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a b s t r a c t 

New finite elastoplastic J 2 -flow equations are proposed for the purpose of explicitly simulating contin- 

uous transitions from plastic to pseudo-elastic effects of SMAs under multiple loading-unloading cycles. 

Novelties of such models are as follows: (i) New hardening effects are incorporated by introducing in- 

terplay between the changing of the yield surface radius and the moving of the yield surface center; 

(ii) extensive experimental data may be accurately simulated for any given number of loading-unloading 

cycles; (iii) the complicated task for simulating extensive data may be accomplished by independently fit- 

ting certain single-variable functions; and (iv) such single-variable functions may be presented in explicit 

forms for the purpose of automatically, accurately fitting extensive data, thus bypassing uncertainties and 

undue complexities usually involved in iteratively solving a coupled system of nonlinear constitutive rate 

equations toward identifying numerous unknown parameters. 

Numerical examples for model validation are presented and in good agreement with stress-strain data up 

to 20 loading-unloading cycles given in literature. 

© 2019 Published by Elsevier Ltd. 
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. Introduction 

Because of their unique properties such as the shape memory

ffect and the pseudo-elastic effect, SMAs (shape memory alloys)

re widely used in the fields of aerospace, automatic control and

iomedical engineering, etc. For their effective applications it is of

uch significance to establish constitutive models for SMAs with

uch unique effects. To date numerous results have been obtained

rom various standpoints, as may be seen in the recent surveys

 Patoor et al., 2006; Lagoudas et al., 2006; Lagoudas, 2008 ). 

SMAs exhibit rich yet complicated deformation effects under

ifferent conditions. The pseudo-elastic effect with strain recov-

ry and the plastic effect with permanent set may be succes-

ively induced at different deformation stages. Under cyclic load-

ng conditions, transitions between these effects may be observed,

s shown, e.g., in Shaw and Kyriakides (1995) and in Zaki and

oumni (2007) . 
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In the past decades, constitutive models for plastic and pseudo-

lastic effects of SMAs from various standpoints have been pro-

osed under various conditions, especially under cyclic load-

ngs. Attention is usually directed to the pseudo-elastic effect.

esults prior to 2005 may be found in the foregoing survey

rticles. Certain recent studies after 2005 in phenomenologi-

al modeling of SMA pseudo-elasticity may be found, e.g., in

anico and Brinson (2007) , Luig and Bruhns (2008) , Hartl and

agoudas (2009) , Lagoudas et al. (2012) , Baldelli et al. (2015) ,

ong et al. (2016) , Cui et al. (2017) , Hartl et al. (2018) and many

thers. 

Representatives for results related to cyclic loading cases are

riefly described as follows. A phenomenological model with three

nternal variables was suggested in Tanaka et al. (1995) to simu-

ate the stress-strain and strain-temperature hysteresis loops for

he cyclic uniaxial deformation of SMA samples. A generic Gibbs

ree energy for polycrystalline SMAs in the presence of plas-

ic strain was presented in Bo and Lagoudas (1999a) based on

he micro-mechanical representative volume element. This the-

ry was further used and developed in modeling several re-

pects of SMA behaviors, including some specific cases of thermally
An explicit and accurate approach toward simulating plastic-to- 

ing cycles, International Journal of Solids and Structures, https: 
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Fig. 1. Plastic-to-pseudoelastic transition of SMA sample under cyclic loading and 

unloading conditions. 
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induced phase transformation under varying magnitude of ap-

plied load ( Lagoudas and Bo, 1999 ), the evolution of plastic

strain etc. ( Bo and Lagoudas, 1999b ), as well as the minor hys-

teresis loops under cyclic loading ( Bo and Lagoudas, 1999c ). In

Abeyaratne and Kim (1997) , one more internal variable was in-

troduced to study a variety of phenomena under cyclic load-

ings. On the other hand, three new internal variables were in-

troduced in Zaki and Moumni (2007) to model SMA stress-strain

and strain-temperature behaviors under cyclic loadings. Moreover,

a super-elastic model for shape memory alloys was established

in Saint-Sulpice et al. (2009) to describe the evolution of per-

manent inelastic strain in cyclic processes. Most recently, buck-

ling and recovery of NiTi tubes under axial compression has

been studied in Jiang et al. (2016a,b) . Also, recent results in the

respect of SMA plasticity and transformation may be found in

Auricchio et al. (2007) , Hartl et al. (2010) , Morin et al. (2011a,b) ,

Zhou (2012) , Ashrafi et al. (2016) and many others. 

Usually, plastic effects and pseudo-elastic effects need be sep-

arately characterized by introducing a number of additional in-

ternal variables related to micro-mechanisms, such as phase frac-

tions, detwinning and martensite re-orientation etc. For these pur-

poses several class of models should be introduced either from the

micro-structural standpoint or from the phenomenological stand-

point. Micromechanism-based models are known to be predictive

while the identification of their parameters might be challenging.

On the other hand, purely phenomenological models do not have

this prediction capability. As a rule, a number of relevant criteria

for phase changes should be assumed on an ad hoc basis. This sit-

uation would further be complicated by the following fact, viz., ex-

tensive experimental data need be fitted in simulating continuous

plastic-to-pseudoelastic transitions under multiple loading cycles.

Uncertainties and undue complexities would be involved in identi-

fying many unknown parameters, as will be explained in Section 2 .

This may be the case even for a single loading und unloading cycle.

As such, it does not appear that complete and accurate simulations

of the foregoing transitions under multiple loading cycles could be

achieved based on existing approaches. 

The above issue will be addressed in this article. Extending the

novel, direct approach proposed in a series of most recent stud-

ies ( Xiao, 2013; 2014a; Wang et al., 2015; Xiao et al., 2016 ), we

are going to propose new finite elastoplastic J 2 −flow models for

the purpose of simultaneously simulating both plastic and pseudo-

elastic effects of SMAs. With this new model, a unified and explicit

approach may be established toward accurately simulating contin-

uous transitions from plastic to pseudo-elastic effects under any

given number of loading and unloading cycles. Below are the main

novelties of this study: 

(i) New hardening effects are characterized by introducing in-

teraction between the changing of the yield surface radius

and the moving of the yield surface center; 

(ii) Extensive experimental data may be accurately simulated for

any given number of loading and unloading cycles; 

(iii) The complicated task for simulating such extensive data may

be accomplished by independently fitting certain single-

variable functions; and 

(iv) Such single-variable functions may be presented in explicit

forms for the purpose of automatically, accurately fitting the

foregoing extensive data, thus bypassing uncertainties and

undue complexities usually involved in treating nonlinear

constitutive rate equations toward identifying numerous un-

known parameters. 

Numerical examples for model validation will be presented and

compared with test data in literature. 

The main content of this article is arranged as follows. In

Section 2 , the main features of continuous transitions from plas-
Please cite this article as: L. Zhan, X.-M. Wang and S.-Y. Wang et al., 
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ic to pseudo-elastic effects will be described. In Section 3 , a fi-

ite strain elastoplastic J 2 −flow model with new hardening effects

ill be proposed and then this model will be shown to be ther-

odynamically consistent by presenting both the Helmholtz free

nergy function and the specific entropy function in explicit forms.

n Section 4 , responses of a uniaxial SMA sample under cyclic load-

ng conditions will be taken into consideration and suitable single-

ariable functions are introduced to represent stress-strain curves

t loading and unloading. In Section 5 , multi-axial hardening mod-

li will be presented in explicit forms in terms of the introduced

ingle-variable functions. In Section 6 , numerical examples are pre-

ented and compared with test data for the purpose of model vali-

ation. Finally, in Section 7 , the main novelties of the present study

ill be summarized and remarks are given for future development.

. Continuous transitions from plastic to pseudo-elastic effects 

In this section, continuous transitions of SMA samples from

lastic to pseudo-elastic effects will be described by means of

acroscopic stress-strain responses under multiple loading and

nloading cycles. In this respect, reference may be made to,

.g., Auricchio et al. (2007) , Hartl and Lagoudas (2009) , and

shrafi et al. (2016) for discussions and results concerning plas-

icity and martensitic transformation. 

Consider a uniaxial SMA sample subjected to N successive

oading-unloading cycles. At the s th cycle, this sample is loaded

rom zero to a given stress level and then unloaded to zero stress

nd, at the next cycle, i.e. the (s + 1) th cycle, it is loaded from zero

o another stress level and then again unloaded to zero stress. At

he first cycle, an appreciable irrecoverable strain is induced. The

rrecoverable strain induced in this cycling process goes monoton-

cally down and becomes actually vanishing up to the N th cycle.

uring each cycle, a pair of stress-strain curves may be generated

t loading and unloading, separately, and a gradual transition from

lastic to pseudo-elastic effects may be induced from the 1st to

he N th cycle, as schematically shown in Fig. 1 . 

Suppose that adequate stress-strain data are obtained from ex-

erimental tests for each loading and unloading cycle. Then, N

ets of such stress-strain data are available for the N loading

nd unloading cycles at issue, which correspond with the N pairs

f stress-strain curves in Fig. 1 . The objective for simulating the

lastic-to-pseudoelastic transition as shown in Fig. 1 is as follows: 

Establish a suitable system of constitutive equations for SMAs,

o that all the uniaxial stress-strain responses derived from this
An explicit and accurate approach toward simulating plastic-to- 

ing cycles, International Journal of Solids and Structures, https: 
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onstitutive system for the N loading-unloading cycles at issue match

s closely as possible any given N sets of stress-strain data for these

oading-unloading cycles. In the meantime, such constitutive equations

hould be established for general multi-axial deformations and hence

apable of predicting multi-axial responses. 

