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Abstract

In this study, singular stress fields at the ends of fibers are discussed by the use of models of rectangular and cylindrical
inclusions in a semi-infinite body under pullout force. Those singular stresses have not been discussed yet in the previous
studies for pullout problems although they are important for causing interfacial initial debonding. The body force method
is used to formulate those problems as a system of singular integral equations where unknowns are densities of the body
forces distributed in a semi-infinite body having the same elastic constants as those of the matrix and inclusions. In order to
compare the results with the previous solutions, tension problems of a fiber in a semi-infinite body are also considered.
Then, generalized stress intensity factors at the corner of rectangular and cylindrical inclusions are systematically calculat-
ed for various geometrical conditions with varying the elastic ratio, length, and spacing of the location from edge to inner
of the body. The effects of elastic modulus ratio and aspect ratio of inclusion upon the stress intensity factors are discussed
for pullout problems.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In short-fiber-reinforced composites, fibers are mainly used to enhance load carrying capacity by reducing
stresses and strains in matrix. However, singular stress appearing at the fiber ends causes crack initiation,
crack propagation, and final failure under cyclic loading (Nisitani et al., 1993). To evaluate the mechanical
strength of these composites, therefore, it is necessary to know the intensity of those singular stresses. In
our previous studies, we have discussed the intensities at the fiber including periodic and zigzag arrays of fibers
(Noda and Takase, 2003, 2005).

Fibers are also used for fracture toughness enhancement. In this aspect, the interaction of a fiber
with the matrix in which it is embedded is of great interest. In the previous studies, load transfer from
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Notations

lx, ly dimensions of rectangular inclusion
lr, lz dimensions of cylindrical inclusion
GM,GI shear modulus for matrix and inclusion
mM, mI Poisson’s ratio for matrix and inclusion
G1, G2 shear modulus of bonded strip for materials 1 and 2
m1, m2 Poisson’s ratio of bonded strip for materials 1 and 2
P magnitude of pull-out force
a, b Dundurs parameter a ¼ GM ðjIþ1Þ�GI ðjMþ1Þ

GM ðjIþ1ÞþGI ðjMþ1Þ ; b ¼ GM ðjI�1Þ�GI ðjM�1Þ
GM ðjIþ1ÞþGI ðjMþ1Þ

h i
k1 singular index for mode I at corner A
k2 singular index for mode II at corner A
k singular index at corner B
rij,k singular stress field at the corner k

sij,k singular stress field at the corner k

r1x stress at infinity
KI;k1

generalized stress intensity factor for mode I at corner A
KII;k2

generalized stress intensity factor for mode II at corner A
K generalized stress intensity factor at corner B
f I

ij;k; f
II
ij;k functions for singular stress at corner A

fij,k functions for singular stress at corner B
FnM, FtM, FnI, FtI body forces densities
hF nM

nn ; hF tM
nn ; hF nI

nn ; hF tI
nn normal stress rn in a semi-infinite body induced by a point force FnM, FtM, FnI, FtI

W I
nM ; W I

tM ; W I
nI ; W I

tI ; W II
nM ; W II

tM ; W II
nI ; W II

tI weight functions

rk1�1
1 ; rk2�1

1 fundamental densities to express singular stress
an, bn, cn, dn, en, fn, gn, hn unknown coefficient
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a rod to a surrounding elastic material was originally reported in (Muki and Sternberg, 1969, 1970;
Luk and Keer, 1979). Experiment on fiber debonding and pullout was studied in detail, for example,
in Cook et al. (1989). Fiber pullout was simulated in terms of a boundary value problem with a finite
element method for a circular cylinder with a rigid fiber embedded in its center (Atkinson et al., 1982;
Freund, 1992; Povirk and Needleman, 1993). Interfacial debonding and frictional sliding associated
with the fiber pullout process are two important mechanisms to increase the toughness; and therefore,
recent analyses have focused on these mechanisms assuming the bridging law for a cracking in the
wake region (Budiansky et al., 1995; Zhang et al., 2004). However, singular stress appearing at the
fiber ends has not been discussed yet in those previous papers although they may cause interfacial ini-
tial debonding.

In this paper, fiber pullout is modeled as rectangular and cylindrical inclusions in semi-infinite bodies.
Then, the body force method will be used to formulate the problems as a system of singular integral equations.
In order to compare the results with the previous solution, tensions of a semi-infinite plate with a fiber and a
bonded strip will be also considered. The boundaries will be divided into several intervals, and at each interval
unknown body force densities will be approximated accurately by using fundamental densities and power ser-
ies. Here, the fundamental densities will be chosen to express the singular stress fields exactly (Noda and Tak-
ase, 2003, 2005). And finally, the intensity of singular stress at the interface edge points will be discussed with
varying aspect ratio and elastic modulus ratio of fibers.

2. Generalized stress intensity factors at the corners of fiber ends

In this paper, rectangular and cylindrical inclusions are considered as models of fibers as shown in Fig. 1(a)
and (b).



Fig. 1. (a) A rectangular inclusion (b) a cylindrical inclusion in a semi-infinite plate (body) under pull out force.
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On the one hand, singular stress around the corner A can be expressed as follows:
rij;k ¼
KI;k1

r1�k1
f I

ij;k þ
KII;k2

r1�k2
f II

ij;k ðij ¼ r; h; rh; k ¼ M ; IÞ ð1Þ
For matrix M (�3p/4 6 h 6 3p/4),
f I
h;MðhÞ ¼ k1ffiffiffiffi

