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Abstract

We propose the modelling of a buckled elastic slender beam based on elastica

approach. The model accounts for large rotations of the beam cross-section

and rather large elastic displacements. Moreover, the model incorporates

the extensibility of the elastic beam. The nonlinear nature of the model is

used to amplify the transition from one stable position of the buckled beam

to the other one. Such mechanical structure is said bistable. The bistable

beam is simply supported at each of its ends and is subject to a transverse

force applied at a point of the beam. The emphasis is placed especially on the

bistable mechanism response caused by the applied force. The stability of the

buckled beam is investigated in details and the diagram of the applied force

of actuation as function of the midpoint displacement is discussed according

to the applied force location. The snap-through phenomenon scenario is

analyzed. The switching from one stable state to the other one occurs passing
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through an instability region in which the second buckling mode is involved.

For rather small end shortening of the beam, the post buckling behavior is

studied by reducing the solution of the complete elastica model to the first two

buckling modes. The reduced model allows us to discuss the switching path in

terms of energy required and stability properties of the bistable mechanism.

Numerical algorithms are developed in order to solve the strongly nonlinear

problem.

Keywords: Bistable system, elastica, buckled beam, optimal actuation,

snap-through, nonlinear.

1. Introduction

In a previous work the snap-through mechanism of an elastic bistable

beam was examined and compared to experimental validations (Cazottes

et al. , 2010). Especially, the study investigates the force actuation of a

bistable structure consisting of a stainless steel buckled beam. Experimental

evidences exhibit the transition from one stable position of the buckled beam

to the other one passing through a region of instability. It is shown that the

combined buckling modes one and two can also be of value (lower snapping

force and larger stable domain) and should be considered for mechanical

design. The purpose of the present study is to investigate the switching

mechanism of a bistable buckled beam on the basis of elastica model. More

precisely, we examine in details the stability of the buckled beam undergoing

a local force actuation in the post-buckling regime. One of the main results

that we want to achieve is to understand the mechanism of snapping from

one stable position to the other one according to the actuation force and the
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influence of the actuation location on the performances of the system.

Bistable mechanisms make them very attractive candidates to design systems

that require two working states. The switching from one state to the other

one needs low energy. Bistable systems are often used as switches (Saif , 2000;

Brenner et al. , 2003). They are also used in microrobotic applications such

as microgrippers or binary robotic devices (Fang and Wickert , 1994; Schom-

burg and Groll , 1998; Reni and Gerhard , 1997). A promising application

is quasitactile display with high density matrix of tiny pins with excellent

spatial resolutions (Jensen et al. , 1999; Benali-Khoudja et al. , 2007; Hafez ,

2007). Haptic applications can be considered as well. One of the advantages

of bistable systems is that they need substantial energy during the switching

process. Indeed, they take advantage of the instability phenomena, a rather

small of amount of actuating work can produce displacements or rotations of

the slenderness structure of relatively high amplitudes. Once the actuation is

released, the system stays in its stable configuration indefinitely. This prop-

erty is exploited to the design of shape control devices (Baker and Howell ,

2002).

Other categories of mechanisms use their elastic deformation as a function.

Bistable systems belong to this kind of mechanisms. Among a various nonlin-

ear problems analyzed in the literature, bistable systems consisting in buckled

elastic beams have received a great deal of attention due to their quite rich

nonlinear behavior and their attractive applications. A rather rough, never-

theless really instructive, example of bistable system consists of rigid barres,

springs and masses. This class of bistable system is referred as to pseudo rigid
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category (McInnes and Waters , 2008). In (Pucheta and Cardona , 2010),

the authors present an interesting study devoted to the design of bistable

compliant mechanisms based on various pseudo-rigid models with some in-

structive applications. Numerous studies on bistable systems are available in

the current literature and modelling of systems depends strongly on the hy-

potheses concerning kinematic description and the degrees of sophistication

of the approaches. Important foundation of the large-displacement finite-

strain approach of shear-deformable beams has been laid down by Reissner

(Reissner , 1972). Reissner has extended his beam approach for the plane

case of shear-deformable and extensible nonlinear beams to 3D-curved beams

(Reissner , 1973). A restricted situation of the Reissner’s approach to un-

shearable nonlinear beam originally straight has been extensively presented

by Irschik and Gerstmayr (Irschik and Gerstmayr , 2009). On the basis of

(Irschik and Gerstmayr , 2009), Hummer and Irschik (Hummer and Irschik ,

2011) examined the equilibrium configurations and stability of an extensible

elastic with an unknown length.

Numerous contributions to problem dealing with bistable structures are based

on elastic theory of flexible beams. In (Patricio et al. , 1998), the authors

analyzed the modes of stability of an elastic homogeneous arch loaded at its

center on the basis of elastica theory. The stability of dynamics perturbations

around static state leads to stability diagram according to the end-shortening

of the beam and frequency. Nevertheless, the elastic model is supposed to

be inextensible. Experimental study of elastic arch loaded at its center was

performed by Pippard (Pippard , 1990). In (Magnusson et al. , 2001), the

authors examined the behavior of a pinned-pinned axially beam in the exten-
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sible framework. In the approach, the authors study very clearly the buckling

and post-buckling behavior of the beam, and they extended their beam the-

ory of Euler-Bernoulli for elastic beams to small displacements in order to

account for large-displacement and finite-strain.

Among various nonlinear studies analyzed in literature, buckled elastic beams

have received particular attention due to their complex and rich dynamics

responses to different kind of stimuli. In this context, weakly nonlinear ap-

proach is often considered, in (Nayfeh and Enam , 2008), the authors accounts

for the geometric nonlinearity arising from the mid plane stretching of the

buckled beam. They derived the governing equation of the transverse vibra-

tions exhibiting a cubic nonlinearity. Along with this approach, the dynamic

stability of the post-buckling solutions is investigated. A simply supported

shallow arch was examined by Pinto and Gonçalves (Pinto and Gonçalves ,

2002) for instability phenomena when the structure undergoes dynamic and

static loads, in particular, snap-through buckling. The model used considers

a weakly nonlinear geometric behavior of an arch due to the beam extensibil-

ity. Among works found in recent literature, most of them are mainly devoted

to the snap-through effect of a buckled elastic micro-beams and their actua-

tion. Interesting studies of the phenomenon at the micro-scale are presented

in (Buchaillot et al. , 2008; Krylov and Dick , 2010; Krylov et al. , 2011)

with applications to MEMS, micro robotics, micro-opto-electro-mechanical

systems.

A weakly nonlinear behavior of the snap-through of compressed bistable

buckled beam was investigated by Vangbo (Vangbo , 1998) by considering

the Lagrangian approach under constraint. The energy associated with both
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bending and compression of the beam is expanded using the buckling modes

of a clamped-clamped beam. The author characterized the bistablility re-

sponse due to a control loading. Qiu et al. (Qiu et al. , 2004) extended the

method to a bistable system made of two centrally-clamped parallel beams.