It might not be simple to arrive at the above objective under

ven a single cycle, let alone multiple cycles. Usually, simulation

esults at initial studies would be only roughly in agreement with

est data. The main complexity lies in the fact that usually a num-

er of unknown parameters should be introduced and have to be

dentified iteratively by means of trial-and-error procedures. This

eans that, for each possible set of trial values of the unknown pa-

ameters introduced, a coupled system of nonlinear rate type con-

titutive equations proposed should be solved toward obtaining all

he uniaxial stress-strain responses for the N loading and unload-

ng cycles. Such procedures should be carried out until a reason-

ble fit is attained. 

Three issues would be left outstanding in the above procedures.

n fact, there would be no certainties in arriving at a reasonable fit

or given sets of data and, in particular, in ensuring accurate agree-

ent. In fact, it may be expected that undue complexities would

e involved in treating a coupled system of nonlinear constitutive

ate equations with a number of unknown parameters. 

In the subsequent development it will be shown that new fi-

ite strain elastoplastic J 2 −flow equations may be established to-

ard explicitly and accurately simulating gradual transitions from

lastic to pseudo-elastic effects of SMAs under any given number

f loading and unloading cycles. Toward this goal, extensive stress-

train data may be accurately, automatically simulated by simply

roviding certain single-variable functions fitting these data, thus

ypassing the complicated issues in the foregoing. 

. New J 2 −flow model with coupled hardening effects 

In most recent studies, a new and direct approach has been

roposed toward modeling deformation effects of SMAs, including

he pseudo-elastic effects ( Xiao et al., 2010a; 2010b; Xiao, 2013;

014a; Wang et al., 2015 ) and the plastic effect etc. ( Xiao et al.,

016 ). It has been demonstrated that all such effects may be simu-

ated based simply on new elastoplastic J 2 −flow models with non-

inear combined hardening. The central idea is to find out the

ardening moduli incorporated in such new models, so that all the

eformation effects of SMAs may be automatically, accurately sim-

lated. In these recent works, results have been presented for cases

f single pseudo-elastic hysteresis loops. As indicated before, here

his new approach will further be developed for the purpose of

imulating continuous transitions from plastic to pseudo-elastic ef-

ects under multiple loading and loading cycles. To this end, a new

lastoplastic J 2 −flow model should be proposed by developing the

ost recent models in the foregoing. 

We direct attention to the self-consistent Eulerian rate formula-

ion of finite elastoplastic deformations, as elaborated in Xiao et al.

20 0 0a, 20 0 0b, 20 06, 20 07) . This formulation is based on the ad-

itive separation of stretching D into the elastic part D 

e and the

lastic part D 

p , viz., 

 = D 

e + D 

p 
. (1) 

he constitutive equations governing the above two parts need be

resented, as will be shown below, separately. 

.1. Self-consistent elastic rate equation 

The elastic part D 

e is governed by the following objective rate

quation: 

D 

e = 

∂ 2 W 

∂ τ2 : 
o 
τ , 

W = 

1 
4 G 

tr τ2 − 1 
4 G 

ν
1+ ν ( tr τ) 2 . 

(2) 
Please cite this article as: L. Zhan, X.-M. Wang and S.-Y. Wang et al., 
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n the above, the τ = J σ is the Kirchhoff stress with σ and J the

rue (Cauchy) stress and the volumetric ratio (the Jacobian), the

 is the quadratic complementary elastic potential with the Pois- 

on ratio ν and the shear modulus G , and the 
o 
τ is the co-rotational

ogarithmic rate of the Kirchhoff stress τ ( Xiao et al., 1997a; 1997b;

997c ). Generally, the logarithmic rate of a 2nd-order tensor S , de-

oted 

o 

S , is defined as follows ( Xiao et al., 1997a ): 

o 

 ≡ ˙ S + S · � − � · S , 

here � is the logarithmic spin given in Xiao et al. (1997a, 1997b,

997c) . Throughout, ˙ Z represents the material time derivative of

ime-varying quantity Z in a deforming body. 

The elastic rate Eq. (2) is self-consistent in the sense that, prior

o the yielding, i.e., D 

p = O , it is exactly integrable to really deliver

 hyper-elastic equation. Details may be found in the foregoing ref-

rences. 

.2. Normality flow rule 

Next, the plastic part D 

p is governed by the normality flow rule

elow: 

 

p = ξ
ˆ f 

u 

∂ f 

∂ τ
. (3) 

n the above, the ξ is the plastic indicator taking the values 1 and

 at the loading case and the unloading case, as given below (cf.,

ruhns et al., 2003 and Xiao et al., 2007 ): 

= 

{
1 for f = 0 , ˆ f /u ≥ 0 , 

0 for f < 0 or [ f = 0 , ˆ f /u ≤ 0] , 
(4) 

nd, in addition, the u, f and 

ˆ f are the plastic modulus, the yield

unction of von Mises type and the loading function. The first will

e given slightly later, and the latter two are of the form: 

f = 

1 
2 

tr ( ̃  τ − α) 2 − 1 
3 

r 2 , 

ˆ f = 

∂ f 
∂ τ : 

o 
τ . 

(5) 

n the above, the ˜ τ is the deviatoric part of the Kirchhoff stress

, the α is the back stress, and the r is the yield limit. As usu-

lly known, the r specifies the radius of the yield surface and de-

cribes the isotropic hardening effect, while the back stress α pre-

cribes the yield surface center and characterizes the anisotropic

kinematic) hardening effect. Generally, both the yield surface ra-

ius and the yield surface center are constantly changing with de-

elopment of plastic flow, as shown below. 

It has been demonstrated ( Bruhns et al., 2005 ) that the nor-

ality flow rule Eq. (3) is derivable from a weakened form of

lyushin’s postulate, in which the factor ˆ f /u is obtained from the

onsistency condition of plastic flow (cf., Bruhns et al., 2003 ), i.e.,
˙ f , as given in Eq. (5) 2 and Eq. (10) later on. 

.3. Coupled hardening effects 

Instead of the usual plastic work, for effective characterization

f hardening effects it may be essential to use the effective plastic

ork ϑ given below (cf., e.g., Xiao, 2014b; Xiao et al., 2016 ) in the

hole development: 

˙ 
 = ( ̃  τ − α) : D 

p 
. (6) 

oward simulating the pseudo-elastic effect, it is found ( Xiao, 2013;

014a; Wang et al., 2015; Xiao et al., 2016 ) that the yield limit r

hould rely on both the effective plastic work ϑ and the magnitude

f the back stress ζ , namely, 

r = r(ϑ, ζ ) , 

ζ = 

√ 

1 . 5 tr α2 . 
(7) 
An explicit and accurate approach toward simulating plastic-to- 

ing cycles, International Journal of Solids and Structures, https: 
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The representation above may be new in two respects. On the

one hand, the effective plastic work ϑ, instead of the usual plas-

tic work, is used. On the other hand, with dependence of the yield

surface radius r (cf., Eq. (6) ) on the back stress α, coupled harden-

ing effects are introduced with interplay between the changing of

the yield surface radius and the moving of the yield surface cen-

ter. It appears that such coupling effects would be absent in usual

representations for combined hardening effects. 

Moreover, the traceless back stress α is governed by the follow-

ing new nonlinear anisotropic hardening rule ( Xiao, 2013; 2014a;

2014b; Wang et al., 2015; Xiao et al., 2016 ): 

o 
α = c D 

p − ω 

˙ ϑ α , (8)

with the Prager modulus c and the hysteresis modulus ω below: 

c = c(ϑ, ζ ) , ω = ω(ϑ, ̃  τ, α) . (9)

From certain consistency requirements it may be derived that

both the 
o 
τ in Eq. (2) and the 

o 
α in Eq. (8) should be the corotational

logarithmic rate ( Xiao et al., 1997a; 1997b; 1997c ). Details in this

respect may be found in Xiao et al. (20 0 0a, 20 06, 20 07) . 

It may be seen that the evolution equation Eq. (8) with

Eqs. (5) and (9) is a substantial extension of the widely used

Armstrong-Frederick equation. Here, again the effective plastic

work ϑ (cf., Eq. (6) ), instead of the usual plastic work (cf.,

Eq. (16) given later on), comes into play and, perhaps more es-

sentially, both the Prager modulus c and the hysteresis modulus ω
therein are no longer constant (cf., Eq. (9) ) but changing with de-

velopment of plastic flow. 

Eqs. (7)–(9) with the effective plastic work ϑ (cf., Eq. (6) ) in-

troduce new hardening effects with interplay between the yield

surface radius and the yield surface center. Here, use of the ef-

fective plastic work ϑ instead of the usual plastic work κ (cf.,

Eq. (16) later on) is essential. In fact, the ϑ is monotonically in-

creasing with development of any plastic flow and has direct rel-

evance to the thermodynamic intrinsic dissipation (cf., Eqs. (17)–

(18) below), whereas this would not be the case for the κ . 

