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a b s t r a c t

Based on the elasto-plastic mechanics, the damage analysis and dynamic response of an elasto-plastic
laminated composite shallow spherical shell under low velocity impact are carried out in this paper.
Firstly, a yielding criterion related to spherical tensor of stress is proposed to model the mixed hardening
orthotropic material, and accordingly an incremental elasto-plastic damage constitutive relation for the
laminated shallow spherical shell is founded when a strain-based Hashin failure criterion is applied to
assess the damage initiation and propagation. Secondly, using the presented constitutive relations and
the classical nonlinear shell theory, a series of incremental nonlinear motion equations of orthotropic
moderately thick laminated shallow spherical shell are obtained. The questions are solved by using the
orthogonal collocation point method, Newmark method and iterative method synthetically. Finally, a
modified elasto-plastic contact law is developed to determine the normal contact force and the effect
of damage, geometrical parameters, elasto-plastic contact and boundary conditions on the contact force
and the dynamic response of the structure under low velocity impact are investigated.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Fiber-reinforced composite materials are extensively applied to
the structures’ manufactures in modern industries recently. These
composite structures are susceptible to impact which inevitably
exists in the transportation and application. So the forecast of the
damage and impact response of these structures is of great practi-
cal benefit to their design and manufacture.

The impact event is a complex phenomenon which includes the
interaction between projectile and structure. Recently, lots of re-
searches on impact have been carried out in experimental and
numerical form. When only the elastic contact is in consideration,
Yang and Sun (1981) presented the experimental indentation law
through static indentation tests on composite laminates; Tam
and Sun (1982) developed their own finite program to analyze im-
pact response of composite laminates and performed impact tests
by using a pendulum type low velocity impact test system; Sun
(1977) applied the modified Hertzian contact law to the dynamic
analysis of the composite laminates under impact; Choi and Lim
(2004) proposed a linearized contact law in low velocity impact
analysis of composite laminates and compared it to the modified
Hertzian contact law. When the plastic deformation occurs in con-
ll rights reserved.

of Advanced Technology of
University, Changsha, Hunan
731 8822051.
tact area as the deflection of the structure under impact increases,
the elastic contact law is no longer suitable to model the contact
force and a more feasible contact law is needed. So Johnson
(1985) applied the Hertzian theory and Von Mises yield criterion
to determine the normal force at which the incipient yield occurs
in two spheres subjected to a normal load. Chang et al. (1987) pro-
posed the CEB (Chang, Etsion and Bogy) model in the analysis of
composite laminates under impact of a sphere. In this model the
sphere remains in elastic Hertzian contact until a critical interfer-
ence is reached, above which volume conservation of the sphere
tip is imposed. The contact pressure distribution for the plastic de-
formed composite laminates structures was assumed to be rectan-
gular and equal to the maximum Hertzian pressure at critical
interference. The CEB model suffers from a discontinuity in contact
load as well as in the first derivatives of both contact load and con-
tact area at the transition from the elastic to the elasto-plastic re-
gime. Vu-Quoc and Zhang (1999), Vu-Quoc et al. (2001, 2000)
made further advance in the theory and numerical analysis, and
proposed an accurate elasto-plastic NFD (normal force–displace-
ment) model, which had been experimentally validated in Plantard
and Papini (2005). But this model is only suitable to the elasto-per-
fectly plastic material. So, we attempt in the present paper to
establish an elasto-plastic contact law based on the elasto-per-
fectly plastic NFD (normal force–displacement) model presented
in Vu-Quoc et al. (2001). However, only the case of normal impact
is investigated in this paper, and the oblique impact, a more gen-
eral and realistic case, can refer to Vu-Quoc et al. (2004), Zhang
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Fig. 1. Geometrical configuration of the shallow spherical shell with fixed
boundary.
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and Vu-Quoc (2007), in which a tangential elasto-plastic force–dis-
placement model had been developed.

Invisible damages of various kinds are easy to be induced in
composite laminates when impacted by projectiles, such as:
delamination, matrix crack and fiber breakage. They would heavily
reduce the stiffness and life-span of the structures. Experiments
show that composite materials are more susceptible to the impact
than the metal. So a full comprehension of the damage mechanism
for composite laminates under low velocity impact is very impor-
tant. Collombet et al. (1996) presented some numerical tools to
simulate the low velocity impact damage of laminated composite
structures. They considered a model of contact-impact based on
Lagrange multiplier technique. Matrix cracking is represented by
an averaging technique developed on the scale of one finite ele-
ment. The results showed good agreement between the experi-
mental and numerical damage observations. Choi and Chang
(1992) used the dynamic finite element method coupled with fail-
ure analysis to predict the threshold of impact damage and initia-
tion of delamination. Hou et al. (2000) predicted the impact
damage for laminated composites with implementation of an im-
proved failure criterion, suggesting that delamination was con-
strained by the through-thickness compression stress; Ganapathy
and Rao (1997) predicted the damage in laminated composite
plates and in cylindrical/spherical shell panels subjected to low
velocity impact. The in-plane damage in the laminates was firstly
analyzed by a 2D nonlinear finite element model using laminated
composite shell elements with a 48 degree-of-freedom. The in-
plane damage was then analyzed by using the Tsai–Wu criterion
and maximum stress criteria.

In this paper, an elastic progressive stiffness modification meth-
od is established by adopting the strain-based Hashin failure crite-
rion at first, and then an elasto-plastic constitutive relation for
orthotropic materials containing damage are built when the yield
criterion related to spherical tensor of stress is proposed to de-
scribe the mixed hardening of damaged orthotropic materials.
Based on the nonlinear classical flat shell theory, the incremental
nonlinear motion equations of orthotropic moderately thick shal-
low spherical shells are obtained. With the previously deduced
yield criterion related to spherical tensor of stress, we developed
the Vu-Quoc et al. (2000) elasto-perfectly plastic contact model
to model the contact force and indentation in the plastic loading
phase. Numerical results show the effect of damage, geometrical
parameters of the structure and boundary conditions on the con-
tact force and the dynamic response of the structure under low
velocity impact.
2. Basic equations

