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Abstract

In this paper, a closed-form solution is presented for bending analysis of shape memory alloy (SMA) beams. Two different
transformation functions are considered: a J2-based model with symmetric tension-compression response, and a J2 − I1-based
model for considering the tension-compression asymmetry that is observed in experiments. The constitutive equations are reduced
to an appropriate form for studying the pseudoelastic bending response of SMAs. Closed-form expressions are given for the stress
and martensitic volume fraction distributions in the cross section and the bending moment-curvature relation is obtained analytically.
Both circular and rectangular cross sections are considered and several case studies are presented for testing the accuracy of the
method and also the effect of taking into account the tension-compression asymmetry on the bending response of SMAs. The
results of a three-point bending test on an SMA beam are presented and compared with the theoretical predictions. Using some
experimental data on bending of a nickel-titanium micropillar the applicability of the present method in the micro scale is studied.
It is shown that this method can be used for assessing the tensile properties of materials in this special case, where the compressive
and bending responses are known from experiments while the tensile properties are very difficult to be measured experimentally.

Keywords: Bending, Shape memory alloy, Pseudoelastic, Tension-compression asymmetry, Micropillar

1. Introduction

Mirzaeifar et al. (2010, 2011c,b) recently developed analytic
and semi-analytic methods for simulating the pseudoelastic re-
sponse of various shape memory alloy (SMA) devices subjected
to different loading conditions. In many SMA devices, the
SMA instrument is subjected to local or global bending. This
is the main motivation for several reported works on bending
analysis of SMAs in the literature. The bending of beams made
of single crystal SMAs and the propagation of phase boundaries
was studied by Purohit and Bhattacharya (2002). They used
additional kinetic relations in conjunction with the constitutive
assumptions and balance laws to determine the propagation of
phase boundaries. The solutions for single crystalline beams
consider a jump in the material properties before and after the
phase transformation, and there is no intermediate condition
between these two cases. In polycrystalline materials, which
are used in the majority of SMA engineering applications, the
phase transformation does not occur simultaneously in all the
grains. This causes a considerable difference between the ma-
terial properties in single crystals and polycrystalline samples.
While the material in a beam made of a single crystal SMA is
austenite or martensite with some phase boundaries, the con-
tinuous change of material properties in polycrystalline SMAs
makes modeling the bending of beams made of these materi-
als a challenging problem (see (Thamburaja and Anand, 2001,
2002; Anand and Gurtin, 2003) for studying polycrystalline
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SMAs using a constitutive model based on the response of sin-
gle crystal SMAs).

Among the solutions available for modeling bending in poly-
crystallline SMAs a large number are purely numerical (Auric-
chio and Sacco, 1999; Marfia et al., 2003). In an early work,
Atanackovic and Achenbach (1989) used a simplified multi-
linear constitutive equation for obtaining the moment-curvature
relation of a pseudoelastic beam. Plietsch et al. (1994) pre-
sented a closed-form solution for bending of SMA beams by
considering a multi-linear stress-strain response. Auricchio
and Sacco (2001) studied the SMA wires subjected to cyclic
stretching-bending loads using a one-dimensional constitutive
model. In their work the thermo-mechanical coupling was also
considered and the finite element method was used for solving
the governing equations. Auricchio et al. (2011) implemented
one-dimensional constitutive equations into a finite element
model for studying the shape memory effect for SMA beams
in bending. The material response in tension and compression
was assumed asymmetric and the numerical results were com-
pared with experiments. Recently, Flor et al. (2011) presented
some numerical simulation and experimental analysis of SMA
wires in bending. They considered tension-compression asym-
metry in their model and a numerical scheme was used for cal-
culating the bending response. Their model is developed only
for the loading phase; unloading was not studied in either their
experiments or numerical simulations.

The existing numerical methods suffer from the high compu-
tational cost and convergence difficulties particularly for mod-
eling the unloading process or considering the geometric non-
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linearities. The results obtained using these numerical meth-
ods are highly sensitive to a large number of secondary para-
meters, e.g. the mesh size, tolerance criteria, and number of
loading steps. The numerical simulations may give erroneous
results due to an improper choice for any of these parameters.
On the other hand, the semi-analytic solutions in the literature
are based on oversimplified constitutive relations or use unre-
alistic simplifying assumptions. In this paper, we introduce a
closed-form solution for analyzing the superelastic bending of
shape memory alloys. A three-dimensional constitutive model
is reduced to an appropriate one-dimensional constitutive equa-
tion. Closed-form expressions are obtained for the martensitic
volume fraction and stress distributions in the cross section of
SMA beams in bending. The Euler-Bernoulli beam theory (as-
suming the plane cross sections remain plane and perpendicular
to the centerline after deformation) is used and the the bending
moment-curvature relation is obtained analytically. A method is
presented for solving the bending of superelastic SMAs analyti-
cally. In addition to the J2-based model that predicts a symmet-
ric response in tension and compression, a more accurate solu-
tion based on J2 − I1 transformation function is also presented
and the effect of considering the tension-compression asymme-
try (which is a well-known response for most SMAs (Gall and
Sehitoglu, 1999; Anand and Gurtin, 2003)) in the bending re-
sponse is studied.

It is worth noting that for modeling the tension-compression
asymmetry, the J2 − J3 model gives more accurate re-
sults because of its capability in modeling the negative vol-
ume change during martensitic transformation (Qidwai and
Lagoudas, 2000b). However, The J2 − J3-based model cannot
be used for developing a closed-form solution in this paper. Ex-
periments have shown that the J2 − I1-based model can predict
the superelastic response of SMAs with a good accuracy for
all the parameters except the volumetric transformation strain
(see Section 4 in Qidwai and Lagoudas (2000b)). Also, the ma-
terial parameters in the J2 − I1-based model can be calibrated
for modeling a realistic volumetric transformation strain, but
in this case the tension-compression asymmetry is not modeled
correctly. We will not use this calibration method in our solu-
tion.

An important capability of our model is its applicability in
extracting the tensile properties of materials when the compres-
sion and bending test results are available but the tension prop-
erties are practically difficult to be measured experimentally,
e.g. in the micro scale applications of SMAs.

SMAs have recently attracted considerable interest for ap-
plications as actuators in micro-electro-mechanical systems
(MEMS) (Kahn et al., 1998; Bhattacharya and James, 2005;
Shin et al., 2005) due to their relatively high work output per
unit volume (Krulevitch et al., 1996). One of the traditional
methods for studying the mechanical properties of a material in
the micro and nano scales is testing pillars. These pillars are
produced by focused ion beam (FIB) micromachining (Volkert
and Minor, 2007). Recently, the pseudoelasticity, crystal orien-
tation effect, and size dependency have been extensively stud-
ied experimentally for nickel-titanium and Cu-Al-Ni micropil-
lars (Frick et al., 2007; San Juan et al., 2008; Manjeri et al.,

2010; Juan et al., 2009; Clark et al., 2010). In order to have a
precise description of the micropillars response in MEMS ap-
plications, it is ideal to extract the material response in tension,
compression, and bending experimentally. However, among the
reported works on studying the shape memory micropillars re-
sponse the majority of experiments are performed for compres-
sive loading (Frick et al., 2007; San Juan et al., 2008; Manjeri
et al., 2010; Juan et al., 2009); there are very few experimen-
tal works on bending (Clark et al., 2010). While performing
bending tests on micropillars one faces some technical difficul-
ties (Clark et al., 2010). Tensile tests in the nano and micro
scales are considerably more difficult because a special geo-
metric shape should be created at the pillar head for attaching
the tensile tool to the pillar (Kim et al., 2009; Kim and Greer,
2009). As we explain in §4.6, our analytical solution for bend-
ing can be used for extracting the tensile properties when the
bending and compressive responses are known.

The material properties in compression are calibrated from
the available experimental data. The material-independent
properties in tension are assumed and bending is simulated us-
ing these properties in tension and compression. The predicted
bending response is compared with the experimental data and a
trial and error approach is used for improving the assumed ten-
sile material properties for finding the best match between the
experimental and analytical results. It is worth noting that the
iterations for improving the initial guess are performed without
a considerable computational cost; the closed-form solutions
are obtained in a few seconds. Such a method is extremely
time consuming if the available numerical solutions are used
for modeling the bending response. In the numerical results
section, we will implement this method for analyzing bending
of a nickel-titanium micropillar using the available experimen-
tal data.

This paper is organized as follows. In §2 a general three-
dimensional constitutive equation for polycrystalline SMAs us-
ing two different transformation functions and an appropriate
reduced constitutive equation for pure bending are discussed.
In this section explicit expressions are given for the stress and
martensitic volume fraction distributions as functions of the
curvature in bending. In §3, these explicit expressions are used
and three different analytic approximations for the relation be-
tween the bending moment and curvature are presented. Nu-
merical results for macroscale SMA beams with circular and
rectangular cross sections are given in §4. The results of a three-
point bending test are presented and compared with the theoret-
ical results in §4.5. The available experimental data on bending
of a NiTi micropillar are used for studying the applicability of
our method for modeling this problem in §4.6. Conclusions are
given in §5.

