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The present paper is devoted to the study of the mechanical behavior of an ethylene propylene diene
monomer (EPDM) rubber reinforced by polypropylene (PP) particles, revealed as compressible. The
hyperlastic behavior of this blend has been characterized under cyclic uni-axial tensile tests. The exper-
imental results show a significant effect of the fraction of (PP) particles (5%, 10%, 25% and 30% by weight)
on the macroscopic behavior of the composite. In order to model this behavior, we first develop and
implement a micromechanically-based nonlinear model for hyperelastic composites. The approach is
based on the second order homogenization method proposed by Ponte Castaneda and Tiberio (2000)
and for which suitable energy densities are adopted for the matrix and the inclusions phases, both
assumed as compressible. We then proceed to the model verification by comparison with Finite Element
simulations on a unit cell. Finally, we propose an extension of the model in order to take into account
damage due to voids growth phenomena. The comparison of the multiscale damage model predictions
with the experimental data obtained on the EPDM/PP composite indicates a very good agreement.

� 2010 Elsevier Ltd. All rights reserved.
1 No attempt is made here to investigate more complex models incorporating for
1. Introduction

The use of EPDM–PP blends has been continuously growing in
various industrial domains for several decades. As it is possible
to mix ethylene propylene diene monomer (EPDM) and polypro-
pylene (PP) in any ratio, there is theoretically a wide spectrum of
materials from elastified PP to EPDM rubber reinforced with ther-
moplastics. In this study, we focus on the second type of blend that
is an EPDM reinforced with particles of PP (a random dispersion of
the PP reinforcements in the EPDM matrix is assumed). In order to
gain a better understanding of the mechanical behavior of such
blends and to provide a physical basis for their modeling, an exper-
imental study was conducted with the particular objective of
quantifying the reinforcing effects of polypropylene particles ran-
domly dispersed in the EPDM.

A second part of the study is devoted to the modeling of the
behavior of these blends. For this purpose, two different approaches
can be followed to predict the behavior of rubber-like reinforced
materials under finite deformation. The first approach is phenome-
nological and provides pure macroscopic models which can be cal-
ibrated by using available experimental database. However, it is
generally recognized that, especially for arbitrary loading paths,
ll rights reserved.
the predictive capabilities of these models remain very limited. A
way to overcome these limitations consists in using micromechan-
ics-based approaches which allow to link the macroscopic behavior
of the material to its heterogeneous microstructure. In addition to
homogenization models for periodic microstructures (see Brieu
and Devries (1999), Lahellec et al. (2004)), there are various at-
tempts in the literature devoted to materials with random
microstructures. Within these ones, we focus on the recent devel-
opments of nonlinear homogenization techniques proposed by
Ponte Castaneda (1996) and adapted to hyperelastic composites
by Ponte Castaneda and Tiberio (2000).1 Results of this basic version
of the micromechanical model, which assumes a perfect adhesion be-
tween the two compressible phases with no damage phenomena, is
first compared to experimental data. Based on this comparison, we
propose a first evaluation without bias2 of the micromechanical mod-
el by performing Finite Elements computations on unit cell. A com-
plete version of the model is then proposed; it incorporates damage
mechanisms due to voids growth in an hyperelastic materials. The
resulting full 3D isotropic damage model is obtained by combining
the second order homogenization method with standard thermody-
instance fields fluctuations (see Ponte Castañeda, 2002). The main reason is to keep
the simplicity of the model in view of the computational aspects.

2 At the difference of the real material, the same assumptions as in the model are
retained.

http://dx.doi.org/10.1016/j.ijsolstr.2010.03.012
mailto:bouchart@enim.fr
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namic approaches. The predictions of the micro–macro damage mod-
el are then shown and compared, for validation purpose, to the exper-
imental data of the EPDM/PP composite.

2. Experimental study

In this section, we first present the different constituents of the
studied blends (EPDM reinforced with particles of PP) and we de-
scribe how the test specimens are prepared. Then, we will present
the experimental protocol used to perform the uni-axial tensile
test. These tests are necessary to characterize the mechanical prop-
erties of the considered EPDM/PP composites and to study the ef-
fect of the fraction of PP on the behavior of the blends.

2.1. Studied materials and test specimens preparation

Blends considered in the present study are constituted of poly-
propylene (PP) procured from Reliance Ind. Ltd., grade REPOL
HO33MG and an EPDM elastomer procured from Du Pont, grade
NORDEL 4770R. The investigations are performed on different
types of blend systems prepared with different quantities of PP
and EPDM: 5%, 10%, 25% and 30% by weight of PP.

The different compositions were made by means of a co-rotat-
ing intermeshing twin-screw extruder. The granules of PP and
EPDM were mixed in appropriate ratios prior to being added to
the extruder hopper. The screw speed was adjusted to 240 rpm
while the die zone temperature was maintained at 210 �C; the fil-
ament obtained upon extrusion was immediately quenched in
water and later chopped into small granules. The specimens for
mechanical testing (ASTM D638) were prepared by injection mold-
ing using LT Demag PFY40-LNC4P Machine. The nozzle tempera-
ture was maintained at 210 �C, and the injection pressure at 60
MPa. Moreover, from SEM micrographs of cryogenically fractured
samples of the blends, a more or less uniform dispersion of PP par-
ticles in the EPDM matrix is noted.

