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ABSTRACT 

This paper derives a new three-dimensional (3-D) analytical solution for the indirect 

tensile tests standardized by ISRM (International Society for Rock Mechanics) for testing 

rocks, and by ASTM (American Society for Testing and Materials) for testing concretes.  The 

present solution for solid circular cylinders of finite length can be considered as a 3-D 

counterpart of the classical two dimensional (2-D) solutions by Hertz in 1883 and by Hondros 

in 1959. The contacts between the two steel diametral loading platens and the curved surfaces 

of a cylindrical specimen of length H and diameter D are modeled as circular-to-circular 

Hertz contact and straight-to-circular Hertz contact for ISRM and ASTM standards 

respectively. The equilibrium equations of the linear elastic circular cylinder of finite length 

are first uncoupled by using displacement functions, which are then expressed in infinite 

series of some combinations of Bessel functions, hyperbolic functions, and trigonometric 

functions. The applied tractions are expanded in Fourier-Bessel series and boundary 

conditions are used to yield a system of simultaneous equations. For typical rock cylinders of 

54 mm diameter subjected to ISRM indirect tensile tests, the contact width is in the order of 2 

mm (or a contact angle of 4 degrees) whereas for typical asphalt cylinders of 101.6 mm 

diameter subjected to ASTM indirect tensile tests the contact width is about 10mm (or a 

contact angle of 12 degrees). For such contact conditions, 50 terms in both Fourier and 

Fourier-Bessel series expansions are found sufficient in yielding converged solutions. The 

maximum hoop stress is always observed within the central portion on a circular section close 

to the flat end surfaces. The difference in the maximum hoop stress between the 2-D Hondros 

solution and the present 3-D solution increases with the aspect ratio H/D as well as Poisson’s 

ratio ν. When contact friction is neglected, the effect of loading platen stiffness on tensile 

stress in cylinders is found negligible. For the aspect ratio of H/D = 0.5 recommended by 

ISRM and ASTM, the error in tensile strength may be up to 15% for both typical rocks and 

asphalts, whereas for longer cylinders with H/D up to 2 the error ranges from 15% for highly 

http://ees.elsevier.com/ijss/viewRCResults.aspx?pdf=1&docID=7744&rev=2&fileID=354291&msid={5EE9EABD-17FD-4918-9BF4-F842BA73E932}
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compressible materials, and to 60% for nearly incompressible materials. The difference in 

compressive radial stress between the 2-D Hertz solution or 2-D Hondros solution and the 

present 3-D solution also increases with Poisson’s ratio and aspect ratio H/D. In summary, the 

2-D solution, in general, underestimates the maximum tensile stress and cannot predict the 

location of the maximum hoop stress which typically locates close to the end surfaces of the 

cylinder. 

 
Keywords: Analytical solution; indirect tensile test; Brazilian test; asphalt; rocks; concretes 
 

1.  Introduction 

One distinct mechanical characteristic of brittle materials is that they are strong in 

compression but much weaker in tension. Therefore, tensile strength is a very important index 

in describing brittle materials because it is more relevant to the mechanical failure of brittle 

solids than compressive strength. However, direct tensile test is very difficult to apply to 

brittle materials without inducing any eccentric moment. Therefore, various types of indirect 

tensile tests have been developed in order to measure the tensile strength of brittle materials, 

including the diametral compression on disk with central hole (Hobbs, 1965), the point load 

strength test (Wei et al., 1999; Chau and Wei, 2001; Wei and Chau, 2002), the double-punch 

test (Wei and Chau, 2000), and the diametral compression on the curved surface of cylindrical 

specimens (ISRM, 1978; ASTM, 2004). 