3.4. The plastic modulus 

For a general form of the yield function f = f ( τ, α, ϑ) , the

plastic modulus u in Eq. (3) is given by (cf., e.g., Xiao, 2014a; Xiao,

2014b ) 

u = − ∂ f 

∂ϑ 

∂ f 

∂ τ
: ( ̃  τ − α) − ∂ f 

∂ϑ 

: H : 
∂ f 

∂ τ
, 

where 

H = cI − ( τ − α) � α

with I the 4th-order identity tensor. Hence, for the von Mises yield

function f in Eq. (5) 1 , the plastic modulus u is of the form (cf.,

Xiao, 2014a ): 

u = 

2 

3 

c r 2 + 

4 

9 

r 3 r ′ − 4 

9 

ω r 3 ˜ r ′ ζ + 

4 

9 

ζ−1 r 2 	(1 . 5 c ̃ r ′ − ζωr) . (10)

Here and henceforth, the following notations are introduced: {
r ′ = 

∂ r 
∂ ϑ 

, ˜ r ′ = 

∂r 
∂ζ

, 

	 = 

3 
2 r 

( ̃  τ − α) : α . 
(11)

3.5. Thermodynamic consistency 

There emerge pronounced dissipation effects associated with

deformation behaviors of SMAs. From a rigorous standpoint based

upon universal thermodynamic principles, the second law in ther-

modynamics stipulates restrictions for realistic thermo-mechanical

processes experienced by materials. It may be essential that a con-

stitutive model simulating SMA deformation behaviors should be
Please cite this article as: L. Zhan, X.-M. Wang and S.-Y. Wang et al., 
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hermodynamically consistent, namely, should fulfill the restric-

ions stipulated by the second law, toward ensuring its physical

eality and reasonableness. With this in mind, the thermodynamic

onsistency of the new model proposed need be examined, as will

e done below. 

Toward the above goal, we present the specific entropy func-

ion η and the free energy function � in explicit forms and then

emonstrate that these forms identically fulfill the second law

ith non-negative intrinsic dissipation, viz., the Clausius-Duhem

nequality (cf., e.g., Xiao et al., 2007 ) below: 

: D − ˙ � − η ˙ T − J 

T 
q · ∇ T ≥ 0 (12)

or any given forms of the constitutive quantities incorporated in

he proposed model. In the above, T > 0 is the absolute tempera-

ure, q is the heat flux vector and J is the deformation Jacobian

volumetric ratio). 

Introducing a monotonically increasing quantity � = �(ϑ, T ) by

(0 , T ) = 0 , 
∂�

∂ϑ 

> 0 , (13)

e construct the specific entropy function η and the Helmholtz

ree energy function � in explicit forms below: 

= −∂�

∂T 
+ 

∂ 2 W 

∂ τ∂T 
: τ , (14)

� = ψ(T ) − �(ϑ, T ) + κ + W , 

W = 

∂ W 

∂ τ : τ − W . 
(15)

n the above, ψ( T ) is a temperature-dependent quantity represent-

ng the specific heat capacity, and the W is the complementary

lastic potential given in Eq. (2) . In a broad sense, here each elas-

ic constant is regarded to rely also on the temperature T . Besides,

he κ is the usual plastic work specified by 

˙ = τ : D 

p 
. (16)

Hence, the thermodynamic intrinsic dissipation 

 = τ : D − ˙ � − η ˙ T (17)

s given by 

 = 

∂�

∂ϑ 

˙ ϑ ≥ 0 (18)

ith Eq. (13) . Note here that the changing rate of the effective

lastic work ϑ is always non-negative, namely, ˙ ϑ ≥ 0 . In fact, from

qs. (3)–(6) it may be deduced that 

˙ 
 = 

{
2 
3 

r 2 
ˆ f 
u 

≥ 0 for the loading case , 
0 for the unloading case . 

ince the factor ˆ f /u should be non-negative as indicated in

q. (4) (cf., e.g., Xiao et al., 2007 ). 

Hence, from the above and the fact that the heat flux q should

e such that −q · ∇T > 0 , we deduce that the inequality Eq. (12) is

dentically fulfilled. Thus, it may be concluded that the proposed

odel is thermodynamically consistent for any given forms of the

ardening quantities r, c and ω. 

It is worthwhile to point out that the free energy given in

q. (15) represents a broad case with no reference to the usual

ssumption concerning the recovered energy and the dissipated

nergy, etc. In fact, here the treatment of the Clausius-Duhem in-

quality is based on a new, general approach proposed in the re-

ent development ( Xiao et al., 2007; Xiao, 2014a; Xiao, 2014b ). 
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Fig. 2. Loading curve P 0 P 1 P 2 and unloading curve P 2 Q 1 Q 2 of a SMA sample gener- 

ated from a loading and unloading cycle, with points P 0 and Q 2 on the strain axis 

for the start of loading and the end of unloading, points P 1 and Q 1 for the start of 

yielding, point P 2 for the start of unloading, and the intersecting point T below the 

strain axis. 
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.6. Main procedures for explicit approach 

The new model proposed is characterized by three hardening

uantities, including the yield limit r (cf., Eq. (7) ), the Prager mod-

lus c and the hysteresis modulus ω (cf., Eq. (9) ). Forms of these

uantities as functions of the effective plastic work and other vari-

bles are to be found. It has been demonstrated in a series of

tudies ( Xiao, 2013; 2014a; Wang et al., 2015; Xiao et al., 2016 )

hat explicit expressions for the three quantities r, c and ω may be

resented for the purpose of simulating pseudo-elastic effects and

lastic effects for single loading and unloading cycles. 

In the subsequent development, it will be further demonstrated

hat explicit expressions for the three hardening quantities r, c and

 may be presented for the purpose of simulating gradual transi-

ion from plastic to pseudoelastic effects under any given number

f loading and unloading cycles as shown in Fig. 1 . 

A substantially new approach need be introduced toward arriv-

ng at the above objective in dealing with extensive data generated

rom multiple loading and unloading cycles. The main procedures

f this new approach are as follows: 

(i) Introduce N pairs of single-variable functions, called shape

functions, which represent N pairs of stress-strain curves for

N loading-unloading cycles; 

(ii) Supply explicit expressions for the above shape functions

which accurately fit stress-strain data given for the N

loading-unloading cycles at issue; 

(iii) Obtain explicit expressions for r, c and ω in terms of the

above shape functions, so that the response of the proposed

model under the N loading and unloading cycles at issue can

exactly reproduce the N pairs of stress-strain curves repre-

sented just by the above shape functions; and 

(iv) Extend the above expressions from uniaxial to general multi-

axial cases, so that the established model is ready for treat-

ing multi-axial responses. 

By means of the above procedures, a unified and explicit ap-

roach may be established for the purpose of accurately simulating

ontinuous transitions from plastic to pseudo-elastic effects under

ultiple loading-unloading cycles and, in the meantime, for the

urpose of treating multi-axial response. Details for the above pro-

edures will be given in the next two sections, separately. 

. Shape functions for loading and unloading curves 

The first two procedures indicated in Section 3.6 will be ex-

lained in this section. The main issue here is to introduce a pair

f single-variable functions (shape functions) representing a pair of

tress-strain curves of a SMA sample in a loading-unloading cycle.

t does not appear that this issue may be trivial, since such shape

unctions should be introduced in such a manner that explicit re-

ults in the last two procedure in Section 3.6 can be obtained. 

As schematically shown in Fig. 2 , a loading curve P 0 P 1 P 2 with a

inear part P 0 P 1 and an unloading curve P 2 Q 1 Q 2 with a linear part

 2 Q 1 are generated in a loading and unloading cycle. On this pair

f loading and unloading curves locate five particular points, in-

luding the starting point of loading, P 0 , the two initial yield points

 1 and Q 1 at loading and unloading, the starting point of unload-

ng, P 2 , and the finishing point of unloading, Q 2 . The axial Kirchhoff

tress, the axial Hencky (logarithmic) strain, and the effective plas-

ic work at these five points in the n th cycle are designated by

 0 (0 , h 
p 
n −1 

, ϑ n ) , P 1 ( r 0 , h 0 n , ϑn ), P 2 ( τ
∗
n , h 

∗
n , ϑ 

∗
n ) , Q 1 ( τ

∗
n , h 

∗
n , ϑ 

∗
n ) , and

 2 (0 , h 
p 
n , ϑ 

p 
n ) , respectively. Moreover, the slopes of the two linear

arts P 0 P 1 and P 2 Q 1 are given by the Young’s modulus E . 

The following relationships hold: 

ϑ n = ϑ 

p 
n −1 

, 

ϑ 

p 
0 

= 0 , 
(19) 
Please cite this article as: L. Zhan, X.-M. Wang and S.-Y. Wang et al., 
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nd 

h 0 n = h 

p 
n −1 

+ 

˜ E r 0 , 

h 

p 
0 

= 0 . 
(20) 

ere and henceforth, 

˜ 
 = E −1 

ith Young’s modulus E = 2 G (1 + ν) . 

A departure from the unloading behavior of usual metals is

hown in Fig. 2 . In fact, for a SMA sample, only the linear part

 2 Q 1 is elastic and reverse yielding emerges as from point Q 1 in

n unloading process of removing the stress, whereas, for a usual

etal sample, the entire unloading process is elastic without yield-

ng. Details may be found later on in Section 5.1 and in Xiao et al.

2010a,b) and Xiao (2013, 2014a) . 