2.2. Characterization of the mechanical behavior of the blend

2.2.1. Experimental protocol
The mechanical tests have been carried out by using a uni-axial

tensile machine (INSTRON 4302) with a low load cell capacity (1
kN). This cell is well adapted to the study of hyperelastic material.
In order to avoid the slippage of the samples, mainly due to the
Fig. 1. Tested sample a
quasi incompressible behavior of the involved materials, the grips
are self-tightening based on an eccentric system (Fig. 1(b)). Be-
cause of the large deformations which occur in elastomeric mate-
rials, the measurements of stretch have been performed using a
contactless video extensometer at a constant strain rate ð10�3=sÞ
(see adapted samples in Fig. 1(a)). Each test has been performed
several (5 in average) times in order to guarantee its good repro-
ducibility; thus, only the average data are shown in the present
study. In order to characterize the hyperelastic behavior of the
EPDM and of the blends, a set of tests is carried out on specimens
subjected to uni-axial cyclic loadings with imposed maximal
stretch and a zero minimal stress.

2.2.2. Experimental results
Before presenting the macroscopic response of the blends, let us

first describe the mechanical behavior of the constituents.
In Fig. 2 is presented the response of the polypropylene (PP)

phase; it is observed that the PP phase exhibits a high rigidity
while it fails at a relative small strain level (deformation less than
15%).

Let us discuss now the behavior of pure EPDM, that of its blends
with PP being discussed henceforth. The obtained results for cyclic
loadings are presented in Fig. 3 for the pure EPDM and for the
EPDM90–PP10, that is 90% EPDM and 10% PP. One can notice that
the rigidity of the composite material increases by blending of PP
amorphous phase with EPDM and that the PP phase has a clear
reinforcement effect on the EPDM matrix.

In order to characterize the pure hyperelastic behavior of rub-
ber-like materials without taking into account the Mullins damage
and viscosity phenomena (see Mnllins (1969), Diani et al. (2006b)),
it is usual to consider materials which have been loaded once until
the considered maximum of stretch and to focus only on the un-
loaded part of the response since it presents a low viscosity (see
for instance Miehe (1995), Diani et al. (2006a)). For the different
blends, this analysis confirms the reinforcement effect of PP on
the EPDM (see Fig. 4). As expected, the reinforcing effect increases
with the increase of weight of PP phases.
3. Micromechanical model of hyperelastic behavior:
formulation and predictions for the reinforced material

In agreement with the specific heterogeneous nature of the
studied material, the mechanical behavior is modeled by means
nd testing system.
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of a nonlinear homogenization method devoted to materials with
random microstructure.

3.1. Basic principles and equations of the second order method

From the modelling point of view, the PP amorphous phase is
considered as reinforcing particles in EPDM matrix, as it has been
noticed on SEM observations.

Let us consider a representative elementary volume (REV), de-
noted X0, and composed of an hyperelastic matrix reinforced by
a random distribution of particles. This REV is assumed to occupy
a volume V0 in the reference configuration and to satisfy the
standard scale separation conditions. This heterogeneous material
is subjected to homogeneous boundary strain conditions:
u ¼ ðF� IÞ � X on @X0. The heterogeneous deformation gradient
tensor F satisfies then F ¼ hFiwith h:i the volume average over X0.

It is assumed here that in the REV, the dispersed PP particles
and the EPDM matrix obey to hyperelastic constitutive laws which
are determined by their strain energy densities WðrÞðFÞ3 (r=1,. . .,N).
We make use now of a fundamental result by Hill (1972): the
homogenized constitutive law, giving the macroscopic first Piola–
Kirchoff stress tensor T ¼ hTi, is determined by a macroscopic strain
energy density fW such that:

TðFÞ ¼ @
fWðFÞ
@F

ð1Þ

In order to assess the macroscopic energy of nonlinear heteroge-
neous materials, various approaches can be considered (see Ponte
Castañeda and Suquet (1998)). Among these approaches, mention
can be made of the second order homogenization method, intro-
duced by Ponte Castaneda (1996). This method is based on a linear-
ization of the strain energy densities of each phase, WðrÞðFÞ, by using
a Taylor expansion and then introducing a linear comparison com-
posite. It appears to be particularly accurate and its extension to fi-
nite deformation has been performed by Ponte Castaneda and
Tiberio (2000). Let us then denote by ‘‘1” the hyperelastic matrix
containing a unique population of spherical particles, denoted by
‘‘2”. For this two-phase hyperelastic composite, the second order
method can be particularized and provides the following estimate
of the macroscopic strain energy density:

fW F
� �
’
X2

r¼1

cðrÞ WðrÞ FðrÞ
� �

þ 1
2

F� FðrÞ
� �

: TðrÞðFðrÞÞ
� �

ð2Þ

where TðrÞðFðrÞÞ ¼ @WðrÞ

@F ðFðrÞÞ and cðrÞ is the volume fraction of phase r.
The macroscopic, stress tensor, given by the derivative of (2)

with respect to F, is then estimated by:

TðFÞ ’
X2

r¼1

cðrÞ

2
TðrÞðFðrÞÞ þ ½TðrÞðFðrÞÞ þ LrðFðrÞÞ : ðF� FðrÞÞ� : @FðrÞ

@F

" #
ð3Þ

where LrðFðrÞÞ ¼ Lr
tðFðrÞÞ ¼ @2WðrÞ

@F@F ðFðrÞÞ.
This leads, by average rule on the REV, to the following expres-

sion for the average stresses,SðrÞ, in each phase r:

SðrÞðFÞ ’ 1
2

TðrÞðFðrÞÞ þ ½TðrÞðFðrÞÞ þ LrðFðrÞÞ : ðF� FðrÞÞ� : @FðrÞ

@F

" #
ð4Þ

Obviously, this expression is derived from the theoretical homoge-
nization framework proposed by Ponte Castaneda and Tiberio
(2000). Note that, more elaborated expressions are available when
local field fluctuations are taken into account as in Idiart and Ponte
Castañeda (2007).
3 The superscript (r) stands for a constituent r.
Note that the only unknowns in (3) and (4) are the average
deformation gradients in each phase r, FðrÞ, which may be com-
puted from the resolution of a fictitious thermoelastic problem re-
lated to the linear comparison composite involved in the method.
In the case of two-phase materials, the resolution of this thermo-
elastic problem is performed according to the Levin’s theorem Le-
vin (1967) which reads:

FðrÞ ¼ AðrÞðFðrÞÞ : Fþ AðrÞðFðrÞÞ � I
� �

: DLð Þ�1 : ðDsÞ; r ¼ 1;2: ð5Þ

where ML ¼ Lð1ÞðFð1ÞÞ � Lð2ÞðFð2ÞÞ;Ms ¼ sð1ÞðFð1ÞÞ � sð2ÞðFð2ÞÞ.
sðrÞ ¼ TðrÞðFðrÞÞ � Lr : FðrÞ represents polarization tensors which

can be seen as fictitious thermal stress tensors and AðrÞ is the local-
ization tensor associated to phase (r) in the linear comparison com-
posite. AðrÞ depends on the linear homogenization scheme used to
solve (5). In the present study, the matrix-inclusion type morphol-
ogy of the (reinforced) material suggests to consider the well-
known Hashin–Shtrikman bound (see Hashin and Shtrikman
(1962)). This bound which allows in particular to account for the
interactions between the different constituents is characterized
by the following expression of the localisation tensors:

Að1Þ ¼ cð1ÞIþ cð2Þ½I� P : DL��1
h i�1

; Að2Þ ¼ I� cð1ÞP : DL
� ��1 ð6Þ

in which I is the fourth order unit tensor. The micromechanical
model, considered in the following, will be then referred as HS-
based model.

3.2. Numerical implementation

The implementation of the considered homogenization model
requires the use of suitable numerical methods, among others, to
compute the Hill tensor P in the HS-based model, the tangent
modulus tensor of each phase LðrÞ being anisotropic. Thus, recalling
that the spherical particles are randomly dispersed in the matrix,
so that the composite remains statistically isotropic in the unde-
formed configuration, the Hill tensor reads (see Willis (1977)):

P ¼ 1
4p

Z
jnj¼1

Hð1ÞðnÞdS: ð7Þ

where H
ð1Þ
ijklðnÞ ¼ Nð1Þik njnl; Nð1Þ ¼ Kð1Þ

�1
; Kð1Þik ¼ L

ð1Þ
ijklnjnl.

A Gaussian integration technique has been implemented for the
numerical integration over the surface of the unit sphere, jnj ¼ 1.

Numerical techniques are also needed to solve the system of
nonlinear equations (5) associated to the fictitious thermoelasticity
problem. For this resolution, one must determine Fð1Þ and Fð2Þ, for
instance by using the Newton–Raphson method. Note that the
Jacobian matrix, J, introduced in that method, is in the present case
a 9 � 9 matrix.

Due to the lack of a closed-form expression for P, the Jacobian
matrix can not be analytically expressed. Consequently, a numeri-
cal derivation by finite difference was also used. In order to get a
good accuracy, an iterative scheme, namely the Ridders–Richard-
son method was implemented. This method is based on an algo-
rithm in which a control and optimization of the numerical
errors are performed at each step of the procedure. Further details
on this numerical procedure may be found in Press et al. (1992).

Once the resolution of the problem is achieved for the two
phase material, it is possible to compute the macroscopic stress
tensor from (3). To this end, it is necessary to perform the numer-
ical derivation of Fð1Þ and Fð2Þ with respect to F.

3.3. Application to the EPDM/PP blends

We present here the application of the HS-based model for the
EPDM/PP blend in the case of a monotonous uni-axial tensile load-
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ing. Due to compressibility of each material phases, for this load-
ing, the associated macroscopic deformation gradient is written
in the form: F ¼ Diagðk;a;aÞ; k increasing from 1.0.

Because of the deformation-based control of the uni-axial ten-
sile loading applied to the composite, for a given k, one has to
determine the value of a which fulfills the uni-axial tensile condi-
tion: T ¼ DiagðT11; 0;0Þ.

For more details concerning the implementation of the method
in this case, the readers may refer to Bouchart et al. (2008) and
Bouchart (2007).