2. Three-dimensional constitutive equations and one-
dimensional reduction for bending

We use the three-dimensional phenomenological macro-
scopic constitutive model for polycrystalline SMAs proposed
by Boyd and Lagoudas (1996). In this consititutive model, by
considering the transformation strain ε t (the portion of strain
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that is recovered due to reverse phase transformation from de-
twinned martensite to austenite) and the martensitic volume
fraction ξ (an indicator of the extent of the phase transforma-
tion from austenite to martensite) as the internal state variables,
the following expression is obtained for the Gibbs free energy
potential (Qidwai and Lagoudas, 2000b):

G(σ,T, ε t, ξ) = − 1
2ρ
σ : S : σ − 1

ρ
σ :

[
α (T − T0) + ε t

]

+c
[
(T − T0) − T ln

(
T
T0

) ]
− s0T + u0 +

1
ρ

f (ξ), (1)

where, S,α, c, ρ, s0 and u0 are the effective compliance tensor,
effective thermal expansion coefficient tensor, effective specific
heat, mass density, effective specific entropy, and effective spe-
cific internal energy at the reference state, respectively. The
symbols σ, T, T0, ε

t, and ξ denote the Cauchy stress tensor,
temperature, reference temperature, transformation strain, and
martensitic volume fraction, respectively. Any effective mater-
ial property P is assumed to vary with the martensitic volume
fraction as P = PA + ξ∆P, where the superscript A denotes the
austenite phase and the symbol ∆(.) denotes the difference of
a quality (.) between the martensitic and austenitic phases, i.e.
∆(.) = (.)M − (.)A with M denoting the martensite phase.

In (1), f (ξ) is a hardening function that models the trans-
formation strain hardening in the SMA material. In the Boyd-
Lagoudas polynomial hardening model (Lagoudas, 2008), this
function is given by

f (ξ) =



1
2ρbMξ2 + (µ1 + µ2) ξ, ξ̇ > 0,

1
2ρbAξ2 + (µ1 − µ2) ξ, ξ̇ < 0,

(2)

where, ρbA, ρbM , µ1 and µ2 are material constants for trans-
formation strain hardening. The first condition in (2) represents
the forward phase transformation (A→ M) and the second con-
dition represents the reverse phase transformation (M → A).
The constitutive relation of a shape memory material can be
obtained by using the total Gibbs free energy as

ε = −ρ∂G
∂σ

= S : σ + α (T − T0) + ε t, (3)

where ε is the strain tensor. By introducing a generalized ther-
modynamic force P as:

P = −ρ∂G
∂ξ

=
1
2
σ : ∆S : σ + ∆α : σ (T − T0 )

+ρ∆c
[
(T − T0) − T ln

(
T
T0

) ]
+ ρ∆s0T − ∂ f

∂ξ
− ρ∆u0, (4)

the second law of thermodynamics in the form of non-
negativeness of the rate of entropy production density can be
expressed as σ : ε̇ t + Pξ̇ = πξ̇ ≥ 0 (Mirzaeifar et al., 2011a).
We assume the existence of a thermo-elastic region (transfor-
mation surface) bounded by a smooth hypersurface, which can
be described by a transformation function Φ as Φ(σ, P) = 0.
We choose the following general form for the transformation

function (Qidwai and Lagoudas, 2000b)

Φ(σ, P) =
[
Φ̃(σ) + P

]2−Y2 =
[
Φ̃(σ) + P + Y

] [
Φ̃(σ) + P − Y

]
,

(5)
where Φ̃(σ) is the stress related transformation function that
will be defined in the following sections and Y is a measure of
internal dissipation due to microstructural changes during phase
transformation. The transformation surface that controls the on-
set of direct (austenite to martensite) and reverse (martensite to
austenite) phase transformation is defined as

Φ̃(σ) + P =

{
Y, ξ̇ > 0,
−Y, ξ̇ < 0. (6)

Considering the fact that any change in the state of the system is
only possible by a change in the internal state variable ξ (Bo and
Lagoudas, 1999), the evolution of the transformation strain ten-
sor is related to the evolution of the martensitic volume fraction
as ε̇ t = (∂Φ̃(σ)/∂σ)ξ̇ = Γξ̇, where Γ represents a transforma-
tion tensor associated with the chosen transformation function.

By ignoring the shear force in the cross section of an SMA
beam subjected to bending, the state of stress and strain is one
dimensional. Considering the cross section in the yz-plane and
the beam axis along the x-axis, the only non-zero stress compo-
nent isσx. However, the strain and transformation strain tensors
have other non-zero components as will be shown in the follow-
ing two sections where the transformation tensor is obtained.

2.1. Transformation function based on J2 with symmetric
tension-compression response

By an appropriate selection of the function Φ̃(σ), differ-
ent material responses observed in experiments can be mod-
eled by this constitutive framework. There are numerous se-
lections for the transformation function of SMAs in the lit-
erature based on J2 (Qidwai and Lagoudas, 2000a), J2 − J3
(Gillet et al., 1998), J2 − I1 (Auricchio et al., 1997), and
J2 − J3 − I1 (Qidwai and Lagoudas, 2000b). The models with
a transformation function based on a J2 invariant are the sim-
plest and the best choice for our purposes of seeking a closed-
form solution. However, by developing the constitutive equa-
tions based on J2 invariant, although the majority of the SMA
experimentally-observed responses are modeled with good ac-
curacy, the tension-compression asymmetry (that plays an im-
portant rule in bending as will be shown in the numerical results
section) cannot be modeled. We will use a J2-based model and
also modify it by using a J2 − I1 model for taking into account
the tension-compression asymmetry. The function Φ̃(σ) for a
J2-invariant based model is given by

Φ̃(σ) = ℵ
√

3J2 = ℵ
√

3
2
σ′ : σ′, (7)

where ℵ is a material constant corresponding to the maximum
transformation strain during forward phase transformation in
tension or compression. In (7) the deviatoric stress is σ′ =

σ − 1
3 (trσ)I, where I is the identity matrix. The transformation

tensor associated with this function is obtained as Γ = 3ℵ
2

σ′√
3J2
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(Mirzaeifar et al., 2011a). The evolution equation in this case
reads ε̇ t = Γξ̇.

For studying pure bending in SMAs knowing that the only
non-zero stress component is σx, the second deviatoric stress
invariant is simplified and

√
3J2 = |σx|. The transformation

tensor for pure bending in the case of J2-based model is reduced
to read

Γ = ℵ sgn(σx)


1 0 0
0 −0.5 0
0 0 −0.5

 , (8)

where sgn(.) is the sign function. Substituting (8) into the evo-
lution equation, if we denote the transformation strain along
the beam axis by ε t

x, the transformation strain components in
the cross section are ε t

y = ε t
z = −0.5ε t

x and the other compo-
nents are zero during loading. This is equivalent to assuming
that phase transformation is an isochoric (volume preserving)
process, which is a consequent of considering the transforma-
tion function based only on the J2-invariant. It is worth noting
that in developing the three-dimensional constitutive relations a
more precise model is obtained by assuming a different trans-
formation tensor related to the second deviatoric transformation
strain invariant during reverse phase transformation (Mirzaeifar
et al., 2010, 2011a), but in the present case of pure bending in
which the normal stress is the only non-zero stress component,
the transformation tensors are identical during forward and re-
verse phase transformations.

2.2. Modeling tension-compression asymmetry using a J2 − I1-
based transformation function

It is experimentally well known that single crystal and poly-
crystalline shape memory alloys have a non-symmetric tension-
compression response (Liu et al., 1998; Gall et al., 1999, 2001;
Thamburaja and Anand, 2001). There have been numerous
efforts in the literature for better understanding the origins
of this secondary effect in SMAs and introducing appropri-
ate constitutive relations capable of modeling this effect (Pa-
toor et al., 1995; Paiva et al., 2005; Auricchio et al., 2009).
Most of the the existing constitutive relations for modeling
the tension-compression asymmetry are appropriate only for
numerical simulations and not for closed-form solutions be-
cause of their complexity. We use the J2 − I1-based transfor-
mation function that enables the constitutive relations to model
the tension-compression asymmetry besides relative simplicity
compared to the other models (Auricchio et al., 1997; Qidwai
and Lagoudas, 2000b). The function Φ̃(σ) for this model is
given by

Φ̃(σ) = η
√

3J2 + ω I1 = η

√
3
2
σ′ : σ′ + ω tr(σ), (9)

where η and ω are material constants related to the maximum
transformation strains during forward phase transformation in
tension and compression. The transformation tensor associated
with the chosen function is given by Γ =

3η
2

σ′√
3J2

+ωI (Auricchio
et al., 1997). The evolution function in this case is similar to the
J2 model by replacing the transformation tensor with the previ-
ously derived tensor. It is worth noting that by setting ω = 0 in

the J2− I1 model, the J2 model is not recovered because the ma-
terial constants are calibrated separately for these two models.
The material constants in (9) can be calibrated for modeling the
volumetric strain or the tension-compression asymmetry. We
will use the later method because we are studying the effect
of asymmetry of tension-compression response on the bending
response of SMAs. However, it is shown that by calibrating
the material constants in this manner the model will predict a
positive volumetric transformation strain, which is unrealistic1

(Qidwai and Lagoudas, 2000b). However, we are interested in
the bending problem by considering the normal components of
stress and strain. The volumetric transformation strain has no
effect on our solution. In the special case that the only non-zero
stress component is the normal stress σx, the transformation
tensor is given by