2.1. Incremental nonlinear geometric relations for the laminated
composite shallow spherical shell

Consider an axi-symmetrical laminated moderately thick shal-
low spherical shell with the thickness h, the number of the plies
N and base radius a. The shell is impacted by an elastic sphere
on the top with a velocity of v0 (as shown in Fig. 1). Each point
in the shells can be denoted with the orthogonal curvilinear coor-
dinates u; h, z along the meridional, circumferential and radial/
thickness directions, respectively. z ¼ 0 denotes the mid-surface
and z ¼ �h=2 denote the inner and outer surfaces of the laminated
shallow spherical shell, respectively. The curvature radius of the
mid-surface is R1 ¼ R2 ¼ R, and the Lame coefficients are
A1 ¼ R;A2 ¼ Rsinu. Under the Timoshenko–Midlin assumption, the
incremental displacement components du; dv ; dw of any point in
the shell at any time for the axi-symmetrical deformation can be
expressed as
duðu; h; z; tÞ ¼ du0ðu; h; tÞ þ zdw1ðu; h; tÞ
dvðu; h; z; tÞ ¼ 0 ð1Þ
dwðu; h; z; tÞ ¼ dw0ðu; h; tÞ

where du0
;dw0 are the incremental displacement components on

the mid-surface of the laminated shallow spherical shell; dw1 is
the incremental independent rotation of the radial section. The non-
linear incremental strain–displacement relations are expressed as
follows

deu ¼ de0
u þ zdk0

u; deh ¼ de0
h þ zdk0

h ; deuz ¼ dw1 þ
1
R
@dw
@u

ð2Þ

where de0
u;de0

h are the incremental strain components on the
mid-surface, dk0

u; dk0
h are the changes of the curvatures on the

mid-surface, and

de0
u ¼

1
R
@du0

@u
� dw

R
þ 1

2
ðdx2Þ2 þx2 � dx2;

de0
h ¼

cotu
R

du0 � dw
R
; k0

u ¼
1
R
@dw1

@u
; k0

h ¼
cotu

R
dw1 ð3Þ

in which x2 is rotational component and x2 ¼ � 1
2

1
R
@w
@u� w1

� �
;

dx2 ¼ � 1
2

1
R
@dw
@u � dw1

� �
.

In the analysis of the shallow spherical shell, a new variable r is
introduced in the radius of the parallel circle, and then there exist
the following relation r � Ru; sin u; cos u � 1 approximately.
Therefore, according to Eq. (3), the incremental strain and rotary
angle components can be simply expressed as

de0
u ¼

@du0

@r
� dw

R
þ 1

2
ðdx2Þ2 þx2 � dx2;

de0
h ¼

du0

r
� dw

R
; dk0

u ¼
@dw1

@r
; dk0

h ¼
dw1

r
;

x2 ¼ �
1
2

@w
@r
� w1

� �
; dx2 ¼ �

1
2

@dw
@r
� dw1

� �
ð4Þ
2.2. Incremental elastic damage constitutive relations for orthotropic
composite shallow spherical shell

According to Zhang et al. (2006), Chien and Lee (2003), when
the orthotropic composite structures are subjected to a low veloc-
ity impact, the stiffness coefficients would be reduced when the
failure thresholds are reached and would be reduced further as
deformation increases. After the stiffness coefficients are firstly de-
graded at a local point, the stresses may become chaotic while
strains are more continuous and would be basis better suited to as-
sess failure. On the basis of the damage model presented by Zhang
et al. (2006), and for the axi-symmetrical deformation analysis,
three failure symbols, s1; s2 and s3 are defined as follows
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Strain-based fiber failure

s1 ¼ e11
Xe

c
; e11 < 0

s1 ¼ e11
Xe

T
; e11 P 0

ð5Þ

Strain-based matrix failure

s2 ¼ E2
2

4G2
23

e22
Te

23

� �2
þ e22

Ye
c

E2
2

4G2
23

Ye
c

Te
23

� �2
� 1

� �
þ c13

Te
13

� �2
; e22 < 0

s2 ¼ e22
Ye

T

� �2
þ c13

Te
13

� �2
; e22 P 0

ð6Þ

Strain-based fiber–matrix shear failure

s3 ¼
h�e11i

Xe
c

� �2

þ c13

Te
13

� �2

ð7Þ

The MaCauley arithmetic sign h�i is defined as:

hli ¼
l if l > 0
0 if l 6 0

�
ð8Þ

where E1 and E2 are the Young’s modulus along and perpendicular
to the fiber direction, respectively, Gijði – jÞ are the corresponding
shear stiffness constants in the ij-plane; Xe

c ;X
e
T ;Y

e
c; Y

e
T are the com-

pression and tension strain strength along and perpendicular to
the fiber direction, and they can be obtained by substitution of only
one dimension relations as follows

Xe
T ¼

XT

E1
; Xe

C ¼
Xc

E1
; Ye

T ¼
YT

E2
; Ye

C ¼
Yc

E2
; Te

ij ¼
Tij

Gij
ð9Þ

where XC ;XT ; YC and YT are the compression and tension strength
along and perpendicular to the fiber direction, and Tij represents
the shear strength in the ij-plane. With the above transformation,
the three symbols based on the strain-based Hertzian law can be
used to reflect the damage degree in the structures (when
si > 1; i ¼ 1;2;3). In order to evaluate the damage in the composite
materials, three failure variables ðd1; d2;d3Þ are defined in terms of
the damage symbols ðs1; s2; s3Þ as:

di ¼ ji 1� Ai

sn
i

� �
ði ¼ 1;2;3Þ ð10Þ

where jð0 < ji 6 1Þ; n and A are damage parameters.
The span of damage variables are [0,1], d ¼ 0 indicates no dam-

age, d ¼ 1 indicates the completely material failure. As the damage
variables are time-dependent and un-restored, the damage vari-
ables are supposed to meet the following condition

dt ¼maxðds
;0Þðs 6 tÞ; d0 ¼ 0 ð11Þ

The material constants H without damage can be related to the
damaged material constants H0 as follows

H0 ¼ ðI� FÞ �H ð12Þ

where F is a diagonal matrix with diagonal components d1;d2 and
d3, and H ¼ ðE1; E2;G13ÞT ; H0 ¼ ðE01; E

0
2;G

0
13Þ

T .
Then, the constitutive relations for the kth lamina of the lami-

nated shallow spherical shells containing damage can be expressed
as

drk
u

drk
h

drk
uz

8><
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9>=
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1ð1�dk
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12
tk