In order to apply the homogenization method to the studied
composite, we need to choose suitable strain energy densities to
model the behavior of the matrix phase and of the inclusion one.
Thus, for the compressible EPDM matrix, the density introduced
by Lambert-Diani and Rey (1999) is adopted. According to these
authors, this density (see (8)) is adequate for the modeling of elas-
tomers deformation even for high elongation. Due to the very low
rigidity of the EPDM, the PP phase is considered to be subjected to
infinitesimal strain. Accordingly, the behavior of particles is de-
scribed by the strain energy density proposed by Ciarlet and Geym-
onat (1982).

Each constituent of the composite being isotropic, the strain en-
ergy density W ð1Þ and W ð2Þ are expressed as functions of the three
invariants, I1; I2 and I3 of the dilatation tensor C¼tFF (see for in-
stance Ogden (1984)). In particular, the Diani–Lambert and Rey’s
density reads:

Wð1ÞðFÞ ¼
Z I1

3
e a0þa1 I1�3ð Þþa2 I1�3ð Þ2ð ÞdI1 þ

Z I2

3
b1Ib2

2 dI2 ð8Þ

where a0; a1; a2; b1; b2 are the model parameters for the matrix
phase which have to be identified on experimental data for the con-
sidered EPDM.

For the PP phase, the energy density proposed by Ciarlet and
Geymonat is adopted:

Wð2ÞðFÞ ¼ C1ðI1 � 3Þ þ C2ðI2 � 3Þ þ C3ðI3 � 1Þ � BlnðI3Þ ð9Þ

where C1; C2; C3 and B are model parameters which have also to be
identified.

Even if, in the present work, strain energy density is sometimes
depending on the two first invariants of the Cauchy–Green strain
tensor only, the considered behavior is compressible. Indeed, any
hydrostatic pressure is introduced and stresses in each phases

are defined by TðrÞðFðrÞÞ ¼ @WðrÞ

@F ðFðrÞÞ.
Let us present now the principle of the identification. For a uni-

axial tensile loading (TU), F ¼ Diagðk;a;aÞ (a being determined in
order to fulfill the uni-axial tensile condition), the expressions of
the principal invariants and the nominal stresses (Piola–Kirchhoff
1) are:

I1 ¼ k2 þ 2a2

I2 ¼ a2ða2 þ 2k2Þ
I3 ¼ k2a4

TTU—theoretical
11 ¼ 2k @W

@I1
þ 2 @W

@I2
a2 þ @W

@I3
a4

h i
TTU—theoretical

22 ¼ TTU�theoretical
33 ¼ 2a @W

@I1
þ @W

@I2
ðk2 þ a2Þ þ @W

@I3
k2a2

h i

8>>>>>>>><>>>>>>>>:
ð10Þ

To identify the parameters of a strain energy density from uni-axial
tensile tests results, the following conditions have to be fulfilled:

ðiÞTTU—experimental
11 ¼ TTU—theoretical

11

ðiiÞTTU—theoretical
22 ¼ TTU—theoretical

33 ¼ 0

ðiiiÞTTU—theoretical
ij ðFÞ ¼ 0 ði; j ¼ 1 . . . 3Þ when F ¼ I

8>><>>: ð11Þ
The determination of parameters has been done by the method of
least squares, minimizing the relative error in stresses, denoted
Error , by simultaneous verification of the conditions (i), (ii), (iii).
For the n stress/strain pairs, the relative error measured, Error , can
be given as:

Error ¼
Xn

i¼1

1� theoretical stress
experimental stress

� 	2

The results of the identification procedure are presented in Fig. 5(a)
for the pure EPDM and in Fig. 5(b) for the PP, until 6% of deforma-
tion. The following values of the parameters are obtained for the
EPDM:

ea0 ¼ 0:2246 MPa; a1 ¼ 0:013051; a2 ¼ 0:024

eb1 ¼ 0:38104 MPa; b2 ¼ �2:03234:

and for the PP phase:

C1 ¼ �827 MPa; C2 ¼ 963 MPa; C3 ¼ 100 MPa; and
B ¼ 1199 MPa

It is desirable to determine elastic properties corresponding to
these values. To this end, we determine the Cauchy stresses from
the Piola–Kirchhoff 1 ones T ¼ @WðFÞ

@F ; for example, the obtained
expression for the Lambert–Diani and Rey’s density is:

r ¼ 1
J

TFt ¼ 2
J

e a0þa1 I1�3ð Þþa2 I1�3ð Þ2ð Þ þ b1Ib2
2 I1


 �
B� 2

J
b1Ib2

2 B:B ð12Þ

where B ¼ FFt is the left strain tensor of Cauchy-Green.
After linearization, this leads, at infinitesimal deformation, to

Lame coefficients: k ¼ 2ea0 ð2a1 � 1Þ þ 16
3 b1b23b2 ¼ 0:7 MPa and

l ¼ 2ðea0 þ b13b2 Þ ¼ 0:24 MPa, for the matrix. Thus, the Young
modulus is E ¼ 0:7 MPa and the Poisson ratio m ¼ 0:37. For the par-
ticles, the same approach can be followed for the Ciarlet–Geymo-
nat density and one obtains, after linearization, E ¼ 800 MPa and
m ¼ 0:47. One may note that the experimental characterization of
the matrix and the reinforcement has revealed a compressible
behavior of each phase. This confirms the compressibility assump-
tion already adopted for the micromechanical modeling. Such
behavior may found its origin in the process, injection molding,
used to elaborate the composite. The same process has also been
used to produce the pure matrix samples in order to avoid bias in-
duced by the process.

