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a b s t r a c t

Based on the well known complex Kolosov–Muskhelishvili potentials, two new independent Lagrangian
functions are presented and their variational problems lead to two independent harmonic equations,
which are also the Navier’s displacement equations in plane elasticity. By applying Noether’s theorem
to these Lagrangian functions, it is found that their symmetry-transformation in material space is a con-
formal transformation in planar Euclidean space. Since any analytic function is a conformal transforma-
tion in planar Euclidean space, the conservation law obtained from this kind of symmetry-transformation
possesses universality and leads to a path-independent integral. By adjusting the conformal transforma-
tion or analytic function, a finite value can be obtained from calculating this kind of path-independent
integral around a material point with any order singularity. By applying this path-independent integral
to the tip of a sharp V-notch, unlike Rice’s J-integral, the parameters of Mode I and II problems are found,
which remain invariant because of path independence for a fixed notch opening angle. That is, these two
parameters are equivalent to the notch stress intensity factors (NSIFs), and two examples are presented
to show the application.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Research on stress singularities in an elastic field plays an
important role in estimating macro safety of engineering compo-
nents. In order to establish the relationship between the stress
intensity factor at a material point and the loading at far field
and to understand the interaction among the material points with
stress singularities, J-integral, L-integral and M-integral discovered
independently by Eshelby (1951, 1956, 1970), Rice (1968a,b) and
Cherepanov (1967, 1979) have been widely used. This is one of
objectives in configuration mechanics since J-integral, L-integral
and M-integral are path-independent (Gurtin, 1995, 1999; Kienzler
and Herrmann, 2000). However, it is not easy to achieve this objec-
tive sometimes. For example, as shown in Fig. 1, Lazzarin et al.
(2002) gave a result obtained from calculating Rice’s J-integral
around the tip of a sharp V-notch and we add a limit as follows

J ¼ lim
r!0
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where b1r , b2r and c are the parameters that depend on the notch
opening angle 2ðp� aÞ, kð1Þ1 and kð2Þ1 are the eigenvalues, E0 is given
by the Young’s modulus E for plane stress or E=ð1� m2Þ for plane
ll rights reserved.
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strain, in which m is the Poisson’s ratio. Here, the NSIFs KN
I and KN

II

were defined by Gross and Mendelson (1972)
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Clearly, when the integration path of Rice’s J-integral is taken to be a
circle shrinking to the sharp V-notch tip with radius r ! 0, as
shown in Fig. 1, the quantity J turns out to be zero because the
eigenvalues 1=2 < kð1Þ1 < 1 and 1=2 < kð2Þ1 < 1 when the notch open-
ing angle 2ðp� aÞ > 0. That is, unlike a crack problem for which
Rice’s J-integral gives an energy release rate, Rice’s J-integral cannot
give a parameter directly for estimating safety of a sharp V-notch. In
order to avoid this difficulty, some treatments have been made to
define and discuss a new parameter JV by Lazzarin et al. (2002), Liv-
ieri (2008) and Livieri and Tovo (2009).

One can know advances and some problems in the field of sharp
V-notches reviewed by Berto and Lazzarin (2009) and Savruk and
Kazberuk (2010). Especially, Savruk (1981, 1988) gave an approxi-
mate solution with higher accuracy for an infinite elastic plane
with two symmetrical sharp V-notches, and its importance is the
same as the closed-form solution of a crack in an infinite elastic
plane. This is because a lot of essentially physical facts of a crack
had been recognized based on this kind of solutions. Apart from
this, it should be mentioned that there are a lot of problems with
various kinds of elastic singularities reviewed by Carpinteri and
Paggi (2009), for example, Flamant’s problem (a normal force act-
ing on a straight edge). Also, the multi-layered composites with
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Fig. 1. Integration paths a! b, C, b0 ! a0 and Cr for a sharp V-notch and
jb0a0 j ¼ jabj ¼ rb � ra , jOa0 j ¼ jOaj ¼ ra.
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sharp V-notches have been investigated (Carpinteri et al., 2006).
Therefore, it is necessary for us to find out new conservation laws
or path-independent integrals which can be used for a material
point with any order singularity.

Theoretically speaking, both the mathematical form of field
equations and the quantity of strain energy density are unchanged
if a translation of coordinates is made, which leads to the path
independence of Rice’s J-integral when Noether’s theorem is ap-
plied (Fletcher, 1976; Olver, 1984a,b; Shi, 2005; Shi et al., 2006).
Moreover, the path independence of Rice’s J-integral means the
physical and/or mathematical invariance and confirms that a frac-
ture parameter can be obtained in plane elasticity. In terms of con-
venience, the result of calculating Rice’s J-integral around the tip of
a crack is a nonzero constant (energy release rate equivalent to
SIF), which is unchanged when the two integral endpoints are arbi-
trarily chosen respectively along the traction-free crack surfaces
(Rice, 1968a,b; Cherepanov, 1967, 1979; Honein and Herrmann,
1997; Shi, 2003, 2011). This paper will focus on these two points.