2p
p
ða�bÞ h½�k1ða� bÞ cosðk1p=2Þ þ ð1� bÞ sinðk1pÞ� � cosfðk1 þ 1Þhg

þ½ðk1 þ 1Þða� bÞ sinðk1p=2Þ� � cosfðk1 � 1Þhgi

f II
h;MðhÞ ¼ k2ffiffiffiffi

2p
p
ða�bÞ h½�k2ða� bÞ cosðk2p=2Þ � ð1� bÞ sinðk2pÞ� � sinfðk2 þ 1Þhg

þ½ðk2 þ 1Þða� bÞ sinðk2p=2Þ� � sinfðk2 � 1Þhgi

f I
rh;MðhÞ ¼ k1ffiffiffiffi

2p
p
ða�bÞ h½�k1ða� bÞ cosðk1p=2Þ þ ð1� bÞ sinðk1pÞ� � sinfðk1 þ 1Þhg

þ½ðk1 � 1Þða� bÞ sinðk1p=2Þ� � sinfðk1 � 1Þhgi

f II
rh;MðhÞ ¼

�k2ffiffiffiffi
2p
p
ða�bÞ h½�k2ða� bÞ cosðk2p=2Þ � ð1� bÞ sinðk2pÞ� � cosfðk2 þ 1Þhg

þ½ðk2 � 1Þða� bÞ sinðk2p=2Þ� � cosfðk2 � 1Þhgi

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ð2aÞ
For inclusion I (�p 6 h 6 �3p/4, 3p/4 6 h 6 p),
f I
h;IðhÞ ¼

�C1k1ffiffiffiffi
2p
p
ða�bÞ h½�k1ða� bÞ cosðk1p=2Þ þ ð1þ bÞ sinðk1pÞ� � cosfðk1 þ 1Þ p� hð Þg

þ½ðk1 � 1Þða� bÞ sinðk1p=2Þ� � cosfðk1 � 1Þ p� hð Þgi

f II
h;IðhÞ ¼ C2k2ffiffiffiffi

2p
p
ða�bÞ h½�k2ða� bÞ cosðk2p=2Þ � ð1þ bÞ sinðk2pÞ� � sinfðk2 þ 1Þ p� hð Þg

þ½ðk2 þ 1Þða� bÞ sinðk2p=2Þ� � sinfðk2 � 1Þ p� hð Þgi

f I
rh;IðhÞ ¼

C1k1ffiffiffiffi
2p
p
ða�bÞ h½�k1ða� bÞ cosðk1p=2Þ þ ð1þ bÞ sinðk1pÞ� � sinfðk1 þ 1Þ p� hð Þg

þ½ðk1 � 1Þða� bÞ sinðk1p=2Þ� � sinfðk1 � 1Þ p� hð Þgi

f II
rh;IðhÞ ¼ C2k2ffiffiffiffi

2p
p
ða�bÞ h½�k2ða� bÞ cosðk2p=2Þ � ð1þ bÞ sinðk2pÞ� � cosfðk2 þ 1Þ p� hð Þg

þ½ðk2 � 1Þða� bÞ sinðk2p=2Þ� � cosfðk2 � 1Þ p� hð Þgi

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ð2bÞ
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where
C1 ¼
ð1� bÞ sinf3k1p=2g � ð1� aÞ sinfk1p=2g � k1ða� bÞ

ð2þ bþ aÞ sinfk1p=2g � k1ða� bÞ

C2 ¼
ð1� bÞ sinf3k2p=2g � ð1� aÞ sinfk2p=2g � k2ða� bÞ

ð2þ bþ aÞ sinfk2p=2g � k2ða� bÞ

ð2cÞ
Here, a, b, denote Dundurs bimaterial parameters a, b
a ¼ GMðjI þ 1Þ � GIðjM þ 1Þ
GMðjI þ 1Þ þ GIðjM þ 1Þ ; b ¼ GMðjI � 1Þ � GIðjM � 1Þ

GMðjI þ 1Þ þ GIðjM þ 1Þ

ji ¼
ð3� miÞ=ð1þ miÞ ðplane stressÞ
3� 4mi ðplane strainÞ

�
ði ¼ M ; IÞ ð3Þ
Singular index k1, k2 around the corner A can be given from the following characteristic equations. Here, the
singular indexes k1, k2 have real values in the range 0 < Re(ki) < 1 (i = 1,2) when b(a � b) > 0 (Chen and Nisi-
tani, 1992)
D1ða; b; c; kÞ ¼ ða� bÞ2k2ð1� cos 2cÞ þ 2kða� bÞ sin cfsin kcþ sin kð2p� cÞg
þ 2kða� bÞb sin cfsin kð2p� cÞ � sin kcg
þ ð1� a2Þ � ð1� b2Þ cos 2kpþ ða2 � b2Þ cosf2kðc� pÞg ¼ 0

D2ða; b; c; kÞ ¼ ða� bÞ2k2ð1� cos 2cÞ � 2kða� bÞ sin cfsin kcþ sin kð2p� cÞg
� 2kða� bÞb sin cfsin kð2p� cÞ � sin kcg
þ ð1� a2Þ � ð1� b2Þ cos 2kpþ ða2 � b2Þ cosf2kðc� pÞg ¼ 0

ð4Þ
On the other hand, singular stress around the corner B can be expressed as follows:
rij;k ¼
K

r1�k
fij;k ðij ¼ r; h; rh; k ¼ M ; IÞ ð5Þ
For matrix M (0 6 h 6 p/2),
fh;MðhÞ ¼ m1 cosfðk� 1Þhg � m2 sinfðk� 1Þhg � m1 cosfðkþ 1Þhg þ m3 sinfðkþ 1Þhg
frh;MðhÞ ¼ m3 cosfðk� 1Þhg þ m4 sinfðk� 1Þhg � m3 cosfðkþ 1Þhg � m1 sinfðkþ 1Þhg
m1 ¼ kðkþ 1ÞY 2; m2 ¼ kðkþ 1ÞY 1; m3 ¼ kðk� 1ÞY 1; m4 ¼ kðk� 1ÞY 2