Application to a tunable micromechanical bistable system was examined on

the basis of Vangbo’s work (Taher and Saif , 2000).

The proposed approach relies on the extensible elastica model where the

beam kinematics is described in terms of the cross-sectional rotations. The

equations of the model as well as the jump conditions at the point of the

force application are derived from the virtual work principle. It is also shown

that the model can be deduced from a Lagrangian formulation. The condi-

tions at the ends of the beam are well formulated and the model parameters

are well identified. Especially, the axial compressive force and the actuating

transverse force are considered as unknown parameters of the problem which

are solved by using the end shortening condition and the vertical coordi-

nate location of the actuating force. The set of equations are then solved by

means of shooting numerical method associated with a predictor-corrector

algorithm to capture the unknown model parameters (or the shooting un-

knowns). From the numerical investigation new results are obtained and dis-

cussed, among them, the response diagram of the actuating force as function

of the driving point or the beam mid-point. Moreover, a detailed discussion

of the configurational stability of the bistable system is presented in terms

of buckling modes. The analysis of the post-buckling regime of the bistable

is investigated by using a reduced order model limited to first two buckling
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modes.

2. Description of the system

We consider an elastic beam of length L0 at the rest. The beam is simply

supported at each of its ends. The left end is fixed while the right one can

move along the beam axis. The cross-section of the beam is supposed to

be rectangular with a width b and thickness h. The beam is subject to an

end-shortening ΔL that reduces the distance between the pin-joints. The

distance becomes L̂ = L0 − ΔL. The end-shortening ΔL will play a crucial

role in the buckling process of the elastic beam. The elastic beam at the rest

and in the buckled configuration along with the parameters are depicted in

Figure 1. The elastic beam is initially straight when it is stress free. The

beam undergoes a deformation due to the end-shortening and deflection can

take place in the beam plane, i.e. the (xAy) plane.

The buckled beam is loaded by a localized force F in the y-direction. The

abscissa of the point C at which the force is applied is maintained fixed while

the beam is snapping-through. The ratio δ̂ = xC−xA

xB−xA
= xC

L̂
is a key parameter

of the problem.

The elastic beam is supposed to be materially homogeneous with Young

modulus E and mass density ρ. We denote by I the moment of inertia of

the cross-section along z-axis.
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3. Modelling

3.1. Kinematics and deformation descriptions

Geometric considerations - Before entering detailed considerations of the

problem under study, some basic prerequisites and assumptions must be

introduced and commented. Accordingly, we attach a fixed Cartesian ref-

erence frame (�e1, �e2, �e3) to the structure in its initial configuration referred

as to R0. The x-axis coincides with the axis of the beam which is supposed

to be straight in the reference or underformed configuration. In addition, y

represents the thickness coordinate of the beam and the z-axis is perpendic-

ular to plane deformation, see Figure 2. The deformation is assumed to take

place in (�e1, �e2)-plane. Any material point G′
0 of the beam in the reference

configuration R0, is given by its position

−→
OG′

0 =
−→
OG0 + y0�e2, (1)

The transverse coordinate z0 has been omitted since it plays no role in the

beam deformation. We note by s the curvilinear abscissa along the beam

axis in the reference configuration. The position of the material point G0

belonging to the beam axis is given by

−→
OG0 = �q0(s) = s�e1, with s ∈ [0, L0] (2)

where �q0 is the position vector in the reference configuration. The plane

deformation of the beam is ascertained if the loading and the joints at the

beam ends are symmetric with respect to the (�e1, �e2)-plane.
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The material point G′
0 is transformed into G′ after beam deformation in the

current configuration R (or deformed state, see Figure 2). The position of

the material point G′ is now given by the position vector

−→
OG′ =

−→
OG +

−→
GG′, with

−→
OG = �q = x�e1 + y�e2. (3)

The actual position of the material point G′ is then function of the coordi-

nates in the reference configuration (Lagrangian description), especially, it

depends on s and y0.

Now, we formulate the Euler-Bernoulli assumptions, that is, the cross-sections

originally perpendicular to the beam axis in the reference configuration re-

main perpendicular to the axis in the deformed state, plane and undistorted,

as well. The material point G0 belonging to the beam axis in the reference

configuration is transformed into the material point G of the beam axis in

the deformed state. We denote by �τ the unit vector tangential to the current

axis of the deformed beam at the point G (s̄). The vector �τ is usually defined

by

�τ =
d
−→
OG

ds̄
. (4)

Nevertheless the position vector �q of the material point G is a function of

the reference coordinate, especially function of the curvilinear abscissa s. We

denote by Λ = ds̄
ds

the ratio of the length of differential line element of the

beam axis in the deformed state to that of the undeformed configuration.

Eqn. (4) becomes

d
−→
OG

ds
= Λ�τ . (5)
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Denoting by �n the unit vector perpendicular to the tangent vector �τ , the set

of orthogonal vectors {�τ , �n} forms the local frame attached to the deformed

beam axis at the curvilinear abscissa s̄ (see Figure 2). These vectors can be

written with respect to the fixed referential {�e1, �e2}
⎧⎨
⎩ �τ(s) = cos θ(s) �e1 + sin θ(s) �e2

�n(s) = − sin θ(s) �e1 + cos θ(s) �e2

(6)

where the angle of rotation θ is given by

θ = (�e1, �τ). (7)

Moreover, in the current configuration, the cross-sections are rotated by the

angle θ about the z-axis with respect to the reference configuration.

Now, the position vector of any material point G′ of the cross-section in the

deformed state takes on the form (see Eqn. (3))

−→
OG′ = �q + y0�n. (8)

The coordinate of the position vector of the point G, �q = (x, y) in the current

configuration are function of the curvilinear abscissa s measured along the

beam axis. Therefore, the current configuration of the beam is a smooth

curve defined by

C(s) = {�q(s) = x(s) �e1 + y(s) �e2, s ∈ [0, L0]}, (9)

One of the kinematic key parameters of the deformed beam is its curvature

κ. The curvature of a line element ds̄ of the beam axis is usually defined by
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(Reissner , 1972; Simo , 1985),

κ =

∣∣∣∣
∣∣∣∣d�τds̄

∣∣∣∣
∣∣∣∣ =

1

Λ

∣∣∣∣
∣∣∣∣d�τds

∣∣∣∣
∣∣∣∣ . (10)

On using Eqn. (6) we compute

d�τ

ds
= θ,s�n. (11)

Accordingly, we obtain the following equation for the beam curvature

κ =
1

Λ

dθ

ds
. (12)

The factor Λ is sometimes missing in elastic theory for extensible elastic

beam. On using the curvilinear abscissa s̄ measured along the deformed

beam axis, the curvature takes on the following form

κ = θ,s̄. (13)

Remark. For inextensible elastic theory, obviously Λ = 1 and we cannot

distinguish the curvilinear abscissa s and s̄ measured along the undeformed

and deformed configurations, respectively.