21
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1�tk
12
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dek
u

dek
h
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uz
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¼def
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11 ck
12 0

ck
12 ck

22 0
0 0 ck

44

2
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3
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dek
u

dek
h

dek
uz

8><
>:

9>=
>; ð13Þ
where rk
u;rk

h; sk
uz are the stress components, ek

u; ek
h; ek

uz are the strain
components, dk

1;d
k
2;d

k
3 are the damage variables, Ek

1; E
k
2 are the

Young’s modulus along and perpendicular to the fiber, respectively,
Gk

13 is the shear modulus in 1–3 plane; mk
12; mk

21 are the Poisson’s ratio
and Ek

1=mk
12 ¼ Ek

2=mk
21, and the superscript k indicates that the vari-

ables are in the kth layer.
The Eq. (13) is simply denoted as

dr ¼ ce � dee ð14Þ

the superscript e indicates the elastic property.

2.3. Mixed hardening rule and elasto-plastic damage constitutive
relations for orthotropic composite shallow spherical shell

2.3.1. Mixed hardening rule
For the axi-symmetry plane stress problem, in the case of elas-

to-plastic deformation, we suppose that:

(1) spherical tensors of stresses produce plastic deformations,
and the plastic strains are compressible;

(2) uniform volume dilatation produced by the active stresses
does not influence plastic deformation;

(3) yield surface moves and expands along with plastic
deformation;

(4) dimensionless yield criterion of orthotropic material is iso-
morphic with the Von Mises criterion of isotropic material.

Based on above suppositions, the mixed hardening yield crite-
rion of orthotropic damaged materials can be written as

Fp ¼ f ðrij � bijÞ � kðnÞ ð15Þ

where f ðrij � bijÞ is the yield function; rij is the stress components
of the damaged material; bij is the back stress, which denotes the
transition of the center of the yield surface and reflects the kine-
matic hardening; hardening parameter kðnÞ denotes the size of yield
surface, which is often set as equivalent active stress �r, and n is an
internal variable often set as equivalent plastic strain �ep ð�r and �ep

are both defined in the following).
To satisfy the supposition (2), the uniform volume dilatation

caused by the stress components of the damaged material must

meet e11 ¼ e22, here, r011
ce

11þce
12
¼ r022

ce
21þce

22
, and r0ij ¼ rij � bij; ce

ij are de-

fined in Eq. (14).
Supposing the principal directions of the material along the

direction of x; y; z, the yield function f ðr0ijÞ can be given as

f ¼ k12
r011

ce
11 þ ce

12
� l12

r022

ce
21 þ ce

22

� �2

þ k23
r022

ce
21 þ ce

22

� �2

þ 2k44r0244

ð16Þ

in which kij;lij are constant coefficients need to be determined.
For the supposition (4), the following coefficients have been

chosen by comparing to the Von Mises yield criterion

k12 ¼
ðce

11 þ ce
12Þ

2

2S2
12

; k23 ¼
ðce

21 þ ce
22Þ

2

2S2
22

;

l12 ¼
ðce

21 þ ce
22Þ

ðce
11 þ ce

12Þ
S11

S22
; k44 ¼

1
2S2

44

ð17Þ

where S11 and S22 are yield stresses in the directions of principal
axes x; y; S12 and S44 are yield pure shear stresses in the coordinate
planes of ðx; yÞ and ðx; zÞ, respectively. Then the dimensionless yield
function can be written as

�f ¼ 1
2
ð�r011 � �r022Þ

2 þ �r0222 þ �r0211 þ 2�r0244

h i
ð18Þ
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where �r0ij ¼
r0

ij

Sij
. From above equation we can find that the yield cri-

terion of the damaged orthotropic materials is isomorphic with the
Von Mises criterion of isotropic materials.

According to Eq. (18), the equivalent active stress can be defined
as

�r ¼ Kffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�r011 � �r022Þ

2 þ �r0222 þ �r0211 þ 2�r0244

q
ð19Þ

where the constant K can be determined by the tension test in sim-
ple stress state.

Let the yield function f be

f ¼ k2

2
ð�r011 � �r022Þ

2 þ �r0222 þ �r0211 þ 2�r0244

h i
ð20Þ

where �r0ij ¼
rij�bij

Sij
ði; j not sumÞ.

According to Eqs. (15) and (20), the mixed hardening yield func-
tion can be given as

Fp ¼ f ð�r0ijÞ � ½�rð�epÞ2� ð21Þ

where the equivalent active stress �r is a function of the equivalent
plastic strain �ep and can be obtained by the simple tension test
curves r� e.

Choose the plastic dissipation potential function to agree with
the mixed hardening yield criterion. According to the orthogonality
principle, we have

dep
ij ¼ kp

@f
@rij

ð22Þ

where kp is a multiplier determined by continuity of the yield sur-
face and will be deduced in the following processes. Substituting
Eq. (20) into Eq. (22), the following equations can be obtained:

dep
11 ¼ kp

K2

S11
ð2�r011 � �r022Þ

dep
22 ¼ kp

K2

S22
ð2�r022 � �r011Þ ð23Þ

dep
44 ¼ 2kp

K2

S44
�r044

Substituting Eq. (23) into Eq. (19), we have

�r ¼ 1
3
ffiffiffi
2
p

kkp

ðS11dep
11 � S22dep

22Þ
2 þ ðS22dep

22Þ
2

n

þ ðS11dep
11Þ

2 þ 9
2
ðS44dep

44Þ
2

1

2

ð24Þ

Define the equivalent plastic strain increment as

d�ep ¼
ffiffiffi
2
p

3k
ðS11dep

11 � S22dep
22Þ

2 þ ðS22dep
22Þ

2
n

þ S11dep
11Þ

2 þ 9
2
ðS44dep

44Þ
2

� 
1
2

ð25Þ

The incremental plastic strain can be divided into two parts,
depðiÞ

ij and depðjÞ
ij , i.e. dep

ij ¼ depðiÞ
ij þ depðjÞ

ij . Here depðiÞ
ij is the incremental

plastic strain related to the isotropic hardening, and depðjÞ
ij is the

incremental plastic strain related to kinematic hardening. They
can be defined as depðiÞ

ij ¼ adep
ij; depðjÞ

ij ¼ ð1� aÞdep
ij , here a is the

mixed hardening parameter with span (�1,1).a ¼ 1ðdepðjÞ
ij ¼ 0;

dep
ij ¼ depðiÞ

ij Þ denotes the isotropic hardening, and a ¼ 0ðdepðiÞ
ij ¼

0; dep
ij ¼ depðjÞ

ij Þ denotes the kinematic hardening. When a is nega-
tive the yield surface shrinks, and a with other values denotes
mixed hardening. The incremental back stress tensor can be de-
fined as a linear function of the incremental plastic strain tensor,
that is
dbij ¼ cdepðjÞ
ij ¼ cð1� aÞdep

ij ð26Þ

in which c is a ratio constant.