In Section 2, by analyzing the physical and mathematical signif-
icance of complex Kolosov–Muskhelishvili potential /ðzÞ, two new
independent Lagrangian functions are presented. In Section 3, by
applying Noether’s theorem (Noether, 1918) to these Lagrangian
functions, it is found that any conformal transformations are
symmetry-transformations for getting the conservation laws in
material space. Since the conformal transformation in planar
Euclidean space can be expressed in terms of an analytic function,
the obtained conservation law not only possesses universality but
can be changed by adjusting the conformal transformation as well.
Section 4 provides applications to the sharp V-notch problem, for
which the two parameters of Mode I and II problems are presented
for estimating safety based on the elastic theory. A numerical
example is also presented for calculating the NSIF.

2. New Lagrangian functions

2.1. The significance of complex Kolosov–Muskhelishvili potential /ðzÞ

It is well known that the displacements ðu1;u2Þ, the resultant
force functions ðX;YÞ and the stresses ðr11;r22;r12Þ can be ex-
pressed in terms of two complex potentials /ðzÞ and wðzÞ (Muskhe-
lishvili, 1963)

2Gðu1 þ iu2Þ ¼ j/ðzÞ � z/0ðzÞ � wðzÞ; ð3Þ

�Y þ iX ¼ /ðzÞ þ z/0ðzÞ þ wðzÞ; ð4Þ
r11 þ r22 ¼ 2½UðzÞ þUðzÞ�; ð5Þ

r22 � r11 þ 2ir12 ¼ 2½�zU0ðzÞ þWðzÞ�; ð6Þ

where j ¼ 3� 4m for plane strain, j ¼ ð3� mÞ=ð1þ mÞ for general-
ized plane stress, G is the shear modulus and m Poisson’s ratio. Here,
there are the relations UðzÞ ¼ /0ðzÞ and WðzÞ ¼ w0ðzÞ. Conservation
integrals in the sense of Noether’s theorem for an analytic function
have been presented (Shi, 2012) and here we consider a special case
for plane elasticity in details.

Apparently, adding Eqs. (3) to (4) and performing some alge-
braic manipulation, we know

/ðzÞ ¼ 2G
jþ 1

u1 �
Y

2G
þ i u2 þ

X
2G

� �� �
: ð7Þ

Moreover, by computing the partial derivative of expression (3)
with respect to x1 and x2, respectively, it is known that

j/0ðzÞ � /0ðzÞ ¼ G½u1;1 þ u2;2 þ iðu2;1 � u1;2Þ�; ð8aÞ

j/0ðzÞ � /0ðzÞ ¼ G½u1;1 þ u2;2 � iðu2;1 � u1;2Þ�: ð8bÞ

Solving Eqs. (8a) and (8b) algebraically, we find

UðzÞ ¼ /0ðzÞ ¼ G
1

j� 1
ðu1;1 þ u2;2Þ þ

i
jþ 1

ðu2;1 � u1;2Þ
� �

: ð9Þ

Clearly, the real and imaginary parts of UðzÞ ¼ /0ðzÞ represent
the first strain invariant e1 and rotation x in plane elasticity,
respectively,

e1 ¼ u1;1 þ u2;2; x ¼ 1
2
ðu2;1 � u1;2Þ: ð10Þ
2.2. Independent harmonic equations

Since the complex potential /ðzÞ possesses real and imaginary
parts (7), they may be written as

/ðzÞ ¼ GðU1 þ iU2Þ; ð11Þ

U1 ¼
2

jþ 1
u1 �

Y
2G

� �
; U2 ¼

2
jþ 1

u2 þ
X

2G

� �
; ð12Þ

which possess the dimension of displacements. Based on Cauchy–
Riemann equations U1;1 ¼ U2;2 and U1;2 ¼ �U2;1 in the theory of ana-
lytic functions, the real and imaginary parts of UðzÞ ¼ /0ðzÞ can be
expressed by using (9), (11) and (12) as follows

UðzÞ ¼ /0ðzÞ ¼ GðU1;1 þ iU2;1Þ ¼ GðU2;2 � iU1;2Þ

¼ G 1
j�1 ðu1;1 þ u2;2Þ þ i

jþ1 ðu2;1 � u1;2Þ
h i

;
ð13Þ

which gives

U1;1 ¼ U2;2 ¼
1
G

ReUðzÞ ¼ 1
j� 1

ðu1;1 þ u2;2Þ; ð14aÞ

U2;1 ¼ �U1;2 ¼
1
G

ImUðzÞ ¼ 1
jþ 1

ðu2;1 � u1;2Þ: ð14bÞ

Now, we may define new quantities

R11 ¼ R22 ¼ ReUðzÞ ¼ GU1;1 ¼ GU2;2 ¼
G

j� 1
ðu1;1 þ u2;2Þ; ð15aÞ

R21 ¼ �R12 ¼ ImUðzÞ ¼ GU2;1 ¼ �GU1;2 ¼
G

jþ 1
ðu2;1 � u1;2Þ; ð15bÞ
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which possess the dimension of stress. Then, since Cauchy–
Riemann Eqs. (14a) and (14b) lead to independent harmonic equa-
tions U1;kk ¼ U2;kk ¼ 0, it can be shown by using (15a) and (15b) that

R1k;k ¼ GU1;kk ¼ G
1

j� 1
ðu1;1 þ u2;2Þ;1 þ

1
jþ 1

ðu1;2 � u2;1Þ;2
� �

¼ 0; ð16aÞ

R2k;k ¼ GU2;kk ¼ G
1

jþ 1
ðu2;1 � u1;2Þ;1 þ

1
j� 1

ðu1;1 þ u2;2Þ;2
� �

¼ 0: ð16bÞ

In this paper, the Latin indices run from 1 to 2 for two-dimensional
problem and the summation convention for repeated indices is im-
plied. Clearly, Eqs. (16a) and (16b) indicate that not only the inde-
pendent functions U1 and U2 satisfy a harmonic equation,
respectively, but also the two harmonic equations are the Navier’s
displacement equations in plane elasticity.