Γ = η sgn(σx)


1 0 0
0 −0.5 0
0 0 −0.5

 + ω


1 0 0
0 1 0
0 0 1

 . (10)

2.3. Stress-strain relationship for SMAs in pure bending
In the one-dimensional case corresponding to pure bend-

ing, substituting the transformations functions (7) and (9) into
the expression of thermodynamic force (4) and the transforma-
tion criteria (6) enable us to find an explicit expression for the
martensitic volume fraction. Using the following relation be-
tween the constitutive model parameters

ρ∆u0 + µ1 =
1
2
ρ∆s0(Ms + A f ), ρbA = −ρ∆s0(A f − As),

ρbM = −ρ∆s0(Ms − M f ),Y = −1
2
ρ∆s0(A f − Ms) − µ2,

µ2 =
1
4

(ρbA − ρbM), ∆α = ∆c = 0, (11)

the explicit expressions for the martensitic volume fraction in
direct and inverse phase transformation for J2 and J2 − I1 mod-
els in pure bending after some mathematical manipulation are
simplified to read

ξ± =
1
ρb±

{
ℵ|σx| + 1

2
σ2

x∆S 11 + ρ∆s0(T − T±)
}
, (12)

for the J2-based model and

ξ± =
1
ρb±

{
η|σx| + ωσx +

1
2
σ2

x∆S 11 + ρ∆s0(T − T±)
}
, (13)

for the J2 − I1-based model, where the + and - symbols are
used for indicating the loading and unloading, respectively, and
T + = Ms, T− = A f , ρb+ = ρbM , and ρb− = ρbA. Through-
out this paper we use the superscripts + and - for any variable
for indicating the forward and reverse phase transformations,
respectively.

1Experiments on polycrystalline NiTi show a negative change of volume
during phase transformation. J2 models predict a zero transformation volumet-
ric strain and the J2 − I1 model leads to a positive value. J2 − J3 − I1 models
are able to account for a negative transformation strain.
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Substituting the transformation tensors (8) and (10) into the
evolution equation, the explicit expressions ε t

x = ℵ sgn(σx)ξ
and ε t

x = [η sgn(σx) + ω]ξ are obtained for the J2 and J2 − I1
models, respectively. Considering an SMA beam subjected to
bending both the axial stress and transformation strain compo-
nents are positive in the region that is in tension and negative
in the region that is subjected to compression. For the sake of
simplicity, we write the transformation strain based on J2 and
J2 − I1 models with the same equation ε t

x = (`cη̂ + ω̂)ξ, where
the loading coefficient `c is +1 in tension and −1 in compres-
sion and the parameters (η̂, ω̂) are replaced with (η, ω) for the
J2 − I1 model and replaced with (ℵ, 0) for the J2 based model.
Substituting the resulting transformation strain into (3) gives
the following one-dimensional constitutive equation

εx = (S A
11 + ξ∆S 11)σx + αA (T − T0) + (`cη̂ + ω̂)ξ, (14)

where S A
11 = 1/EA, ∆S 11 = 1/EM − 1/EA (EA and EM are the

elastic muduli of austenite and martensite, respectively). Sub-
stituting the martensitic volume fractions (12), (13), and using
the Euler beam theory for the strain-curvature relation εx = −κy,
where κ is the curvature and y is the distance from the neutral
axis into (14), the stress-strain relation can be implicitly written
as the following cubic equation

σ3
x + a σ2

x + b σx + c̃ + κ̃y = 0, (15)

where a, b, c̃, and κ̃ are constants given by

a =
3(`cη̂ + ω̂)

∆S 11
, κ̃ =

2κρb±

∆S 2
11

,

b =
2ρ∆s0(T − T±)

∆S 11
+

2(`cη̂ + ω̂)2 + 2ρb± S A
11

∆S 2
11

,

c̃ =
2(`cη̂ + ω̂)ρ∆s0(T − T±) + 2ρb±αA(T − T0)

∆S 2
11

. (16)

The cubic equation (15) is solved for σx as a function of tem-
perature and strain. The acceptable roots2 for the SMA material
in tension and compression are

σt =
1
6

(A − 108κ̃y + P)1/3 − 2b − 2a2/3

(A − 108κ̃y + P)1/3 −
a
3
,

(17)

σc =
−1
12

(A − 108κ̃y + P)1/3 +
b − a2/3

(A − 108κ̃y + P)1/3 −
a
3

−
√

3
2

i
[
1
6

(A − 108κ̃y + P)1/3 +
2b − 2a2/3

(A − 108κ̃y + P)1/3

]
,

(18)

where A = 36ab − 108c̃ − 8a3, B = 162c̃ − 54ab + 12a3,
C = 12b3 − 3a2b2 − 54abc̃ + 12a3c̃ + 81c̃2, and P =

2We choose the real positive root for tension, and the real negative root
for compression. If there are more than one positive or negative roots, the
acceptable root is distinguished by considering the phase transformation start
and finish stresses (30).

12
√

81κ̃2y2 + Bκ̃y + C. It is worth noting that the expressions
for stress in tension and compression are real when the SMA
material properties are substituted into the coefficients (16). In
order to simplify the expressions for stress, we also use the
trigonometric form of the roots of the cubic equation (15) as
(Abramowitz and Stegun, 1964)

σt = cos
(

1
3

tan−1 θ

)
G − a/3, (19)

σc =
1
2

cos
(

1
3

tan−1 θ − 2π
3

)
G

+

√
3

2
sin

(
1
3

tan−1 θ − 2π
3

)
G − a/3, (20)

where θ = 12
√
−81κ̃2y2 − Bκ̃y −C/(A − 108 κ̃y), and G =

1
3 (A2−144C)1/6. The explicit expressions in (19) give the exact
value of stress. However, we need a simplified expression to
calculate an explicit expression for bending moment later. As it
will be shown in §4, the typical values of material properties for
SMAs lead to a large value for θ in (19). Using the trigonomet-
ric identity tan−1 θ = π/2 − tan−1(1/θ), the argument of tangent
inverse is small and can be approximated as tan−1 θ ' π/2−1/θ.
Substituting this approximation in (19) and using the fact that
the parameter β = 1/(3θ) is also small, and considering the ap-
proximations cos β ' 1 − β2/2, and sin β ' β, the stresses in
tension and compression are given by

σt =

[(
1 − 1

2
β2

)
cosϕ + β sinϕ

]
G − a

3
, (21)

σc =

[(
1 − 1

2
β2

)
cosϕ + β sinϕ

]
G

+

√
3

2

[
β cosϕ −

(
1 − 1

2
β2

)
sinϕ

]
G − a

3
, (22)

where ϕ = π/6. After some algebraic simplifications, the stress-
strain relationship in tension and compression can be unified
using the load condition coefficient `c as

σ =

[
`c

(
1 − 1

2
β2

)
cosϕ + β sinϕ

]
G − a

3
. (23)

We will present a detailed numerical study of the accuracy of
the above approximation for obtaining (21) from the exact ex-
pressions in (19) for different curvature values in §4. It will
be shown that these approximate formulas give accurate results
even for large curvatures.

3. Bending moment-curvature relationship for SMAs in
bending

In this section we present a closed-form relationship between
the bending moment and curvature in SMAs subjected to bend-
ing using the explicit stress-strain relations obtained in the pre-
vious section. We will introduce the formulas with some dif-
ferent simplifying assumptions. The accuracy of each approx-
imation is numerically studied in §4 versus the exact solution
obtained by using the exact stress-strain relationships (19) or
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(17) and using numerical integration in the cross section for ob-
taining the bending moment-curvature response.

The bending moment-curvature relationship for an SMA
beam with an arbitrary cross section is given by M =∫

Ω
yσ(y)dA, where M is the bending moment, y is the distance

from the neutral axis, and Ω is the cross section. In the most
general case, the cross section is divided into three regions: an
elastic core in which the phase transformation has not started,
a middle part with phase transformation, and the outer part in
which the material is fully transformed to martensite. In order
to calculate the total bending moment, the bending moment in
each part should be found and summed in the whole cross sec-
tion. The most complicated section to be solved is the middle
part with active phase transformation. However, the bending
moment in this section can be calculated explicitly by using the
stress distributions given in (23). In addition to the bending
moment obtained using the complete stress expression (23), we
present two more explicit expressions for the bending moment
obtained by imposing simplifications on the stress distribution.
We will numerically study the accuracy of these simplifying as-
sumptions in §4. The simplified relations can be later used for
developing closed-form solutions in more complicated cases,
e.g. for studying the large deflection of SMA cantilevers. We
start with the complete stress distribution in (23). For calculat-
ing the bending moment, the stress distribution (23) should be
used only in the portion of the cross section with phase trans-
formation. We present a method for finding the boundaries of
this section (see (32)). For a rectangular cross section, we can
write