Stress-strain data from experimental tests should be given for

he pair of curves in Fig. 2 . Whenever test data for these two

urves are available, it is a straightforward matter to reproduce

hese curves by means of two single-variable functions. Usually,

his may be done by presenting the axial stress as functions of the

xial strain. For our purpose, however, these two curves should be

epresented by other types of functions, as presented below. 

In what follows, h and τ are used to denote the axial Hencky

train and the axial Kirchhoff stress at a generic point on the load-

ng curve, while h and τ to designate the axial Hencky strain and

he axial Kirchhoff stress at a generic point on the unloading curve.

.1. Shape functions for loading curves 

For the n th cycle, the stress-strain curve at loading is repre-

ented by two strain-stress functions. For the loading curve P 0 P 1 P 2 
n Fig. 2 , the linear part P 0 P 1 prior to yielding is represented by 

h = 

˜ E τ + h 

p 
n −1 

, 

0 ≤ τ ≤ r 0 , 
(21) 

nd the plastic part P 1 P 2 after yielding by 

h = p n ( ̄τ ) , τ ≥ r 0 , 

p n (r 0 ) = h 

p 
n −1 

+ 

˜ E r 0 . 
(22) 
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4.2. Shape functions for unloading curves 

Next, the linear part P 2 Q 1 in Fig. 2 is represented by {
h = h 

∗
n + 

˜ E 
(
τ − τ ∗

n 

)
, 

τ ∗
n ≤ τ ≤ τ ∗

n , 
(23)

and the curve Q 1 Q 2 T by {
h = q n ( τ ) = p n (b n τ + μ0 n ) − p n (μ0 n ) + 

˜ E (1 − b n ) τ + h 

p 
n , 

0 ≤ τ ≤ τ ∗
n . 

(24)

In the above, 0 ≤ b n ≤ 1 is a dimensionless parameter, and μ0 n is

the axial stress at point S (cf., Fig. 2 ) and will be determined later

on. 

Given a shape function p n ( τ ) (cf., Eq. (22) ) specifying a load-

ing curve P 1 P 2 in Fig. 2 , the shape function q n ( τ ) given in

Eq. (24) uniquely prescribes an unloading curve consisting of two

parts, namely, the curve Q 1 Q 2 and an extended part from point Q 2 

to the intersecting point T below the strain axis in Fig. 2 . It should

be noted that, via an unloading procedure producing an elastic lin-

ear part, each point on the loading curve P 1 P 2 is directly associated

with a point on the two-part unloading curve just mentioned. For

instance, ( P 1 , T ), ( S, Q 2 ) and ( P 2 , Q 1 ) are three such pairs of points.

The stresses τ and τ at each such pair of points should be related

by the yield conditions and therefore the relationship below may

be derived (cf., Xiao, 2014a and Xiao et al., 2016 ): 

τ = b n τ + μ0 n . 

Hence, the unloading curve Q 1 Q 2 T is generated by moving each

point at the loading curve P 1 P 2 to a new point according to the

above linear relationship. For b n = 1 , the former is simply gener-

ated by a translation of the latter and this particular case has been

treated in Xiao (2013) . The general case with b n 	 = 1 has been stud-

ied in Xiao (2014a) . 

4.3. Shape functions accurately fitting data 

Forms of the single-variable functions p n ( τ ) and q n ( τ ) in

Eqs. (22) and (24) , i.e., the shape functions for N pairs of stress-

strain curves, may be chosen to accurately fit test data given for

N loading and unloading cycles indicated in Section 2 . In what

follows, we are going to present an explicit expression for p n ( τ )

which can automatically, accurately fit any given data set for the

loading case. With this expression, an explicit expression for q n ( τ )

is directly available, as given in Eq. (24) . 

The shape function h = p( τ ) for the loading curve may be given

by means of a usual interpolating polynomial, which precisely fits

a given set of stress-strain data below: 

( τ r , h r ) , r = 0 , 1 , · · · , S, 

for the loading curve P 0 P 1 P 2 in Fig. 2 . However, an interpolating

polynomial may be unsatisfactory, since the Runge phenomenon of

oscillatory nature may emerge at the end points. Spline functions

over a number of subintervals may be given piecewise and advan-

tageous but could not present a unified, smooth expression over

the whole interval. 

Toward bypassing the above issue, here a new approach is sug-

gested to combine any given number of piecewise linear splines

over a number of subintervals into a unified and smooth function

over the entire interval. Such a smooth shape function in unified

form is given below: { 

h = p n ( τ ) = 

τ
E 
φ0 ( τ ) + 

∑ S 
r=1 φr ( τ ) 

[
h r−1 + A r ( τ − τ r−1 ) 

]
, 

A r = 

h r −h r−1 

τ r −τ r−1 
, r = 1 , · · · , S, . 

(25)
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n the above, the φr ( τ ) are S smooth functions of localized nature

nd given by 
 

 

 

 

 

 

 

 

 

φ0 ( τ ) = 

1 
2 

[
tanh λ0 

(
τ
r 0 

+ 1 

)
− tanh λ0 

(
τ
r 0 

− 1 

)]
, 

φS ( τ ) = 

1 
2 

[
tanh λ0 

(
τ
r 0 

− τ S−1 

r 0 

)
+ 1 

]
, 

φr ( τ ) = 

1 
2 

[
tanh λ0 

(
τ
r 0 

− τ r−1 

r 0 

)
− tanh λ0 

(
τ
r 0 

− τ r 

r 0 

)]
, 

r = 1 , · · · , S − 1 . 

(26)

In the above, λ0 = 10 r 0 is a large non-dimensionalized constant

nd, besides, the initial values ( τ 0 , h 0 ) at r = 0 and the end values

( τ S , h S ) at r = S are given by (r 0 , h 
p 
n −1 

+ r 0 /E) and ( τ ∗
n , h 

∗
n ) , respec-

ively. 

Each function φr above actually takes the constant value 1

ithin the interval [ τ r−1 , τ r ) and goes rapidly down to vanish out-

ide the just mentioned interval. As such, the new shape function

iven in Eqs. (24)–(26) not only retains all the features of the usual

iecewise linear splines over the S subintervals, but also supplies a

nified and smooth expression over the entire interval. In particu-

ar, it can automatically, accurately fit any given set of stress-strain

ata for the loading curve P 1 P 2 in Fig. 2 , viz., 

p n ( τ r ) = h r , r = 0 , 1 , 2 , · · · , S. 

Moreover, each shape function q n ( τ ) for each unloading curve

 1 Q 2 in Fig. 2 is given by Eq. (24) with two parameters b n and

0 n . Since the loading curve P 1 P 2 intersects the elastic line Q 2 S at

oint S , we infer 

p n (μ0 n ) = 

˜ E μ0 n + h 

p 
n , 

his gives rise to 
 

μ0 n = 

h p n −h m −1 + A m τm −1 

A m − ˜ E 
, 

h m −1 − ˜ E τ m −1 ≤ h 

p 
n ≤ h m 

− ˜ E τ m 

. 
(27)

n the above, ˜ E is given by the expression immediately following

q. (20) . Note here that the second expression in Eq. (27) deter-

ines the positive integer m . 

.4. Remarks on the unloading shape function 

It follows from the above and Eq. (24) that only a single param-

ter, i.e., b n , is left to be identified in fitting the test data for each

oading and unloading cycle, as will be shown in Section 6 . How-

ver, it should be pointed out that the form of the unloading shape

unction q n ( τ ), given in Eq. (24) , is obtained by simply replacing

he variable τ in the loading function p( τ ) for the curve P 1 P 2 with

 suitable linear transformation of τ , as explained at the last para-

raph of Section 4.2 . Moreover, it should be noted that the elastic

inear part P 2 Q 1 specified by Eq. (23) need not exactly fit the test

ata at the beginning of the unloading, as will be seen in Fig. 4 (a)–

d) in Section 6 . Further remarks in these respects will be given in

ection 7 . 

The parameter b n may be determined by a direct procedure. In

act, let ζ n and ζ n be the slopes of the two curves P 1 P 2 and Q 1 Q 2 

t points P 2 and Q 1 , respectively. Then, the following relationship

ay be derived: 

 n = 

ζ−1 

n 
− E −1 

ζ
−1 

n − E −1 

. (28)

or the particular case when P 1 P 2 and Q 1 Q 2 are parallel to each

ther, we have ζ n = ζ
n 

and hence b n = 1 , which has been treated

n Xiao (2013) . 

For each of any N loading-unloading cycles as shown in Fig. 1 ,

he shape functions given in Eqs. (21) and (25)–(26) exactly fit the

oading data in a direct sense, and then the shape functions given

n Eqs. (23) and (24) are used to fit the unloading data with the
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arameter b n prescribed by Eq. (28) . These procedures are explicit

n the sense that they are carried out independently for each of

he N cycles at issue. 

. Hardening quantities in explicit forms 

The last two procedures in Section 3.6 will be addressed in this

ection. To this end, we are going to present explicit expressions

or the three hardening quantities c, ω and r in terms of the shape

unctions introduced in the last section, so that any given pairs

f stress-strain curves indicated in Section 2 may be automati-

ally reproduced as the predictions of the proposed model with

hese quantities presented. In doing so, we shall first obtain sep-

rate expressions for the three hardening quantities for the N cy-

les, namely, such expressions will be derived for the N subranges,

 ϑ n , ϑ n +1 ] with n = 1 , 2 , · · · , N, and, then, unified and smooth ex-

ressions over the whole range will be presented by combining the

 expressions over the N subranges. The main procedures in deriv-

ng the former are the same as those in a most recent study ( Xiao,

014a; Xiao et al., 2016 ). In what follows the main results will be

irectly given and details in deriving them are omitted and may be

ound in these references. 