2.3. Independent Lagrangian functions

We may define new independent Lagrangian functions with the
help of (14a), (14b), (15a), and (15b) as follows

L1 ¼
1
2

R1kU1;k ¼
G
2

U1;kU1;k; ð17aÞ

L2 ¼
1
2

R2kU2;k ¼
G
2

U2;kU2;k; ð17bÞ

and computing the derivative with respect to U1;k and U2;k, we know

R1k ¼
@L1

@U1;k
¼ GU1;k; ð18aÞ

R2k ¼
@L2

@U2;k
¼ GU2;k: ð18bÞ

It is well known that for any physical system, when its Lagrang-
ian function is known, its conservation laws can be obtained by
using Noether’s theorem. Mathematically speaking, according to
the theory of analytic functions, both U1 and U2 are the indepen-
dent functions (11), (12), (14a), and (14b), for which there exist
their independent variations dU1 and dU2. Moreover, variational
problems of L1 and L2 with the independent functions U1 and U2,
respectively, lead to the two harmonic equations or Navier’s dis-
placement Eqs. (16a) and (16b), and the related nature, homoge-
nous boundary conditions

d
Z

A
L1dA ¼

I
C
ðR1kdU1ÞnkdC�

Z
A
R1k;kdU1dA; ð19aÞ

d
Z

A
L2dA ¼

I
C
ðR2kdU2ÞnkdC�

Z
A
R2k;kdU2dA: ð19bÞ

This proves that the new Lagrangian functions (17a) and (17b) sat-
isfy the requirement of Noether’s theorem (Noether, 1918) although
a new energy principle for plane elasticity has not been exploited.

3. Conservation laws

3.1. Symmetry-transformations of the new Lagrangian functions

First of all, we consider the Lagrangian function L2 in (17b)
with the independent harmonic function U2. Its symmetry-
transformation expressed in an infinitesimal form of one parame-
ter transformation group can be written as

Û2 ¼ U2 þ egðxk;U2Þ; x̂i ¼ xi þ efiðxk;U2Þ; ð20Þ

where g ¼ gðxk;U2Þ and fi ¼ fiðxk;U2Þ are unknown functions to be
determined, and e is an infinitesimal group parameter. For the
first order variational problem (19b), all possible non-trivial
conservation laws derived from the invariance of L2 can be formu-
lated as (Olver, 1993)

DiðgR2i þ fkSikÞ ¼ ðg� fiU2;iÞR2k;k ¼ 0; ð21Þ

Sik ¼ L2dik � R2iU2;k ¼
G
2
ðU2;pU2;pdik � 2U2;iU2;kÞ; ð22Þ

where Sik is the so-called generalized energy–momentum tensor be-
cause the function U2 given in (12) is different from usual displace-
ments in elasticity, ðg� fiU2;iÞ represents the characteristic of a
conservation law, dik is the Kronecker delta and

Di ¼
@

@xi
þ U2;i

@

@U2
þ U2;pi

@

@U2;p
þ � � � ð23Þ

In order to find functions g and fk in Eq. (21), we expand the
left-hand side of Eq. (21) as follows

G
@g
@xk

U2;k þ
@g
@U2
þ 1

2
@fp

@xp

� �
dik �

@fk

@xi

� �
U2;kU2;i

�

�1
2
@fk

@U2
U2;kU2;iU2;i

�
¼ 0: ð24Þ

Since Noether’s theorem (Noether, 1918) demands that Eq. (24)
vanish identically, the coefficients of all the independent linear,
quadratic and cubic terms of U2;k must be equal to zero. This
requirement gives the determining equations

U2;k :
@g
@xk
¼ 0; ð25Þ

U2:kU2;i : 2
@g
@U2
þ 1

2
@fp

@xp

� �
dik �

@fk

@xi
� @fi

@xk
¼ 0; ð26Þ

U2;kU2;iU2;i :
@fk

@U2
¼ 0: ð27Þ

The elementary analysis of Eqs. (25)–(27) gives

g ¼ a0; ð28Þ

@f1ðx1; x2Þ
@x1

¼ @f2ðx1; x2Þ
@x2

;
@f1ðx1; x2Þ

@x2
¼ � @f2ðx1; x2Þ

@x1
; ð29Þ

where a0 is an independent arbitrary constant. Since functions
fi ¼ fiðx1; x2Þmust satisfy Cauchy–Riemann Eq. (29), they can be ex-
pressed in terms of an analytic function

f1 þ if2 ¼ fðzÞ: ð30Þ

This indicates that any conformal transformations (30) in two-
dimensional Euclidean space are the symmetry-transformations of
Lagrangian function L2 in (17b).