ð6aÞ
For inclusion I (p/2 6 h 6 p)
fh;IðhÞ¼M1 cosfðk�1Þðp�hÞg�M2 sinfðk�1Þðp�hÞg�M1 cosfðkþ1Þðp�hÞgþM3 sinfðkþ1Þðp�hÞg
frh;IðhÞ¼�M3 cosfðk�1Þðp�hÞg�M4 sinfðk�1Þðp�hÞgþM3 cosfðkþ1Þðp�hÞgþM1 sinfðkþ1Þðp�hÞg
M1¼ kðkþ1ÞL2Y 4=L1; M2¼ kðkþ1ÞL2Y 3=L1; M3¼ kðk�1ÞL2Y 3=L1; M4¼ kðk�1ÞL2Y 4=L1

ð6bÞ
where
Y 1 ¼ 4kb cosðkpÞ þ 2b½cosðkpÞ � 1� þ 4kðkþ 1Þða� bÞ; Y 2 ¼ 2ð2kb� 1Þ sinðkpÞ; Y 3 ¼ �Y 1;

Y 4 ¼ �2ð2kbþ 1Þ sinðkpÞ; L1 ¼ 2k cosðkp=2ÞY 4 � 2ðk� 1Þ sinðkp=2ÞY 3;

L2 ¼ �2k cosðkp=2ÞY 2 þ 2ðk� 1Þ sinðkp=2ÞY 1 ð6cÞ
Singular index k around the corner B can be given from the following characteristic equation. Here,
the singular index has a real value in the range 0 < Re(k) < 1 when a(a � 2b) > 0 (Chen and Nisitani,
1993).



Table 1
Singular index k1, k2 the corner A and singular index k at the corner B for Fig. 1 under plane strain with mM = mI = 0.3

Corner A Corner B

k1 k2 k

GI/GM = 2 0.9109102 0.9788427 0.9630015
GI/GM = 10 0.7981112 0.7856547 0.8015335
GI/GM = 60 0.7659920 0.6383511 0.7289061
GI/GM = 100 0.7632349 0.6218440 0.7219664
GI/GM!1 0.7590420 0.5951564 0.7111729
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Dða;b;c;kÞjc¼p=2 ¼ ½cos2ðkp=2Þ� ð1� kÞ2�2b2þ 2ð1� kÞ2½cos2ðkp=2Þ� ð1� kÞ2�abþð1� kÞ2½ð1� kÞ2� 1�a2

þ cos2ðkp=2Þ sin2ðkp=2Þ ¼ 0 ð7Þ
Table 1 indicates several examples of k1, k2 for corner A, and k for corner B, which is obtained from Eqs. (4)
and (7).

3. Method of analysis

The present method of analysis is essentially based on the body force method coupled with singular integral
equation formulation, which yields accurate numerical solutions. The detail may be found in (Noda et al.,
1996; Noda and Matsuo, 1998).

3.1. Singular integral equations of the body force method

There have been little discussions regarding the singular stress at the fiber end B. In this study, therefore,
first we consider tension problems as shown in Fig. 2(a) and (b) and compare the results each other. The
method of analysis will be explained for Fig. 2(a). The solution for Fig. 1 can be expressed similarly except
for the stress at infinity r1x . Here, lx and ly are dimensions of inclusions, and denote the shear modulus
and Poisson’s ratio of the matrix by GM and mM and the inclusion by GI and mI. The body force method
requires fundamental solutions, that is, the stress and displacement fields in a semi-infinite body due to a point
force, hF nM

nn , etc (Nisitani, 1967). Similar expressions due to a ring force in a semi-infinite body for Fig. 1(b) are
found in (Noda and Moriyama, 2004). Then, the problem can be expressed as a system of singular integral
Eqs. (5) and (6) , where the unknowns are body forces densities FnM, FtM, FnI, FtI distributed in the normal
and tangential directions along the fictitious boundary in two semi-infinite plates, ‘M’ and ‘I’. Here, the
Fig. 2. (a) A rectangular inclusion model in a semi-infinite plate under tension (b) A bonded strip under tension.
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semi-infinite plate ‘M’ has the same elastic constants as those of the matrix, and the semi-infinite plate ‘I’ has
the same elastic constants as those of the inclusion.
� 1
2
F nMðsÞ � 1

2
F nIðsÞ þ

R
L hF nM

nn ðr; sÞF nMðrÞdr þ
R

L hF tM
nn ðr; sÞF tMðrÞdr �

R
L hF nI

nn ðr; sÞF nIðrÞdr

�
R

L hF tI
nn ðr; sÞF tIðrÞdr ¼ �r1nMðsÞ þ r1nI ðsÞ � 1

2
F tMðsÞ � 1

2
F tIðsÞ þ

R
L hF nM

nt ðr; sÞF nMðrÞdr

þ
R

L hF tM
nt ðr; sÞF tMðrÞdr �

R
L hF nI

nt ðr; sÞF nIðrÞdr �
R

L hF tI
nt ðr; sÞF tIðrÞdr ¼ �s1ntMðsÞ þ s1ntIðsÞ

9>>=
>>; ð8Þ

R
L hF nM

u ðr; sÞF nMðrÞdr þ
R

L hF tM
u ðr; sÞF tMðrÞdr �

R
L hF nI

u ðr; sÞF nIðrÞdr �
R

L hF tI
u ðr; sÞF tIðrÞdr ¼ �u1M þ u1IR

L hF nM
v ðr; sÞF nMðrÞdr þ

R
L hF tM

v ðr; sÞF tMðrÞdr �
R

L hF nI
v ðr; sÞF nIðrÞdr �

R
L hF tI

v ðr; sÞF tIðrÞdr ¼ �v1M þ v1I

)

ð9Þ
Eqs. (8) and (9) mean the boundary conditions rnM = rnI, sntM = sntI, uM = uI, vM = vI. Here, the notation r1nM

is a remote tensile stress at infinity.