.1. Reverse plastic flow at unloading 

From a direct standpoint based on the elastoplastic deforma-

ion behavior, in this study a novel idea is introduced to model

he complicated responses of a SMA sample under multiple loading

nd unloading cycles. As is well known for usual metals, no plastic

ow will be induced in an unloading process of removing a tensile

oad, while a reverse yield point will emerge under a compres-

ive load after unloading. The latter is related to the anisotropic

ardening known as the Bauschinger effect. The more pronounced

he anisotropic hardening, the closer to the strain axis the reverse

ield point. In particular, the reverse yield point may stay above

he strain axis as the anisotropic hardening becomes exceptionally

ronounced. This implies that reverse plastic flow may be induced

ust in an unloading process of removing a tensile load. In such

n exceptional case, reverse plastic flow at unloading with much

ower tangent moduli will give rise to much more pronounced

train recovery effect than the usual elastic unloading with very

igh Young’s modulus. With this understanding, it is realized here

hat SMA deformation behaviors would just supply noticeable ex-

mples for such exceptional anisotropic hardening effects. 

The above understanding may provide a perhaps new explana-

ion of SMA deformation effects from a direct phenomenological

tandpoint. As shown in Fig. 2 , a departure from the unloading be-

avior of usual metals is as follows: For a SMA sample, reverse

ielding emerges as from point Q 1 in an unloading process of re-

oving the stress above the strain axis, whereas, for a usual metal

ample, the entire unloading process is elastic without yielding. 

It is with the above new idea that the elastoplastic J 2 −flow

odel has been proposed for modeling SMA deformation effects

n Section 3 . In what follows, we are going to show that the

hree hardening quantities r, c and ω, incorporated in the proposed

odel in Section 3 , are obtainable in explicit forms, in the sense of

xactly reproducing the N pairs of shape functions introduced in

he last section and, consequently, the proposed model with these

ardening quantities can automatically match test data given for

he N pairs of stress-strain curves under a cyclic process consisting

f N cycles. Namely, any given pairs of stress-strain curves indi-

ated in Section 2 may be automatically reproduced as the predic-

ions of the proposed model with these hardening quantities. 

Toward the above objective, we shall first obtain expressions

or the three hardening quantities for N cycles, separately. Specif-

cally, such expressions will be derived for N subranges of ϑ, i.e.,
Please cite this article as: L. Zhan, X.-M. Wang and S.-Y. Wang et al., 
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 ϑ n , ϑ n +1 ] with n = 1 , 2 , · · · , N, which demarcate the N cycles at

ssues, and, then, unified smooth expressions over the whole range

ill be presented by a new approach of combining the N expres-

ions over the N subranges into a single unified, smooth expression

or each hardening quantity. 

Results will be derived by means of three procedures below: (i)

wo equations will be derived from the proposed model for the

niaxial plastic flow curves P 1 P 2 and Q 1 Q 2 , separately; (ii) these

wo uniaxial equations will be extended to a unified equation for

eneral multiaxial cases; and (iii) three multiaxial hardening quan-

ities will be obtained from this unified equation. 

.2. Results for individual cycles 

For each cycle, either the loading curve or the unloading curve

fter the initial yield point represents a process of uniaxial plastic

ow. For these uniaxial cases, the following two equations may be

erived from the proposed model ( Xiao, 2014a ): 

 

′ r − ωr ( ̃ r ′ ζ + 	) + 1 . 5 cζ−1 
(
ζ + ̃

 r ′ 	
)

= K(τ ) (29) 

here 

(τ ) = 

{
K ( τ ) along curve P 1 P 2 in Fig. 2 , 

K ( τ ) along curve Q 1 Q 2 in Fig. 2 , 
(30) 

ith 

 ( τ ) ≡ 1 

p ′ ( τ ) − ˜ E 
, (31) 

 ( τ ) ≡ 1 

q ′ ( τ ) − ˜ E 
= 

b −1 

p ′ (b τ + r 0 − bu 0 ) − ˜ E 
(32) 

re the plastic slopes ( Xiao, 2014a ; Xiao et al., 2016 ) for the loading

urve and the unloading curve, respectively. As before, the follow-

ng notation is used: 

˜ 
 = 

1 

E 
. 

Expressions for c and ω are derivable from Eqs. (29)–(30) , but

uch results are merely for the uniaxial case. As indicated in the

ast procedure in Section 3.6 , however, results should be sup-

lied for general multi-axial cases. Toward this objective, the two

qs. (29)–(30) in the uniaxial case are extended to general multi-

xial forms, namely (cf., Xiao, 2014a and Xiao et al., 2016 ), 

 

′ r − ωr ( ̃ r ′ ζ + 	) + 1 . 5 cζ−1 
(
ζ + ̃

 r ′ 	
)

= K(r, 	) (33) 

here 

(r, 	) ≡ [ r + 	] 

r + | 	| K (r + | 	| ) + 

(
1 − [ r + 	] 

r + | 	| 
)

K (| 	| − r) , (34) 

ith 

 r + 	] = 

1 

2 

( r + 	 + | r + 	| ) . (35) 

n the uniaxial case, Eq. (33) with Eqs. (34)–(35) automatically re-

uces to the two equations in Eq. (29) with Eqs. (30)–(32) . 

For N pairs of loading and unloading curves as shown in Fig. 1 ,

eplacing the r, p, u 0 and b in Eqs. (30)–(35) by r n , p n , u 0 n and b n ,

rom Eq. (33) we derive N equations below: 

r ′ n r n − ω n r n ( ̃  r n 
′ ζ + 	n ) + 1 . 5 c n ζ−1 

(
ζ + 

˜ r n 
′ 	n 

)
= K n (r n , 	n ) , 

n = 1 , 2 , · · · , N , 

(36) 

or N loading-unloading cycles. 

If the quantities r n , c n and ω n for the n th cycle are given to

eet the above equation, then the pair of loading and unloading

urves shown in Fig. 2 may be automatically reproduced as the

redictions of the proposed model. 
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Fig. 3. The localized factor y = 

1 
4 

[1 + tanh (60(x − 0 . 5) + 3)][1 + tanh (60(1 . 5 − x ) −
3)] . 
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Following the procedures in ( Xiao, 2014a ; Xiao et al., 2016 ), we

obtain N pairs of explicit expressions for such quantities in terms

of the N shape functions p n ( τ ) as follows: 

c n = 

2 

3 

K n (r n , −ζ ˜ r ′ n ) − r n r 
′ 
n 

1 − ˜ r 
′ 2 
n 

, (37)

ω n r n = 1 . 5 ζ−1 ˜ r ′ n c n + 

K(r n , −ζ ˜ r ′ n ) − K n (r n , 	n ) 

	n + ̃

 r ′ n ζ
. (38)

On the other hand, the yield limits r n are given by ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

r 1 = 

μ1 

b 1 +1 
+ 

b 1 −1 
b 1 +1 

ζ
(

1 − e 
−� ζr 0 

)
+ 

r 0 −μ1 

b 1 +1 

(
e 

−β ϑ 
r 0 + e 

−β
ϑ 2 −ϑ 

r 0 

)
+ 

b 1 r 0 
b 1 +1 

e 
−β ϑ 

r 0 , 

r n = 

μn 

b n +1 
+ 

b n −1 
b n +1 

ζ + 

r 0 −μn 

b n +1 

(
e 

−β ϑ−ϑ n 
r 0 + e 

−β
ϑ n +1 −ϑ 

r 0 

)
, 

n = 2 , · · · , N . 

(39)

In the above, r 0 is the initial yield limit and ϱ> 0 and β > 0 are two

large parameters characterizing the localized properties at ζ = 0

and ϑ = ϑ n , ϑ n +1 . In particular, the localized terms in Eq. (39) en-

sures the inter-cycle consistency, as shown below. 

5.3. The inter-cycle consistency 

Let n ≥ 2 and consider the n th cycle as shown in Fig. 2 . Point P 0
is the finishing point of the last cycle, i.e., the (n − 1) th cycle. From

the (n − 1) th cycle it follows that both Eq. (39) for the (n − 1) th

cycle with omitting the localized effect and the yield condition

produce 

r p 
n −1 

= 

r 0 
b n −1 + 1 

+ 

b n −1 − 1 

b n −1 + 1 

αp 
n −1 

, 

αp 
n −1 

= r p 
n −1 

, 

where r 
p 
n −1 

and αp 
n −1 

are the yield limit and the back stress at the

end of the (n − 1) th cycle. 

On the other hand, the initial yielding in the n th cycle starts

at point P 1 and both the yield limit and the back stress keep un-

changed from P 0 to P 1 at the n th cycle. From these it may be in-

ferred that the yield condition and Eq. (39) for the n th cycle with

ignoring the localized effect yield 

r 0 − αp 
n −1 

= r p 
n −1 

, 

r p 
n −1 

= 

r 0 
b n + 1 

+ 

b n − 1 

b n + 1 

αp 
n −1 

. 