The most popular indirect tensile strength test for testing rocks and concretes is the so-

called Brazilian test (Fig. 1(a)), which was independently proposed by Akazawa in 1943 as a 

PhD thesis (Machida, 1975; Akazawa, 1953; Fairbairn and Ulm, 2002) and by Carneiro in 

1943 at the Fifth Meeting at of the Brazilian Association for Technical Rules Standardization 

(Carneiro, 1943; Carneiro and Barcellos, 1953; Fairbairn and Ulm, 2002). The testing 

procedure for indirect tensile test was standardized by International Society for Rock 

Mechanics (Bieniawski and Hawkes, 1978; ISRM, 1978), while the most commonly used 

indirect tensile test for concrete was standardized by American Society for Testing and 
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Materials (ASTM, 2004). As shown in Fig. 1, finite circular solid cylinders of length H and 

diameter D are used for both the ISRM indirect tensile test and the ASTM indirect tensile. 

Although two diametral strips of loading are adopted for both ISRM and ASTM tests, the 

loading platens are of different shapes. The recommended height-to-diameter ratios (H/D) for 

both ISRM (1978) and ASTM (2004) standards are 0.5. Note that the old standard of ASTM 

(1995) for bituminous material recommended H/D = 0.625 but it was withdrawn in 2003. The 

failure mode of cylindrical specimens under both ISRM and ASTM tests is always in brittle 

splitting along the plane formed by joining the two loading strips, as illustrated by the vertical 

lines shown in Fig.1. Indirect tensile test is sometimes referred as the “splitting test” (Rocco 

et al., 1999; Rocco et al., 2001). In this paper, the stress distribution for both contact 

conditions proposed by ISRM and ASTM shown in Fig. 1(a) and Fig. 1(c) will be considered. 

An analytical solution for a solid circular cylinder subjected to two concentrated diametral 

line loads was derived by Hertz in 1883 (p. 124, Timoshenko and Goodier, 1982). The main 

feature of this solution is that a uniform tensile stress is predicted on the vertical plane formed 

by joining the two line loads. This uniform tensile stress is found equal to 2F1/(πDH), where 

F1 is the total applied force and D and H are the diameter and length of the cylinder 

respectively.  Indeed, circular cylinders did fail in tension between these two line loads in all 

brittle materials (see Fig. 1).  Not surprisingly, this simple and elegant solution has been 

adopted in the standard testing procedures proposed by both ISRM and ASTM.  Hondros 

(1959) extended the solution to the case of applied load being modeled as uniformly 

distributed strip loads. The 2-D stress components by Hondros (1959) are summarized in Eqs. 

(5) and (6) of Section 10.7 of Jaeger and Cook (1976) and reproduced here in Appendix B for 

the sake of completeness. Both of these two-dimensional (2-D) solutions are valid for either 

very long cylinders (plane strain condition) or very short cylinders (plane stress condition). 

However, the suggested H/D value in both ISRM and ASTM standards is 0.5 (ISRM, 1978; 
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ASTM, 2004). It seems that this value may not fully justify the use of the 2-D solution.  

Indeed, it is more often found that the experimental results cannot be well described by the 2-

D analytical solution (Chen and Chen, 1976; Mamlouk et al., 1983; Rocco et al., 2001; Yu et 

al., 2006). 

Therefore, finite element method (FEM) has been employed to study the stress 

distribution within finite circular cylinders under the indirect tensile test. For example, Yu et 

al. (2006) studied the shape effect in the Brazilian test using 3D FEM. Numerical results show 

that for a fixed Poisson’s ratio of 0.22 the tensile stress distribution along both the 

compressed diameter and thickness is not uniform, and the tensile stress near the end surface 

of the specimen is higher than that of the inner part. It was also found that the 2-D solution by 

Hertz in 1883 and by Hondros (1959) is not accurate enough to calculate the tensile strength 

of rocks, especially for relatively thick cylinders. Roque and Buttlar (1992) applied FEM to 

analyze the indirect tensile test for asphalts and demonstrated that there is a significant 

variation of the tensile stress along the thickness of the cylinder. Moreover, the two 

dimensional solutions by Hertz in 1883 and by Hondros (1959) also fail to consider the 

Poisson effect. 