Gradient of deformation - According to the above hypotheses on the beam

deformation, the gradient of deformation can be written as (Eringen , 1967)

F = Grad
−→
OG′ =

∂
−→
OG′

∂s
⊗ �e1 +

∂
−−→
OG′

∂y0

⊗ �e2, (14)

where Grad is the gradient of the transformation computed with respect to

the reference configuration. Now, by using Eqns. (3, 6, 8, 11, 12) , we arrive
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at

F = Λ (1 − y0κ)�τ ⊗ �e1 + �n ⊗ �e2. (15)

Next, we compute the component of the gradient of deformation in the basis

of the reference configuration by using Eqn. (6), which can be presented in

the matrix form

F =

⎡
⎣Λ (1 − y0κ) cos θ − sin θ

Λ (1 − y0κ) sin θ cos θ

⎤
⎦ (16)

From Eqns. (3, 5) and (6), we compute the gradient of deformation of the

beam axis relative to the beam curvilinear coordinate

⎧⎨
⎩ x,s(s) = Λ(s) cos θ(s)

y,s(s) = Λ(s) sin θ(s)
(17)

The gradient of deformation possesses a unique polar decomposition of the

form (Eringen , 1967) F = RU, where R is an orthogonal tensor of rotation

such that RRT = RTR = 1, and U is the symmetric tensor of the right

stretch. On using the matrix form of the gradient of deformation given by

Eqn. (16), we are able to identify the polar decomposition with

R =

⎡
⎣cos θ − sin θ

sin θ cos θ

⎤
⎦ (18)

We note that R (θ)T = R (−θ). In addition, the stretch tensor takes on the

form
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U =

⎡
⎣Λ (1 − y0κ) 0

0 1

⎤
⎦ (19)

Now it is clear that the tensor U is definite positive and it possesses two

distinct eigenvalues

U1 = Λ (1 − y0κ) , U2 = 1. (20)

The associated eigenvector are obviously �e1 and �e2, which are the principal

directions of stretch. From the physical point of view, U1 is the principal

stretch of a material line element ds parallel to the beam axis in the refer-

ence configuration and Λ is merely the axis stretch. Therefore, the beam

deformation is the combination of a stretch of the beam axis follows by a

rotation of angle θ described by the tensor of rotation R (θ).

Moreover, the tensor of rotation can be written as

R = �τ ⊗ �e1 + �n ⊗ �e2. (21)

Now using the polar decomposition with the forms of the stretch tensor and

the tensor of rotation, the gradient of deformation can be written as

F = U1 (�τ ⊗ �e1) + U2 (�n ⊗ �e2) . (22)

This shows that the principal stretches give the ratio of length of material

line elements in the deformed configuration relative to that of the reference

configuration.
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Distributor of transformation - The two strain measures of the beam model

are given by the extensional strain ε = Λ−1 and the beam curvature κ = θ,s̄.

Using these definitions for the beam deformation, we introduce the distributor

of the beam transformation that the components are the actual position of

the current point G,
−→
OG = x(s) �e1 + y(s) �e2 = �q(s) and the rotation �p(s) =

θ(s) �e3 of each cross-section at the current point of the curvilinear abscissa s.

Therefore, it is necessary to define the following distributor of transformation

gradient

{
dU
ds

}
G(s)

=
d

ds

⎧⎨
⎩ �p(s)

�q(s)

⎫⎬
⎭

G(s)

(23)

The different deformation measures which have been introduced in this Sec-

tion will be very convenient to deduce the beam equations.

3.2. Elastica beam variational formulation

With the aim at deducing the beam equations, we adopt the principle of

virtual works. The principle for the present model of beam and configuration

is stated as follows

δWi + δWe + δWλ = 0. (24)

The different contributions to the principle are denoted by Wi for the work

of the internal forces, We for the work of the applied actions and Wλ for the

work of the eventually constraints on the kinematic variables. The expression

of the virtual works in Eqn. (24) are given in details in the next subsections.
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3.2.1. Internal virtual work

The virtual work of internal forces reads as

δWi = −
∫ L0

0

{T (s)}G(s) ·
d

ds
{δU(s)}G(s) ds. (25)

In Eqn. (25), {T (s)}G(s) is the distributor of the internal forces defined by

{T (s)}G(s) =

⎧⎨
⎩

�R(s)

�M(s)

⎫⎬
⎭

G(s)

(26)

where �R(s) is the force resultant and �M(s) is the moment computed at

the point G(s) of the beam. In Eqn. (25), {δU(s)}G(s) is the virtual beam

transformation as defined in the kinematic considerations.

On using Eqn. (23),

{
dδU
ds

}
G(s)

=

⎧⎨
⎩ δ�p′(s)

δ�q′(s) + d
−−→
OG
ds

× δ�p (s)

⎫⎬
⎭

G(s)

(27)

where it has been set (•)′ = d•
ds

the spacial derivative. Now, the virtual work

of internal actions can be put in the following form

δWi = −
∫ L0

0

{
�R(s) · δ�q′(s) + �M(s) · δ�p′(s) −

(
�q′(s) × �R(s)

)
δ�p(s)

}
ds

(28)

3.2.2. Virtual work of the applied actions

The only force acting on the elastica beam which produces nonzero work

is the actuation force �F applied at the point C located at the unknown curvi-

linear abscissa s̄c in the deformed configuration. For a virtual displacement

of the point C, δ�q (s̄c), the corresponding virtual work reads as
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δWe = �F · δ�q (s̄c) (29)

where in our particular situation, we have

�F = −F�e2, δ�q (s̄c) = δyc�e2. (30)

Remarks.

(i) Obviously, we have the actions of the simple support at the points A and

B of the beam, nevertheless, these points are fixed. The modelling can

be easily extended to a general boundary conditions at the ends of the

beam, for instance applied forces or moments or clamped conditions at

the beam ends or any other conditions.

(ii) The beam actuation can be extended to a lineic density of force or

applied moment located at a fixed point of the beam; which can be

easily incorporated in the formulation.