3.2. Numerical solutions around corner A

Fig. 3 illustrates boundary divisions for numerical solution of Eqs. (8) and (9). First, the method of analysis
will be explained by taking an example for corner A. Around corner A, the body forces acting in the normal
and tangential directions, Fn and Ft, should be expressed as two types, that is, symmetric mode I type rk1�1

1 and
skew-symmetric mode II type rk2�1

1 to the bisector of the corners. The body force densities distributed around
Fig. 3. Boundary division ((a) ly/lx = 2, (b) ly/lx = 10).
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corner A may be expressed as Eqs. (10) and (11) using fundamental densities rk1�1
1 , rk2�1

1 and weight functions
W I

nM –W II
tM (Chen and Nisitani, 1992).
F nMðr1Þ ¼ F I
nMðr1Þ þ F II

nMðr1Þ ¼ W I
nMðr1Þrk1�1

1 þ W II
nMðr1Þrk2�1

1

F tMðr1Þ ¼ F I
tMðr1Þ þ F II

tMðr1Þ ¼ W I
tMðr1Þrk1�1

1 þ W II
tMðr1Þrk2�1

1

F nIðr1Þ ¼ F I
nIðr1Þ þ F II

nIðr1Þ ¼ W I
nIðr1Þrk1�1

1 þ W II
nIðr1Þrk2�1

1

F tIðr1Þ ¼ F I
tIðr1Þ þ F II

tI ðr1Þ ¼ W I
tIðr1Þrk1�1

1 þ W II
tI ðr1Þrk2�1

1

9>>>>=
>>>>;

ð10Þ

W I
nMðr1Þ ¼

PM
n¼1

anrn�1
1 ; W I

tMðr1Þ ¼
PM
n¼1

bnrn�1
1

W II
nMðr1Þ ¼

PM
n¼1

cnrn�1
1 ; W II

tMðr1Þ ¼
PM
n¼1

dnrn�1
1

W I
nIðr1Þ ¼

PM
n¼1

enrn�1
1 ; W I

tIðr1Þ ¼
PM
n¼1

fnrn�1
1

W II
nIðr1Þ ¼

PM
n¼1

gnrn�1
1 ; W II

tI ðr1Þ ¼
PM
n¼1

hnrn�1
1

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð11Þ
Eqs. (10) and (11) do not include the terms expressing local uniform stretching and shear distortion at the
corner A. Therefore the stress r1n applied in the plate ‘I’ is used to express local uniform stretching and
shear distortion at the corner A. On the numerical solution as shown in Eqs. (10) and (11), the singular
integral Eqs. (8) and (9) are reduced to algebraic equations for the determination of the unknown coeffi-
cients an–hn. These coefficients are determined from the boundary conditions at suitably chosen collocation
points. It should be noted that the body force densities are difficult to be obtained directly because they
tend to go infinity at the corner A. However, the weight functions W I

nM , W I
tM , etc. may be obtained accu-

rately because they have finite values at the corner A. The generalized stress intensity factors KI;k1
, KII;k2

for
angular corners can be obtained from the values of W I

nð0Þ, W II
n ð0Þ, W I

t ð0Þ, W II
t ð0Þ at the corner tip (Noda

et al., 1998).
3.3. Numerical solutions around the corner B

Excluding around the corner A, symmetric and skew-symmetric types of distributions of body forces are
not applied. For example, Eq. (12) can be applied for corner B.
F nMðr2Þ ¼ W nMðr2Þrk�1
2 ; W nMðr2Þ ¼

PM
n¼1

inrn�1
2

F tMðr2Þ ¼ W tMðr2Þrk�1
2 ; W tMðr2Þ ¼

PM
n¼1

jnrn�1
2

F nIðr2Þ ¼ W nIðr2Þrk�1
2 ; W nIðr2Þ ¼

PM
n¼1

knrn�1
2

F tIðr2Þ ¼ W tIðr2Þrk�1
2 ; W tIðr2Þ ¼

PM
n¼1

lnrn�1
2

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð12Þ
The generalized stress intensity factors K can be obtained from the values of W I
nð0Þ, W II

n ð0Þ, W I
t ð0Þ, W II

t ð0Þ at
corner B (Noda et al., 1998).

Consider force distributions in the h- and r-directions whose magnitudes are proportional to P · rk�1 and
Q · rk�1 in a semi-infinite plate (see Fig. 4). The stresses due to those force distributions are given from the
following stress functions.



Fig. 4. Distribution of the body force, which are proportional to rk�1.
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rhj þ rrj ¼ Re½4/0jðzÞ�
rhj � rrj þ 2isrhj ¼ 2e2ihf�z/00jðzÞ þ u0jðzÞg

)
ðj ¼ 1; 2Þ ð13Þ
where
/jðzÞ ¼ ajzk

ujðzÞ ¼ bjzk

)

a1 ¼ X ðe2ikpþje2ikcÞ�kX ðe2ic�1Þ
e2ikp�1

a2 ¼ X ð1þje2ikpÞ�kX ðe2ic�1Þ
e2ikp�1

b1 ¼ �ka1 � �a1

b2 ¼ �ka2 � e�2ikpa2

j ¼
ð3� mÞ=ð1þ mÞ

3� 4m

(

X ¼ ðP�iQÞe�iðk�1Þc

kðjþ1Þ

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

ð14Þ
By substitute h = p/2 into h in Eq. (13), we have
rxj ¼ 2Re½/0jðzÞ� �Re½�z/00jðzÞ þ u0jðzÞ� ¼ srj � rk�1

sxyj ¼ �Im½�z/00jðzÞ þ u0jðzÞ� ¼ ssj � rk�1

srj ¼ 2fRe½aj�k cosðcðk� 1ÞÞ � Im½aj�k sinðcðk� 1ÞÞg

þf�Re½aj�kðk� 1Þ cosðcðk� 3ÞÞ þ Im½aj�kðk� 1Þ sinðcðk� 3ÞÞg

þfRe½bj�k cosðcðk� 1ÞÞ � Im½bj�k sinðcðk� 1ÞÞg

ssj ¼ fRe½aj�kðk� 1Þ sinðcðk� 3ÞÞ þ Im½aj�kðk� 1Þ cosðcðk� 3ÞÞg

�fRe½bj�k sinðcðk� 1ÞÞ þ Im½bj�k cosðcðk� 1ÞÞg

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

ð15Þ
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From Eqs. (5) and (15), we can see K = rxjr
1�k/fhh = srj/fhh, and K = sxyjr