3.2. Adjustable conservation law

By considering the independence of arbitrary constant (28) and
the conformal transformation (30), the conservation laws follow
from (21) as follows:

(i) Zero position change of function U2 ða0 – 0Þ
DiR2i ¼ 0; ð31Þ
(ii) Conformal transformation ðf1 þ if2 ¼ fðzÞ – 0Þ
DiðfkSikÞ ¼ 0: ð32Þ
Also, the conservation law (31) is a harmonic equation which is
one of the Navier’s displacement equations (16b) in two-dimen-
sional space. The expression (32) belongs to a conservation law
in material space according to the classification indicated by Herr-
mann (1981).
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Now, since the divergence-free expression (32) does not depend
on a material coefficient G illustrated in (24), in order to obtain the
energy release rate of crack extension, we define a new generalized
energy–momentum tensor

Tik ¼
8G
E0

Sik; ð33Þ

where E0 ¼ E for plane stress and E0 ¼ E=ð1� m2Þ for plane strain.
Then, with the help of (14a), (14b), (15a), (15b), (17b), and (22),
the generalized energy–momentum tensor Tik and conserved quan-
tities Pi can be written as

T11 ¼ �T22 ¼ 4
E0 ½ReUðzÞ�2 ¼ 4G2

E0 ½U
2
2;2 � U2

2;1�;

T12 ¼ T21 ¼ � 4
E0 ½ImUðzÞ�2 ¼ � 8G2

E0 U2;1U2;2;
ð34Þ

P1 � iP2 ¼ fkT1k � ifkT2k ¼ 4
E0 fðzÞ½UðzÞ�

2

¼ 4G2

E0 f½f1ðU2
2;2 � U2

2;1Þ � 2f2U2;1U2;2� þ i½f2ðU2
2;2 � U2

2;1Þ
þ2f1U2;1U2;2�g:

ð35Þ

The conservation law (32) turns out to be

D1P1 þ D2P2 ¼ 0: ð36Þ

Clearly, the mathematical form of conservation law (36) is one of
Cauchy-Riemann equations illustrated in (35), so that any analytic
function replacing ½UðzÞ�2 in (35) will lead to a divergence-free
expression (36). On the other hand, the integral form of conserva-
tion law (36) can be written as

Im
I

C

4
E0

fðzÞ½UðzÞ�2dz ¼ 0: ð37Þ

This expression not only means the path independence but also
indicates that one can adjust the conformal transformation fðzÞ to
change the conserved quantities (35) for obtaining a significative
result. This is because

H
Cz�1dz ¼ 2pi and

H
Czndz ¼ 0 when n–� 1.

It should be mentioned that when applying Noether’s theorem
(Noether, 1918) to the Lagrange function L1 in (17a), we will obtain
the same conservation law as (36) and the only difference is plus
and minus signs of expressions (34) and (35).

3.3. Universal conservation law

According to Liouville theorem (Logan, 1977), there exist only
three conformal transformations in three-dimensional Euclidean
space, which are the translation, rotation and scale change of coor-
dinates. In two-dimensional Euclidean space, any transformation
satisfying Cauchy–Riemann equations in the theory of analytic
functions is a conformal transformation. This kind of conformal
transformations also includes the translation, rotation and scale
change of planar coordinates and can be expressed as

fk ¼ Axk þ ek3pX3xp þ Ck; ð38Þ

where A, X3 and Ck are the independent arbitrary constants. By
using expression (38) with the help of expressions (30), (34), and
(35), because of the independence of A, X3 and Ck, the conservation
law (36) is split up into the following conservation laws:

(i) Coordinate translation ðCk–0Þ
DiTik ¼ 0; ð39Þ
(ii) Coordinate rotation ðX3–0Þ
Diðek3pxpTikÞ ¼ 0; ð40Þ
(iii) Scale change of coordinates ðA–0Þ
DiðxkTikÞ ¼ 0: ð41Þ
Clearly, these conservation laws (39)–(41) root in the transla-
tion, rotation and scale change of coordinates, whose manner is
similar to those for getting J-integral, L-integral and M-integral in
elasticity (Fletcher, 1976; Maugin, 1993). Therefore, in the sense
of that the conservation law (36) or (37) includes any conformal
transformations in plane elasticity, it possesses universality.

4. Application

4.1. Path-independent integral for a sharp V-notch

For a sharp V-notch shown in Fig. 1, a path-independent inte-
gral can be written by divergence-free expression (36) as follows

SW ¼lim
r!0

Z
Cr

Pknkrdh ¼
Z

Point a! b
ðPknkÞLSdC

þ
Z

C
PknkdCþ

Z
Point b0 ! a0

ðPknkÞUSdC; ð42Þ

where the unit normal vector ~n ¼ ðn1;n2Þ points to the right-hand
side of the paths a! b, C, b0 ! a0, Cr , and jb0a0j ¼ jabj ¼ rb � ra

and jOa0j ¼ jOaj ¼ ra. Since any conformal transformation is a sym-
metry-transformation for getting a path-independent integral (42),
we use the symbol SW – integral for plane elasticity, which is the
same symbol for a longitudinal shear problem (Shi, 2011).