The main objective of this study is to obtain a three-dimensional (3-D) analytical solution 

for the indirect tensile test, and through this new solution to investigate the validity of 2-D 

solution in applying to indirect tensile tests. The method of solutions follows the displacement 

function approach (Muki, 1960; Chau and Wei, 2000, 2001) in converting the coupled 

equilibrium equations for displacements to a system of two uncoupled differential equations 

of biharmonic equation and Laplace equation. In cylindrical coordinate, the general solutions 

of these two displacement functions are expressed in terms of series solution consisting of 

Bessel functions, hyperbolic functions, and trigonometric functions. In fact, the most difficult 

step in the solution technique is to assume an appropriate form of solution such that all 
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boundary conditions can be satisfied exactly. In order to satisfy the boundary conditions, 

Fourier-Bessel expansion technique is applied to expand the applied traction on the curved 

surface.  

The present solution provides a theoretical basis for the stress analysis of and strength 

interpretation for the commonly adopted indirect tensile strength tests. In view of the 

popularity of the indirect tensile test in applying to various engineering materials, such as 

concrete, rocks and asphalts, the present solution is of fundamental importance to the area of 

material testing. The present 3-D solution also provides a major improvement over the 2-D 

solution of Hertz in 1883 (Timoshenko and Goodier, 1982) and Hondros (1959), and can be 

used to examine the effect of Poisson’s ratio and shape effect of the specimen on the stress 

distribution within finite circular cylinders subjected to the indirect tensile test.   

 

2. Mathematical Formulation 

Figure 1 shows the typical experimental setup for the ISRM indirect tensile test (Fig. 1(a)) 

and the ASTM indirect tensile test (Fig. 1(c)). We assume that external loads are applied on a 

cylindrical specimen by two metal loading platens, one on the top and one at the bottom. For 

the ISRM test, the steel loading platens are in concave circular shape, whereas for the ASTM 

indirect tensile test, the steel loading platens are flat. For both the ISRM and ASTM indirect 

tensile tests, the external load is modeled by non-uniform radial Hertz contact stress as shown 

in Fig. 1(b). The cylinder is of radius R (or diameter D = 2R) and length H = 2h, and is 

assumed homogeneous, linear elastic and isotropic. The origin and the z-axis of the 

cylindrical coordinate ( zr ,,θ ) coincide with the center and the axis of symmetry of the 

cylinder.  

 The traction free end boundary conditions for a finite solid circular cylinder under the 

indirect tensile test can be written as  
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0,0,0 === θσσσ zzrzz                                                       (1) 

on hz ±= ; and the strip loading on the curved boundary are modeled by Hertz contact as (see 

section 141 of Timoshenko and Goodier, 1982):  

0=θσ r      (2) 

0=rzσ  (3) 
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on r = R, where π ≈ 3.141592654, θ is defined in Fig. 1(b) and measured in radian, F is the 

total force per unit length induced by the loading strips, and b  is the half-width of the loading 

strips (see Fig. 1b). Note that this radial stress is zero at the edge of the contact zone (i.e. Rθ = 

b) and attains a maximum at the center of the contact width (i.e. θ = 0). The contact width can 

be determined as (Timoshenko and Goodier, 1982) 

2 2
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( )
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b
R R E E

ν ν
π

⎧ ⎫− −⎪ ⎪= +⎨ ⎬
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                                                                         (5) 

where R1 is the radius of the loading platens, E is the Young’s modulus and ν is the Poisson’s 

ratio of the cylinder; whereas the elastic properties of the loading platens are denoted by the 

superimposed bar. For the ISRM (1978) indirect tensile test shown in Fig. 1(a), the concave 

contact has a radius of R1 = −1.5R; whereas for the ASTM (2004) indirect tensile test shown 

in Fig. 1(c), the flat platen has a radius of R1 → ∞. Thus, the platen contact width depends on 

the applied force F, the elastic properties (E and ν) of the cylinder, the radius of the cylinder 

R and the testing set-up of the loading platens (i.e. the value of R1 ), as well as the elastic 

properties of the loading platens ( E and ν ).     
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3. Displacement Functions 