1�k/frh = ssj/frh. By putting P =
WnM(0), Q = WtM(0), m = mM (or P = WnI(0), Q = WtI(0), m = mI), c = p/2 in Eq. (14), generalized stress inten-
sity factor K will be obtained.
4. Numerical results and discussion

In the following discussion, the stress intensity factors Fr,I, Fr,II defined as (16) will be used to express the
intensity of singular stress at the corner A. On the other hand, the stress intensity factor Fr defined as (17) will
be used to express the one at corner B.
Table 2
Convergence of Fr,I(A), Fr,II(A) and Fr(B) when ly/lx = 2, GI/GM = 10 (M: number of collocation points) (a) in Fig. 2(a), (b) in Fig. 1(a),
(c) in Fig. 1(b)

M Fr,I(A) Fr,II(A) Fr(B)

(a)

4 0.158 0.613 0.226
5 0.157 0.612 0.217
6 0.157 0.617 0.216

(b)

4 0.0283 0.0362 0.199
5 0.0284 0.0363 0.191
6 0.0284 0.0364 0.191

(c)

4 0.499 0.923 1.460
5 0.489 0.937 1.473
6 0.482 0.948 1.473

Table 3
Fr at the corner O for bonded strip in Fig. 5

a b

�0.2 �0.1 0.0 0.1 0.2 0.3 0.4

0.05 0.862 (0.87) 0.924 (0.93) – – – – –
0.1 0.767 (0.79) 0.890 (0.89) 0.955 (0.96) –
0.15 0.698 (0.71) – – –
0.2 – 0.797 (0.81) 0.889 (0.90) – – – –
0.3 – 0.697 (0.71) 0.796 (0.81) 0.913 (0.93) – – –
0.4 – 0.615 (0.62) 0.718 (0.72) 0.822 (0.83) – – –
0.5 – – 0.635 (0.64) 0.722 (0.73) 0.842 (0.87) – –
0.6 – – 0.559 (0.56) 0.638 (0.64) 0.724 (0.74) – –
0.7 – – 0.486 (0.49) 0.558 (0.56) 0.626 (0.64) 0.800 (0.81) –
0.75 – – – – – 0.712 (0.73) –
0.8 – – 0.450 (0.45) 0.487 (0.49) 0.538 (0.55) 0.636 (0.65) –
0.85 – – – – – 0.582 (0.60) 0.835 (0.83)
0.9 – – 0.381 (0.39) 0.412 (0-42) 0.456 (0.46) 0.534 (0.55) 0.726 (0.72)
0.95 – – – – – – 0.643 (0.64)
1.0 – – 0.332 (0.33) 0.357 (0.35) 0.395 (0.40) 0.446 (0.44) 0.540 (0.54)



Fig. 5. Fr at the corner O for tension rhjh¼90� ¼ F r

ðr=ly Þ1�k.

Table 4
Stress intensity factor Fr in Fig. 2 (a) at the corner A and B (plane strain, mM = mI = 0.3)

ly/lx GI/GM

Fr,I(A) Fr,II(A) Fr(B)

2 10 60 100 2 10 60 100 2 10 60 100

2 0.235 0.158 0.120 0.116 0.629 0.613 0.493 0.479 0.803 0.219 0.110 0.102
5 0.230 0.175 0.152 0.150 0.635 0.601 0.473 0.459 0.795 0.203 0.101 0.093
10 0.229 0.182 0.164 0.163 0.636 0.593 0.464 0.450 0.785 0.183 0.088 0.081
30 0.229 0.188 0.173 0.172 0.636 0.588 0.457 0.443 0.759 0.151 0.066 0.060

Fig. 6. Ratio of Fr at B to Fr at O (plane strain, mM = mI = 0.3).
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For corner A in Figs. 1 and 2
rhM jh¼�135� ¼ rhI jh¼�135� ¼
KI;k1

r1�k1
f I
h

���
h¼�135�

� KII;k2

r1�k2
f II
h

���
h¼�135�

¼ rF r;I

ðr=lxÞ1�k1
� rF r;II

ðr=lxÞ1�k2

9>=
>; ð16Þ
For corner B in Figs. 1 and 2 (For corner O in Fig. 2(b))



Table 5
Fr(B) for a rectangular inclusion when ly/lx = 10 under double pullout forces (plane strain, mM = mI = 0.3, l = spacing of double force(see
Fig. 7))

l/lx GI/GM

Fr(B)

10 60 100

0 0.202 0.176 0.173
1/4 0.217 0.190 0.187
1/3 0.230 0.203 0.200
1/2 0.273 0.246 0.243
2/3 0.356 0.338 0.335

Fig. 7. Stress intensity factor Fr(B) for a rectangular inclusion under double pull out forces when ly/lx = 10 (plane strain, mM = mI = 0.3).

Table 6
Fr,I(A), Fr,II(A), and Fr(B) for a rectangular inclusion (a) under a single pullout force (b) under double pullout force (plane strain,
mM = mI = 0.3)

ly/lx GI/GM

Fr,I(A) Fr,II(A) Fr(B)

10 60 100 10 60 100 10 60 100

(a)

2 0.0284 0.0182 0.0171 0.0363 0.0202 0.0189 0.191 0.170 0.168
4 0.0027 0.0018 0.0022 0.0050 0.0007 0.0011 0.202 0.176 0.173
8 0.0015 0.0002 0.0004 0.0024 0.0007 0.0002 0.202 0.176 0.173

10 0.0013 0.0001 0.0002 0.0019 0.0005 0.0001 0.202 0.176 0.173
20 0.0006 0.0001 0.0002 0.0009 0.0002 0.0002 0.204 0.178 0.175
30 0.0003 0.0001 0.0001 0.0005 0.0001 0.0002 0.205 0.178 0.175
(b)