3.2.3. Virtual works of constraints

Because of the simply supported conditions at each end of the beam,

geometric conditions must be fulfilled. More precisely, the point A is fixed

and the point B is subject to an end-shortening of the fixed amount. The

conditions are given by

x (0) = 0, x (L0) = xB,

y (0) = 0, y (L0) = 0,
(31)

These conditions can be conveniently replaced by integral conditions
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∫ L0

0

x′(s)ds = xB,

∫ L0

0

y′(s)ds = 0. (32)

The variation of the above condition leads to

∫ L0

0

δ�q′(s)ds = �0. (33)

Now, the problem is to find the solution to the minimization of the virtual

work under the integral conditions Eqn. (32). In order to use the virtual

work principle subject to the constraint Eqn. (33) on the arbitrary virtual

displacement δ�q(s), we consider a Lagrange multiplier vector associated with

the condition Eqn. (33). Accordingly, we introduce the virtual work due to

the Lagrange multiplier

δWλ =

∫ L0

0

�λ · δ�q′(s)ds. (34)

The vector �λ = (λx, λy) of which the components are the Lagrange multipliers

enforcing the integral constraint Eqn. (33) associated with the boundary

conditions at the ends of the beam.

3.2.4. Virtual work formulation

Variational formulation established by Eqn. (24) consists of looking the

state fields in space V = {x(s), y(s), θ(s)} and those admissible Lagrange

multipliers (λx, λy) satisfying the variational Eqn. (24). On using Eqs. (28,29,34)

the variational equation can be written as

17



  

−
∫ L0

0

{
�R(s) · δ�q′(s) + �M(s) · δ�p′(s) −

(
�q′(s) × �R(s)

)
δ�p(s)

}
ds

+

∫ L0

0

�λ · δ�q′(s)ds + �F · δ�q (sc) = 0.

(35)

The actuating force �F applied at the curvilinear abscissa sc of the beam

produces a discontinuity in the internal force resultant �R at this point. Con-

sequently, we must split the variational Eqn. (35) into two segments of inte-

gration [0, L0] = [0, sc[∪]sc, L0]. The integrals in Eqn. (35) are also separated

into two integrals over the segment at the left of sc and the segment at the

right of this point. Now, by integrating by part, we arrive at the following

variational equation

∫ sc

0

{
d �R−

ds
· δ �q− +

(
d �M−

ds
+ �q−′ × �R−

)
· δ �p−

}
ds

+

∫ L0

sc

{
d �R+

ds
· δ �q+ +

(
d �M+

ds
+ �q+′ × �R+

)
· δ �p+

}
ds

+
(
��R (sc)� + �F

)
· δ�q (sc) − � �M (sc)� · δ�p (sc) = 0.

(36)

where we note the jump of any quantity by �A� = A+−A−. The above form

the variational equation is now in a convenient form to deduce the beam

equations.

3.3. Elastica beam equations

Before writing down the equations of the beam, for sake of consistency and

in order to introduce key parameters as function of the beam characteristics,

we define the following dimensionless parameters and variables
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• lengths
(
S, X, Y, �Q, ΔL

)
= (s, x, y, �q, ΔL) /L0. (37a)

• Forces and moments
(
�F, �R, �M

)
=

(
�F/F0, �R/F0, �M/M0

)
. (37b)

• Energy Etot = Etot/E0. (37c)

with F0 = EAk, M0 = EI/L0 and E0 = F0L0. In addition, we have placed

a key parameter in evidence

k =
I

AL2
0

(38)

which characterize the ratio of the bending energy over the compression en-

ergy. The parameter k ∝ (h/L0)
2 with L0/h is the slenderness ratio of the

beam which plays a crucial role in the bistable mechanism. The total energy

Etot is defined as the sum of the flexural and compressive energies.

Therefore, the equation of the beam deduced from the variational formulation

Eqn. (36) is given by

d�M

dS
+

d�Q

dS
× �R = �0, (39)

The above equation holds for both segments of the beam. In addition, we

deduce the equations of the jump at the point of actuating force for the

resultant and the moment, that is

��R(sc)� + �F = �0,

��M(sc)� = �0,
(40)
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The first equation of Eqn. (40) denotes that the jump of the resultant of the

internal action is the actuating force while the second equation means that

the bending moment is continuous across the point C.

The geometrical compatibility Eqn. (17) using the dimensionless variables

can be rewritten in the vectorial form

d�Q

dS
= (1 + ε(S))�τ . (41)

Constitutive equations of the beam. The analysis of the bistable beam must

be completed by giving the relationships between the strain measures and

the resultants in force and moment. The elastic behavior of the beam is

supposed to be linear. The constitutive equations are stated as

�R · �τ = N = EAε(s),

�M = EIθ,s�e3.

On using the dimensionless quantities, we arrive at

ε(S) = kN, (42a)

�M =
dθ

dS
�e3. (42b)

It is worthwhile noting that the parameter k holds for the compressibility of

the beam and N is the resultant along the beam axis and perpendicular to

the beam cross-section.

Remarks : The equilibrium equation (39) can be deduced from the following

Lagrangian
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L =

∫ L0

0

[
1

2
�M · d�p

dS
+

1

2
Nε − (1 + ε) N

]
dS, (43)

where the first term in the integral Eqn. (43) is reduced to 1
2
�M · d�p

dS
= 1

2

(
dθ
dS

)2

is the bending energy, 1
2
Nε with ε = kN is the compression energy. The last

term in Eqn. (43) is deduced from the boundary conditions at both ends of

the beam of the displacements X (S) and Y (S) and it involves Lagrangian

multipliers. More precisely, from Eqn. (41) and Eqn. (42) we write

(1 + ε) N = (1 + ε) �R · �τ = �R · d�Q

dS
.

Now, it clear, if we consider the boundary conditions on both ends of the

beam in their integral form given by Eqn. (32), that the vector �R can be

viewed as the Lagrangian multiplier. The latter can be identified to the vec-

tor �λ which has the meaning of a force maintaining fixed the end-shortening

on the right end of beam and imposing the vertical displacements at both

ends of beam to be zero.

The beam equation (39) is deduced by rendering the Lagrangian stationary,

i.e., δL = 0. The Lagrangian form is deduced directly from the variational

equation (36) after direct algebraic manipulations. Due to the actuating

force applied to the point C of the beam, the Lagrangian Eqn. (43) must be

split into two integrals one over the segment S ∈ [0, SC [ and the other one

over the segment S ∈ ]SC , 1].
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3.3.1. Beam equilibrium

The global equilibrium of the beam subject to buckling load and actuating

force allows to compute the unknown resultants applied at each end of the

beam. The resultants are found out as follow

NA = P, (44a)

VA = (1 − δ̂) F, (44b)

VB = δ̂ F, (44c)

where NA is the horizontal force at the point A and VA and VB are the vertical

components of the resultants at the beam ends A and B, respectively. The

parameter δ̂ denotes the ratio δ̂ = XC

XB
, the relative position of the point C.

Now, the internal resultant �R can be reach by studying the equilibrium of

the region on the left side of actuating point and on the right side. We have

�R± =

⎧⎨
⎩ R±

x = −P

R±
y = δ̂± F

with

⎧⎨
⎩ δ̂− = δ̂ − 1, ∀S ∈ [0, SC [

δ̂+ = δ̂, ∀S ∈ ]SC , 1]
(45)

where the subscript (−) refers to the left region while (+) refers to the right

one.