In this study, the displacement function approach is employed to investigate analytically 

the 3-D stress distribution of cylinders subjected to the indirect tensile test. This method was 

originally proposed by Muki (1960) and has been discussed in details by Chau and Wei (2000, 

2001) and by Chau (2013). These displacement functions consist of the z-component of the 

Galerkin vector plus the z-component of the irrotational part of the Helmholtz decomposition 

vector (see Section 4.9.1 of Chau, 2013). In particular, two displacement functions Φ  (z-

component of the Galerkin vector) and Ψ  (z-component of the irrotational part of the 

Helmholtz decomposition vector) are introduced to uncouple the equilibrium equations 

leading to the following biharmonic and Laplace equations (Muki, 1960; Little, 1973; Chau, 

2013)  

0,0 2224 =Ψ∇=Φ∇∇=Φ∇  (6) 

where 2∇  is the Laplacian operator. In cylindrical coordinates, all displacement components 

(ur, uθ, uz) and stress components (σrr, σzz, σθθ, σrz, σrθ, σzθ) can now be expressed in terms of 

these two displacement functions Φ  and Ψ  as 
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where G and ν are the shear modulus and Poisson’s ratio, respectively, and 2∇  and 1∇  are 

defined as 
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The most crucial step in the method of solutions is to select appropriate forms of Φ  and 

Ψ such that both Eq. (6) and the boundary conditions expressed by Eqs. (1-4) are satisfied. 

By specializing the series expressions for Φ  and Ψ  proposed by Chau and Wei (2000, 2001), 

the following solution forms are used: 
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where hmm /πη = , Rss /λ=γ , and sλ  is the s-th root of 0)(2 =λ′ snJ  (i.e. the derivative of 

the Bessel function of the first kind of order 2n); )( and)( 2n2 xIxJ n  are the Bessel and 

modified Bessel functions of the first kind of order 2n, respectively (Abramowitz and Stegun, 

1965); and 0 0 0 0, , ,n nA C H E , mn, , , ,  and mn mn sn sn snA B C D E F  are unknown coefficients to be 

determined by the boundary conditions.   

In obtaining Eqs. (15) and (16), we note that the first term in Ψ given in Eq. (23) of Chau 

and Wei (2000) is not needed as there is no constant shear stress applied on the cylinders. In 

addition, the periodicity of the problem is now π with respect to the top and bottom loading 

platens on the cylinder as shown Fig. 1. That is, we have ωn = 2nπ/π = 2n in Eqs. (23-24) of 

Chau and Wei (2000). As θ is measured from the vertical and thus symmetry in the radial 
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displacement requires that it is a function of cosθ only, but not function of sinθ because sine 

function is antisymmetric. Therefore, it is necessary and sufficient to take the upper θ-

dependence functions given in Eqs. (23-24) of Chau and Wei (2000). Similarly, because of 

the traction free conditions at the flat end boundaries of the cylinder, we can take the upper z-

dependent functions of cosine and hyperbolic cosine in Eq. (23) of Chau and Wei (2000) for 

Ψ, and take the upper z-dependent functions of hyperbolic sine and hyperbolic cosine in Eq. 

(24) of Chau and Wei (2000) for Φ. 

 It is straightforward to show that the mathematical forms of Φ  and Ψ  given in Eqs. (15-

16) satisfy Eq. (6) identically. Substitution of Eqs. (15-16) into Eqs. (8-13) yields the 

following expressions for the stress components 
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The resilient modulus is very useful for the evaluation of the quality of the bituminous 

materials and pavement design (Croney and Croney, 1998). Because the resilient modulus is 

usually obtained in experiments by measuring the displacement component zu  on the end 

surfaces of the cylinder during the so called “Marshall test” which is essential an indirect test 

for bituminous material (Roque and Buttlar, 1992; Webb et al., 1985), the expression of the 
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displacement component  zu  is also given here. In particular, substitution of Eqs. (15-16) into 

the third of Eq. (7) yields the following expression for displacement component zu  as 
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Similarly, the other two displacement components can also be obtained. 