2 0.0227 0.0120 0.0108 0.0291 0.0139 0.0127 0.263 0.242 0.239
4 0.0029 0.0015 0.0019 0.0050 0.0006 0.0010 0.272 0.246 0.243
8 0.0015 0.0002 0.0004 0.0024 0.0001 0.0002 0.272 0.246 0.243

10 0.0013 0.0001 0.0002 0.0019 0.0001 0.0001 0.273 0.246 0.243
20 0.0006 0.0001 0.0002 0.0010 0.0001 0.0001 0.273 0.246 0.243
30 0.0003 0.0001 0.0002 0.0005 0.0002 0.0002 0.273 0.246 0.243
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Fig. 8. Stress intensity factors (a) Fr,I(A), (b) Fr,II(A), and (c) Fr(B) for a rectangular inclusion under pull out force ly/lx = 10 (plane strain,
mM = mI = 0.3).

N.-A. Noda et al. / International Journal of Solids and Structures 44 (2007) 4472–4491 4483
rhM jh¼90� ¼ rhI jh¼90� ¼
K

r1�k
fh ¼

rF r

ðr=lxÞ1�k ð17Þ
Here, we put r = P/(2lx) (for Fig. 1(a)), r ¼ P=ðpl2
r Þ (for Fig. 1(b)), r ¼ r1x (for Fig. 2(a)).



Table 7
Fr,I(A), Fr,II(A), and Fr(B) for a cylindrical inclusion under pullout force

lz/lr GI/GM

Fr,I(A) Fr,II(A) Fr(B)

10 60 100 10 60 100 10 60 100

2 0.486 3.109 5.210 0.943 4.601 7.414 1.473 7.736 12.65
4 0.220 1.851 3.191 0.452 2.802 4.634 1.222 5.129 8.084
8 0.070 0.943 1.737 0.151 1.449 2.551 1.154 3.774 5.509

10 0.044 0.723 1.379 0.098 1.115 2.031 1.154 3.558 5.042
20 0.009 0.246 0.554 0.021 0.384 0.823 1.182 3.295 4.325
30 0.003 0.101 0.257 0.008 0.159 0.384 1.183 3.207 4.112
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4.1. Convergence of the results

Table 2 indicates examples of stress intensity factors Fr,I(A), Fr,II(A), Fr(B) for the problems of Figs. 1
and 2 (a). Here, the boundary division as shown in Fig. 3 is applied. Table 2 shows good convergence to
the third digit. Similar results can be seen for other cases. Then, it is confirmed that the values of Fr,I(A),
Fr,II(A), Fr(B) have convergence to the third digit in most cases when the number of collocation points
M = 4–6.
4.2. Stress intensity factors of a bonded strip and a fiber in a semi-infinite plate under tension

Little results are available for reliable generalized stress intensity factors regarding the edge point B in
Fig. 1. Therefore, first, we analyzed tension problems forFig. 2(a) and (b) to compare the results each
other. Here, a similar method is applied to the bonded strip for Fig. 2(b), whose elastic constants are
G1, m1 and G2, m2. Table 3 and Fig. 5 indicate the results of Fr at the edge point O in Fig. 2(b) when
lx/ly = 2 and Dundurs parameter b = �0.2, �0.1,0, . . . , 0.4. The previous results given from the figure
in (Chen and Nisitani, 1992) coincide with the present results within 3% error.

Table 4 shows the results for a fiber under transverse tension when ly/lx = 2, 5, 10. Fig. 6 shows
Fr(B)/Fr(O) where Fr(B) is the result at corner B in Fig. 2 (a), and Fr(O) is the result in Fig. 2 (b).
The value of Fr(B)/Fr(O) decreases with increasing ly/lx, and becomes constant as ly/lx!1. For large
value of GI/GM, the value becomes smaller. The value of Fr(B)/Fr(O) is mainly controlled by GI/GM

and insensitive to ly/lx.

4.3. Stress intensity factors of a fiber under pullout force

For carbon fiber-reinforced composites, the elastic modulus ratio is usually in the range of GI/GM = 61–
118, and for glass fiber-reinforced composites, GI/GM = 24–84 (Noda and Takase, 2005). In this analysis,
we put GI/GM = 10, 60, 100. Table 5 and Fig. 7 show the results of Fr(B) at the corner B with varying the
position of pullout forces. The value of Fr increases as the force approaches the corner B. In the range of
0 6 l/lx 6 2/3, Fr becomes larger by 1.9 times.

Table 6 shows the results of single pullout force when l = 0 and the results of double pullout forces
when l = lx/2. Here, the aspect ratio of the rectangular inclusion is assumed as ly/lx = 2, 4, 8, 10, 20,
30. The values of Fr,I(A), Fr,II(A), Fr(B) are plotted in Fig. 8. At the corner A, the results for single
and double forces have almost no difference. At the corner B, the difference for single and double
forces is 30-40 percent. From Fig. 8, it us found that if the aspect ratio of the fiber ly/lx P 4 the
results are almost constant. In other words, the effective length is ly/lx = 4 for large aspect ratio of
the fiber.

Table 7 and Fig. 9(a)–(c) shows the results of cylindrical inclusion under single pullout force. From Figs. 8
and 9, it is seen that the values of Fr,I, Fr,II approach zero with increasing the aspect ratio ly/lx. On the other



Fig. 9. Stress intensity factors (a) Fr,I(A), (b) Fr,II(A), and (c) Fr(B) for a cylindrical inclusion under pull-out force.
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hand, the value of Fr for rectangular and cylindrical inclusions becomes constant at ly/lx ffi 10 for each value of
GI/GM. From Fig. 9, it may be concluded that the effective fiber length is lz/lr = 30 for large aspect ratio lz/
lr P 30.
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5. Conclusion

Fiber pullout problems have been investigated in many years. However, there are few studies
treating the singular stress at the fiber ends, which may cause fiber debonding. In this paper, the
intensities of singular stresses at the interfacial ends were analyzed and discussed with varying
Fig. A2. (a) A rectangular inclusion in a semi-infinite plate under tension (b) A cylindrical inclusion in a semi-infinite body under biaxial
tension.