Based on the works of Carpenter (1984), Gross and Mendelson
(1972), Karp and Karal (1962) and Williams (1952), due to the trac-
tion-free condition along the lower and upper surfaces shown in
Fig. 1, the series expansions of complex Kolosov–Muskhelishvili
potential /ðzÞ for Mode I and II problems near the tip of a sharp
V-notch are given in Appendix. Then, we obtain from (A6) and
(A7) that

U1ðzÞ ¼ /01ðzÞ ¼
X1
m¼1

að1Þm ð1ð1Þm þ igð1Þm Þz1ð1Þm �1þigð1Þm ; ð43aÞ

U2ðzÞ ¼ /02ðzÞ ¼ i
X1
m¼1

að2Þm ð1ð2Þm þ igð2Þm Þz1ð2Þm �1þigð2Þm : ð43bÞ

It should be mentioned that only positive 1ð1Þm and 1ð2Þm are physically
meaningful. According to the definitions of NSIFs in (2), when
m ¼ 1, gð1Þ1 ¼ gð2Þ1 ¼ 0, and KN

I and KN
II are associated with að1Þ1 and

að2Þ1 as follows

að1Þ1 ¼
1

kð1Þ1 ½1þ kð1Þ1 � cosð2kð1Þ1 aÞ � kð1Þ1 cosð2aÞ�
KN

Iffiffiffiffiffiffiffi
2p
p ; ð44aÞ

að2Þ1 ¼
1

kð2Þ1 ½�1þ kð2Þ1 þ cosð2kð2Þ1 aÞ � kð2Þ1 cosð2aÞ�
KN

IIffiffiffiffiffiffiffi
2p
p ; ð44bÞ

where kð1Þ1 ¼ 1ð1Þ1 and kð2Þ1 ¼ 1ð2Þ1 are the lowest eigenvalues for Mode I
and II problems, respectively. By substituting two expressions (43a)
and (43b) into expression (35), respectively, and taking
fðzÞ ¼ z1�21ð1Þ1 for Mode I problem and fðzÞ ¼ �z1�21ð2Þ1 for Mode II
problem, the conserved quantities (35) may be written as

PðIÞ1 � iPðIÞ2 ¼
4
E0

fðzÞ½U1ðzÞ�2

¼ 4
E0

Hð1Þ11 z�1 þ
X1

mþn¼3

Hð1Þmnz1ð1Þm þ1ð1Þn �21ð1Þ
1
�1

 !
; ð45aÞ

PðIIÞ1 � iPðIIÞ2 ¼
4
E0

fðzÞ½U2ðzÞ�2

¼ 4
E0

Hð2Þ11 z�1 þ
X1

mþn¼3

Hð2Þmnz1ð2Þm þ1ð2Þn �21ð2Þ
1
�1

 !
; ð45bÞ



Fig. 2. An infinite elastic plane with two symmetrical sharp V-notches subjected to
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where

Hð1Þmn ¼ að1Þm að1Þn ð1ð1Þm þ igð1Þm Þð1ð1Þn þ igð1Þn Þziðgð1Þm þgð1Þn Þ; ð45cÞ

Hð2Þmn ¼ að2Þm að2Þn ð1ð2Þm þ igð2Þm Þð1ð2Þn þ igð2Þn Þziðgð2Þm þgð2Þn Þ: ð45dÞ

It is worth noting that 1ð1Þm þ 1ð1Þn � 21ð1Þ1 P 0 and 1ð2Þm þ 1ð2Þn �
21ð2Þ1 P 0 with ðm;n ¼ 1;2; . . .Þ. Since ziðgðkÞm þgðkÞn Þ ¼ e�ðg

ðkÞ
m þgðkÞn Þh

fcos½ðgðkÞm þ gðkÞn Þ ln r� þ i sin½ðgðkÞm þ gðkÞn Þ ln r�g with ðk ¼ 1;2Þ, and
gðkÞm P 0 and gðkÞn P 0 are always taken, we know that

jHðkÞmnj 6jH
ðkÞ
mnjmax ¼ jaðkÞm aðkÞn jeðg

ðkÞ
m þgðkÞn Þa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

mðkÞ
þ g2

mðkÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

nðkÞ
þ g2

nðkÞ

q
;

ðk ¼ 1;2Þ: ð45eÞ

Firstly, when calculating the integral (42) along paths a! b and
b0 ! a0, as shown in Fig. 1, it can be derived from (45a) and (45b)
thatZ

Point a! b
ðPðIÞk nkÞLSdCþ

Z
Point b0 ! a0

ðPðIÞk nkÞUSdC

¼ Im
Z rb

ra

ðPðIÞ1 � iPðIÞ2 Þdzþ
Z ra

rb

ðPðIÞ1 � iPðIÞ2 Þdz

" #
; ð46aÞ

Z
Point a! b

ðPðIIÞk nkÞLSdCþ
Z

Point b0 ! a0
ðPðIIÞk nkÞUSdC

¼ Im
Z rb

ra

ðPðIIÞ1 � iPðIIÞ2 Þdzþ
Z ra

rb

ðPðIIÞ1 � iPðIIÞ2 Þdz

" #
; ð46bÞ

and the differential forms dz ¼ dx1 þ itgbdx2 ¼ dx1 þ itgðp� aÞdx2

and dz ¼ dx1 � itgbdx2 ¼ dx1 � itgðp� aÞdx2 along the lower and
upper surfaces should be used, respectively. Considering
cos bdr ¼ cosðp� aÞdr ¼ dx1 and substituting h ¼ a and/or h ¼ �a
into expressions (45a) and (45b) with z ¼ reih, respectively, we
know from (46a), (46b), and (45e) that

R
Point a! b ðP

ðIÞ
k nkÞLSdCþ

R
Point b0 ! a0 ðP

ðIÞ
k nkÞUSdC

				
				