3.3.2. Final form of the set of equations of the buckled beam

On using the different equations obtained in the previous subsections and

combining Eqns (39, 42) and Eqn. (45), the static equations for the present

buckling beam take on the form
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2θ

dS2
+ δ̂± F cos θ + P sin θ − kδ̂± PF cos(2θ) − 1

2
k[P2 − (

δ̂±
)2

F2] sin(2θ) = 0,

d �Q

dS
=

(
1 + kN±)

�τ ,

(46)

the above equations are valid for both segments [0, SC [ and ]SC , 1]. The

resultant along the beam axis is given by

N± = −P cos θ + δ̂± F sin θ. (47)

3.3.3. Comments

The equations governing the equilibrium of the proposed buckled beam

thus obtained deserve some comments and remarks.

1. At a first sight, the extensibility property of the beam produces more

or less complicated structure including nonlinear term in the forces F

and P. If the beam is inextensible, that is k = 0, the bending equa-

tion is simplified into a kind of sine-Gordon equation (Drazin , 1983).

The latter possesses localized solution in the form of lump structure

corresponding to the beam deflexion.

2. The parameter δ̂ denoting the ratio of the abscissa of actuating force to

the distance between supports allows us to find an optimal position of

the actuating force; which is not necessary located at the beam center.

3. As soon as the bending equation is solved with respect to θ, on using

geometric compatibility equations (Eqns (41)) we reach the position
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X(S) and Y (S) of the buckled beam.

4. Numerical solutions and results

4.1. Numerical method

We start with Eqns (46) and (47). The problem is then to search for the

solutions θ (S), X (S) and Y (S) which must satisfy the boundary conditions

on the left end of the beam

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X(0) = 0,

Y (0) = 0,

θ′(0) = 0,

θ(0) = θA,

(48)

and on the right end of the beam

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X(1) = XB,

Y (1) = 0,

θ′(1) = 0,

θ(1) = θB,

(49)

In these boundary conditions, θA is unknown, XB is given (it is the end-

shortening of the support B), θB is unknown, but computed once the solution

obtained. Accordingly a numerical shooting algorithm must be used. The

input parameters of the method are given by Eqn. (48) and we start with

an initial guess for θA. The objective parameters are given by Eqn. (49).

Nevertheless, we do not know the buckling force P since only the displace-

ment of the right end of the beam is given. Moreover, at each position

YC = Y (SC) the vertical coordinate of the applied force corresponds to one
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deformed beam, while a same actuating force can produce, a priori, different

beam deformations. Therefore, the buckling resultant P , the actuating force

F and the curvilinear abscissa SC of the application point are not known. In

order to find the so-called shooting parameters θA, P, F and SC we use along

with the shooting method a predictor-corrector algorithm starting with ini-

tial guess θA, P, F and SC by varying continuously the guessed values until

the conditions at the right end of the beam (Eqn. (49)) are fulfilled with a

sufficient accuracy. Each solution is recursively found by using a previous one

as initial guess for the following step. In the procedure, we use four shooting

parameters in order to reach an objective vector with three components. As

consequence, an orthogonality condition is required between the predictor

vector and corrector one to close the system. Moreover, the orthogonal-

ity condition is such that the method convergence is rapidly ensured. The

numerical problem concerns the solutions to a set of nonlinear differential

equations of two point boundary values problem given by Eqns. (48) and

(49) with integral constraint Eqn. (32). The method is based on numeri-

cal continuation methods (Allgower and Georg , 2003) which is quite well

efficient for the present numerical problem we want to solve.

4.2. Numerical results

4.2.1. Bifurcation diagrams

One of the first results which can be extracted from the numerical com-

putations is the bifurcation diagram. More precisely, the evolution of the

buckling load P as function of the end shortening ΔL of the elastic beam. In

this situation the actuating force F is set to zero. The bifurcation curve shown

in Figure 3 exhibits very clearly two domains. As far as the compressive force
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is less than the critical one, the beam is still straight. The relationship for

ΔL versus P follows a linear Hook law. Once the applied load is increased by

a small amount beyond the critical load, the beam is deformed into a buckled

configuration which is just very close to the original straight beam, but with

a small transverse deviation. This is the post-buckling regime. The latter

increases with the applied load as shown in Figure 3. The insert in Figure 3

shows, in the vicinity of the bifurcation point, the detailed variation of ΔL

depending on the parameter k.

Influence of the beam extensibility - It is worthwhile examining in details

the diagram of bifurcation in the post-buckling regime in the vicinity of the

critical load. At this end, we assume small end-shortening and consequently

rotations of small amplitudes. We look for solution to the static problem (see

Eqn. (46) with no applied transverse force) as a reduced form on the first

buckling mode

θ (S) = θ0 cos (πS) , (50)

In order to compute the amplitude θ0 satisfying the post-buckling regime

problem, we expand the Lagrangian of the system Eqn. (43) for small rota-

tions up to the fourth order. We arrive at

L̃ =

∫ 1

0

[
1

2
(θ,S)2 +P

(
1 − 1

2
kP

)− 1
2
P (1 − kP) θ2 + 1

24
P (1 − 4kP) θ4]dS. (51)

On considering the first mode solution Eqn. (50) into the new form of the

Lagrangian Eqn. (51), after integrating over the segment [0, 1], the latter

takes on the form
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L̃ = P
(
1 − 1

2
kP

) − 1
4

(
P − kP2 − π2

)
θ2
0 + 1

64
P (1 − 4kP) θ4

0. (52)

which is merely a polynomial function of the fourth order in θ0. Now, the

problem is to find θ0 which minimizes the Lagrangian Eqn. (52). The neces-

sary condition reads as ∂L̃
∂θ0

= 0, yielding

θ0[P (1 − kP) − π2 − 1
8
P (1 − 4kP) θ2

0] = 0. (53)

It can be checked that the trivial solution θ0 = 0 (straight beam) corresponds

to a maximum of the Lagrangian (unstable solution), while the solution θ0 �=
0 realizes the minimum. We find

θ2
0 =

8

P

[
P (1 − kP) − π2

1 − 4kP

]
. (54)

For inextensible beam (k = 0) and P ≥ π2 (post-buckling regime), we recover

the classical formula θ0 = ±2
√

2
P

(P − π2). From Eqn. (54), the rotation am-

plitude θ0 becomes non zero for a critical load slightly greater than π2 because

of the beam compressibility. We can say that for small k, the critical loading

can be approximated by Pc 
 π2 (1 + kπ2). We can observe on the diagram

of bifurcation the tiny shift of the critical load relative to the inextensibil-

ity theory. This is why the extensibility hypothesis of the beam becomes

significant as soon as we deal with small end-shortening and rotations or dis-

placements of small amplitudes. On the bifurcation diagram, Figure 4, the

curve of θ0 as function of loading force P (see Eqn. (54)), has been superposed

to the solution coming from the numerics. The difference is not practically

observable.
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4.2.2. Elastic beam response under actuating force

Now, we introduce the action of an applied transverse force F. In this

section we want to determine the actuating force as function of the vertical

displacement of the mid-point of the beam for given end-shortening ΔL and

compressibility parameter k.