Once the identification of strain energy densities for each phase
of the studied blends are done, we applied the nonlinear homoge-
nization model whose predictions are presented in Figs. 6 and 7 for
the EPDM matrix containing 5% and 10% of PP particles, respec-
tively. It may be noticed that the model give results that are not
completely in quantitative agreement with experimental results.
This observation first motivated us for rigorous verification of the
model, as presented in the following (Section 4).

Note: To apply the homogenization model, we have to
transform the weight ratio ðcmÞ of each constituent into volume
ratio ðcv Þ considered the model. To this end, we have the density
of the considered EPDM and PP: qEPDM ¼ 870 kg=m3 and
qPP ¼ 910 kg=m3, and the following expression gives the composite
density:

cv PP ¼
cm PP qEPDM

cm PP qEPDM þ cm EPDM qPP
:

To highlight the compressible character of the matrix phase, we
illustrate the variation of the third invariant of the local Cauchy–
Green tensor, I3, as a function of the macroscopic strain (see Fig. 8).
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4. Numerical verification by Finite Elements (FE) simulations

4.1. Principle of the FE simulations with hyperelastic model

In order to provide a verification of the model based on the sec-
ond order method, we follow here the approach described by Bou-
chart et al. (2008) and in which use has been done of very simple
energy densities. The main difference in the work performed and
summarized in this section is to provide the same analysis by con-
sidering a more realistic energy density adapted for each phase, as
presented in Section 3. The objective however is still to carry out a
verification of the nonlinear homogenization model by comparing
its predictions to reference solutions obtained by Finite Elements
(FE) computations. To this end, we consider the same local consti-
tutive law in both homogenization and FE simulations for each
material phase.

The FE reference solutions are obtained by considering a cylin-
drical unit cell which represents the composite material. As illus-
trated in Fig. 9, the space is supposed to be filled by prisms with
hexagonal bases which represent the matrix, each prism contains
a spherical particle in its center. This procedure is similar to the
one already followed by various authors for elasto-plastic compos-
ites materials (see for instance Llorca and Segurado (2004)). That
allows one to consider different types of inclusions (rigid or
deformable ones but also cavities), considering for each case the
suitable parameters in the strain energy density used to describe
their behavior.

To take advantage of the symmetry, the 3D unit cells are
approximated by cylinders with circular basis to allow axisymmet-
ric computations. Thus, the displacement boundary conditions
considered for the simulation of a uni-axial tensile test can be ex-
pressed as following:

� Uzðy;0Þ ¼ 0; 0 < y < R
� Uzðy; LÞ ¼ Uzimposed; 0 < y < R
� Uyð0; zÞ ¼ 0; 0 < z < L
� UyðR; zÞ ¼ constant, 0 < z < L

The last condition yields the same radial displacement for
points at the lateral boundary; the value of this displacement is ob-



Fig. 9. A periodic network of hexagons with pores; reduction to a 2D axisymmetric unit cell.
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tained as the result of the Finite Element computation. The dis-
placement at the top side Uz is prescribed gradually to reach the re-
quired strain at the end of the simulation.

The FE simulations were performed using the commercial soft-
ware Abaqus; the unit cell used contains CAX8R elements (8-node
biquadratic axisymmetric quadrilaterals, with reduced integra-
tion). These FE simulations provide heterogeneous strain and stress
fields in the unit cell from which their volume average can be com-
puted by using a specific post-treatment script.

Since the energy densities used are not available in the Abaqus
software, we have first proceeded to their implementation in this
software via the user routine UMAT. To do this, we have pro-
grammed, in FORTRAN, a subroutine specific to the model corre-
sponding to the considered density. A number of entries of this
subroutine are managed by Abaqus, but the user must provide
the components of the Cauchy stress tensor and the Jacobian ma-
trix of this stress with respect to the nominal strain for a given cur-
rent value of the strain. The Abaqus software works in updated
Lagrangian, at the end of each increment, the values of state vari-
ables of the model must be updated to observe continuous change.

Let us recall that the Cauchy stresses are given by (12) for the
Lambert–Diani and Rey’s density and that the same type of expres-
sion can be found for the Ciarlet–Geymonat one.

Thus, Jacobian matrix C of the corresponding material is defined
by the variation of the stresses Jr:

dðJrÞ ¼ JC : dD ð13Þ

where dD is the virtual deformation rate which is the symmetric
part of the gradient of displacement variation. In fact, it is possible
to express all of the quantities in dðJrÞ depending on dD (for more
details, see the Abaqus manual (ABAQUS, 2004)). This allows to
determine the Jacobian matrix of the material (see Appendix A).
4.2. Comparisons of model predictions with FE simulations

For the purpose of comparison, a volume fraction of particles
equal to 10% is considered. The comparison between the predicted
macroscopic behavior and the results computed from the FE solu-
tion, shown in Fig. 10(a), indicates a good agreement which is con-
firmed by the comparison of the local average stress in the matrix
phase (see Fig. 10(b)).

It is also interesting to investigate the strain field induced in the
composite material by the macroscopic tensile loading (see
Fig. 11(a)). Although a significant heterogeneity of the strain is ob-
served, it appears that the homogenization method provides a very
accurate estimate of the average deformation in the solid matrix
phase (see comparison in Fig. 11(b)).