I 1 =

∫
yσ(y)wdy =

−wG
√

R(−54κ̃y + A + B) sinϕ
2916κ̃2

−w`cG y(3A + 2B) cosϕ
2916κ̃

+
19
36

wy2`cG cosϕ − 1
6

wy2a

−wG tan−1 (S ) (B2 − 108C + A B) sinϕ
23 38 κ̃2

+
w`cG ln (−R) (−1296 C + 9 A2 + 24 AB + 16 B2) cosϕ

26 310 κ̃2

+w`cG tanh−1 (Q) cosϕ
(−3888 C(A + B) + 9 A2B + 24 AB2 + 16 B3

25 310 κ̃
√

B2κ̃2 − 324 κ̃2C

)
+ C1,

(24)

where w is the cross section width, C1 is a constant of integra-
tion, and

R = −81 k̃2y2 − Bky −C, Q =
162 k̃2y + Bk̃√
B2k̃2 − 324 k̃2C

,

S =
9 k̃√

R

(
y +

1
162

B
k̃

)
. (25)

The other parameters in (24) are all defined in the previous sec-
tions. We use this expression for calculating the total bending
moment in the cross section later on. Before doing that, we first
present two more expressions for this integral using the follow-
ing simplifications. Considering the typical material proper-
ties for polycrystalline SMAs, it can be shown that in the term

θ = 12
√
−81κ̃2y2 − Bκ̃y −C/(A − 108 κ̃y), | − C| � | − Bκ̃y| >

| −81κ̃2y2|. We consider two simplifying approximations in cal-
culating the bending moment by ignoring the first term and the
first two terms in the nominator of the expression for θ. The ac-
curacy of these approximations will be numerically studied in
§4.1. By ignoring the first term (−81κ̃2y2), the integral required
for calculating the bending moment for a rectangular cross sec-
tion is given by

I 2 =

∫
yσ(y)wdy =

6wG (−Bκ̃y −C)5/2 sinϕ
5B3κ̃2

+
4wG C (−Bκ̃y −C)3/2 sinϕ

B3κ̃2 +
wG A (−Bκ̃y −C)3/2 sinϕ

54B2κ̃2

+
wG CA

√−Bκ̃y −C sinϕ
18B2κ̃2 +

6wG C2 √−Bκ̃y −C sinϕ
B3κ̃2

+
3w`cG κ̃y3 cosϕ

2B
+

1
2

wy2`cG cosϕ − wy2`cG A cosϕ
24B

−1
6

wy2a − 9wy2`cG C cosϕ
4B2 +

w`cG yA2 cosϕ
2592Bκ̃

+
w`cG yCA cosϕ

12B2κ̃
− w`cG CA2 ln (Bκ̃y + C) cosϕ

2592B2κ̃2

+
9w`cG yC2 cosϕ

2B3κ̃
− w`cG C2A ln (Bκ̃y + C) cosϕ

12B3κ̃2

−9w`cG C3 ln (Bκ̃y + C) cosϕ
2B4κ̃2 + C2,

(26)

where C2 is a constant of integration. By ignoring the first two
terms, this integral is simplified to read

I 3 =

∫
yσ(y)wdy =

9
8

w`cG k̃2y4 cosϕ
C

+
1
3

(−1
12

w`cAk̃ cosϕ
C

− 3
wk̃ sinϕ√−C

)
G y3

+
w
2

{[
`c cosϕ

(
1 +

1
2592

A2

C

)
+

1
36

A sinϕ√−C

]
G − 1

3
a
}

y2 + C3,

(27)

where C3 is a constant of integration. The integrals (24)-(27)
are calculated for a rectangular cross section. We study the cir-
cular cross section later in this section. For obtaining a com-
plete description of the moment-curvature relation, it is nec-
essary to find the boundaries of the region in which the phase
transformation occurs. We obtain these boundaries for the load-
ing phase first. Later we show that a different approach should
be used for unloading. In the most general case in loading,
the cross section is divided into three sections. A schematic of
the cross section for a rectangular superelastic beam is shown in
Figure 1. The first region includes the neutral axis and the phase
transformation has not started in this region (ξ = 0). In the sec-
ond region (region II) the phase transformation has started but
has not been completed (0 < ξ < 1). The third region (region
III) contains the material with completed phase transformation
from austenite to martensite (ξ = 1).

When using the J2-based model, the neutral axis is located
at the centroid of the beam (YNA = 0 in Figure 1) and the three
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Figure 1: A schematic of the rectangular cross section.

regions are symmetric with respect to the center line. However,
for the J2 − I1-based model, the neutral axis is not located on
the center line. To find the neutral axis location in this case,
the force equilibrium in each cross section along the beam axis
(
∑

F = 0) should be enforced, which reads

1
2

EAκy2
1t +

(
Ĩ
∣∣∣∣
y=y1t
− Ĩ

∣∣∣∣
y=y2t

)

+EM
[
1
2
κ(y2

2t −
h2

t

4
) − Ht(y2t +

ht

2
)
]

−1
2

EAκy2
1c +

(
Ĩ
∣∣∣∣
y=y2c
− Ĩ

∣∣∣∣
y=y1c

)

+EM
[
1
2
κ(

h2
c

4
− y2

2c) − Hc(
hc

2
− y2c)

]
= 0, (28)

where Ht and Hc are the maximum transformation strains in
tension and compression, respectively. The parameters ht and
hc are the maximum distance from the neutral axis in the tension
and compression regions, respectively (see Figure 1). The first
three terms in (28) correspond to the force in sections below the
neutral axis subjected to tension, and the next terms represent
the force above the neutral axis in compression (a positive cur-
vature is assumed). The terms containing Ĩ represent the force
corresponding to region II with 0 < ξ < 1 given by

Ĩ =

∫
σ(y)dy = `cG y cosϕ

−
`cG y

(
−27 Bk̃y + BA + 54 C

)
cosϕ

12B2 − 1
3

ay

−
2G

(
−Bk̃y −C

)3/2
sinϕ

B2k̃
−

G
√
−Bk̃y −C (BA + 108 C) sinϕ

18B2k̃

+
`cG ln

(
Bk̃y + C

) (
A2B2 + 216 CAB + 11664 C2

)
cosϕ

2592B3k̃
+ C4,

(29)

where C4 is a constant of integration. In (28) we need to calcu-
late the values of y1t, y2t, y1c, and y2c to obtain the neutral axis
position. The stress values corresponding to the start and finish
of phase transformation during loading phase can be calculated
by replacing ξ+ = 0 and ξ+ = 1 into (13) and solving for stress.

These are given by

σs =

√
(`cη̂ + ω̂)2 − 2∆S 11ρ∆s0(T − Ms) − (`cη̂ + ω̂)

∆S 11
,

(30)

σ f =

√
(`cη̂ + ω̂)2 − 2∆S 11

(
ρ∆s0(T − Ms) − ρbM) − (`cη̂ + ω̂)

∆S 11
,

(31)

where the loading factor `c is equal to +1 in tension and −1
in compression. Using these stress values the boundaries of
various regions in the cross section are given by

y1t =
σs|`c=1

κ EA , y2t =
(η̂ + ω̂) EM + σ f |`c=1

κ EM ,

y1c =
σs|`c=−1

κ EA , y2c =
(−η̂ + ω̂) EM + σ f |`c=−1

κ EM . (32)

Substituting (29)-(32) into (28) and considering the fact that
hc = h−ht, where h is the cross section height, this equation can
be solved for ht. This gives the neutral axis position correspond-
ing to κ. It is worth noting that this formulation corresponds to
the most general case in which the cross section is divided into
three regions. It is obvious that if |y2t | > ht or y2c > hc, region
III is not formed in the tension or compression part of the cross
section and the above equations can be modified by eliminating
the terms associated with this region.

Bending moment at each cross section along the length of the
superelastic beam is related to the curvature by

M = −1
3

EAκw(y3
1c − y3

1t) +

(
I i

∣∣∣∣
y=y2c
−I i

∣∣∣∣
y=y1c

)

+EMw
[
1
3
κ(

h3
c

8
− y3

2c) − Hc(
h2

c

4
− y2

2c)
]

+

(
I i

∣∣∣∣
y=y1t
−I i

∣∣∣∣
y=y2t

)

+EMw
[
1
3
κ(y3

2t −
h3

t

8
) − Hc(y2

2t −
h2

t

4
)
]
,

(33)

where the superscript i is replaced by 1, 2, or 3 for different ap-
proximations given in (24)-(27). It is worth noting that when the
terms I are evaluated in tension regions, the loading coefficient
`c = 1 and in the compression regions `c = −1. The solution
procedure for the loading phase is as follows. Bending moment
along the beam axis is calculated by considering the external
force and the boundary conditions. At each cross section bend-
ing moment is known and the curvature should be found by
solving the nonlinear algebraic equation (33). In the case of
the J2-based model, this equation can be solved independently
because the neutral axis location is known due to symmetry,
i.e. hc = ht = h/2. However, in the case of using the J2 − I1-
based model, the neutral axis position is unknown and should
be obtained by solving (28) in which the curvature is assumed
known. For solving these equations simultaneously, a numer-
ical scheme is used (Forsythe et al., 1976). In this numerical
method, in each iteration, curvature κ in (33) is given an initial
value. This initial value is substituted into (28) and the neutral
axis position is obtained. The calculated neutral axis position is
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returned to evaluate the right-hand side of (33). Comparing the
calculated bending moment at that cross section with the bend-
ing moment obtained from the external force, curvature is mod-
ified (Forsythe et al., 1976). The iterations are stopped when
a tolerance is achieved between the applied bending moment
at each cross section and the right-hand side of (33). When
the curvature is found the lateral deflection is calculated using
κ = d2v

dx2 , where v is the lateral deflection and x is measured along
the beam axis. The integration constants in curvature-lateral
deflection relationship are found by imposing the appropriate
boundary conditions.