The first numerical results deal with the central actuating and the force is

maintained vertically at the abscissa XC such that δ̂ = 0.5. The vertical

displacement of the actuating force YC = Y (SC) at the point C is controlled

step by step. The corresponding actuating force is computed with the help of

the numerical algorithm. The force-displacement diagram is shown in Figure

5. A classical N-shaped curve is obtained. Such results can be compared to

those presented by different authors (Vangbo , 1998; Qiu et al. , 2004) using

different approaches, essentially based on buckling mode expansion. More

precisely, there are several branches on the graph. The first branch starts at

the either both stable positions (point a1 or a2 on Figure 5). The crossing

point of the branch involving the first buckling mode and that for the second

mode occurs for the bifurcation actuating force F = Fb at the point b1. On

decreasing the actuating force the branch (b1b2) passes through the point c1

corresponding to YC = 0 with F = 0. The curve is symmetric with respect

to the origin. It is worthwhile noting that the slope of the F−YC diagram is

negative, this means that the bistable system possesses a negative stiffness

on this branch. Because of the symmetry of the structure, two symmetric so-

lution exist for the second buckling mode, but these solutions share the same

branch (b1b2). The branch selection is ensured by an energetic criterium. The

part of the graph drawn in dashed line represents the non-admissible path,
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that is, the path with greater energy. In addition the branch is unstable,

because the snap-through of the beam involves a zero mode (straight beam).

Quite similar results have been obtained by (Pi. , 2007) for circular shallow

arches subjected to uniform loading and simply supported.

Figure 6 shows the non dimensional compressive force P as function of the

vertical coordinate YC of the point C. We can observe that as far as P � 4π2,

the snap-through from one stable state to the other one occurs involving a

buckling mode 2. The upper branch corresponds to a greater energy. The cor-

responding points introduced for the force-displacement diagram have been

reported in the P − YC curve. We have the bifurcation points b1 and b2 for

which the lower branch (b1c1b2) corresponds to the second buckling mode.

Instructive details are given by the graph of the total energy Etot of the

bistable system as function of the vertical coordinate YC shown in Figure 7

for the central actuation and for an end-shortening of 3 %. The two min-

ima of the energy are located at the stable positions either the downwards

buckling beam (point a1) or the upwards one (point a2) for null actuating

force. At the bifurcation points b1 and b2 the energy graph splits into two

branches the lower one for the admissible solution and upper one for the

non-admissible solution.

A second series of numerical results is obtained for shifted actuating force

(force not applied to the beam center). In this situation we want to examine

the influence of the position of the actuating force in the bistable system

response. Especially, the question is, is there an optimal position? In the
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work of Cazottes et al. (Cazottes et al. , 2010) the advantage of shifted ac-

tuating force is experimentally placed in evidence. In particular, this mode

of actuation needs a maximum of the actuating force smaller than that of

the central actuation for a given end-shortening. We perform numerical sim-

ulation by varying the ratio δ̂ (or the location of the actuating force) for an

end-shortening of about 3 %. Figure 8 presents the maximum of actuating

force as function of the ratio δ̂. The graph exhibits clearly two symmetric

minima. The first minimum is located at 39 % of the total length of the

beam.

We consider the actuating force located at the optimal position and we

observe the displacement of the beam center (at S = 0.5). The result is

then drawn in Figure 9 with a graph possessing three loops. The curve in

solid line corresponds to admissible solution (path (a1b1c1d1b2a2)) and (path

(a2b2c2d2b1a1)) while the one in dashed-line is for higher actuation energy.

The crossing point of the branch using the first buckling mode and that of

the second mode is referred as to b1. The two symmetric points c1 and c2

correspond to F = 0 and those noted d1 and d2 are for YC = 0. Because of

the dissymmetric loading the path going from the upwards solution (point

a2) to the downwards position (point a1) is different from the path for the

inverse switching.

The buckling force P which imposes the end-shortening fixed is plotted in

Figure 10 as function of the displacement YC . The different points defined

on Figure 9 have been reported on the P − YC diagram. In particular, the

points d1 and d2 for YC = 0 have the same locus. The total energy Etot of the

bistable system versus YC is presented in Figure 11. Similarly as for the cen-
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tral actuation, the curve exhibits two branches, the lower branch corresponds

to the admissible path for the actuating response of the bistable beam. It is

worthwhile observing that even if we have two branches for the admissible

solution. As matter of fact, the branch (b1d1b2) and the branch (b1d2b2) share

the same part of curve in the Etot − YC diagram. It means physically that

the switching from upwards buckling position to the downwards one and the

reverse switching need the same energy.

4.2.3. Influence of the end-shortening on bistable beam response under actu-

ating force

The model of the bistable buckled beam possesses, in its dimensionless

representation, two important parameters : (i) the end-shortening of the

right end of the beam ΔL (parameter of configuration) and (ii) the exten-

sibility parameter k which depends mainly on the slenderness ratio of the

beam (geometric parameter). The other parameters are controlling quanti-

ties, especially, the buckling force P is subject to the limit condition at S = 1,

such that X(1) = XB which is given (see Eqn. (31) or Eqn. (49)).

In this subsection we want to know how the end-shortening ΔL modifies the

response of the bistable beam, that is, the paths of the actuating force as

function of its vertical position on the beam. The response to this question

is illustrated in Figure 12 for four typical values of the end-shortening and

for central actuation. We observe that the number of branches for the curve

F versus YC increases as ΔL. This means that physically for a given YC the

number of equilibrium solutions to the static equations becomes more nu-

merous. This does not means that all the solutions are stables. Only, the

one corresponding to the lowest energy is the admissible solution.
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4.2.4. Influence of the extensibility parameter on bistable beam response un-