6
8
E0

X1
mþn¼3

jHð1Þmn jmaxDr
1ð1Þm þ1ð1Þn �21ð1Þ

1

1ð1Þm þ1ð1Þn �21ð1Þ1

j sinð1ð1Þm þ 1ð1Þn � 21ð1Þ1 Þaj;
ð47aÞ

R
Point a! b ðP

ðIIÞ
k nkÞLSdCþ

R
Point b0 ! a0 ðP

ðIIÞ
k nkÞUSdC

				
				

6
8
E0

X1
mþn¼3

jHð2Þmn jmaxDr
1ð2Þm þ1ð2Þn �21ð2Þ

1

1ð2Þm þ1ð2Þn �21ð2Þ
1

j sinð1ð2Þm þ 1ð2Þn � 21ð2Þ1 Þaj;

ð47bÞ

Dr1ð1Þm þ1ð1Þn �21ð1Þ
1 ¼ r

1ð1Þm þ1ð1Þn �21ð1Þ1
b � r

1ð1Þm þ1ð1Þn �21ð1Þ1
a ; ð48aÞ

Dr1ð2Þm þ1ð2Þn �21ð2Þ1 ¼ r
1ð2Þm þ1ð2Þn �21ð2Þ1
b � r

1ð2Þm þ1ð2Þn �21ð2Þ1
a : ð48bÞ

Secondly, by using the conserved quantities (45a) and (45b),
respectively, it can be derived from (42), (44a), and (44b) that

SWI ¼ lim
r!0

Z
Cr

PðIÞi nirdh

¼ 4a
p½1þ kð1Þ1 � cosð2kð1Þ1 aÞ � kð1Þ1 cosð2aÞ�2

ðKN
I Þ

2

E0
ð49aÞ

for Mode I problem, and

SWII ¼ lim
r!0

Z
Cr

PðIIÞi nirdh

¼ 4a
p½�1þ kð2Þ1 þ cosð2kð2Þ1 aÞ � kð2Þ1 cosð2aÞ�2

ðKN
II Þ

2

E0
ð49bÞ
for Mode II problem. When the sharp V-notch becomes a crack
a! p, kð1Þ1 ! 1=2 and kð2Þ1 ! 1=2, expressions (49a) and (49b) are
reduced to the energy release rates of Mode I and II crack extensions

JI ¼ SWI ¼ lim
r!0

Z
Cr

PðIÞi nirdh ¼ ðKIÞ2

E0
; ð50aÞ

JII ¼ SWI ¼ lim
r!0

Z
Cr

PðIIÞi nirdh ¼ ðKIIÞ2

E0
: ð50bÞ

Moreover, the relationships between the parameters (49a) and
(50a) or (49b) and (50b) can be written as follows

SWI ¼
4a

p½1þ kð1Þ1 � cosð2kð1Þ1 aÞ � kð1Þ1 cosð2aÞ�2
KN

I

KI

 !2

JI; ð50cÞ

SWII ¼
4a

p½�1þ kð2Þ1 þ cosð2kð2Þ1 aÞ � kð2Þ1 cosð2aÞ�2
KN

II

KII

 !2

JII: ð50dÞ

Apparently, SW – integral (49a) and (49b) possess a kind of
physical invariance since their path independence always holds
within a planar elastic field for any given fixed notch opening angle
2ðp� aÞ. Physical meaning is expressed by (50c) and (50d) since JI

and JII are the crack extension forces. Therefore, SW – integral (49a)
and (49b) are the physical parameters for application to a sharp V-
notch in Mode I and II problems based on the elastic theory. More-
over, expressions (47a)-(48b) indicate that the theoretical accuracy
will be very higher when the integration path of SW – integral
(49a) and (49b) is taken to be a circle closing to the sharp V-notch
tip.

4.2. An elastic plane with two symmetrical sharp V-notches

Let’s consider an elastic plane with two symmetrical sharp V-
notches subjected to uniform tension at infinity, as shown in
Fig. 2. Savruk (1981, 1988) had solved this problem by using the
singular integral equations method and the NSIF KN

I can be esti-
mated by
uniform tension at infinity.



Fig. 4. (a) A finite V-notched plate and (b) the finite element mesh closing to the tip
and rC is the radius of integration path.
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KN
I ¼

FV
I Pffiffiffiffi

p
p

a1�k1
¼ 1� 0:9134k1

1þ 0:4138k1

ffiffiffiffi
p
2

r
P

a1�k1
; ð51Þ

k1 � 1:247 cos b� 1:312 cos2 bþ 0:8532 cos3 b� 0:2882 cos4 b;

ðb ¼ p� aÞ; ð52Þ

where kð1Þ1 ¼ 1� k1, FV
I is the numerical value of dimensionless NSIF,

P is the force per unite thickness and 2a is the width of cross con-
nection between two notch vertexes. Savruk and Kazberuk (2010)
also pointed out that relative error of (51) is less than 0.5% for the
entire range of the parameter k1 and the maximum absolute error
of the numerical values from Eq. (52) is below 0.1%. When the notch
opening angle 2ðp� aÞ ! 0, FV

I ! 1 and expression (51) becomes a
stress intensity factor (Tada et al., 1973)