 

4. Solution Procedures 

In order to match the external applied load with the internal stress field, the external 

applied load is expanded in Bessel-Fourier series.  In particular, Eq. (4) can also be written as 
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In addition, we rewrite all expressions for stresses (except for θθσ ) in a unified Bessel-

Fourier series, and then specialize them on the curved surface as well as on the two end 

surfaces. By comparing the expressions for stresses with those by boundary conditions, we 

can derive a system of equations for the unknown coefficients. Subsequently, all unknown 

coefficients can be solved from these equations.  

In particular, rewriting Eq. (17) and comparing it with Eq. (24) lead to  
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where the expressions of )0()0(
ss

ΛΓ , , )1()1( and 
smsm

ΛΓ  are given in Appendix A, and 
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By applying the shear traction free condition given in Eq. (3) to Eq. (20), we have 
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where the expressions of  )2(
smΓ and )3(

mΓ  are given in Appendix A. 

 Applying the boundary condition given in Eq. (2) to Eq. (22) (i. e. 0=θσ r on r = R) leads 

to  
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where the expressions of (0) (0) ands sΓ Λ  are given in Appendix A. 

 The boundary condition 0=zzσ  on the two end surfaces hz ±=  (the first of Eq. (1)) leads 

to   

0)1()2(2 00 =−+− AC νν  (32) 
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where the expressions of smsmsn UTP  and ,  are given in Appendix A. 

 The boundary condition 0=zrσ  on the two end surfaces hz ±=  leads to   
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where s  is an integer greater than zero, and the expression of snV  is given in Appendix A. 

 The boundary condition 0=θσ z  on the two end surfaces hz ±=  leads to 
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By now, all boundary conditions have been considered, and all unknown coefficients can 

be uniquely determined. More specifically, the unknown constants 00 CandA  can be solved 

from Eqs. (25) and (32), whereas 0 0, , , ,n n mn mnE H A B  , ,mn sn snE C D and snF  can be solved 

from the coupled system of equations Eqs. (26-27), (29-31), and (33-35). For example, if the 

number of truncated terms selected for indices m, n and s equals a finite integer q, the number 

of unknowns for 0 0, , , ,n n mn mnE H A B  , ,mn sn snE C D and snF  becomes 2(q+1)+6q(q+1).  It is 

clear from Eqs. (26-27), (29-31), and (33-35) that the number of equations is also exactly 

2(q+1)+6q(q+1). Numerical results of the present analytical solutions are given and discussed 

in the next section. 

 

5. Numerical Results and Discussions 

The determination of the unknown coefficients by the boundary conditions in the last 

section involves the solution of a system of simultaneous equations in terms of infinite series.  
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In actual computation, the infinite series has to be truncated and only finite number of terms is 

retained. However, our numerical calculations show that the system of equations for solving 

,,,, 00 mnmnnn BAHE  snsnmn DCE ,,  and snF  becomes ill-conditioned for large m and s.  

It is observed that coefficients of the system of equations including cosh, sinh, and I2n 

(modified Bessel function) increase exponentially with argument (or indirectly increase with 

m and s), whereas coefficients for other terms involving only sine, cosine, and J2n (Bessel 

function) are simply oscillating functions with finite value even for large m and s. This is the 

cause of ill-conditioning of this system of equations as we increase m and s.  

We found that the ill-condition can be alleviated by a proper scaling of the coefficients. In 

particular, we divide all coefficients for mnmmmn EBA  and ,  with the modified Bessel function 

I Rn m2 ( )η  because they cause ill-conditioning for large m. That is, automatically all constants 

mnmmmn EBA  and , have been scaled by multiplying I Rn m2 ( )η . We divide all coefficients for 

snsnsn FDC and,  with )cosh( hsγ  because they cause ill-conditioning for large s. That is, 

automatically all constants snsn DC ,  and snF  have been scaled by multiplying )cosh( hsγ . 