Fig. A1. Stress intensity factors FI at A and B for an internal crack in a half-plane.

Table A1
Fr,I and Fr,II at the corner A and B for a rectangular inclusion when ly/lx = 10 (plane strain, mM = mI = 0.3)

GI/GM Fr,I at A Fr,II at A Fr,I at B Fr,II at B

ly/d 2 10 100 2 10 100 2 10 100 2 10 100

!0.0 0.228 0.126 0.057 0.658 0.670 0.557 0.228 0.126 0.057 0.658 0.670 0.557
0.1 0.228 0.127 0.058 0.656 0.668 0.558 0.228 0.127 0.058 0.657 0.668 0.558
0.3 0.229 0.130 0.063 0.657 0.664 0.551 0.229 0.132 0.067 0.657 0.661 0.547
0.5 0.229 0.133 0.074 0.654 0.655 0.538 0.230 0.142 0.087 0.650 0.641 0.524
0.7 0.228 0.137 0.085 0.650 0.645 0.525 0.232 0.162 0.127 0.634 0.608 0.488
0.9 0.226 0.139 0.092 0.645 0.636 0.516 0.231 0.193 0.193 0.618 0.607 0.489
0.95 0.226 0.140 0.093 0.644 0.636 0.515 0.227 0.207 0.226 0.621 0.625 0.499
1.0 0.229 0.178 0.158 0.638 0.601 0.457 !0 !0 !0 !1 !0 !1



Table A2
Fr,I and Fr,II at the corner A and B for a cylindrical inclusion when ly/lx = 10, mM = mI = 0.3

GI/GM Fr,I at A Fr,II at A Fr,I at B Fr,II at B

lz/d 2 10 100 2 10 100 2 10 100 2 10 100

!0.0 0.223 0.044 0.450 0.701 0.884 1.081 0.223 0.044 0.450 0.701 0.884 1.081
0.1 0.223 0.044 0.456 0.701 0.886 1.087 0.224 0.041 0.459 0.701 0.886 1.087
0.2 0.223 0.044 0.455 0.701 0.886 1.086 0.224 0.041 0.458 0.701 0.885 1.086
0.5 0.223 0.044 0.443 0.701 0.884 1.075 0.224 0.042 0.432 0.700 0.878 1.062
0.8 0.223 0.044 0.407 0.701 0.879 1.040 0.228 0.063 0.256 0.689 0.819 0.907
0.9 0.223 0.044 0.386 0.701 0.877 1.021 0.232 0.123 0.114 0.676 0.779 0.822
0.95 0.223 0.044 0.378 0.701 0.876 1.013 0.233 0.180 0.160 0.678 0.803 0.854
1.0 0.223 0.044 0.407 0.701 0.878 1.040 !0 !0 !0 !1 !0 !1
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the aspect ratio and elastic modulus ratio of fibers. The conclusions can be made in the following
way.

(1) Fiber pullout is modeled as rectangular and cylindrical inclusions in semi-infinite bodies. Then,
the problems were analyzed by the application of the body force method coupled with singular
integral equation formulation. The boundaries were divided into several intervals, and unknown
body force densities were approximated as the product of fundamental densities and power series.
Fig. A3. Stress intensity factors (a) Fr,I (b) Fr,II at A for a rectangular inclusion (GI/GM = 2, 10, 100, ly/lx = 10, plane strain,
mM = mI = 0.3).



Fig. A4. Stress intensity factors (a) Fr,I (b) Fr,II at B for a rectangular inclusion (GI/GM = 2, 10, 100, ly/lx = 10, plane strain,
mM = mI = 0.3).
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The method yields rapidly converging numerical results for generalized stress intensity factors
defined at the fiber ends. The results were indicated in tables and figures with varying aspect
ratio and elastic modulus ratio of fibers.

(2) For the stress intensity at the fiber end A, the values of Fr,I, Fr,II values decrease and approach zero with
increasing the fiber aspect ratio ly/lx. This can be seen for both rectangular and cylindrical inclusions (see
Figs. 8 and 9).

(3) For the stress intensity at the surface end B, the values of Fr become constant with increasing the fiber
aspect ratio ly/lx. The values become constant when ly/lx ffi 10 for both rectangular and cylindrical inclu-
sions independent of elastic modulus ratio GI/GM (see Figs. 8 and 9). When the position of pullout force
approaches interfacial end, the values of Fr increase by 1.9 times in the range of 0 6 l/lx 6 2/3 (see
Fig. 7).

(4) From the results of rectangular inclusion in Fig. 8, the effective length is ly/lx = 4 for large aspect ratio ly/
lx P 4. On the other hand, from the results of cylindrical inclusion in Fig. 9, it may be concluded that the
effective fiber length is ly/lx = 30 for large aspect ratio lz/lr P 30.

(5) Generalized stress intensity factors Fr(B) at the fiber end at B were compared with the results of bonded
strip Fr(O) at O under transverse tension. Then, it is found that the ratio Fr(B)/Fr(O) decreases with
increasing ly/lx and becomes constant as ly/lx!1 (see Fig. 6). The value Fr(O) (Chen and Nisitani,
1992) coincides with the present results within 3%.



Fig. A5. Stress intensity factors (a) Fr,I (b) Fr,II at A for a cylindrical inclusion (GI/GM = 2, 10, 100, lz/lr = 10, mM = mI = 0.3).
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Appendix A. Stress intensity factors for a fiber in a semi-infinite plate under transverse tension

Since structural materials always contain some types of defects such as cracks, cavities, and inclusions, it is
necessary to consider the effect on the strength. For example, Fig. A1 indicates the results of a crack in a semi-
infinite plate under tension. As shown in Fig. A1, when ly/d! 1, the stress intensity factor at A becomes larger
by 1.586 times, and the stress intensity factor at B becomes infinity. However, if an inclusion exists near free
surface, similar results have not been analyzed yet. Therefore, a rectangular inclusion in a semi-infinite plate
and a cylindrical inclusion in a semi-infinite body will be treated to evaluate the effect of free surface (see
Fig. A2).