KI ¼ P=
ffiffiffiffiffiffi
pa
p

: ð53Þ

In order to describe the usability of SW – integral and to com-
pare the result (49a) with the energy release rate of a crack exten-
sion in (50a), we introduce a dimensionless quantity c and let

c ¼ a=L; ð54Þ

where L is a reference length. Then, the dimensionless comparison
with the help of (49a) (50a) (51)-(54) can be written as

L2kð1Þ1 �1 ½SW�
½J� ¼

2pað0:0866þ 0:9134kð1Þ1 Þ
2

c2kð1Þ1 �1ð1:4138� 0:4138kð1Þ1 Þ
2½1þ kð1Þ1 � cosð2kð1Þ1 aÞ � kð1Þ1 cosð2aÞ�2

; ð55Þ

where [SW] and [J] are given in (49a) and (50a), respectively, and
2ðp� aÞ is the notch opening angles, in which a changes from
90�to 180� shown in Fig. 2.

Since an infinite elastic plane means the infinite deepness of
two sharp V-notches shown in Fig. 2, the dimensionless quantity
c P 1 is meaningful for engineering in practice. Yosibash et al.
(2006) also pointed out that the notch opening angles 2ðp� aÞ
up to 4p=3 or 2400 are of greatest importance. Under these consid-
erations, the dimensionless comparison (55) is presented in Fig. 3,
which shows that the numerical values decrease when the notch
opening angle 2ðp� aÞ increases from 0� to 240�. This is interest-
ing and means that when the order of singularity decreases, the
dimensionless comparison (55) decreases.

4.3. Numerical values of NSIFs of a finite V-notched plate under
uniaxial tension load

Here, we consider a finite V-notched plate with h = 200 mm and
w = 40 mm under uniaxial tension load, as shown in Fig. 4. The
plate is in plane stress state with Young’s modulus
E = 3.9 � 109 Pa, Poisson’s ratio m ¼ 0:25 and load r ¼ 1MPa. There
Fig. 3. The dimensionless comparison of the parameter for Mode I problem of a
sharp V-notch with the energy release rate of crack extension.
are the opening angle 2b and the depth l of the notch. For this
Mode I problem with letting fðzÞ ¼ z1�21ð1Þ1 , by using expressions
(9) and (35), the path-independent integral (42) can be rewritten
as

SW ¼ lim
r!0

Z
Cr

Pknkrdh ¼ Im lim
r!0

Z
Cr

ðPðIÞ1 � iPðIÞ2 Þdz
� �

¼ Im lim
r!0

Z
Cr

4
E0

fðzÞ½U1ðzÞ�2dz
� �

¼ lim
r!0

4G2

E0
r2ð1�kð1Þ

1
Þ
Z a

�a
½A cos 2ð1� kð1Þ1 Þh� B sin 2ð1� kð1Þ1 Þh�dh

( )
; ð56aÞ
where A ¼ u1;1 þ u2;2

j� 1


 �2

� u2;1 � u1;2

jþ 1

� �2

;

B ¼ 2ðu1;1 þ u2;2Þðu2;1 � u1;2Þ
j2 � 1

: ð56bÞ

Clearly, expression (56a) is equal to (49a), so that we have

KN
I ¼ lim

r!0

ffiffiffiffi
p
a

r
½1þ kð1Þ1 � cosð2kð1Þ1 aÞ � kð1Þ1 cosð2aÞ�Grð1�kð1Þ

1
Þ
ffiffiffiffiffiffi
IðIÞ

p
; ð57aÞ
IðIÞ ¼
Z a

�a
½A cos 2ð1� kð1Þ1 Þh� B sin 2ð1� kð1Þ1 Þh�dh: ð57bÞ

In order to obtain NSIFs, expression (57a) is calculated for the
problem shown in Fig. 4(a), for which ANSYS is used and the finite
element mesh is shown in Fig. 4(b). Two points should be men-
tioned: (i) in order to reduce error due to the stress singularities,
many finite elements are enclosed by the circle with radius rC of
integration path; (ii) as indicated in (46a) and (47a), when a very
small rC in (57b) is taken, the theoretical accuracy will be very
higher. So, the calculation is carried out by

KN
I �

ffiffiffiffi
p
a

r
½1þ kð1Þ1 � cosð2kð1Þ1 aÞ � kð1Þ1 cosð2aÞ�Gr

ð1�kð1Þ
1
Þ

C

ffiffiffiffiffiffi
IðIÞ

p
; ð58Þ

and the obtained results are listed in Table 1. Here, when the rela-
tive difference is calculated by

Dð%Þ ¼ SolutionPr esent � SolutionNiu

SolutionNiu
� 100; ð59Þ

the maximum relative difference in Table 1 is 6.5%. It should be
mentioned that Niu et al. (2009) also gave numerical results calcu-
lated by BEM.



Table 1
Notch stress intensity factors and circle radii rC of integration path ðb ¼ p � aÞ.

l=w 2b ¼ 300 2b ¼ 600

Present (rC ) Niu (2009) Present (rC ) Niu (2009)

0.1 4.1834(0.0008) 4.2668 4.3218(0.002) 4.4294
0.2 6.7103(0.001) 6.8740 6.8634(0.0043) 7.0501
0.3 9.7157(0.001) 10.1131 9.68(0.0065) 10.3576

Table 2
The first three eigenvalues kð1Þm ¼ 1ð1Þm þ igð1Þm for Mode I problem ðb ¼ p� aÞ.

