results in Sections 5.1, 5.2, and with
experimental measurements for three-point bending in Section 5.3.
The effective stiffness properties for sandwich beams with
dissimilar faces have been presented in Section 6.

For circular sandwich columns made of functionally graded
materials with exponential distribution law we have found the
expressions (63)–(65) for the effective stiffness coefficients. Using
these values, we have deduced the analytical beam-like solutions
of some bending, torsion and extension problems, and compared
them with numerical results in Sections 7.1, 7.2, 7.3.

The good agreement between the theoretical, experimental, and
numerical results for the mechanical problems studied above rep-
resent a validation of our analytical formulas for the effective stiff-
ness properties of sandwich composite beams.
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