In the unloading phase, in the most general case the cross sec-
tion may be divided into three regions. The material in the inner
region with elastic response in loading (y1t < y < y1c) experi-
ences elastic unloading. The outer regions with phase transfor-
mation in loading are divided into two regions during unload-
ing; one with elastic unloading and the other one with reverse
phase transformation in unloading. To obtain the boundaries of
these regions consider a generic point in the cross section. If we
denote the martensitic volume fraction at the end of loading for
this point by ξ∗, the critical stress for the start of reverse phase
transformation in unloading is given by replacing ξ− in (12) or
(13) by ξ∗ and solving the resulting equation for stress. Using
the properties defined for the evolution equation (see below (13)
for definitions), this critical stress is given by

σc =
`c

√
(`cη̂ + ω̂)2 − 2∆S 11ρ∆s0(T − A f ) − ρbAξ∗ − (`cη̂ + ω̂)

∆S 11
.

(34)
During unloading, the elastic change of stress at a generic loca-
tion is calculated by ∆σ = −(EA +ξ∗∆E)(−κ∗y+κuy), where y is
the distance of the point from the neutral axis. The parameters
κ∗ and κu are the curvature of the corresponding cross section at
the end of the loading phase and the curvature in unloading, re-
spectively. Now we can evaluate the start of reverse phase trans-
formation by comparing the stressσe = σ∗−∆σ (σ∗ is the stress
value at the end of loading phase) with σc. For |σe| > |σc|, the
phase transformation in unloading has not started. In this case
stress is equal to σe and ξ = ξ∗. If |σe| ≤ |σc|, the reverse phase
transformation has started. The stress and martensitic volume
fraction are obtained from (12), (13), and (23) by considering
the superscript “-” and the appropriate loading condition para-
meter `c = ±1. For the sake of brevity, the details of the bending
moment-curvature relations and the process of finding the neu-
tral axis position in unloading are not presented here. However,
this procedure is very similar to that of the loading case.

For analyzing beams with circular cross sections a similar
method is used where Ω is the area enclosed by the horizontal
chords at y1t and y2t, and also the area between y1c and y2c in
the cross section. In this case, we use a trapezoidal numeri-
cal integration method to obtain the bending moment-curvature
relationship.

4. Numerical results

In this section, several case studies are presented for super-
elastic beams with circular and rectangular cross sections sub-

jected to loading-unloading cycles. The results of both J2 and
J2−I1 models are presented. The J2-based solution is compared
with a three-dimensional finite element model and the J2 − I1
results are presented to show the effect of taking into account
the tension-compression asymmetry on the bending response
of superelastic beams. Some experimental data for bending of
a nickel-titanium micropillar are used to verify the applicability
of the present method for modeling bending in the micro scale.
The available material response in compression and bending
are used for extracting the material response in tension, which
is very difficult to measure in experiments. The resulting ten-
sile and compressive properties are compared with the nickel-
titanium constitutive relations and it is shown that the predicted
response in tension is in good agreement with the single-crystal
theoretical response (see the end of §4.6).

4.1. The accuracy of the proposed approximations
In §2.3 we presented the exact stress distribution (19). Using

this stress distribution needs a numerical integration for obtain-
ing the bending moment-curvature relation. Using some as-
sumptions an approximate stress distribution is given in (23),
which can be used for calculating explicit expressions for the
the bending moment-curvature relation. We used three differ-
ent simplifying assumptions for calculating the bending mo-
ment as a function of curvature (see I i, i = 1, 2, 3 in
(24)-(27)). In this section we compare the bending moment-
curvature relationship obtained by the exact stress distribu-
tion and numerical trapezoidal integration with the results of
the three approximations. A rectangular cross section with
h = 1 cm and width w = 1.5 mm is considered. The J2-
based model is used for this comparison. The material prop-
erties for Ni50Ti50 (Jacobus et al., 1996) are used for obtaining
the necessary constants in the constitutive relations (see Qid-
wai and Lagoudas (2000b) for details of extracting constitutive
model constants from experimental data): EA = 72MPa, EM =

30MPa, νA = νM = 0.42, ρcA = ρcM = 2.6 × 106 J/(m3K),
Ht = 0.05, Hc = −0.035, (dσ/dT )A

t = 8.4 × 106 J/(m3K),
ρ∆s0 = −Ht(dσ/dT )A

t = −0.42 × 106 J/(m3K), A f = 281.6K,
As = 272.7K, M f = 238.8K, Ms = 254.9K. For implementing
the J2-based model, the constants in the transformation func-
tion are set to η̂ = ℵ = Ht, and ω̂ = 0. The temperature is
T = T0 = 300 K and an isothermal loading-unloading process
is assumed (see (Mirzaeifar et al., 2011a) for a detailed study
of isothermal process and thermo-mechanical coupling in the
response of SMAs). The bending moment-curvature relation is
depicted in Figure 2. As it is seen, all the approximations are in
good agreement with the solution obtained form the exact stress
distribution even for large curvature values. We use the approx-
imation II (given in (26)) throughout this paper. We use the
third approximation in a future communication for considering
the large deflection effects.

4.2. J2-based model
In this section the results of the J2-based model are pre-

sented. We compare the analytical results obtained from the
present formulation with those of a three-dimensional finite el-
ement simulation. The three-dimensional constitutive relations
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Figure 2: The bending moment-curvature relationship calculated by the exact
stress distribution with trapezoidal integration, and three different approximate
explicit integrals (24), (26), and (27) of §3.

of §2 are used and an appropriate user subroutine (UMAT) is
written by FORTRAN in the commercially available finite ele-
ment program ABAQUS that enables this code to model SMA
structures using solid elements and some two-dimensional ele-
ments. The details of implementing the constitutive equations
in a displacement-based finite element formulation are given in
(Mirzaeifar et al., 2009). The finite element framework is val-
idated by comparing its results with many experimental tests
and analytical solutions in (Mirzaeifar et al., 2010, 2011c,b).
An SMA cantilever with length L = 10 cm is considered in this
section. The rectangular cross section has a height of h = 1 cm
and width w = 1.5 mm. Three-dimensional quadratic brick ele-
ments with reduced integration (element C3D20R in ABAQUS)
are used in the finite element method. A convergence analy-
sis is performed for choosing the appropriate number of ele-
ments by considering the normal stress distribution in the cross
section and the load-displacement response as the convergence
criteria. The stress distribution is considered to be converged
when the maximum difference is smaller than 0.1MPa and the
convergence criterion of the maximum difference for the load-
displacement response is 10N. A total of 6000 elements are
used for modeling the cantilever beam (100×20×3 elements in
length, width, and thickness directions). All the finite element
simulations are done using this mesh. The material properties
are the same as those of the case study in §4.1. The tempera-
ture is T = T0 = 300 K and an isothermal loading-unloading
process is assumed. The superelastic cantilever is subjected to a
transverse tip load. The load-tip deflection is calculated by the
present analytical method and the results are compared with the
numerical simulation results in Figure 3.

As it is shown, even for this relatively large deflection (the
tip deflection is four times the height of the beam), the results
are in good agreement (with a maximum of 14% error). The fi-
nite element results show stiffening at the end of loading phase
as the slope of force-deflection increases while the analytical
solution predicts an almost constant gradient. This difference
is mainly caused by the nonlinear geometric effects that are ig-
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Figure 3: Force versus tip deflection for an SMA beam with rectangular cross
section (b=1.5 mm, h=1 cm, and L=10 cm).

nored in the present solution and included in the numerical sim-
ulations. It is worth noting that the finite element simulation
is completed in about two hours on a 2 GHz CPU with 2 GB
RAM while the analytic solutions are obtained in a few seconds
on the same system. Also as it is seen in Figure 3, the numerical
simulation in unloading is not completed. This happens due to
some convergence issues in most numerical simulations during
unloading, especially in the case of large deflections or com-
plicated geometries. While achieving convergence in the finite
element simulation requires an excessive effort by refining the
mesh size and modifying the numerical algorithms, the present
analytic solution is a reliable method. The present method can
also be used as a benchmark for validating the numerical sim-
ulations. In order to study the capability of the present formu-
lation in calculating the stress and martensitic volume fraction
distributions, the cross section of the superelastic cantilever at
the clamped edge is considered. The stress distribution at the
end of the loading phase is shown in Figure 4(a) and the marten-
sitic volume fraction is shown in Figure 4(b). As it is shown the
closed-form solution calculates both the stress and martensitic
volume fractions accurately. It is worth noting that in the finite
element simulation the outputs are averaged between integra-
tion points and this makes the results smooth compared to the
analytical solution. As it is seen in these figures, the core re-
mains austenite without phase transformation. By considering
pure bending, the stress around the neutral axis is zero and there
is always an austenite core without phase transformation even
for large deflections. By considering the shear effect in bending,
the stress at the core is nonzero which may cause phase trans-
formation at the core as well. However, except for very thick
beams the pure bending theory gives accurate results and this
is reflected in comparison of the results with the finite element
solution that considers the shear effect.