2.3.2. Elasto-plastic damage constitutive relations for orthotropic
composite shallow spherical shell

With the above deduced mixed hardening rule for the orthotro-
pic material, we work to establish an elasto-plastic damage consti-
tutive relation for orthotropic composite shallow spherical shell in
this part.

Suppose the total incremental strain is composed of two parts

deij ¼ dee
ij þ dep

ij ð27Þ

From Eqs. (22) and (27), Eq. (14) can be written as

drij ¼ ce
ijkl deij � kp

@f
@rij

� �
ð28Þ

Using the consistency conditions, from Eq. (21), we have

@f
@�r0ij

d�r0ij � 2�r @�r
@�ep

d�ep ¼ 0 ð29Þ

here, �r is a function of the equivalent plastic strain �ep as defined in
Eq. (21).

Substituting Eqs. (22), (26) and (28) into (29), and using the (24)
and (25), the multiplier kp can be obtained as

kp ¼
@f
@�r0

ij

1
Sij

ce
ijkldeij

@f
@�r0

ij

1
S2

ij
cð1� aÞ @f

@�r0
ij
þ 1

Sij

@f
@�r0

ij
ce

ijkl
1

Skl

@f
@�r0

kl
þ 2~r @~r

@�ep
1
Sij

@f
@�r0

ij

ð30Þ

Substituting Eq. (30) into Eq. (28) and rearranging, the incre-
mental elasto-plastic damage constitutive equation for orthotropic
composite materials can be obtained

drij ¼ ðce
ijkl � bcp

ijklÞdekl ¼
def

Q ijkldekl ð31Þ

where cp
ijkl ¼

@f
@ �r0

ij

1
Sij

ce
ijkl

@f
@�r0

kl

1
Skl

ce
klij

@f
@�r0

ij

1
S2
ij

cð1�aÞ @f
@�r0

ij
þ 1

Sij

@f
@�r0

ij
ce

ijkl
1

Skl

@f
@�r0

kl
þ2~r @~r

@�ep
1

Sij

@f
@�r0

ij

.

The yield conditions for the orthotropic composite material are

b¼1 ðelasto-plastic deformationÞwhen Fp¼0 and
@f
@rij

drij>0

b¼0 ðelastic deformationÞwhen Fp<0; or Fp¼0 and
@f
@rij

drij60

ð32Þ

As for the composite laminated shallow spherical shells, from
the Eq. (31), we briefly denote the incremental elasto-plastic con-
stitutive relations for the kth lamina of the laminated shallow
spherical shell in the local coordinates

drðkÞ ¼ Q ðkÞ � deðkÞ ð33Þ

where

Q ¼
Ce

11 � a1Cp
11 Ce

12 � a1Cp
12 �a1Cp

14

Ce
21 � a1Cp

21 Ce
22 � a1Cp

22 �a1Cp
24

�a1Cp
14 �a1Cp

24 Ce
44 � a1Cp

44

2
64

3
75

in which the Ce
ij are determined by the Eq. (13).

The incremental stress drðkÞ in the local coordinate can be trans-
formed to the incremental stress d�rðkÞ in the global coordinate

drðkÞ ¼ T ðkÞr � d�rðkÞ ð34Þ
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The strain can be transformed by

deðkÞ ¼ T ðkÞe � d�eðkÞ ð35Þ

TðkÞr and TðkÞe are the stress and strain transformation matrix, and can
be written as

T ðkÞð�1Þ
r ¼ T ðkÞe ð36Þ

T ðkÞe ¼
cos2 # sin2

# 0

sin2
# cos2 # 0

0 0 cos#

2
664

3
775 ð37Þ

where # is the angle between the local coordinate with the global
coordinate. Then the incremental elasto-plastic damage constitu-
tive equation for the kth lamina of the laminated shallow spherical
shell can be obtained in the global coordinate as

d�rðkÞ ¼ T ðkÞTe � Q ðkÞ � T ðkÞe � d�eðkÞ ¼ Q ðkÞ � d�eðkÞ ð38Þ
2.4. Nonlinear motion equations of orthotropic laminated composite
shallow spherical shells

Denote the membrane stress resultants of the laminated shal-
low spherical shell as Nu;Nh, the stress couples as Mx;My and the
transverse shear force as Qu. The corresponding incremental com-
ponents can be expressed as dNu; dNh; dNu; dNh; dQu. According to
the nonlinear classical flat shell theory presented in Fu (1997), and
neglecting the plane inertia and rotational inertia, the nonlinear
motion equations for the symmetrical cross-ply laminated moder-
ately thick shallow spherical shells can be written as follows

ðdNu � dNhÞ þ r
@dNu

@r
¼ 0

1
r

�
dQu �w2dNu � dw2Nu � dw2dNu:

þ r
@

@r
ðdQu �w2dNu � dw2Nu � dw2dNuÞ

�

þ dNu þ dNh

R
þ dq � dðr � 0Þ ¼ qhdw;tt

1
r

dMu � dMh þ r
@dMu

@r

� �
� dQu ¼ 0 ð39Þ

The incremental membrane stress resultants dNx; dNy, the
incremental stress couples dMx; dMy and the incremental trans-
verse shear force dQu can be obtained by using the Eqs. (2), (4)
and (31)

½dNu dNh� ¼
XN

k¼1

Z zk

zk�1

½drk
u drk

h�dz

¼
A11 A12 A14

A12 A22 A24

" # de0
u

de0
h

deuz

8>><
>>:

9>>=
>>;þ

B11 B12

B12 B22

" #
dj0

u

dj0
h

( )

½dMu dMh� ¼
XN

k¼1

Z zk

zk�1

½drk
u drk

h�zdz

¼
B11 B12 B14

B12 B22 B24

" # de0
u

de0
h

deuz

8>><
>>:
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>>;þ

D11 D12
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dj0

u

dj0
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( )

dQu ¼
XN

k¼1

Z zk

zk�1

dsuzdz ¼ C44deuz ð40Þ
where

Aij ¼
XN

k¼1

CeðkÞ
ij � a1CpðkÞ

ij

� �
ðzk � zk�1Þ;

Bij ¼
1
2

XN

k¼1

CeðkÞ
ij � a1CpðkÞ

ij

� �
ðz2

k � z2
k�1Þ

Dij ¼
1
3

XN

k¼1

CeðkÞ
ij � a1CpðkÞ

ij

� �
ðz3

k � z3
k�1Þ

C44 ¼
XN

k¼1

CeðkÞ
13 � a1CpðkÞ

13

� �
ðzk � zk�1Þ ¼

def XN

k¼1

GðkÞ13 ðzk � zk�1Þ ð41Þ

From the third term in Eq. (40), it can be noticed that the trans-
verse shear stress is not continuous, but distributes as a trapezium
along the thickness, and the transverse shear forces on the top and
bottom of the shell are not zero. In order to eliminate this flaw, a
modification of the transverse shear force is proposed by applying
the residual energy theory as follows

C44 ¼
4h2

9

XN

k¼1

GðkÞ13

hk � hk�1 � 8ðh3
k � h3

k�1Þ=3h2 þ 16ðh5
k � h5

k�1Þ=5h4

ð42Þ

Introduce the following dimensionless parameters:

�r ¼ r
a
; k1 ¼

h
a
; k2 ¼

a2

Rh
; k4 ¼

E2

E1
; k5 ¼

G13

E1
;

k6 ¼
G23

E1
; �z ¼ z

a
; Aij ¼

Aijð1� m12m21Þ
E1h

;

Dij ¼
Dijð1� m12m21Þ

E1h3 ; dU ¼ du0a

h2 ; dW ¼ dw
h
;

dw ¼ dw1
a
h
; G ¼ C44a2ð1� m12m21Þ

E1h3 ; q ¼ qð1� m12m21Þ
E1k

4
1

;

s ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1k

4
1

q0h2ð1� m12m21Þ

s
ð43Þ

Substituting Eqs. (40), (2), (3) and (43) into Eq. (39), the dimen-
sionless nonlinear incremental governing equations of the cross-
ply laminated moderately thick shallow spherical shell can be ob-
tained in terms of dU; dW and dw.

In present study, the initial conditions are set as

dWð�r; 0Þ ¼ dW ;sð�r; 0Þ ¼ 0 ð44Þ

Supposing the moderately thick shallow spherical shells are
completely restricted along the normal direction, but can partially
rotate and move in the plane, the boundary conditions on the bot-
tom and symmetrical conditions on the top are given as follows

�r ¼ 0 : dU ¼ 0; dW ;�r ¼ 0; d�w1 ¼ 0 ð45aÞ
�r ¼ 1 : A11ðdU;�r � k2dW þ 1

4 ðdW ;�r � dwÞðW ;�r � wÞ
þ 1

8 ðdW ;�r � dwÞ2Þþ
A12

dU
�r � k2dW
� �

¼ �KidU

D11dw;�r þ D12
dw
�r ¼ KbdW ;�rð1Þ

dW ¼ 0

ð45bÞ

where Ki ¼ aKið1�m12m21Þ
E1h ;Kb ¼ aKbð1�m12m21Þ

E1h3 , and Ki;Kb are the in-plane
elastic strength and the rotary strength. Ki ¼ 0;1 and Kb ¼ 0;1
indicate the movable, unmovable, simple supported and clamped
boundary conditions, respectively.
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3. Solution methodology

3.1. Calculation of the contact force

Consider the shell is impacted by an elastic sphere on the top
with a velocity of v0. For a better understanding of the low velocity
impact, divide the elasto-plastic impact into following three
phrases:

(1) elastic loading

According to the yield criterion Eq. (32), when only elastic
deformation occurs in contact area, the contact force and the Hertz
contact pressure distribution as proposed in Liu and Somasak
(1997) and Her and Liang (2004), can be given as

FðtÞ ¼ 4
3

E�
ffiffiffiffiffi
R�
p

dðtÞ
3
2; pðrÞ ¼ 3F

2pa2 1� r
a

� �2
� �1=2

ð46Þ

where d is the indentation; R� and E� are the equivalent contact cur-
vature and equivalent Young’s modulus, respectively, and

R� ¼ 1
Rþ 1

R0
� ��1

; E� ¼ ð1�m02Þ
E0 þ

ð1�m2Þ
E

h i�1
; R; E; m;R0; E0; m0 are the radius,

Young’s modulus and Poisson’s ratio of the shallow spherical shell
and the elastic impacting sphere. As for the orthotropic composite
material, the E� is modified as

E� ¼ ð1� m02Þ
E0

þ 1
Ez

� ��1

ð47Þ

where Ez is the Young’s modulus along the thickness direction.

(2) plastic loading

In order to model the post-‘‘yield” behavior of the laminated
composite shallow spherical shell, it is necessary to make some
simplifying assumptions. If plastic deformation occurs, we assume
a Hertzian pressure distribution with a cut-off corresponding to
the contact yield contact pressure. Based on this assumption,
Vu-Quoc et al. (2001) proposed a NFD contact model for the elas-
to-perfectly plastic material and regarded the contact pressure in
the plastic region no longer increase after yield. As for the elasto-
plastic material, it can be seen from the previous deduction of
the elasto-plastic constitutive relations, the stresses continue to in-
crease after yield and the equivalent active stress �r, to which the
plastic deformation is related, can reflect the plastic deformation
level in the structure. In order to get a comparison with the �r, an
equivalent active stress re related only to the elastic deformation
is defined as follows

re ¼ kffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr11 � r22Þ2 þ r2

22 þ r2
11 þ 2r2

44

h ir
ð48Þ

where rij can be determined by Eq. (13). Setting �rij ¼
rij

Sij
, the Eq. (48)

can be rewritten in dimensionless form as:

�re ¼ kffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�r11 � �r22Þ2 þ �r2

22 þ �r2
11 þ 2�r2

44

h ir
ð49Þ

Therefore, after yield, the normal contact force can be given by

F ¼ Fe � 2p
Z ap

0
½pðrÞ � kpy�rdr ð50Þ

where k ¼ �re��r
�re

y��ry
; �re

y; �ry are the yield equivalent active stress; Fe is

the equivalent elastic force given by Eq. (46), which would result
in the same total contact area and the integral upper limit ap is
the radius of the plastic area over which a uniform pressure is as-
sumed as indicated in Fig. 2; py is the maximum contact pressure
when yield occurs. It can be seen that when yield occurs, then
k > 1, and k is in proportion to the plastic deformation. For simpli-
fication, the �r; �ry; �re and �re

y are chosen as the value at the center
point in the contact area and regarded as constants all over the con-
tact area.

The integral of the Eq. (50) gives

F ¼ kpa2
ppy þ

4E�R�1=2

3
d3=2 1� ap

a

� �2
� �3=2

ð51Þ

There exists the following relation after yield occurs in the contact
area

a2 ¼ a2
p þ a2

y ð52Þ

where a is the radius of the contact area, and ay is the radius of the
contact area when yield occurs

Substituting Eq. (52) into (51) and using the Hertzian transition
a2 ¼ R�d, we obtain

F ¼ Fy þ kpyR�ðd� dyÞ ð53Þ

where dy is the yield indentation.

(3) elastic unloading

If plastic deformation occurs during the loading stage, the con-
tact curvature during unloading is 1=R�p < 1=R� due to permanent
deformation of the contact surfaces. During unloading the force–
displacement behavior is assumed to be elastic and is provided
by the Hertzian equations but with curvature 1=R�p corresponding
to the point of maximum compression. At the point of unloading,
the contact area developed by the actual maximum normal force
and the reduced curvature 1=R�p is the same as that which would
be generated by an equivalent elastic force P�e and a contact curva-
ture 1=R�.

Hence, the following relation can be obtained

R�pP� ¼ R�P�e ð54Þ

And the contact force can be obtained during elastic unloading as

FðtÞ ¼ 4
3

E�
ffiffiffiffiffi
R�p

q
ðdðtÞ � dpðtÞÞ

3
2 ð55Þ

where R�p ¼ 4E�

3P�
2P�þPy

2pry

� �3=2
; dpðtÞ is defined in Fig. 3.

When the elastic sphere impacts on the top of the shallow
spherical shell along the normal direction at the velocity v0 (as
shown in the Fig. 4), the indentation d during the impact can be ob-
tained by

dðtÞ ¼ sðtÞ �wð0; tÞ ð56Þ

where sðtÞ is the displacement of the impacting sphere after contact
with the shells, wð0; tÞ is the displacement of the shell at the impact
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point ðr ¼ 0Þ due to the impact. Suppose that at the just moment of
contact the displacement is zero, then

sðtÞ ¼ v0t � 1
m

Z t

0
dt
Z t

0
FðtÞdt ð57Þ

dðtÞ ¼ v0t � 1
m

Z t

0
dt
Z t

0
FðtÞdt �wð0; tÞ ð58Þ

Obviously, it is impossible to obtain the analytic solution of the
Eq. (58). Therefore the time increment method is applied to linear-
ize the impact force by considering the contact force FðtÞ to be con-
stant during each Dt. At each time incremental interval
½tn; tnþ1� ¼ ½nDt; ðnþ 1ÞDt�, the Eq. (58) can be written as follows

dðtÞ ¼ v0nDt � 1
m0
ðDtÞ2

Xn

i¼1

Dn�iþ1Fi �wð0; tÞ ð59Þ

where the second item on the right can be deduced from the second
integral item on the right of the Eq. (58), which can be written as

Xn

i¼1

Dn�iþ1Pi ¼ 2
Xn

i¼1

ðn� iÞ
Xi

j¼1

ð�1Þi�jPj þ
1
3

Xn

i¼1

ð�1Þn�iPi ð60Þ

Assuming at the moment the object contacts with the shallow
spherical shells the local deformation mainly exists in the contact
area, the initial contact force deduced from the Eq. (46) in the iter-
ative process can be obtained as p1 ¼ nðv0DtÞ3=2 by neglecting the
whole solid displacement of the structure. When the d is obtained
by Eq. (59) at each step, the contact force can be calculated out by
substituting the d into Eq. (46) or (53). The substitution of the d de-
pends on the yield condition Eq. (32). The contact force also can be
obtained by the Eq. (55) in the unloading state.

To seek approximate solution to the nonlinear incremental mo-
tion equations of the elasto-plastic laminated shallow spherical
shell, the displacement functions dU; dW and du are separated
both for space and time by orthogonal collocation point method
and Newmark method.

The following Chebyshev polynomials are chosen

�ri ¼
1
2

1þ cos
ð2i� 1Þp

2M

� �� 

; i ¼ 1;2; . . . ;M ð61Þ

Define the numerical value at inner and outer collocation point
as �rMþ1 ¼ 0;�r0 ¼ 1. The variable functions are expanded in series as
follows

dUð�rÞ ¼
XMþ2

j¼1

�rjþ1aj; dWð�rÞ ¼
XMþ2

l¼1

�rlþ1cl;

dwð�rÞ ¼
XMþ2

n¼1

�rnþ1bn; 0 6 �r 6 1 ð62Þ

The time is equally divided into small time segment Dt, and the
whole equations are iterated to seek solutions. At each step of iter-
ation, the nonlinear items in the equations and boundary condi-
tions are linearized. For example, at the step j, the nonlinear
items may be transformed to

ðx � yÞJ ¼ ðxÞJ � ðyÞJp
ð63Þ

where ðyÞJp
is the average value of those obtained in the preceding

two iterations. For the initial step of the iteration, it can be deter-
mined by using the quadratic extrapolation, i.e.