Thus, recalling that the homogenization model was not in good
agreement with experimental data, and taking into account its ver-
ification by means of Finite Element simulations, we came to the
conclusion that it is necessary to include other mechanisms of
deformation in the model. In the following section, the aim will
be to take into account the damage phenomena which may occur
in elastomeric materials during the loading. Specifically, we ex-
plore the modeling of the presence and/or growth of microcavities
in the nonlinear hyperelastic matrix. This porosity may already ex-
ist in the material before mechanical loading (e.g. due to the man-
ufacturing process) or induced at the matrix–particles interface
during the loading. Indeed, it is convenient to recall that the stud-
ied composite does not contain any compatibilizer; the particles–
matrix adherence may not be perfect.
5. Incorporation of damage in the micromechanical
hyperelastic model

It is commonly recognized that defects and voids significantly
affect the macroscopic response of hyperelastic materials. Various
attempts have been done in the past and continue for the mechan-
ical modeling of this class of voided hyperelasic materials. Blatz
and Ko (1962) proposed a phenomenological approach of porous
elastomers which has been recently applied to the analysis of frac-
ture growth by Kakavas (2002). However, the phenomenological
formulation of these models still limits their domain of applicabil-
ity. In the framework of continuum micromechanics, mention can
be made of the study by Govindgee and Simo (1991) and more re-
cently by Danielsson et al. (2004) who consider a kinematically
admissible deformation field in order to evaluate the macroscopic
density of the porous material. As already pointed out by Lopez-Pa-
mies and Ponte Castañeda (2007), the model proposed by Daniels-
son et al. (2004) corresponds rigorously to an upper bound for
composite sphere assemblage microstructure of Hashin. The second
order homogenization method provides a more suitable model
which can be applied to more general microstructures.

The principal objective of the present section is to derive a dam-
age model based on the second order homogenization method ap-
plied in the above sections to hyperelastic porous materials. Before
that, we will present the second order method adapted for porous
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hyperelastic materials and will check its validity. For this, a com-
parison with FE simulations will be also performed.

5.1. The second order homogenization method for 3D hyperelastic
porous materials

The adaptation of the second order homogenization method to
porous hyperelastic material can be easily performed by modeling
the microcavities as hyperelastic media with a strain energy den-
sity Wð2Þ equal to zero. Thus, the estimate of the macroscopic strain
energy density fW for the porous material can be read as:

fW F
� �
’ ð1� cÞ Wð1Þ Fð1Þ

� �
þ 1

2
F� Fð1Þ
� �

: Tð1ÞðFð1ÞÞ
� �

ð14Þ

with FðrÞ given by (5) which reduces to:

FðrÞ ¼ AðrÞðFðrÞÞ : Fþ AðrÞðFðrÞÞ � I
� �

: Lð1ÞðFð1ÞÞ
� ��1

: sð1ÞðFð1ÞÞ; r ¼ 1;2: ð15Þ

Note: For the Hashin–Shtrikman bound, due to the dependence of
the localization tensors (6) (and therefore of Fð1Þ) with c, expression
(14) of the macroscopic strain energy density may depend nonlin-
early on c. Comparatively, the Voigt bound (model by Govindgee
and Simo (1991), which corresponds to an assumption of uniform
strain in the material ðFð1Þ ¼ Fð2Þ ¼ FÞ, provides the following esti-
mate, fWðFÞ ’ ð1� cÞWð1ÞðFÞ, linear with c. Note also that this first
order bound leads to an incompressible behavior for the porous
material when the matrix is itself incompressible; this in fact not
in agreement with the physical expectation of compressibility due
to the porosity.

For the implementation of the nonlinear micromechanical HS-
based model for porous materials, the method is in the same
way as the one which was presented in Section 3.2.

5.2. Numerical verification by Finite Elements simulations

The aim here is to verify the predictions of the second order
homogenization method by comparison with Finite Element re-
sults in the case of porous hyperelastic material. The FE simula-
tions are performed in the same way as described in Section 4
which allows to considerer spherical cavities and to model their
deformation by means of a strain energy density Wð2Þ equal to zero.
The considered matrix is still the EPDM elastomer which is mod-
eled again with the strain energy density (8) and the same param-
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eters as before. The spherical voids are modeled by using a strain
energy density available in the Abaqus software with suitable val-
ues of parameters:

Wð2ÞðFÞ ¼ C10ðJ�2=3I1 � 3Þ þ 1
D1
ðJ � 1Þ2 ð16Þ

where J ¼
ffiffiffiffi
I3
p

and the model parameters are taken as C10 ! 0 and
D1 !1. In practice, we have considered C10 ¼ 10�5 MPa and
D1 ¼ 104 MPa�1.