The above four expressions should be consistent with one another.

In fact, it may be deduced that r 
p 
n −1 

= αp 
n −1 

= r 0 / 2 and, therefore,

that the consistency required is ensured. 
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The above derivation is for n ≥ 2. The consistency for the first

ycle may be directly shown with r = r 0 and Eq. (39) 1 at ϑ = 0 . 

.4. Effective plastic works 

The effective plastic works at the end points of the N cycles, i.e.,

1 , ���, ϑN , need be determined. This will be done below. 

In the uniaxial loading case, the effective plastic work is given

y 

˙ 
 = ( τ − α) ˙ h 

p , 

here h p is the axial plastic strain and prescribed by 

˙ 
 

p = 

˙ h − ˜ E ˙ τ . 

t any given point on the line P 1 P 2 in Fig. 2 , the yield condition

ields 

− α = r n . 

oreover, by neglecting the localized effects, Eq. (39) may be re-

uced to 

 n = 

b n − 1 

b n + 1 

α + 

r 0 − b n u 0 n 

b n + 1 

. 

he last two produce 

 n = 

1 

2 b n 
((b n − 1) τ + r 0 − b n u 0 n ) (40)

long the curve P 1 P 2 in Fig. 2 . Similarly, it may be deduced that 

 n = 

1 

2 

((b n − 1) τ + r 0 − b n u 0 n ) (41)

long the curve Q 1 Q 2 in Fig. 2 . In the uniaxial case, the effective

lastic work ϑ is governed by 

˙ 
 = ±r( ̇ h − ˜ E ˙ τ ) . (42)

n the above, the signs “+ ” and “−” are for the curves P 1 P 2 and

 1 Q 2 , respectively. Hence, from Eqs. (24)–(26) and Eqs. (40)–(42) it

ollows that 
 

 

 

 

 

 

 

ϑ n +1 = ϑ n + 

1 
4 b n 

(A m 

− ˜ E )[(b n − 1) τm 

+ μn (b n + 1)]( τm 

− μn ) , 

+ 

1 
2 b n 

∑ S 
r=1 (A r − ˜ E )[(b n − 1)( τ r + τ r−1 ) + 2 μn ]( τ r − τ r−1 ) ,

− 1 
4 b n 

∑ m 

r=1 (A r − ˜ E )[(b n − 1)( τ r + τ r−1 ) + 2 μn ]( τ r − τ r−1 ) ,

ϑ 1 = 0 , n = 1 , 2 , · · · , S − 1 , 

(43)

here the μn is given by Eqs. (27)–(28) . 

.5. Unified results for all cycles 

Eqs. (37)–(39) provide N explicit expressions for each of the

hree hardening quantities c, ω and r , which apply merely to the

st, the 2nd, ���, the N th cycle, separately. Now the final step is to

btain unified expressions for c, ω and r over the whole range, so

hat the foregoing N expressions or values may be reproduced for

he N cycles, namely, 
 

c = c n , ω = ω n , r = r n , 
ϑ n ≤ ϑ < ϑ n +1 , 

n = 1 , · · · , N . 

(44)

n the above, the c n , ω n and r n are the N expressions piecewise

iven in the last subsection. As indicated at the outset of this sec-

ion, the ϑn and ϑ n +1 are the values of the effective plastic work at

he start of the n th and the (n + 1) th cycle, respectively, and will

e given in the next subsection 

Here, a new method is proposed to obtain unified and smooth

xpressions of the above properties. With this new method, each
An explicit and accurate approach toward simulating plastic-to- 
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Fig. 4. Model simulations (solid lines) for the first four cycles and comparisons with test data (dots) in Zaki and Moumni (2007) : The irrecoverable strain decreases with 

increasing cycle number. 
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nified expression will be obtained simply by a linear combination

ia a set of localized factors, i.e., ϕ1 , ���, ϕN , as given below: 

 = ϕ 1 c 1 + · · · + ϕ N c N , (45)

= ϕ 1 γ1 + · · · + ϕ N γN , (46)

 = ϕ 1 r 1 + · · · + ϕ N r N , (47)

here 

 n = 

1 

4 

[
1 + tanh 

(
60 

ϑ − ϑ n 

ϑ n +1 − ϑ n 
+ 3 

)]

×
[

1 + tanh 

(
60 

ϑ n +1 − ϑ 

ϑ n +1 − ϑ n 
− 3 

)]
. (48) 

ach factor ϕ n = ϕ n (ϑ) given above is a smooth function over the

hole range and of localized property, namely, it is nearly constant

nd given by 1 as ϑ falls within the range [ ϑ n , ϑ n +1 ) , whereas it

oes rapidly down to vanish as ϑ falls outside the foregoing range.

n fact, we have 

0 . 9975 < ϕ n < 1 for ϑ n ≤ ϑ ≤ ϑ n +1 − 0 . 1(ϑ n +1 − ϑ n ) , 

0 ≤ ϕ n < 0 . 00245 , for ϑ ≤ ϑ n − 0 . 1(ϑ n +1 − ϑ n ) or ϑ ≥ ϑ n +1 . 

(49) 

he above localized properties may be evidenced from Fig. 3 for

 factor given by Eq. (48) over the subrange [0.5,1.5]. From these

t may be deduced that the three quantities given in Eqs. (45)–

47) indeed meet Eq. (44) . 
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Combining N functions given over N subranges via the N fac-

ors in Eq. (48) , Eqs. (45)–(47) supply unified, smooth expressions

ver the whole range, which exactly reproduce those functions (cf.,

q. (44) ) over the N subranges. It appears that the just indicated

ethod of combining any given number of functions over sub-

anges into a unified, smooth function over the whole range is pro-

osed here for the first time. 

.6. Remarks 

With the hardening quantities given here, the new model is

stablished in the general framework of elastoplastic formula-

ions with nonlinear combined hardening, as suggested in previous

orks ( Xiao, 2013; 2014a ). In this general framework, forms of the

uantities characterizing both isotropic and anisotropic hardening,

ncluding the yield limit r (cf., Eq. (6) ) and the Prager modulus c

nd the hysteresis modulus ω (cf., Eq. (9) ), are left unknown and

eed to be determined. Forms of the just mentioned three hard-

ning quantities are presented in previous works only for a single

seudo-elastic hysteresis loop involving one loading-unloading cy-

le. From the results given in the last section and in this section it

ay follow that the present work contributes perhaps substantially

ew results in the following respects: 

(i) Any given number of loading-unloading cycles may be

treated and explicit forms of the three hardening quantities

r, c and ω are derived for this broad case based on a novel

approach, as indicated below; 

(ii) New single-variable shape functions are presented in explicit

forms for the purpose of automatically, accurately matching
An explicit and accurate approach toward simulating plastic-to- 

ing cycles, International Journal of Solids and Structures, https: 
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Fig. 5. Model simulations (solid lines) for the 8th, the 12th and the 20th cycle and comparisons with test data (dots) in Zaki and Moumni (2007) : The irrecoverable strain 

becomes nearly vanishing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Values of the parameter b n for seven cases of the cycle number. 

n 1 2 3 4 8 12 20 

b n 0.250 0.251 0.382 0.470 0.602 0.643 0.701 
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stress and strain data given for each loading-unloading cy-

cle; 

(iii) Exact closed-form solutions for the uniaxial stress-stain re-

sponses of the proposed model may be obtained for any

given number of loading-unloading cycles and such solu-

tions are exactly the new single-variable shape functions in

the foregoing; and, accordingly, 

(iv) The new model proposed may automatically and accurately

fit extensive experimental data given for any given num-

ber of loading-unloading cycles, thus bypassing uncertainties

and complexities involved in usual simulation methods, as

indicated in the introduction section; 

(v) With the multi-axial hardening quantities c, γ and r iden-

tified as in Eqs. (45)–(47) , the model in Section 3 is es-

tablished for multi-axial cases and, therefore, responses for

multi-axial loading processes can be predicted from this

model, including responses for all possible uniaxial loading

processes as particuoar cases. 

6. Numerical examples for model validation 

With the results presented in the last two sections, the new

elastoplastic J 2 −flow model proposed in Section 3 can automat-

ically match test data given for any given number of uniaxial

loading-unloading cycles. This may be achieved by presenting two

linear functions in Eqs. (21) and (23) and suitable form of the

shape functions p n ( τ ) (cf., Eq. (22) ) and q n ( τ ) (cf., Eq. (24) ). With

the form of the shape function p n ( τ ) given in Section 4.3 , the data

for the loading case may be automatically, accurately fitted. As a

result, for each cycle it will suffice to present a suitable value of

the parameter b n in Eq. (24) in fitting the data given for the un-

loading case, with the parameter u given by Eq. (27) . 
0 n 
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For the purpose of model validation, test data for a plastic-to-

seudoelastic transition in Zaki and Moumni (2007) will be taken

nto consideration. In this reference, extensive data for loading and

nloading curves are presented for the 1st, the 2nd, the 3rd, the

th, the 8th, the 12th and the 20th cycle of a uniaxial SMA sample,

tc. Such data show that the SMA sample tested displays a gradual

ransition from plastic to pseudo-elastic effects. 