The contour plots of the stress and martensitic volume frac-
tion distributions at the end of the loading phase obtained from
the present closed-form solution are depicted in Figure 5 and
compared with the finite element results. As it is shown, the de-
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SMA beam with rectangular cross section subjected to bending. The results correspond to the end of the loading phase (see Figure 3).
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3).
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formed shape obtained by the present method is slightly differ-
ent from the numerical simulation prediction. Also, the analytic
solution (in this section we are using the J2-based model) is pre-
dicting symmetric stress and martensitic volume fraction distri-
butions, while the finite element results show a slight asymme-
try along the beam axis. Note that in our solution the nonlinear
geometry effects and the displacement along the beam axis di-
rection are ignored while the numerical simulations show a mi-
nor deflection along the axis due to geometric nonlinearities. As
shown in Figures 3-5, the present method gives accurate results
even for the large deflection chosen in these case studies. It is
worth nothing that the accuracy of the results based on small
deflection assumption is geometry dependent. The geometry in
the above case studies is chosen such that phase transformation
starts in the cross section even for moderate tip deflections (in
the order of thickness). If other geometries are chosen (e.g. the
same beam in another direction with height h = 1.5 mm and
width w = 1 cm), very large deflections are required for the
phase transformation to start, and using the solutions based on
the small deflection assumption leads to large errors in those
cases. However, there are numerous applications for which the
approach of this paper gives accurate results (e.g. the micropil-
lar studied at the end of this section).

As another case study, consider a superelastic cantilever with
circular cross section. The material properties are the same as
those of the previous case study and the dimensions are R = 5
mm and L = 10 cm, where R is the cross section radius. A
total of 9600 three-dimensional quadratic brick elements with
reduced integration (element C3D20R in ABAQUS) are used in
the finite element model (a cross section of the mesh is shown in
Figure 8). The cantilever is clamped at one end and a transverse
load is applied at the other end as shown in Figure 6. The ap-
plied force versus the tip deflection obtained by the present ana-
lytical method is shown in Figure 6 and compared with the finite
element results. As it is seen, the finite element results again
suffer from convergence issues during the unloading phase and
this causes the solution to terminate before completion. The
results are in good agreement (with a maximum of 11% error)
even for the relatively large deflection (four times the bar di-
ameter). The results for the calculated stress and martensitic
volume fraction corresponding to the end of the loading phase
at the clamped edge are compared in Figure 7. The results are
depicted along a vertical path passing through the center of the
cross section at the clamped edge.

The contour plots of the stress and martensitic volume frac-
tion distributions are shown in Figure 8. These contours are
plotted for a vertical section passing through the axis of the
bar (see Figure 6 for the geometry). As mentioned earlier,
a slight difference in the deformed shape and the asymmetry
of distributions observed in the finite element outputs both re-
sult from ignoring the geometric nonlinearities in the present
formulation. In the results presented in this section, both the
numerical simulations and the analytic solutions are based on
the J2 model. The effect of taking into account the tension-
compression asymmetry on the response of SMAs is considered
by using the J2 − I1-based model and the results are presented
in the next section.
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Figure 6: Force versus tip deflection for an SMA beam with circular cross
section (R=5 mm, and L=10 cm).

4.3. Effect of tension-compression asymmetry on the bending
response of SMAs

Most shape memory alloys including NiTi exhibit significant
different responses in tension and compression when subjected
to uniaxial loading. Bending is readily affected by this phenom-
enon because the material is subjected to both tension and com-
pression in bending. We presented a J2 − I1-based model capa-
ble of modeling the tension-compression asymmetry in §2 and
3. The constitutive model parameters should be calibrated using
the experimental data. Denoting the maximum transformation
strain in tension and compression by Ht and Hc, respectively,
the J2 − I1 model parameters are given by η̂ = η = 1

2 (Ht + |Hc|),
and ω̂ = ω = 1

2 (Ht − |Hc|). We consider the material properties
used in the previous section and modify the constitutive para-
meters by implementing the above modifications. The response
of a NiTi alloy with these properties in uniaxial compression
is calculated using both the J2 and J2 − I1 models as shown in
Figure 9. It is worth noting that the material response in tension
is identical for both models and equivalent to the results of the
J2-based model in Figure 9 with positive stress and strain val-
ues. As it is shown in Figure 9, the J2− I1-based model predicts
the start of the phase transformation at larger absolute values of
stress, and also predicts a lower compressive strain for comple-
tion of phase transformation compared to the J2-based model.
This phenomenon is in agreement with experimental data (Gall
et al., 1999; Gall and Sehitoglu, 1999). The experimental data
of Jacobus et al. (1996) were used in (Qidwai and Lagoudas,
2000b) and the accuracy of the presented J2 − I1-based model
was studied for modeling uniaxial loading. We are using the
same constitutive model and material properties for studying
bending of SMA beams.

Consider a cantilever superelastic beam with rectangular
cross section with the same dimensions, temperature, and
boundary conditions as those of the case study of §4.2. For
comparison purposes we study the results of J2 and J2−I1-based
models to analyze the effect of taking into account the tension-
compression asymmetry on the bending response of superelas-
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SMA beam with circular cross section subjected to bending. The results correspond to the end of loading phase (see Figure 6).
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functions under uniaxial compression loading-unloading.

tic beams. The tip deflection versus applied force is depicted
in Figure 10. Two different case studies are solved with the J2
model. In one case the beam is subjected to the same force
as in the J2 − I1-based case study, and in the other one the tip
deflections of both beams are equal. As it is shown, the tension-
compression asymmetry significantly affects the bending re-
sponse. In the same deflection case, a maximum of 16% dif-
ference is seen in the applied force and in the same force case,
the tip deflection differs by a maximum value of 41% at the end
of the loading phase. The stress and martensitic volume fraction
distributions at the clamped edge are shown in Figure 11 for this
case study at the end of the loading phase. As it is seen in Figure
11(a), the J2 − I1 model predicts the zero stress above the cross
section center (y=0). The non-symmetric martensitic volume
fraction distribution is shown in Figure 11(b). It is worth noting
that the minor symmetry observed in the FE results is caused
by the effect of large deflections, mainly because the load at the
tip is considered always vertical in the FE analysis (the load is
not rotating as the tip rotates).

The zero stress point determines the neutral axis position that
is found by solving (28) as explained in §3. As expected (see
Figure 9), the absolute value of stress predicted by the J2 − I1-
based model is larger compared to the predicted values by the
J2-based model. This causes a larger force at the compression
portion of the cross section, and the neutral axis is shifted up to-
ward the compression part in order to satisfy equilibrium. It is
worth noting that the height of the phase transformation area is
smaller in the compression part due to smaller maximum com-
pressive transformation strain (see Figure 9) and this causes a
slight downward movement of the neutral axis towards the cen-
terline as the phase transformation area (section II in Figure 1)
is formed in the cross section. To have a detailed view of the
neutral axis position with respect to the applied bending mo-
ment, this position is plotted along the axis of the beam (in
which the bending moment is varying linearly) in Figure 12.
As it is shown, in the regions far from the clamped edge in
which the material responds elastically due to small bending
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Figure 10: Comparison of the force-tip deflection response for an SMA beam
calculated by the J2 and J2 − I1 based models. Two different cases of equal tip
deflection and equal applied force are presented (the cross section is rectangular
with b=1.5 mm, h=1 cm, and L=10 cm).

moments, the neutral axis coincides with the centerline. In-
creasing the bending moment (decreasing x on the horizontal
axis), the neutral axis distance from the centroid increases up
to a specific bending moment value (M = 17.5 Nm at x = 1.75
cm in the present case study). Increasing the bending moment
above this critical value, the neutral axis distance from the cen-
troid decreases slightly due to spread of the fully transformed
area.
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Figure 12: The location of neutral axis with respect to the cross section centroid
along the length of an SMA beam in bending.

The contour plots of martensitic volume fraction at the end
of the loading phase near the clamped edge are shown in Figure
13 and the results are compared for the J2 and J2 − I1 models
(for case study with identical tip deflections). An asymmetric
distribution is clearly seen in Figure 13(a) and the neutral axis
position is shown. As it is seen, the neutral axis coincides with
the centerline in the regions far from the clamped edge where
the phase transformation has not started. Figure 10 shows the
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Figure 11: Comparison of the J2 and J2 − I1-based model results for (a) normal stress and (b) martensitic volume fraction distribution at the clamped edge of
an SMA beam with rectangular cross section subjected to bending. Two different cases of equal tip deflection and equal applied force are presented. The results
correspond to the end of the loading phase (see Figure 10).
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Figure 13: Contour plots of the martensitic volume fraction distribution near the clamped edge obtained by (a) J2 − I1 and (b) J2 models for a beam with rectangular
cross section subjected to bending. The results are for the equal tip deflection at the end of loading phase (see Figure 10).

14



  

significant effect of this asymmetry on the force-deflection re-
sponse of the superelastic cantilever.