For the purpose of comparison, a porosity of 15% is considered.
The comparison between the predicted macroscopic behavior and
the results computed from the FE solution is shown in Fig. 12 and
indicates a good agreement. It is also interesting to investigate the
strain field induced in the porous material by the tensile loading
(see Fig. 13(a)). Although a significant heterogeneity of the strain
is observed, as in the unvoided composite, it appears that the
homogenization method provides a very accurate estimate of the
average deformation in the solid matrix phase (see comparison
in Fig. 13(b)).
5.3. Description of the micromechanics-based damage model

In the perspective of evolving damage modeling, we consider
now a porosity and develop a micromechanical approach based
on expression (14) of the macroscopic density corresponding to
porous hyperelastic material. This density will play the role of a
thermodynamical potential of the damaged material, in which
the porosity c can be considered as the internal damage variable.
F and c are the state variables. Obviously, it comes that, in contrast
to purely macroscopic approaches, the homogenization method
provides not only a clear physical imeaning of the damage variable,
but also gives us the expression of fW, that is the way the damage
affects the material behavior. As already stated, this expression
strongly depends on the homogenization scheme used for the res-
olution of (15).

As classically, the first state law, derived from fW, reads simi-
larly to (3) as:

TðF; cÞ ¼ @
fWðF; cÞ
@F

:

The thermodynamical force, F, associated to the damage vari-
able c, is given by the second state law:
.8 2 2.2 2.4 2.6

pic stretch 

elastic material with 15% of porosity: macroscopic response under uni-axial tensile
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F ¼ � @
fWðF; cÞ
@c

ð17Þ

F ¼Wð1Þ Fð1Þ
� �

þ 1
2

F� Fð1Þ
� �

: Tð1ÞðFð1ÞÞ

� ð1� cÞ
2

Tð1ÞðFð1ÞÞ þ F� Fð1Þ
� �

: L1ðFð1ÞÞ
h i

:
@Fð1Þ

@c
ð18Þ

Although, the Hashin–Shtrikman bound is the principal homogeni-
zation scheme used in the study, it is interesting to point out that
for the Voigt scheme, the macroscopic stress, TðF; cÞ ¼ ð1� cÞ
Tð1ÞðFÞ, depends linearly on c and the thermodynamical force, which
reduces to F ¼Wð1ÞðFÞ, is not affected by the damage variable c.
Note that this very simple damage model, associated to the Voigt
scheme, was the one already studied by Govindgee and Simo
(1991) and extended in many variants by several authors Ogden
and Roxburgh (1999) (for a pseudo-elasticity approach), Li et al.
(2007), etc.

The next step is to specify the damage evolution law, that is the
cavity growth process. For the coherence of the approach, this evo-
lution law should be also deduced from micromechanical consider-
ations. Since, until now, there is no theoretical or physical
arguments to do this, the methodology followed here consists to
combine the micromechanical approach with standard thermody-
namic arguments related to the analysis of the intrinsic dissipation
when damage phenomena occur. Indeed, noting that the positivity
of the intrinsic dissipation reduces to F @c

@t P 0, one postulates the
existence of a dissipation pseudo-potential /�ðFÞ as differentiable,
convex, positive, zero for F ¼ 0 and such that:
Fig. 14. Separation of the space probl
@c
@t
¼ @/

�

@F
ð19Þ

Following Devries and Brieu (1998) a Norton type form of the dissi-
pation pseudo-potential is adopted:

/�ðFÞ ¼ a
bþ 1

Fb; a P 0; b P 0 ð20Þ
5.4. Implementation and results

Numerical implementation of the proposed damage model re-
quires a simultaneous resolution of the homogenization problem
and of the damage evolution. For this, we adopt a method separat-
ing the space problem that is the homogenization one and the tem-
poral problem of damage evolution. Thus, the solution is obtained
at a time t by continuity of two successive steps: for an initial
porosity c0ðtÞ and an imposed deformation gradient tensor FðtÞ,
we compute fWðFðtÞ; c0ðtÞÞ and TðFðtÞ; c0ðtÞÞ by resolving the
homogenization problem. After this, we evaluate the porosity
c1ðtÞ by the evolution law (19) and compute once againfWðFðtÞ; c1ðtÞÞ and TðFðtÞ; c1ðtÞÞ. A convergence test is performed
for the porosity (i.e jc1ðtÞ � c0ðtÞj 6 e with e very small); if the con-
vergence is not obtained, we continue the successive steps in order
to converge for an iteration k : jckðtÞ � ck�1ðtÞj 6 e. This method is
analogous to one of Picard (see Burrage (1995)).

In this algorithm, presented in Fig. 14, the homogenization
problem is solved as described previously in Section 3.1 and the
em and of the temporal problem.
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porosity cðtÞ is determined by the integration of the evolution law
(19) based on (20):

cðtÞ ¼ cð0Þ þ ab
bþ 1

Z t

0
FðtÞðb�1Þdt ð21Þ

To compute cðtÞ, we choose to use a trapezoidal rule for integration.
Thus, the damage evolution during a interval of time ½0; T� is deter-
mined by considering intermediate times tj for which we compute
the macroscopic stresses and the damage (porosity) of the material.
These intermediate times are defined by tj ¼ jDt ¼ j T

N ðj ¼ 1 . . . NÞ, N
being the number of sub-intervals in ½0; T� which have to be small
enough for the desire accuracy. In summary, the evaluation of the
porosity at each time tj is then determined from the following
approximation given by the trapezoidal rule:

cðtjÞ ¼ c0 þ
ab

bþ 1
FðtjÞðb�1Þ þ 2

Xðj�1Þ

i¼1

FðiDtÞðb�1Þ

 !
ð22Þ

Let us consider now the composite EPDM/PP for which experimen-
tal data are available. It was shown in Bouchart et al. (2007) that a
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Fig. 15. Verification uni-axial tensile test for the con
micromechanical model of composite, without damage, is not able
to reproduce the macroscopic experimental behavior. Our objective
here is simply to apply the damage model derived here to the
EPDM/PP. Based on appropriate assumption of scales separation,
the methodology followed consists in a two step homogenization:
(i) we first homogenize the EPDM/PP in order to obtain its macro-
scopic behavior in absence of damage; (ii) we then consider this
macroscopic behavior as the one of the solid matrix in the second
homogenization step devoted to the damage modeling. In this sec-
ond step of homogenization the initial porosity is considered very
low (0.1%).