The value of Young’s modulus is given by E = 68GPa. Together

ith the linear function given in Eqs. (21) for the linear elastic

art, the shape functions given in Eqs. (25)–(26) are used to au-

omatically, exactly fit the data for the loading case at each cy-

le. Totally, seven such shape functions, p n ( τ n ) , are available for

he seven cases at issue. Then, with these and the linear equa-

ion given in Eq. (23) for the linear elastic part, the shape func-

ions given in Eq. (24) are used to simulate the unloading data.

he values of the parameter b n are independently prescribed by

q. (28) in fitting the unloading data for each case considered. The

alues of the parameter b n are listed in Table 1 for the seven cases

f the cycle number, i.e., n = 1, 2, 3, 4, 8, 12, 20. 

Simulation results are depicted in Fig. 4 (a)–(d) for the first four

ycles and Fig. 5 (a)–(c) for the 8th, 12th and 20th cycles. It may be

oticeable that the loading-unloading data for each cycle may be

ccurately simulated by merely identifying one parameter, i.e., b n .

n particular, the irrecoverable strains are also simulated accurately

or each cycle number at issue. 
An explicit and accurate approach toward simulating plastic-to- 

ing cycles, International Journal of Solids and Structures, https: 
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. Concluding remarks 

In the previous sections, a new finite strain elastoplastic

 2 −flow model with coupled hardening effects has been proposed

o simultaneously simulate both plastic effects and pseudo-elastic

ffects of SMAs under cyclic loading conditions. The hardening

uantities incorporated in this model have been presented in

xplicit forms, so that extensive data for any given number of

oading-unloading cycles may be automatically, accurately simu-

ated. Toward this objective, in Sections 4–5 , a new approach has

een proposed to combine any given number of functions over

ubranges into a unified, smooth function over the entire range. As

uch, the new approach proposed reduces the complicated prob-

em of simulating extensive data for multiple loading cycles to pre-

enting certain single-variable shape functions fitting such data,

hus bypassing both uncertainties and complexities usually in-

olved in iteratively resolving a coupled system of nonlinear con-

titutive rate equations toward identifying numerous unknown pa-

ameters. 

As compared with existing models for SMA modeling, the main

ovelties of the new model proposed may be summarized in

ection 5.6 and as follows: 

(i) Continuous transitions from plastic to pseudo-elastic effects

under any given number of loading-unloading cycles may be

explicitly, accurately simulated for the first time; 

(ii) Stress-strain data for each loading-unloading cycle are ex-

plicitly fitted by a pair of single-variable shape functions,

without involving tedious numerical procedures in treating

a coupled system of nonlinear constitutive rate equations in-

corporating a number of unknown parameters, which have

to be iteratively carried out by means of the trial-and-error

method in identifying numerous unknown parameters for a

reasonable fit; and 

(iii) Extensive loading-unloading data may be explicitly, accu-

rately simulated by merely identifying a single parameter

for each cycle, and, however, with usual approaches of SMA

modeling, such data could be roughly simulated by identify-

ing a number of unknown parameters. 

It should be pointed out that the new model proposed is of

henomenological nature with no direct reference to the micro-

echanisms underlying the macroscopic behavior of SMAs. As

uch, it may be straightforward to simulate data for the macro-

copic deformation behavior of SMA samples. A phenomenologi-

al model may be well established in the just mentioned sense

nd should be in no conflict with underlying micro-mechanisms.

t may be noted that that would also be the case for modeling

lastoplastic deformations of metals etc. Indeed, widely used phe-

omenological models have been well established to model macro-

copic elastoplastic deformations, with no direct reference to the

nderlying micro-mechanisms such as dislocations and crystallo-

raphic slips, etc. However, underlying micro-mechanisms play es-

ential roles in explaining and understanding the physical features

f macroscopic deformation behaviors, as may be seen in numer-

us contributions in modeling deformation behaviors of SMAs, e.g.,

n Patoor et al. (2006) and Lagoudas et al. (2006) and the refer-

nces therein. 

As has been indicated in Section 4.4 , the accuracy of the pro-

osed approach in fitting test data at unloading is actually based

n the consideration that both the loading and unloading curves

 1 P 2 and Q 1 Q 2 should be related by a linear relationship. In a

road case, that may not be the case and hence the approach pro-

osed here could not ensure accuracy. As such, new development

s needed to treat this broad case. 

Results have been derived for the isothermal case with the tem-

erature held fixed. Under different temperatures, shapes of the
Please cite this article as: L. Zhan, X.-M. Wang and S.-Y. Wang et al., 
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oading and unloading curves in Fig. 2 will temperature-dependent.

he procedures proposed here may be extended to treat this

on-isothermal case based on the non-isothermal framework in

iao et al. (2011) . On the other hand, It is expected that the new

pproach presented in this study may be extended to further sim-

late comprehensive effects of SMAs over the whole deformation

ange up to failure and, in particular, to simulate fatigue failure

nder cyclic and non-cyclic loadings. Results will be reported else-

here. 

cknowledgements 

This study was supported jointly by the Talents-Introducing

roject (No.: RC201703) from Ningbo Polytechnic, Ningbo, China

nd by the fund from NSFC (No.: 11372172 ), as well as the start-

p fund from Jinan University, Guangzhou, China. 

eferences 

beyaratne, R. , Kim, S.J. , 1997. Cyclic effects in shape-memory alloys: a one-dimen-

sional continuum model. Int. J. Solids Struct. 34, 3273–3289 . 
shrafi, M.J. , Arggavani, J. , Naghdabadi, R. , Sohrabpour, S. , Auricchio, F. , 2016. The-

oretical and numerical modeling of dense and porous shape memory alloys

accounting for coupling effects of plasticity and transformation. Int. J. Solids
Struct. 88–89, 248–262 . 

uricchio, F. , Reali, A. , Stefanelli, U. , 2007. A three-dimensional model describing
stress-induced solid phase transformation with permanent inelasticity. Int. J.

Plast. 23, 207–226 . 
aldelli, A .A .L. , Maurini, C. , Pham, K. , 2015. A gradient approach for the macro-

scopic modeling of superelasticity in softening shape memory alloys. Int. J.
Solids Struct. 52, 45–55 . 

o, Z. , Lagoudas, D. , 1999a. Thermomechanical modeling of polycrystalline SMAs un-

der cyclic loading, part i: theoretical derivations. Int. J. Eng. Sci. 37, 1089–1104 . 
o, Z. , Lagoudas, D. , 1999b. Thermomechanical modeling of polycrystalline SMAs

under cyclic loading, part iii: evolution of plastic strains and two-way shape
memory effect. Int. J. Eng. Sci. 37, 1175–1203 . 

o, Z. , Lagoudas, D. , 1999c. Thermomechanical modeling of polycrystalline SMAs un-
der cyclic loading, part iv: modeling of minor hysteresis loops. Int. J. Eng. Sci.

37, 1205–1249 . 

ruhns, O.T. , Xiao, H. , Meyers, A. , 2003. Some basic issues in traditional Eulerian
formulations of finite elastoplasticity. Int. J. Plast. 19, 2007–2026 . 

ruhns, O.T. , Xiao, H. , Meyers, A. , 2005. A weakened form of Ilyushin’s postulate
and the structure of self-consistent Eulerian finite elastoplasticity. Int. J. Plast.

21, 199–219 . 
ui, S. , Wan, J. , Zuo, X. , Chen, N. , Zhang, J. , Rong, Y. , 2017. Three-dimensional

non-isothermal phase-field modeling of thermally and stress-induced marten-

sitic transformations in shape memory alloys. Int. J. Solids Struct. 109, 1–11 . 
ong, L. , Zhou, R.H. , Wang, X.L. , Hu, G.K. , Sun, Q.P. , 2016. On interfacial energy of

macroscopic domains in polycrystalline NiTi shape memory alloys. Int. J. Solids
Struct. 80, 445–455 . 

artl, D.J. , Chatzigeorgiou, P. , Lagoudas, D.C. , 2010. Three-dimensional modeling and
numerical analysis of rate-dependent irrecoverable deformation in shape mem-

ory alloys. Int. J. Plast. 26, 1485–1507 . 

artl, D.J. , Kiefer, B. , Schulte, R. , Menzel, A. , 2018. Computationally-efficient mod-
eling of inelastic single crystal responses via anisotropic yield surface: applica-

tions to shape memory alloys. Int. J. Solids Struct. 136, 38–59 . 
artl, D.J. , Lagoudas, D.C. , 2009. Constitutive modeling and structural analysis con-

sidering simultaneous phase transformation and plastic yield in shape memory
alloys. Smart Mater. Struct. 18, 104017–104033 . 

iang, D.J. , Bechle, N.J. , Landis, C.M. , Kyriakides, S. , 2016a. Buckling and recovery of

NiTi tubes under axial compression. Int. J. Solids Struct. 80, 52–63 . 
iang, D.J. , Landis, C.M. , Kyriakides, S. , 2016b. Effects of tension/compression asym-

metry on the buckling and recovery of NiTi tubes under axial compression. Int.
J. Solids Struct. 100, 41–53 . 

agoudas, D. , Bo, Z. , 1999. Thermomechanical modeling of polycrystalline SMAs un-
der cyclic loading, part ii: material characterization and experimental results for

a stable transformation cycle. Int. J. Eng. Sci. 37, 1141–1173 . 

agoudas, D.C. , 2008. Shape Memory Alloys: Modeling and Engineering Applica-
tions. Springer, New York . 