Tables A1 and A2 show the results of a rectangular inclusion in Fig. A2 when lx/ly = 1, 10, GI/GM = 2, 10,
100. Figs. A3 and A4 show the results of a rectangular inclusion at corners A and B. For corner A, the values
of Fr,I and Fr,II do not vary very largely as ly/d! 1. On the other hand, for corner B, the values of Fr,I and
Fr,II should go to infinity or zero depending of GI/GM as ly/d! 1. This is because the singular index becomes
different as ly/d! 1 as shown in Table 3. Similarly, Figs. A5 and A6 indicate the result of a cylindrical inclu-
sion at corner A and B when lx/ly = 10, GI/GM = 2, 10, 100.



Fig. A6. Stress intensity factors (a) Fr,I (b) Fr,II at B for a cylindrical inclusion (GI/GM = 2, 10, 100, lz/lr = 10, mM = mI = 0.3).

4490 N.-A. Noda et al. / International Journal of Solids and Structures 44 (2007) 4472–4491
References

Atkinson, C., Avila, J., Betz, E., Smelser, R.E., 1982. The rod pull out problem, theory and experiment. Journal of the Mechanics and
Physics of Solids 30 (3), 97–120.

Budiansky, B., Evans, A.G., Hutchinson, J.W., 1995. Fibre-matrix debonding effects on racking in aligned fibre ceramics composites.
International Journal Solids and Structures 32, 315–328.

Chen, D.H., Nisitani, H., 1992. Analysis of intensity of singular stress field at fiber end (2nd report, results of calculation). Transactions of
the Japan Society of Mechanical Engineers Series A 58 (555), 143–148 (in Japanese).

Chen, D.H., Nisitani, H., 1993. Intensity of singular stress field near the interface edge point of a bonded strip. Transactions of the Japan
Society of Mechanical Engineers Series A 59 (567), 210–214 (in Japanese).

Cook, R.F., Thouless, M.D., Clarke, D.R., Kroll, M.C., 1989. Stick-slip during fibre pull-out. Scripta Metallurgica 23, 1725–1730.
Freund, L.B., 1992. The axial force needed to slide a circular fiber along a hole in an elastic material and implications for fiber pull- Out.

European Journal of Mechanics A Solids 11 (1), 1–19.
Luk, V.K., Keer, L.M., 1979. Stress analysis for an elastic half space containing an axially-loaded rigid cylindrical rod. International

Journal of Solids and Structures 15 (10), 805–827.
Muki, R., Sternberg, E., 1969. On the diffusion of an axial load from an infinite cylindrical bar embedded in an elastic medium.

International Journal of Solids and Structures 5 (6), 587–605.
Muki, R., Sternberg, E., 1970. Elastostatic load-transfer to a half-space from a partially embedded axially loaded rod. International

Journal of Solids and Structures 6 (1), 69–90.
Nisitani, H., 1967. The two-dimensional stress problem solved using an electric digital computer. Journal of the Japan Society of

Mechanical Engineers 11, 627–632 (in Japanese). [1968. Bulletin of Japan Society of Mechanical Engineers 11, 14–23.].
Nisitani, H., Noguchi, H., Kim, Y.-H., 1993. Fatigue process in short carbon-fiber-reinforced polyamid 6.6 under rotating-bending and

torsional fatigue. Engineering Fracture Mechanics 45 (4), 497–512.



N.-A. Noda et al. / International Journal of Solids and Structures 44 (2007) 4472–4491 4491
Noda, N.A., Kawashima, Y., Moriyama, S., Oda, K., 1996. Interaction of newly defined stress intensity factors for angular corners in a
row of diamond-shaped inclusions. International Journal of Fracture 82, 267–295.

Noda, N.A., Matsuo, T., 1998. Singular integral equation method for interaction between elliptical inclusions. ASME Journal of Applied
Mechanics 65, 310–319.

Noda, N.A., Moriyama, Y., 2004. Stress concentration of an ellipsoidal inclusion of revolution in a semi-infinite body. Archives of
Applied Mechanics 74, 29–44.

Noda, N.A., Takase, Y., 2003. Intensity of singular stress fields at the end of cylindrical inclusion. ASME Journal of Applied Mechanics
70 (4), 487–495.

Noda, N.A., Takase, Y., 2005. Intensity of singular stress at the fiber end in a hexagonal array of fibers. International Journal of Solids
and Structures 42 (16–17), 4890–4908.

Noda, N.A., Wang, Q., Uemura, Y., Kawashima, Y., 1998. Singular integral equation method in the analysis of interaction between
rectangular inclusions. JSME International Journal Series A 41 (3), 303–308.

Povirk, G.L., Needleman, A., 1993. Finite element simulations of fiber pull-out, transactions of the ASME. Journal of Engineering
Materials and Technology 115, 286–291.

Zhang, X., Liu, H.Y., Mai, Y.W., 2004. Effects of fibre debonding and sliding on the fracture behaviour of fibre-reinforced composites.
Composites Series A 35, 1313–1323.


	Intensity of singular stress fields causing interfacial debonding at the end of a fiber under pullout force and transverse tension
	Introduction
	Generalized stress intensity factors at the corners of fiber ends
	Method of analysis
	Singular integral equations of the body force method
	Numerical solutions around corner A
	Numerical solutions around the corner B

	Numerical results and discussion
	Convergence of the results
	Stress intensity factors of a bonded strip and a fiber in a semi-infinite plate under tension
	Stress intensity factors of a fiber under pullout force

	Conclusion
	Stress intensity factors for a fiber in a semi-infinite plate under transverse tension
	References