4.4. Materials with large tension-compression asymmetries

It has been observed in experiments that the material prop-
erties in shape memory alloys, particularly NiTi, are strongly
affected by the deformation processing. Frick et al. (2004)
studied the properties of cast and deformation processed poly-
crystalline NiTi (Ti-50.9 at. pct Ni) bars. They showed that
while the material response for the cast NiTi samples is almost
symmetric in tension and compression, a cast, hot rolled, then
cold drawn material exhibits a very large asymmetry in tension-
compression response. The maximum transformation strain in
tension is reported more than two times the maximum transfor-
mation strain in compression for the hot rolled, then cold drawn
material with a significant difference in the stress levels in the
stress-strain plateau (see Figure 14). Such a large asymmetry in
tension-compression response causes numerical instabilities in
the finite element simulations. However, our closed-form solu-
tion does not suffer from such instabilities. In order to study the
applicability of our analytic solution for modeling bending of
SMA beams with very large tension-compression asymmetry,
a superelastic beam with rectangular cross section is consid-
ered. The geometry and boundary conditions are the same as
those of the case studies in §4.2. The experimental results for
the stress-strain response of the material is shown in Figure 14.
The material properties in the constitutive model are calibrated
as follows: EA = 63MPa, EM = 35MPa, νA = νM = 0.3,
Ht = 0.047, Hc = −0.02, (dσ/dT )A

t = 6.4 × 106 J/(m3K),
ρ∆s0 = −Ht(dσ/dT )A

t = −0.3008 × 106 J/(m3K), A f = 300K,
As = 273K, M f = 218K, Ms = 254K. We use the J2 − I1-based
model for analyzing this problem by setting η̂ = η = 1

2 (Ht+|Hc|)
and ω̂ = ω = 1

2 (Ht − |Hc|). The ambient temperature is
T = T0 = 27◦C. The model prediction for the stress-strain
response in uniaxial loading is compared with the experimental
data in Figure 14. It is worth noting that the experimentally ob-
served difference in the Young modulus in tension and cmpres-
sion is ignored in our solution. The difference of elastic modu-
lus in tension and compression has been reported in Plietsch and
Ehrlich (1997) without explaining its origin. Frick et al. (2004)
used various experimental results and asserted that the asym-
metry of the tensile and compressive response of the elastic
modulus is caused by strain contributions related to the transfor-
mation, such as martensite interface motion, or pre-martensitic
deformation modes such as the R-phase. These strain contri-
butions are strongly affected by the texture of a polycrystalline
SMA and a micromechanical model can be used to capture such
effects, while phenomenological models ignore this asymmetry.
Also, the smooth hardening observed at the end of stress-strain
plateau can be simulated in phenomenological models by us-
ing higher degree polynomials or trigonometric hardening func-
tions (Lagoudas, 2008). We have chosen the quadratic function
(2), which ignores this effect, for obtaining a closed-form solu-
tion.

A transverse load F = 210 N is applied to the superelastic
cantilever (see Figure 3 for the geometry and loading). The
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Figure 14: The stress-strain response in uniaxial loading for a cast, hot rolled,
then cold drawn polycrystalline NiTi with a large tension-compression asym-
metry (Frick et al., 2004).

martensitic volume fraction distribution in the cross section
near the clamped edge is shown in Figure 15(a). Comparing this
distribution with the results in the previous case study given in
Figure 13(a), it is seen that for the material with the larger asym-
metry, the neutral axis position moves further into the compres-
sion region, and the martensitic volume fraction distribution is
considerably asymmetric with respect to the centerline. The
stress distribution in the cross section near the clamped edge of
a beam made of this material with large tension-compression
asymmetry is shown in Figure 15(b). As it is seen, the com-
pression part is considerably smaller than the tension region.
This is expected from the stress-strain response shown in Fig-
ure 14. The large asymmetry in the stress and martensitic vol-
ume fraction distributions clearly shows that using a symmetric
constitutive model for this case leads to erroneous results. Our
model is stable in modeling the bending of superelastic SMA
beams made of materials with large asymmetries in tensile and
compressive responses.

4.5. Three-point bending test of a NiTi beam
A NiTi shape memory alloy beam is used to compare the

experimental and the corresponding theoretical results. A
schematic of the setup for performing the three-point bending
test is shown in Figure 16. The length of the SMA beam is
L = 170 mm and the cross section is rectangular with w =7.5
mm and h =3 mm. The SMA beam is made of a nearly
equiatomic NiTi alloy and the material properties of Ni50Ti50
(Jacobus et al., 1996) as mentioned in §4.1 are used for de-
veloping the analytic solution. It is worth noting that thermal
treatments and deformation processing may change the mater-
ial properties slightly. However, in this case by performing a
simple tension test on the sample, it was observed that using
the same material properties predicts the response in tension
with an acceptable accuracy (see Mirzaeifar et al. (2011b) for
some examples of comparing the response of SMA samples in
uniaxial tests with the results predicted by the present constitu-
tive equations). A 250 kN MTS Universal Testing Machine is
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Figure 15: Contour plots of (a) the martensitic volume fraction distribution, and (b) the stress distribution near the clamped edge for a material with large tension
compression asymmetry (see Figure 14).

used for performing the three-point bending test with the setup
shown in Figure 16. The maximum deflection of the center is
set to δ =20 mm and the loading-unloading is performed slowly
to ensure the isothermal condition.

Figure 16: The experimental setup for the three-point bending test of an SMA
beam.

The non-dimensional load-deflection response of the beam
obtained from the experiment is compared with the theoretical
results in Figure 17. As it is shown in this figure, the loading
response is accurately predicted by the J2 − I1-based model.
However, the results in the unloading phase show a larger dif-
ference. This is because the constitutive equations used in this
work (with the choice of polynomial hardening function) can-
not predict the smooth stress-strain plateau in unloading and
this difference is more when unloading starts before the material
is fully transformed to martensite (ξ < 1). In the presented test,
the thickness of the SMA beam is small and the phase transfor-
mation is not completed in most parts of the cross section (see
the previous sections for some examples of SMA beams with
larger thicknesses). By increasing the thickness, the error in the
unloading phase is decreased remarkably. It is worth noting that
by modifying the hardening function (2) the constitutive equa-
tion results improve in the unloading phase (Lagoudas, 2008).
However, more complicated hardening functions are not suit-

able for developing closed-form solutions.
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Figure 17: Comparison of the non-dimensional load-deflection response ob-
tained from three-point bending test and theoretical solutions.

4.6. Bending of micropillars

As was mentioned earlier, one application of our analytic so-
lution is the assessment of material properties in tension (com-
pression) when the bending and compressive (tensile) responses
are known but performing tension (compression) tests is prac-
tically difficult. Our solution is developed based on the consti-
tutive equations suitable for polycrystalline SMAs, and an ex-
ample of such application for polycrystalline SMAs is to obtain
the compressive response of tiny wires using the known bend-
ing and tensile test results. However, we will consider a differ-
ent example in this section. Although the constitutive equations
of this paper are developed for modeling polycrystalline SMAs,
we will show that the analytical solution of this paper can also
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be used as an approximation for studying the single crystal NiTi
micropillars with specific orientations with a significant harden-
ing in the stress-strain response.

In this section we study the superelastic response of NiTi mi-
croscale pillars. Nickel-titanium nano to micro scale pillars
have been extensively studied experimentally in recent years.
In experiments on compressive loading of micropillars, it is ob-
served that the [111] NiTi samples exhibit a significant hard-
ening during phase transformation compared to [100] oriented
samples (compare the stress-strain curves for [100] oriented
crystals in (San Juan et al., 2008; Juan et al., 2009) with the
response of [111] crystals in (Manjeri et al., 2010; Frick et al.,
2007)). This phenomenon is expected from the theory as well
because the NiTi crystals of [111] orientation are hard under
compression (Gall and Sehitoglu, 1999). The hardening dur-
ing phase transformation in the compressive response of [111]
NiTi micropillars motivated us to implement the present for-
mulation, which is capable of considering the stress hardening
with arbitrary slope in the phase transformation plateau3 (see
Figure 9) for studying bending of micropillars. We show in this
section that the material properties predicted by this method are
in good agreement with the expected properties for NiTi single
crystals as well. The experimental results on the bending of a
micropillar reported by Clark et al. (2010) are used in this sec-
tion. They tested a [111] oriented NiTi pillar with a diameter
of Dt = 1.2µm at the top of pillar and length of L = 3.8µm.
The undeformed micropillar and the deformed shape of the mi-
cropillar subjected to bending are shown in Figure 18. As men-
tioned in the pillar specifications, all the samples had an esti-
mated taper angle of ≈ 3◦ − 5◦. We consider a 3◦ angle, which
leads to a diameter of Dt = 1.6µm at the pillar base.

Figure 18: SEM images showing (a) the initial configuration and the inclined
flat-tip punch, and (b) in situ bending of the pillar. Copyright (2010) Wiley.
Used with publisher permission from (Clark et. al., 2010. Size Independent
Shape Memory Behavior of NiTi, Adv. Engng. Mat. 12: 808-815. Wiley).