After solving snmnmnmnnn CEBAHE ,,,,, 00 , snD and snF , the final solutions of mnmn BA ,  

and mnE can be obtained by dividing them with I Rn m2 ( )η  while the solutions for 

snsnsn FDC and,  can be obtained by dividing them with )cosh( hsγ . 

Since the actual applied normal stress of the boundary condition (4) on the curved surface 

is a nonlinear function of the applied force and the modulus of the cylinder as shown in Eq. (5) 

(due to the inclusion of Hertz contact), the final stress distribution cannot be normalized 

linearly with respect to the applied load and modulus, like other linear elastic stress analyses.  

Therefore, in this paper typical values of rock tested complying with the ISRM (1978) 

standard and of bituminous material or asphalt tested complying with the ASTM (2004) 
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standard will be adopted in the following numerical calculations. Our choice of rock and 

asphalt should cover both strong and weak solids. 

 

5.1. The contact width and angle versus tested material and testing method 

Figures 2(a) and 2(b) plot the contact width b versus the applied line force F (MN/m) for 

various values of Poisson’s ratio for a typical rock of Young’s modulus of 50 GPa subjected 

to ISRM (1978) indirect tensile test and for a typical bituminous material of Young’s modulus 

of 85 MPa subjected to ASTM (2004) indirect tensile test. These values are considered 

typical for rocks (Goodman, 1989) and for asphalts (Croney and Croney, 1998). The 

numerical results were obtained by using Eq. (5) with the special case of rigid platens (i.e. 

E →∞ ), and the effect non-rigid loading platen will be considered later in Section 5.3. As 

suggested in ISRM (1978), the diameter of the rock cylinder is 54 mm, whereas the diameter 

of the bituminous material cylinder is 101.6 mm recommended in ASTM (2004). For typical 

rocks of moderate tensile strength, splitting failure occurs at around F = 0.5MN/m (roughly 

corresponding to a tensile strength of 6 MPa) whereas for typical asphalts of moderate tensile 

strength, splitting failure occurs at around F = 0.05MN/m (roughly corresponding to a tensile 

strength of 0.3 MPa), shown as vertical dotted lines in Fig. 2.  These values of line forces will 

be used in later numerical calculations. At these force values, the contact widths are about 2 

mm and 12 mm for the ISRM test on rock and ASTM test on asphalt. Figure 3 plots the 

contact angles versus the applied force F for various values of Poisson’s ratio. These contact 

angles are needed for later stress comparisons with the 2-D solutions because the classical 2-

D Hondros (1959) solution is expressed in terms of the contact angle (or 2θ0), as shown in 

Appendix B.  In general, contact angles at the chosen applied forces of 0.5 MN/m for rocks 

and 0.05 MN/m for asphalts are around 4° to 12°.  
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5.2. The convergence of the present solution 

In order to check the convergence of the present 3-D analytical solution, Fig. 4 plots the 

hoop stresses at the center of the cylinder (i.e. r/R = z/h = 0) versus H/D for ν = 0.35 and for 

various numbers of summation terms (n, s, and m) used in the series solutions of the 

displacement functions given in Eqs. (15-16). The height H = 2h and diameter D = 2R are 

defined in Fig. 1. The size of the cylinder and other mechanical properties for rocks (ISRM 

test) and asphalts (ASTM test) are the same as those used in Fig. 2. The hoop stress has been 

normalized with respect to Hertz 2-D solution, )/(20 DF πσ = .  Note that the contact widths b 

for ISRM results and ASTM results are not the same because of different shape of the loading 

platens being used. The average value of Poisson’s ratio of rocks and asphalts is about 0.35 

(e.g. Goodman, 1989; Table 3 of Chau and Wong, 1996; Croney and Croney, 1998; Low et al., 