agoudas, D.C. , Entchev, P.B. , Popov, P. , Patoor, E. , Brinson, L.C. , Gao, X. , 2006. Shape
memory alloys, part ii: modeling of polycrystals. Mech. Mater. 38, 430–462 . 

agoudas, D.C. , Hartl, D. , Chemisky, Y. , Machado, L. , Popov, P. , 2012. Constitutive
model for the numerical analysis of phase transformation in polycrystalline

shape memory alloys. Int. J. Plast. 32, 155–183 . 
uig, P. , Bruhns, O.T. , 2008. On the modeling of shape memory alloys using tensorial

internal variables. Mat. Sci. Eng. A 4 81–4 82, 379–383 . 

orin, C. , Moumni, Z. , Zaki, W. , 2011a. Thermomechanical coupling in shape mem-
ory alloys under cyclic loadings: experimental analysis and constitutive mod-

elling. Int. J. Plast. 27, 1959–1980 . 
orin, C. , Moumni, Z. , Zaki, W. , 2011b. A constitutive model for shape memory al-

loys accounting for thermomechanical coupling. Int. J. Plast. 27, 748–767 . 
An explicit and accurate approach toward simulating plastic-to- 

ing cycles, International Journal of Solids and Structures, https: 

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0001
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0001
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0001
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0002
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0002
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0002
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0002
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0002
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0002
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0003
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0003
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0003
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0003
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0004
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0004
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0004
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0004
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0005
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0005
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0005
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0006
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0006
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0006
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0007
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0007
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0007
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0008
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0008
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0008
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0008
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0009
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0009
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0009
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0009
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0010
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0010
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0010
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0010
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0010
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0010
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0010
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0011
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0011
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0011
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0011
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0011
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0011
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0012
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0012
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0012
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0012
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0013
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0013
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0013
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0013
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0013
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0014
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0014
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0014
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0015
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0015
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0015
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0015
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0015
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0016
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0016
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0016
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0016
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0017
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0017
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0017
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0018
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0018
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0019
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0019
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0019
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0019
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0019
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0019
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0019
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0020
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0020
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0020
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0020
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0020
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0020
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0021
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0021
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0021
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0022
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0022
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0022
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0022
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0023
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0023
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0023
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0023
https://doi.org/10.1016/j.ijsolstr.2019.08.024


12 L. Zhan, X.-M. Wang and S.-Y. Wang et al. / International Journal of Solids and Structures xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: SAS [m5G; August 27, 2019;14:57 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X  

 

 

X  

 

X  

X  

 

X  

X  

 

X  

X  

 

Z  

Z  
Panico, M. , Brinson, L.C. , 2007. A three-dimensional phenomenological model for
martensite reorientation in shape memory alloys. J. Mech. Phys. Solids 55,

2491–2511 . 
Patoor, E. , Lagoudas, D.C. , Entchev, P. , Brinson, L.C. , Gao, X. , 2006. Shape memory

alloys, part i: general properties and modeling of single crystals. Mech. Mater.
38, 391–429 . 

Saint-Sulpice, L. , Chirani, S.A. , Calloch, S. , 2009. A 3d super-elastic model for shape
memory alloys taking into account progressive strain under cyclic loadings.

Mech. Mater. 41, 12–26 . 

Shaw, J.A. , Kyriakides, S. , 1995. Thermomechanical aspects of NiTi. J. Mech. Phys.
Solids 43, 1243–1281 . 

Tanaka, K. , Nishimura, F. , Hayashi, T. , Tobushi, H. , Lexcellent, C. , 1995. Phenomeno-
logical analysis on subloops and cyclic behavior in shape memory alloys under

mechanical and/or thermal loads. Mech. Mater. 19, 281–292 . 
Wang, X.M. , Wang, Z.L. , Xiao, H. , 2015. SMA pseudo-elastic hysteresis with tension–

compression asymmetry:explicit simulation based on elasticity models. Contin-

uum Mech. Thermodyn. 27, 959–970 . 
Xiao, H. , 2013. Pseudo-elastic hysteresis out of recoverable finite elastoplastic flows.

Int. J. Plast. 41, 82–96 . 
Xiao, H. , 2014a. An explicit,straightforward approach to modeling SMA pseudo-elas-

tic hysteresis. Int. J. Plast. 53, 228–240 . 
Xiao, H. , 2014b. Thermo-coupled elastoplasticity model with asymptotic loss of the

material strength. Int. J. Plast. 63, 211–228 . 

Xiao, H. , Bruhns, O.T. , Meyers, A. , 1997a. Logarithmic strain,logarithmic spin and log-
arithmic rate. Acta Mech. 124, 89–105 . 

Xiao, H. , Bruhns, O.T. , Meyers, A. , 1997b. Strain rates and material spins. J. Elast. 52,
1–41 . 
Please cite this article as: L. Zhan, X.-M. Wang and S.-Y. Wang et al., 

pseudoelastic transitions of SMAs under multiple loading and unload

//doi.org/10.1016/j.ijsolstr.2019.08.024 
iao, H. , Bruhns, O.T. , Meyers, A. , 1997c. On objective corotational rates and their
defining spin tensors. Int. J. Solids Struct. 35, 4001–4014 . 

Xiao, H. , Bruhns, O.T. , Meyers, A. , 20 0 0a. The choice of objective rates in finite
elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc.

Roy. Soc. London A 456, 1865–1882 . 
iao, H. , Bruhns, O.T. , Meyers, A. , 20 0 0b. A consistent finite elastoplasticity theory

combining additive and multiplicative decomposition of the stretching and the
deformation gradient. Int. J. Plast. 16, 143–177 . 

iao, H. , Bruhns, O.T. , Meyers, A. , 2006. Elastoplasticity beyond small deformations.

Acta Mech. 182, 31–111 . 
iao, H. , Bruhns, O.T. , Meyers, A. , 2007. Thermodynamic laws and consistent Eule-

rian formulations of finite elastoplasticity with thermal effects. J. Mech. Phys.
Solids 55, 338–365 . 

iao, H. , Bruhns, O.T. , Meyers, A. , 2010a. Finite elastoplastic j 2 −flow models with
strain recovery effects. Acta Mech. 210, 13–25 . 

iao, H. , Bruhns, O.T. , Meyers, A. , 2010b. Phenomenological elastoplasticity view on

strain recovery loops characterizing shape memory materials. ZAMM-J. Appl.
Math. Mech. 90, 544–564 . 

iao, H. , Bruhns, O.T. , Meyers, A. , 2011. Thermo-induced plastic flows and shape
memory effects. Theor. Appl. Mech. 38, 155–207 . 

iao, H. , Wang, X.M. , Wang, Z.L. , Yin, Z.N. , 2016. Explicit, comprehensive modeling
of multi-axial finite strain pseudo-elastic SMAs up to failure. Int. J. Solids Struc-

tures 88–89, 215–226 . 

aki, W. , Moumni, Z. , 2007. A 3d model of the cyclic thermomechanical behavior of
shape memory alloys. J. Mech. Phys. Solids 55, 2427–2454 . 

hou, B. , 2012. A macroscopic constitutive model of shape memory alloy consider-
ing plasticity. Mech. Mater. 48, 71–81 . 
An explicit and accurate approach toward simulating plastic-to- 

ing cycles, International Journal of Solids and Structures, https: 

http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0024
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0024
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0024
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0025
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0025
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0025
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0025
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0025
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0025
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0026
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0026
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0026
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0026
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0027
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0027
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0027
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0028
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0028
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0028
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0028
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0028
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0028
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0029
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0029
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0029
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0029
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0030
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0030
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0031
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0031
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0032
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0032
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0033
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0033
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0033
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0033
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0034
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0034
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0034
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0034
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0035
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0035
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0035
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0035
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0036
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0036
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0036
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0036
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0037
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0037
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0037
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0037
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0038
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0038
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0038
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0038
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0039
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0039
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0039
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0039
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0040
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0040
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0040
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0040
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0041
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0041
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0041
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0041
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0042
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0042
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0042
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0042
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0043
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0043
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0043
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0043
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0043
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0044
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0044
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0044
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0045
http://refhub.elsevier.com/S0020-7683(19)30392-0/sbref0045
https://doi.org/10.1016/j.ijsolstr.2019.08.024

	An explicit and accurate approach toward simulating plastic-to-pseudoelastic transitions of SMAs under multiple loading and unloading cycles
	1 Introduction
	2 Continuous transitions from plastic to pseudo-elastic effects
	3 New flow model with coupled hardening effects
	3.1 Self-consistent elastic rate equation
	3.2 Normality flow rule
	3.3 Coupled hardening effects
	3.4 The plastic modulus
	3.5 Thermodynamic consistency
	3.6 Main procedures for explicit approach

	4 Shape functions for loading and unloading curves
	4.1 Shape functions for loading curves
	4.2 Shape functions for unloading curves
	4.3 Shape functions accurately fitting data
	4.4 Remarks on the unloading shape function

	5 Hardening quantities in explicit forms
	5.1 Reverse plastic flow at unloading
	5.2 Results for individual cycles
	5.3 The inter-cycle consistency
	5.4 Effective plastic works
	5.5 Unified results for all cycles
	5.6 Remarks

	6 Numerical examples for model validation
	7 Concluding remarks
	Acknowledgements
	References