der actuating force

For a given end-shortening (ΔL = 0.03), the extensibility parameter k

(see Eqn. (38) for definition) is varied. Figure 13 represents three situations

corresponding to three values of k (k = 1
20000

, k = 1
5000

and k = 1
2500

). We

observe that the number of branches of the F − YC diagram for equilibrium

solutions is more numerous as k is getting smaller, which is physically reason-

able since the beam is more flexible leading to a great number of equilibrium

configurations for a given actuating force. For k rather moderate the number

of branches remains limited to a couple of branches. In fact, the extensibil-

ity parameter k represents the ratio of the compressive beam energy to the

bending energy, physically, that means that the bending energy is more im-

portant for k small or for slender beams. As consequence, for different values

of the actuating force F correspond to different levels of energy. Only the

lowest level of energy leads to the stable equilibrium solution. In order to

compare the influence of the extensibility on the F −YC diagram, the graphs

on Figure 13 are plotted in dimension unit for the force. The actuating force

at the bifurcation point b1 of the F − YC diagram have been computed, we

find Fb. The actuating force at the bifurcation point b1 of the F − YC dia-

gram have been computed, we have Fb = 4651.85 N , Fb = 2834.82 N and

Fb = 784.77 N respectively for k = 1
2500

(L
h

= 14.43), k = 1
5000

(L
h

= 20.41)

and k = 1
20000

(L
h

= 41). In the case of an inextensible beam (k = 0) the

corresponding forces take on the following values Fb = 6446.95 N (−38.6 %),

Fb = 3223.47 N (−13.5 %) and Fb = 805.87 N (−2.7 %). An extra com-

parison can be done with a very small k = 3 × 10−7 (L
h

= 500 very slender
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beam), Fb = 4.837 N to be compared to Fb = 4.835 N (0.04 %) obtained

with k = 0. The percentages represent the difference between inextensible

model with respect to extensible one.

4.3. Analysis of the role of buckling modes in the bistable snap-through

4.3.1. Reduced model

In this part we want to show how the bistable system uses the buckling

modes for the switching process from one stable state to the other one. In Sec-

tion 4.2.1, it has been examined the bifurcation diagram in the post-buckling

regime for moderate rotation. Accordingly, it is reasonable to investigate the

post-buckling behavior of the system using reduced order model. We consider

a finite-dimensional approximation of the solution to the beam equations by

expanding the rotation θ(S) as a series of buckling modes truncated at the

Kth order

θ(S) =
K∑

j=1

Aj cos (jπS) , (55)

where the Aj’s are the amplitude associated to the jth mode. The approxi-

mation Eqn. (55) can be viewed as a truncated Fourier series. The Fourier

coefficient being Aj and they can be computed by using the orthogonality

properties of the buckling modes, thus we have

Aj = 2

∫ 1

0

θ(S) cos (jπS) dS. (56)

Now, for each value YC of the vertical position of the actuating force F we

compute the admissible solution θ(S) with YC as parameter. On considering

Eqn. (56) , the coefficient Aj depend only on YC , all other ones are completely
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determined for a given end-shortening. The first three coefficients Aj (j =

1, 2, 3) are plotted in Figure 14 versus YC . It is clear that, in practice and

during the switching process the first two buckling modes are predominant.

The third mode even if it is not null, it remains rather small in comparison

to the other two.

Here and henceforth, the analysis is done in hypothesis of moderate rotation.

Then we assume a two degrees of freedom model by setting

θ(S) = A1 cos (πS) + A2 cos (2πS) , (57)

Now, the discussion continues with the Lagrangian functional of the bistable

system computed with expansion given by Eqn. (57). This functional is now

a function of the mode amplitudes A1 and A2. We set L(r) (A1, A2) the

Lagrangian functional associated with the model reduced to the first two

buckling modes using Eqn. (43).

4.3.2. Equilibrium and stability

The equilibrium configurations are defined as the solutions of

∂L(r) (A1, A2)

∂Aj

= 0, for j = 1, 2. (58)

The stability of the equilibria is examined by the Dirichlet theorem for poten-

tial system (Thompson and Hunt , 1973; Huseyin , 1986; Quoc Son , 1995),

that is, the 2 × 2 Hessian matrix of L(r) is

Hij (A1, A2) =
∂2L(r) (A1, A2)

∂Ai∂Aj

, for i, j = 1, 2. (59)
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If the matrix H is positive definite, i.e., if all the eigenvalues of H are positive,

the system is stable, because the Lagrangian functional is convex. If one or

more eigenvalues are negative the system is unstable, because the Lagrangian

functional is concave with respect to one or two directions determined by the

associated eigenspaces.

The Lagrangian functional of the system is a function of the amplitudes

A1 and A2 and P as well, the buckling force. The latter depends on the

equilibrium configuration for a given end-shortening. This dependency is

given by Eqn. (31) or Eqn. (32) which can be written as

X(1) = XB =

∫ 1

0

X ′(S)dS =

∫ 1

0

[1 − kP cos (θ(S))] cos (θ(S)) dS. (60)

where θ(S) is given by Eqn. (57). Eqn. (60) allows us to compute the buckling

force P as function of the amplitudes A1 and A2 for a given end-shortening.

Now, the Lagrangian functional can be plotted in the (A1, A2)-plane. Figure

15 shows the 3D graph of the Lagrangian functional as function of A1 and A2.

The graph exhibits an unstable equilibrium configuration for A1 = A2 = 0.

But, for A2 = 0 there exists two stable configurations for A1 = A10 �= 0,

where A10 is the amplitude of the first buckling mode with null actuating

force. It corresponds to the first buckling mode (upwards for A10 > 0 and

downwards otherwise) when the actuating force is not applied. The surface

possesses two saddle points for A1 = 0 and A2 �= 0 which means that the

Lagrangian functional is convex in the A2-direction while it is concave in

A1-direction as shown in Figure 15.

According to the study of the bistable response for actuating force as func-
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tion of the vertical position YC , we are able to parameterize the switching

path going from one stable position to the other one and vice versa in the

contourplot graph in the (A1, A2)-plane. Figure 16 shows such contourplot

where the closed curve marks the limit of the unstable region. The latter is

determined by examining the sign of the eigenvalues of the Hessian matrix

Eqn. (59). For each position YC while the bistable moves quasi-statically,

there exists an equilibrium corresponding to an unique actuating force as

examined in Section 4.2.2. Two kinds of numerical results are reported. The

first result deals with a central force actuation. The path (P1) is the result,

it is obtained by controlling the switching from the stable position (A10, 0) to

the other one (−A10, 0) for each value of the vertical position YC . The equi-

librium positions are computed leading to the solution (A1 (YC) , A2 (YC)).

The path (P1) starts using mainly a first buckling mode in the stable region

and it quickly enters the instability domain. The second buckling mode in-

creases at the cost of the first mode passing through the saddle point of the

domain.

A second result is presented - path (P2) - for non central force at 40% from

the left end (δ̂ = 0.4). In this situation, the beam begins to switch using a

non zero amount of the second buckling mode. The equilibrium path (P2)

enters the instability region passing through by the saddle points (0,±A20)

as the path (P1). The bistable beam follows the path (P1) or (P2) using

the control of the actuating force quasi-statically until the intersection point

with the instability region is reached. Beyond this point the bistable system

becomes unstable and jumps to the other stable position by making use of

the second buckling mode which is the less energetic mode as already pre-
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sented for the actuation force response. It is worthwhile noting that while

the bistable beam switching whatever the actuating force position the energy

barrier to be overtaken is the same. Nevertheless, a non-central actuation

allows to delay the bistable system entering the instability domain. Similar

instability phenomena can be met for shallow arches where the switching

process depends on the arch height (Vangbo , 1998; Qiu et al. , 2004; Cen

and Lin , 2005).