2bð0Þ 1ð1Þ1 gð1Þ1 1ð1Þ2 gð1Þ2 1ð1Þ3 gð1Þ3

300 Present 0.5015 0 1.2030 0 1.4904 0

Cheng et al.
(2009)

0.5020 0 1.2060 0 1.4860 0

600 Present 0.5122 0 1.4710 0.1419 2.6776 0.2849

Niu et al.
(2009)

0.5122 0 1.4710 0.1419 2.6777 0.2850

1400 W. Shi, L. Lu / International Journal of Solids and Structures 50 (2013) 1394–1401
5. Concluding remarks

Under consideration of the physical and mathematical signifi-
cance of complex Kolosov–Muskhelishvili potential /ðzÞ, the inde-
pendent Lagrangian functions (17a) and (17b) are presented. Their
variational problem leads to a harmonic equation and the related
nature, homogenous boundary conditions when U1 and U2 are con-
sidered as independent functions (16a), (16b), (19a), and (19b),
bð1Þ

bð2Þ

( )
¼ �e�2ga cos 21a� 1 cos 2aþ g sin 2a e�2ga sin 21a� 1 sin 2a� g cos 2a

e�2ga sin 21aþ 1 sin 2aþ g cos 2a e�2ga cos 21a� 1 cos 2aþ g sin 2a

" #
að1Þ

að2Þ

( )
: ðA5Þ
respectively, based on the theory of analytic functions. Actually,
the obtained harmonic equations are also the Navier’s displace-
ment equations in plane elasticity (16a) and (16b), so that the
requirement of Noether’s theorem (Noether, 1918) is satisfied.

It is found that any conformal transformation or analytic func-
tion is a symmetry- transformation (30) for obtaining the conser-
vation law (36) or (37) in material space. Since the conformal
transformation in two-dimensional Euclidean space includes the
translation, rotation and scale change of planar coordinates, the
conservation law (36) or (37) possesses universality. On the other
hand, by adjusting the conformal transformation or analytic func-
tion (30), a finite value can be obtained from calculating the path-
independent integral (37) or (42) around a material point with any
order singularity. Especially, it is expectative that the interaction
among several material points with singularities may be investi-
gated by using the path-independent integral (37) based on the
residue theorem in the theory of analytic functions. Also, multi-
material junctions may be investigated by using the path-indepen-
dent integral (37).

The path-independent integral (37) or (42) is applied to a sharp
V-notch and the obtained finite values (49a) and (49b) are directly
related to the NSIFs. Actually, SW – integral (49a) and (49b) pos-
sess a kind of physical invariance because of the path indepen-
dence (49a) and (49b). Since this invariance always holds for any
given fixed notch opening angle, the obtained finite values (49a)
and (49b) are equivalent to the NSIFs, which are the physical
parameters for application to a sharp V-notch in elastic fracture
field. In Section 4, Fig. 3 shows the feature of parameter (49a)
and Table 1 gives numerical results of NSIFs by using parameter
(49a).
Acknowledgements

This work is supported by Innovation Program of Shanghai Mu-
nicipal Education Commission under Grants No. 2000SG31 and No.
07ZZ98. The first author deducing all formulas gratefully acknowl-
edges the second author Lu Lin carrying out numerical work.

Appendix A

In polar coordinates, the stresses rhh and rrh can be written by
transforming expressions (5) and (6) as follows

rhh � irrh ¼ /0ðzÞ þ /0ðzÞ þ �z½/00ðzÞ þ z�1w0ðzÞ�: ðA1Þ

The complex potentials are assumed to have the form

/ðzÞ ¼ ðað1Þ þ iað2ÞÞzk; wðzÞ ¼ ðbð1Þ þ ibð2ÞÞzk; k ¼ 1þ ig; ðA2Þ

where að1Þ, að2Þ, bð1Þ, bð2Þ, 1 and g are the real constants. Under the
consideration of the independence of the constants að1Þ and að2Þ,
the traction-free conditions of expression (A1) along h ¼ a and
h ¼ �a, as shown in Fig. 1, gives

að1Þ :
ðe�2ga � e2gaÞ cosð21aÞ � 2g sinð2aÞ ¼ 0;
ðe�2ga þ e2gaÞ sinð21aÞ þ 21 sinð2aÞ ¼ 0;

(
ðA3Þ

að2Þ :
ðe�2ga � e2gaÞ cosð21aÞ þ 2g sinð2aÞ ¼ 0;
ðe�2ga þ e2gaÞ sinð21aÞ � 21 sinð2aÞ ¼ 0;

(
ðA4Þ
The complex eigenvalues k ¼ 1þ ig for Mode I and II problems can
be obtained by solving the eigen equations. (A3) and (A4), respec-
tively. By using Matlab software, the first three complex eigen-
values are listed in Table 2. Then, the complex potential /ðzÞ for
Mode I and II problems can be rewritten as

/1ðzÞ ¼
X1
m¼1

að1Þm zkð1Þm ; ðkð1Þm ¼ 1ð1Þm þ igð1Þm Þ; ðA6Þ
/2ðzÞ ¼ i
X1
m¼1

að2Þm zkð2Þm ; ðkð2Þm ¼ 1ð2Þm þ igð2Þm Þ: ðA7Þ
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