ðyÞJp
¼ AðyÞJ�1 þ BðyÞJ�2 þ CðyÞJ�3 ð64Þ

The coefficient ðyÞJp
can be evaluated at different iterative steps

as follows

J ¼ 1 : A ¼ 1; B ¼ 0; C ¼ 0
J ¼ 2 : A ¼ 2; B ¼ �1; C ¼ 0
J P 3 : A ¼ 3; B ¼ �3; C ¼ 1 ð65Þ

Moreover, the iteration item in the equations can be written as fol-
lows by using the Newmark scheme

ðW ;ssÞJ ¼
4ðWJ �WJ�1Þ
ðDsÞ2

�
4ðW ;sÞJ�1

Ds
� ðW ;ssÞJ�1

ðW ;sÞJ ¼ ðW ;sÞJ�1 þ
1
2
½ðW ;ssÞJ þ ðW ;ssÞJ �ðDsÞ ð66Þ

Using Eqs. (62), (63) and (66), the governing equation and
boundary conditions (45) can be transformed to a series of linear
equations at each collocation point, and the solutions to these
3M þ 6 linear equations can be acquired with the initial conditions
(44). For each time step, the iteration lasts until the difference of
the present value and the former is smaller than 0.1%. In the pres-
ent analysis, the initial damage value of the structure is considered
to be zero. When the convergent solution in the Jth step is held, the
damage value at the inner and outer boundary points in conjunc-
tion with other M points in the shells can be calculated out by
using Eqs. (5), (6), (7), (9) and (10). They are to be used at the
J þ 1th step. The following finite difference format is chosen to deal
with the differential items of the damage at the inner boundary
and other collocation points

dj;�rð�riÞ ¼
djð�ri�1Þ � djð�riÞ

�ri�1 � �ri
; ðj ¼ 1;2 i ¼ 1;2; . . . ;M þ 1Þ ð67Þ
4. Numerical results

To verify validity of the present elasto-plastic impact model, a
comparison with Johnson (1985) is carried out. According to John-
son (1985), for an elasto-plastic half space indented by a projectile
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with spherical contact surface, the critical indentation dY and the
contact force FðdÞ are given as

dY ¼
phY YR�

Kh

� �
ð68Þ

FðdÞ ¼ Khd
3=2 ð69Þ

where Y is the yield stress of the softer material, hY is the ratio of
mean contact yield pressure to the uniaxial yield stress. Johnson
(1985) has examined different geometries of contacting bodies to
find this ratio. For the contact of spherical solids, hY � 0:1. Kh is
the Hertz contact stiffness, given by

Kh ¼
4
3

E�
ffiffiffiffiffi
R�

p
ð70Þ

E� and R� are the equivalent Young modulus and equivalent curva-
ture, given by

1
R�
¼ 1

R1
þ 1

R2
and

1
E�
¼ 1� v2

1

E1
þ 1� v2

2

E2
ð71Þ

In this comparing case, the material parameters of the shallow
spherical shell are E ¼ 70 GPa, Poisson’s ratiol ¼ 0:33, mass density
q ¼ 2:768� 103 kg=m3; the material parameters of the impacting
sphere are E ¼ 200 GPa; l ¼ 0:33;q0 ¼ 7:9718� 103 kg=m3; the ra-
dius of the circular plate and the impacting sphere are
R2 ¼ 38 mm;R1 ¼ 19 mm, respectively. When the Young modulus
E1 of the shell is changed, dY , the minimum indentation required to
initiate the plastic deformation, and the contact force FðdY Þ obtained
by the contact model presented in this paper are compared with that
by the Eqs. (68) and (69) in Table 1. In Table 1, the d1 and F1 are the
results obtained by Eqs. (68) and (69), and the d2 and F2 are results by
present model. It can be seen these two results agree well and only
small difference is observed, which proves the present method’s
feasibility.

The contact force FðdÞ during the plastic–elastic indentation
phase is given by Johnson (1985) as

F2ðdÞ ¼
2d
dY
� 1

� �
1þ 1

3hY
ln

2d
dY
� 1

� �� 

F1ðdY Þ ð72Þ

where F1ðdYÞ and dY are critical contact force and indentation. Fig. 5
presents the comparison between the present results and that by
Eq. (72) in the phase of the plastic initiation and propagation in
the contacting zone. From Fig. 5, it can be found two results agree
well when d is small, but the difference becomes larger as the d in-
creases. Because in Johnson (1985) an elastic–perfectly plastic mod-
el is considered, while in present model, an elastic–plastic model is
developed and the assumption is adopted that the bearing capacity
in plastic zone still increases as the contact force rises.

In the following numerical examples, an eight-layer cross-ply
½90	=0	=0	=90	�2 laminated composite shallow spherical shell is
considered. The material parameters are shown in Table 2. Except
the particular indication, the geometric parameters of the laminated
shallow spherical shell are set as: a ¼ 0:16 m; R ¼ 5 m; h ¼
0:008 m; the material parameters of the impacting sphere are:
E ¼ 200 GPa; v ¼ 0:3; q ¼ 7:892� 103 kg=m3; and the radius of
the impacting sphere is R ¼ 0:12 m. In the presented results, W0 rep-
Table 1
The comparison of critical indentation d and contact force F with Johnson (1985).

E1ðGPaÞ 30 45 68.5 80 100 115 130

d1 ð10�3 mÞ 8.374 7.163 6.377 6.180 5.939 5.815 5.721

d2 ð10�3 mÞ 7.567 6.817 6.064 5.931 5.873 5.724 5.569

F1 ðMPaÞ 3.061 2.618 2.330 2.259 2.171 2.126 2.091
F2 ðMPaÞ 2.870 2.504 2.169 2.070 1.980 1.899 1.943
resents the central dimensionless deflection of the shallow spherical
shell and s represents the dimensionless time.

The dynamic response of the shallow spherical shell with
clamped boundary condition and contact force when only elastic
deformation is considered are compared with that when elasto-
plastic deformation are considered. From Fig. 6, we can observe
that the impact duration is greater when elasto-plastic behavior
is considered. Because of the energy lose in plastic deformation
the contact force for elastic case is greater than that for the
elasto-plastic case, and consequently the contact force history for
elasto-plastic case is asymmetric. We can also find the deflection
of the structure for elasto-plastic contact case is greater than that
for the elastic case due to the permanent plastic deformation.