For the pseudo-potential /�, parameters a and b are calibrated
on the data from the material made up of 90% of EPDM and 10%
of PP particles: a ¼ 1:10�4 s�1 and b ¼ 0:8. Fig. 15(a) shows the re-
sults given by the damage model based on the Hashin–Shtrikman
(HS) bound and the experimental data. It confirms the relevance of
the identification. For completeness, the predictions of the model
without damage phenomenon are also presented. A clear effect
of the damage is observed and makes it possible to describe the
experimental behavior.
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For validation purposes, another blend EPDM–PP made up now
of 95% of EPDM and 5% of PP particles is considered. The compar-
ison of the predictions to experimental data (see Fig. 16(a)) shows
an agreement which demonstrates the predictive capabilities of
the proposed model. The damage evolution during the loading is
also presented in Figs. 15 and 16(b) for the two studied blends
EPDM–PP. It is observed that for the maximum level of deforma-
tion in the test, the damage value is quite equal to 18%. For further
details, one can refer to Bouchart (2007).
6. Conclusions

The present study is devoted to an experimental characterization
and a multiscale modeling of the mechanical behavior of reinforced
hyperelastic materials like EPDM/PP blends. The PP phase is as-
sumed in the form of spherical particles embedded in the EPDM ma-
trix. For the particles volume concentrations considered in the study,
the experimental results show a significant effect of the reinforce-
ments. The micromechanical modeling developped combines the
second order homogenization method with an Hashin–Shtrikman
bound. It leads to results in agreement with the reference solution
obtained by FE computations. Comparisons of the HS-based model
predictions with experimental data led us to extend the model by
accounting of damage phenomena which occurs in the studied
composite. Indeed, we had explored the effects of the presence
and/or growth of microcavities in the EPDM/PP blends. The formula-
tion of the damage model is obtained by combining the microme-
chanical results of the second order method with a standard
thermodynamics-based approach. First validations of this damage
model are then obtained through the comparison of its predictions
with experimental data on the EPDM/PP. Works concerning the
cyclic behavior of the damaged material are also under progress.
Appendix A. Jacobian matrix for the implementation of an
hyperelastic strain energy density in Abaqus

The Jacobian matrix, C, is defined by the variation of the Kirch-
hoff stresses:

dðJrÞ ¼ JC:dD ð23Þ
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where dD is the deformation rate, defined as the symmetric part of
dF:F�1.

The expression for the Cauchy stresses obtained by using, for
example, the Lambert–Diani and Rey density (8) is the following:

r ¼ 2
J

e a0þa1 I1�3ð Þþa2 I1�3ð Þ2ð Þ þ b1Ib2
2 I1

h i
B� 2

J
b1Ib2

2 B:B ð24Þ

where B ¼ FFt is the left strain tensor of Cauchy–Green.
Thus, the expression of the variation of Jr is:

dðJrÞ¼2 eða0þa1ðI1�3Þþa2ðI1�3Þ2Þ þb1Ib2
2 I1

h i
dB

þB eða0þa1ðI1�3Þþa2ðI1�3Þ2Þða1þ2a2ðI1�3ÞÞdI1þb1Ib2
2 dI1þb1b2Ib2�1

2 I1dI2

h i
�2b1b2Ib2�1

2 dI2B:B�4b1Ib2
2 dB �B

It is necessary to determine the variations of I1; I2 and of B depend-
ing on dD. For this, we use the Abaqus software manual (ABAQUS,
2004) which permits to determine the following variations of
I1 ¼ J�2=3I1, I2 ¼ J�4=3I2 and B ¼ J�2=3B:

dB ¼ 1
2

diqBip þ dipBjq þ djqBip þ djpBiq �
4
3

dpqBij

� 	
dDpq

dI1 ¼ 2 Bpq �
I1

3
dpq

 !
dDpq

dI2 ¼ 2 I1Bpq �
I2

1

3
dpq � BpmBmq þ

1
3

trðB:BÞdpq

 !
dDpq ð25Þ

Then, we can compute the variations of I1; I2 and of B from those of
I1; I2 and B :

dB ¼ 2
3 ðJ
�1=3dJÞBþ J2=3dB

dI1 ¼ 2
3 ðJ
�1=3dJÞI1 þ J2=3dI1

dI2 ¼ 2
3 ðJ

1=3dJÞI2 þ J4=3dI2

avecdJ ¼ JtrðdDÞ ¼ JðI : dDÞ

ð26Þ

by replacing the expressions of dB;B; dI1; I1 and dI2; I2 and identify-
ing with the definition of C (23), we obtained the expression of the
Jacobian matrix.
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