Among the material properties required for our constitutive
model, the austenite finish temperature is reported as A f =

33◦C. The other properties in compression can be calibrated

3The slope of stress-strain plateau for single crystal SMAs in some specific
orientations and also polycrystalline SMAs with particular heat treatments may
be near zero. The material properties of the presented model cannot be cal-
ibrated for modeling a zero slope during the transformation. However, these
properties can be calibrated for modeling a very small slope in the stress-strain
plateau if needed.

by using a cyclic compressive test on the micropillar reported
in (Clark et al., 2010). These properties are obtained as follows
(some of the properties are considered identical with the NiTi
bulk material as given in the previous sections): EA = 55MPa,
EM = 50MPa, νA = νM = 0.3, ρcA = ρcM = 2.6×106 J/(m3K),
Ht = 0.05, Hc = −0.03, (dσ/dT )A

t = 11.4 × 106 J/(m3K),
ρ∆s0 = −Ht(dσ/dT )A

t = −0.57 × 106 J/(m3K), A f = 306K,
As = 288K, M f = 242K, Ms = 274K. We use the J2 − I1-
based model for analyzing this case study by setting η̂ = η =
1
2 (Ht + |Hc|), and ω̂ = ω = 1

2 (Ht − |Hc|). It is worth noting that
for calibrating these properties, Ht, and (dσ/dT )A

t cannot be
obtained only from the compression test; we have used an error
and trial method for finding these properties for the best match
in the theoretical and experimental results in bending as it will
be discussed shortly. The material response in compression ob-
tained from the experiments (Clark et al., 2010) and the present
model are compared in Figure 19 for two loading-unloading cy-
cles with 3% and 5% axial strains.4
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Figure 19: The compressive stress-strain response of [111] NiTi micro pillars
obtained from experiments (Clark et al., 2010), and the compressive and tensile
response obtained from the present model.

The pillar is subjected to bending using an inclined indenter
with the angle of ≈ 60◦ (see Figure 18). As mentioned in (Clark
et al., 2010), the pillar slips on the indenter during loading and
this releases the axial compressive load. It can be assumed that
the pillar is subjected to a pure bending with the projection of
force in the transverse direction5. The transverse force versus
tip deflection obtained from the present formulation with the
J2 − I1-based model is compared with the experimental results
in Figure 20. As it is shown, the present model predicts the
force-deflection in bending of the micropillar with a good ac-

4In the compression response reported in (Clark et al., 2010), the initiation
of loading was associated with a stress-strain plateau with a very small slope. It
was assumed that the small Young modulus at the start of loading is due to the
imperfect contact. We calibrated the austenite elastic modulus by ignoring the
initial low elastic modulus in the response. This region is not shown in Figure
19 for the sake of clarity.

5The transverse force is F = Fa cos(60◦) = 0.5Fa, where Fa is the actuation
force reported in (Clark et al., 2010), and 60◦ represents the indenter angle (see
Figure 1(b) in (Clark et al., 2010)).
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curacy. It is worth noting that the experiment contains loading
further up to a tip deflection of near 1500 nm. However, as it is
shown in Figure 20 for tip deflections larger than δ ≈ 790nm the
force-deflection slope suddenly decreases (see Figure 2(e) in
(Clark et al., 2010)). This is due to the start of plastic deforma-
tion of martensite that happens by further loading the material
far beyond the completion of phase transformation. We are not
considering the martensite plastic response in our model and
restrict our comparison to the start of the plastic deformation.
The dashed line in Figure 20 shows the model prediction for the
unloading phase if the pillar was unloaded after the maximum
tip deflection of δ ≈ 790nm. As it is shown, even by ignor-
ing the plastic nonrecoverable response a residual deflection is
observed in the model. This is due to the ambient temperature
T = 300 K, which is slightly bellow A f temperature.
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Figure 20: Comparison of the force-deflection response for micropillars ob-
tained from experiments (Clark et al., 2010) and the present formulation.

The present method can be used to calculate the stress dis-
tribution and the intensity of phase transformation inside and at
the surface of the micropillar (which are both extremely diffi-
cult to be measured experimentally). The martensitic volume
fraction distribution, as a measure of the phase transformation
intensity, is shown in Figure 21(a), and the stress distribution at
the surface at the end of the loading phase is shown in Figure
21(b). As it is shown in Figure 21(b), the maximum stress at
the surface is ≈ 2500 MPa. This is in agreement with our pre-
vious prediction of martensite plastic deformation start at this
tip deflection. The reason is that the compression tests show the
same stress for the start of martensite plastic deformation (see
Figure 4 in (Clark et al., 2010)). Considering the fact that the
present model with the calibrated material properties is predict-
ing the material response in both compression and bending with
good accuracy, it can be concluded that the material proper-
ties in tension are also assumed accurately (these properties are
guessed by considering the bending results for finding the best
possible match). The predicted material response in tension for
two loading-unloading cycles with 3% and 5% tensile strains
is also shown in Figure 19. The predicted response in tension
for this special geometry is valuable because it is practically

very difficult to test a micropillar in tension. It is worth not-
ing that there are several uncertainties in the experiment used
in this section, including the non-uniform cross section of the
pillar, the inclined indentor for bending, and the imperfect con-
tact at the start of compressive loading that cause the observed
error in the results. In order to obtain more accurate results,
a specific experiment on a micropillar with uniform cross sec-
tion subjected to bending with a sharp perpendicular indentor
is required. Also, various length to thickness rations should be
considered for studying the effect of shear deformation on the
bending response of NiTi micropillars. However, as it will be
shown in the following, the results of this section are in agree-
ment with the theoretical expectations for single crystal NiTi
shape memory alloys.

The predicted maximum transformation strains in tension
and compression are in agreement with the response of [111]
oriented NiTi single crystals. Considering the crystallo-
graphic data for 24 martensite correspondence variant pairs
(CVPs) in NiTi (see Table 1 in (Gall and Sehitoglu, 1999)),
and using the method described in detail by Gall and Se-
hitoglu (1999), it can be shown that for a [111] oriented
NiTi single crystal, CVP#2 with habit plane normal n =

(−0.4044,−0.8889,−0.2152) and transformation direction m =

(−0.4981, 0.4114,−0.7633) is the first CVP to satisfy the trans-
formation criteria in tension, and the CVP#1 with habit plane
normal n = (−0.8889,−0.4044, 0.2152) and transformation di-
rection m = (0.4114,−0.4981, 0.7633) is the first CVP to sat-
isfy the transformation criteria in compression. Using these
directions and the magnitude of transformation g = 0.13078,
the transformation strain for the kth variant is given by εk

i j =
g
2 (mk

i nk
j + mk

jn
k
i ) (Gall and Sehitoglu, 1999). Calculating the

transformation strain tensors for tension and compression with
the given directions, the normal transformation strains in [111]
direction are obtained as ε t

t = 5.59% and ε t
c = 3.18% in tension

and compression, respectively. These transformation strains are
in good agreement with the values obtained for Ht = 5% and
Hc = 3% that represent the maximum transformation strains
in our model. Using the transformation criteria for NiTi sin-
gle crystals given in (Gall and Sehitoglu, 1999), the ratio of
phase transformation start stresses in tension and compression
is given by |σ̂c|/σ̂t = α̂t/|α̂c|, where σ̂ is the critical stress at
which phase transformation starts and α̂ is the normal compo-
nent of the tensor α on (111) plane with αi j = 1

2 (mk
i nk

j + mk
jn

k
i ).

This ratio is obtained as |σ̂c|/σ̂t = 1.7578 using the m and n
directions given above, which is in agreement with the value
predicted by our model |σ̂c|/σ̂t = 477/275 = 1.7345 (see Fig-
ure 19).

5. Conclusions

In this paper a closed-form solution is given for bending
analysis of superelastic shape memory alloy beams. Some
three-dimensional constitutive relations are reduced to an ap-
propriate one-dimensional form required for formulating the
bending problem and explicit expressions are given for the
stress and martensitic volume fraction distributions in the beam
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Figure 21: Distributions of (a) phase transformation intensity, and (b) stress
at the surface of a micropillar subjected to bending obtained from the present
closed-form solution.

cross section. These explicit expressions are used for obtaining
closed-form relations between bending moment and curvature
in pure bending. In addition to a model based on symmetric
tension-compression response, another method is presented that
is capable of modeling bending in materials that have asym-
metric response in tension and compression. Several case stud-
ies are presented for studying the accuracy of our method by
comparing the results with those of three-dimensional finite ele-
ment simulations. The effect of taking into account the tension-
compression asymmetry in the bending response of shape mem-
ory alloys is also studied. In order to study the applicability of
the present formulation in the micro scale, some experimen-
tal data on the bending of a [111] oriented NiTi micropillar
are used. It is shown that the present formulation can be used
for calculating the global force-deflection response with a good
accuracy compared to the experimental results. Our model is
shown to be very useful in finding the stress distributions, which
are practically difficult to be measured in experiments. It is also
shown that the present formulation can be used to find the ten-
sile response of micropillars (which is very difficult to be mea-
sured experimentally) by using the responses in compression
and bending. The predicted tensile response is compared with
those obtained from analyzing [111] oriented NiTi single crys-
tals, and a good agreement is observed.

Studying the large strain effects in bending analysis of SMA
superelastic beams is an important extension of the present
work, which can be obtained using the approximation III. This
approximation can also be used for developing a closed-form
solution based on higher-order beam theories. Adding the
thermo-mechanical coupling effect to the present model enables
it to consider the phase transformation latent heat effect on the
bending of SMA beams, which leads to a comprehensive solu-
tion capable of modeling the rate dependency, ambient condi-
tion effects, and size effect in the response of superelastic SMA
beams in bending. These will be the subjects of future commu-
nications.
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