Fig. 7 gives the dynamic response of the shell and the contact
force when different velocities of the impacting sphere are set. It
can be observed that the central deflection of the structure as well
as the contact force increases as the velocity is greater. When the
velocities are set as v ¼ 18 m=s and v ¼ 12m=s, the maximum
deflections of the shallow spherical shell are 1.25404 and
0.5548 mm, and contact force are 135.55013 and 77.4542 kN, the
contact duration are 1.57885 and 1.61557 ms. Conclusion that ef-
fect of the initial velocity of the impacting sphere on the deforma-
tion and contact force is greater than on the impact duration can be
drawn. Obviously, the low velocity impact event is a problem with
small deformation but great stress. Though only small deformation
of the structure is observed when subjected to low velocity impact,
a great inner stress may be caused. So the damage analysis of the
structure under the low velocity impact is very important.

When the damage effect is in consideration, the damage param-
eters are taken as k1 ¼ k1 ¼ 0:2; n1 ¼ n2 ¼ 2; A1 ¼ A2 ¼ 1. The
effect of damage on dynamic response of the elasto-plastic
laminated shallow spherical shell with edge clamped and contact
force are shown in Fig. 8. It can be observed that when the damage
effect is considered, both of the contact force and the deflection of
the structure become greater than the no damage case. That is be-
cause when the damage emerge and accumulate in the structure
due to the impact, the structure’ stiffness would be reduced, and
consequently, the vibration amplitude of the structure and the
contact force become larger, but the dynamic frequency decreases.
It also can be found the time for the damage to emerge is advanced
as the impacting velocity increases.

The stress components ðr11;r22; s13Þ of the central points in the
first and second layers are illustrated in Fig. 9. From the figure, it
can be found the stresses in the first lamina are greater than that
in the second lamina. The transverse shear stress s13 is smaller



Table 2
Material parameters of the composite shell.

E1 E2; E3 v12 v21 G12;G13 G23 XT ;XC YT YC Si

109.34 GPa 8.82 GPa 0.342 0.028 4.32 GPa 3.2 GPa 1132 MPa 59 MPa 211 MPa 54 MPa
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than in-plane stresses r11 and r22. All of the stress components at
the point ð�r ¼ 0:2Þ are comparatively small and the transverse
shear force are greater than the rest of the stress components.

Fig. 10 illustrates the damage of different kinds in the first and
second laminas along the �r direction. The damage parameters dmn

indicate the nth type of damage in the mðm ¼ 1;2Þ lamina. And n
set as 1, 2, 3, denote the delamination, matrix crack and fiber–ma-
trix shear failure, respectively. It can be seen from the figure that
the maximum damage is the matrix crack in the vicinity of the con-
tact point. Because the stress and strain are greatest in the first
lamina (shown in Fig. 9) and correspondingly the damage thresh-
old is firstly met, so the matrix crack firstly occurs in the top lam-
ina underneath the contact point due to orthotropic property of the
composite material, and then expands into the inner layer as the
contact force increases. It also can be concluded from the data that
fiber failure is comparatively small and the damage at the point
away from the contact point is mainly the fiber–matrix shear fail-
ure caused by the transverse shear force where the transverse
shear force dominates.

When the velocity of the impacting sphere is set as 10 m/s, Figs.
11 and 12 illustrate the equivalent plastic strains in the first and
second laminas and the stress components in the lower and middle
lamina. It can be observed from the Fig. 11 that the equivalent plas-
tic strains in the first lamina are greater than that in the second
lamina. The equivalent plastic strains at the center are much great-
er than that far away from the contact point. But the plastic defor-
mation is in general small caused by the low velocity impact. From
the Fig. 12, it can be demonstrated that the stresses in the last lam-
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Fig. 10. Comparison of the different types of damage.
ina (lower lamina) are negative whereas in the first lamina (top
lamina) they are positive (shown in Fig. 9). The in-plane stresses
components r11;r22 at the mid-plane are neglected while the
transverse shear force s13 is not much neglected. This means that
those two components contribute more to matrix crack damage
compared with the other components. It also have been discovered
the values of damage variables d12; d11 are 0.401245 and 0 when
elasto-plastic deformation is in consideration at the point under-
neath the contact point while they are 0.440455 and 0.052137
when only elastic deformation is considered. So it can be con-
cluded that the plastic deformation would hamper the damage
development.

Fig. 13 shows the dynamic response of the structure and contact
force when different base radius a are set. It can be noticed that the
geometric size of the structure has an apparent effect on the dy-
namic response of the structure. When maintain the thickness of
the structures and decrease the base radius a, the central deflection
of the shallow spherical shell greatly decreases. The decrease of the
contact force and slight increase of the impact duration can also be
observed from the figure.

Fig. 14 presents the dynamic response and contact force when
the radius of the impacting sphere changes. Set the radius of the
impacting sphere as 0.09 m, and 0.105, respectively. It can be seen
from the figure that when increase the radius of the impacting
sphere, the central deflection of the structure and contact force in-
crease, and impacting duration also increase apparently.
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A comparison between clamped ðki ¼ 1; kb ¼ 1Þ and simply
supported boundary conditions ðki ¼ 1; kb ¼ 0Þ for the laminated
shallow spherical shell is shown in the Fig. 15. The velocity of
impacting sphere is 14 m/s. When the structure is clamped the dy-
namic response of the structure and the contact force are greater
than that when under simply supported boundary condition.
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5. Conclusion

In this paper, a nonlinear dynamic and damage analytical model
for the elasto-plastic laminated moderately thick shallow spherical
shell under low velocity impact is proposed and the nonlinear dy-
namic response of the laminated shallow spherical shell, the dam-
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age evolution and elasto-plastic deformation have been investi-
gated. The numerical results are obtained by using orthotropic col-
location point method and Newmark scheme. The main
conclusions can be drawn as follows: when the elasto-plastic
behavior is considered, the impact duration is greater but the con-
tact force is smaller than that when only elastic behavior is consid-
ered; the dominating damage in contact area is matrix crack
caused by in-plane stress, whereas the damage at the point away
from the contact point is mainly caused by transverse shear force;
damage reduces structure’s stiffness and consequently decreases
the response frequencies and increases the response amplitudes;
the plastic deformation would hamper the damage development;
the geometrical size of the impacting sphere and shallow spherical
shell influence greatly the dynamic response of the shell and con-
tact force.
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