5. Comments and concluding remarks

The main objects of the proposed work are twofolds. The first goal is to

report a model for bistable buckled beam based on elastica theory including

extensibility. On using the complete model we next examine, in details, the

switching process of the bistable mechanism. The second goal deals with nu-

merical results among them the bistable response to localized actuating force

according to the application position on the beam and switching scenarios.

The present analysis based on an extensible elastic beam reveals interesting

buckling mode contributions to the snapping effect by applying a punctual

force and controlling the displacement of the vertical position of the actuating

force. The governing beam equations for large-displacement and finite-strain

hypotheses have been deduced from a correct variational formulation based

on the virtual work principle under the Euler-Bernoulli beam kinematics.

The most pertinent results describing the behavior of the bistable buckled

beam are obtained by using a numerical algorithm based on continuation

scheme and Newton-Raphson method. This apparently more or less simple
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bistable structure is rich enough to provide particularly interesting results :

• The role played by extensibility parameter k in the post-buckling regime

has been put in evidence for the bifurcation diagram analysis. It is in-

teresting to note that for small end-shortenings of the beam and in the

post-buckling regime, the beam extensibility becomes appreciable.

• Important results concern the response of the bistable system to the

action of a transversally localized force. For a given YC - the vertical

position of the actuating force - there exist several branches of solution

to the static problem. Nevertheless, only one solution is really admissi-

ble. The branch selection has been done using an energetic criterium,

the solution corresponding to the lowest energy is possible. Two kinds

of results have been obtained (i) for central actuation (δ̂ = 0.5) and (ii)

for shifted force actuation (δ̂ = 0.39). In each situation the response

of the bistable buckled beam is different according to the parameter k

(extensibility parameter) and the end-shortening ΔL. Especially, the

number of branches of solution increases while k is getting smaller and

ΔL increases as well.

• The numerical simulations are performed for the end-shortening ΔL

maintained fixed while the bistable switches, this means that the buck-

ling loading depends on the vertical position of the actuating force.

Accordingly, the relation between the buckling force and the position

YC has been computed for both situations central and shifted actua-

tions. The results are illustrated in Figures 6 and 9.

• In the framework of the reduced model (two degrees-of-freedom model),
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the transition from stable equilibrium position to the other one follows

equilibrium path passing through the unstable region of the bistable

energy. The switching scenarios involve both first and second buckling

modes. More precisely, the buckled beam starts switching using the

first buckling mode and very quickly the second mode increases at the

cost of the first mode. At this stage the switching process is largely

dominated by the second buckling mode. The process is then reversed

when the bistable buckled beam goes out of the unstable domain to

reach the other stable position.

• An optimal position of the actuating force has been placed in evidence.

For an actuation localized at about 39 % from the left or the right

of the beam we have the minimum actuating force. This result was

already pointed out by Cazottes et al. (Cazottes et al. , 2010), but on

using another approach. These results can be of relevant interest for

engineering applications such as micro-switches or MEMS.

A natural extension of the present work would be comparisons of the present

numerical results to experimental tests in order to validate the proposed

model based on the elastica beam theory. Experimental identifications of

the bistable buckled beam are in progress and will be proposed in future

works. Moreover, one of the most interesting studies would be the dynamical

response of the bistable system under time dependent excitations, the latter

extension will be also explored in forthcoming researches.
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Figure 1: Elastic beam simply supported : (a) the non loaded beam, (b) beam in its

buckled configuration with the actuating force.
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Figure 2: Reference configuration (underformed state) R0 and current configuration R
(deformed state) with the parameters of the beam configuration.
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Figure 3: Bifurcation diagram : the end-shortening ΔL v.s. the buckling force P (for

k = 1/5000, k = 1/20000 and k = 0). The inset shows the details around the critical force

and comparison to inextensible beam.
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Figure 4: Bifurcation diagram : the rotation amplitude θ0 as function of the buckling

force. Comparison to the inextensible elastica and comparison to the moderate rotation

approximation nearby the critical buckling force.
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Figure 5: Response of the bistable beam for central actuating force v.s. the vertical

position YC (for k = 1/2500 and ΔL = 0.03).
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Figure 6: The buckling force as function of the position YC in the case of central force

actuation. The lower branch is that of associated with the admissible solution (for k =

1/2500 and ΔL = 0.03).
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Figure 7: The total energy as function of the position YC in the case of central force

actuation. Two branches are present. The admissible solution corresponds to the lowest

energy (for k = 1/2500 and ΔL = 0.03).
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Figure 8: The influence of the actuating force position on the maximum of the applied

force (for k = 1/2500 and ΔL = 0.03).
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Figure 9: Graph for the shifted actuating force (at 39 %) as function of the its vertical

position YC (for k = 1/2500 and ΔL = 0.03). The graph possesses several branches of

solution to the static problem. Only the branches in solid line correspond to the admissible

solution while the one in dashed-line is for higher total energy.
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Figure 10: The buckling force as function of the position YC for a non-central actuation

(at 39 %). The lowest branch corresponds to the admissible solution (for k = 1/2500 and

ΔL = 0.03).
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Figure 11: The total energy as function of the position YC (non-central actuation at 39 %)

(for k = 1/2500 and ΔL = 0.03).
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Figure 12: Influence of the end-shortening of right end of the beam on the bistable buckled

beam response, actuating force v.s. the position YC (for central actuation δ̂ = 0.5, k =

1/2500) : (a) ΔL = 0.02, (b) ΔL = 0.03, (c) ΔL = 0.04 and (d) ΔL = 0.05.
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Figure 13: Influence of the extensibility parameter k on the bistable buckled beam re-

sponse, actuating force (in Newton) v.s. the position YC (for central actuation and

ΔL = 0.03) : (a) k = 1
20000 , (b) k = 1

5000 and (c) k = 1
2500 .
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Figure 14: The amplitudes of the first three buckling modes as function of the actuating

force vertical displacement (black : A1, red : A2, blue : A3) for k = 1
2500 , ΔL = 0.03 and

central actuation.
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Figure 15: The 3D plot of the beam Lagrangian functional in the (A1 − A2)-plane. The

graph displays (i) two stable equilibrium positions, (ii) one unstable equilibrium position

at (0, 0) and (iii) two saddle points.
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Figure 16: The contourplot of the bistable Lagrangian functional. The white closed curve

is the limit of the instability region. The red curve corresponds to the central actuation

and the blue curve is for shifted actuation at 39 %.
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