1993), and thus this value was used in the plots. As discussed earlier, the coefficients of the 

system of equations for unknowns ,,,, 00 mnmnnn BAHE  snsnmn DCE ,,  and snF  become very 

large for large m and s. Therefore, we should not be too greedy in calculating the number of 

terms.  Nevertheless, Fig. 4 shows that the hoop stresses converge very quickly to a steady 

value when more than 20 terms are used for each of n, s, and m.  The solutions for 20 terms 

for n, s, and m or more are virtually indistinguishable for the hoop stress at H/D = 0.5, which 

is the value suggested by both ISRM and ASTM standards.  Figure 5 plots the hoop stresses 

versus r/R for ν = 0.35, θ = 0, z/h = 0, and H/D = 0.5 and for various numbers of summation 

terms (n, s, and m) used in the series solutions given in Eqs. (15-16) for the displacement 

functions. It is clear that the solutions for 20 terms or more for n, s, and m are virtually the 

same, independent of the value of r/R. Therefore, in all of the following calculations, 

numerical results are obtained by using 50 terms of n, s and m.  

 

5.3. The effect of loading platen stiffness on stress concentration 
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So far, we have assumed that the loading platen is rigid comparing to the tested materials.  

To illustrate the effect of non-rigid loading platen, Fig. 6 plots the normalized hoop stress 

along the normalized radial distance (r/R) for various values of Poisson’s ratio and for both 

rigid and elastic loading contacts. All parameters are the same as those used in Figs. 2-4. The 

results are obtained for the ISRM test. Young’s modulus E  of the loading steel platen given 

in Eq. (5) is assumed as 210 GPa whilst the Poisson’s ratios being the same as those of the 

tested cylindrical material. The solutions for rigid contact are plotted as solid lines whereas 

the elastic solutions are shown as circles. These solutions are essentially indistinguishable in 

Fig. 6, and thus it appears that the loading platen can be assumed as rigid.  However, it should 

be cautious that this observation is only true for the present case of frictionless contact (or 

smooth contact).  Recently, Kourkoulis et al. (2013) showed that frictional stress at contact in 

Brazilian test may strongly influence the length of contact for the case of stick contact (no slip 

contact or stick condition). For such cases, the magnitude of contact stress can be highly 

sensitive to the relative stiffness of the loading lateens and the specimens (see Figure 7 of 

Kourkoulis et al., 2013).  The validity of the predictions of displacements and strains by 

Kourkoulis et al. (2013) were also verified experimentally by “digital image correlation” 

(DIC) method (Kourkoulis et al., 2012). Although Kourkoulis et al. (2013) did not 

demonstrate how the loading platen stiffness influences the maximum tensile stress within the 

cylinder, apparently it is not negligible as in the present case of frictionless contact. Further 

studies are clearly needed on frictional contact. 

 

5.4. Comparison with two dimensional solutions by Hertz in 1883 and Hondros (1959)  

The 2-D analytical solutions obtained by Hertz in 1883 for the case of line loads (see 

Timoshenko and Goodier, 1982) and by Hondros (1959) for the case of radial strip loads have 

been extensively used in estimating the tensile strength of brittle materials. Figure 7 shows 



  

 18

the comparisons of the present 3-D solution with the 2-D classical solution by Hondros (1959) 

for the normalized hoop stress 0/σσθθ   [where )/(20 DF πσ =  is the Hertz 2-D solution for 

the hoop stress] and for the normalized radial stress 0/σσ rr  at the center of the cylinder 

against r/R for various values of  Poisson’s ratio ν . The plot is calculated for H/D = 0.5. Note 

that the 2-D solution is independent of ν. Both the normalized hoop stress 0/σσθθ  and the 

normalized radial stress 0/σσ rr  at the center of the cylinder obtained by the present 3-D 

solution approach the classical 2-D solutions for ν → 0, and thus Fig. 7 demonstrates the 

validity of the present solution.  Similar to Hondros (1959) solution, the present 3-D hoop 

stress is tensile only in the middle portion of the circular section and becomes highly 

compressive when the contact platens are approached. Such edge stress singularity in circular 

cylinders was considered by Roberts and Keer (1978) but is out of the scope of the present 

study. This compressive zone under the contact is absent in the classical Hertz’s line load 

solution, which predicts a uniform tensile hoop across the diametral line between the loading 

platens (Timoshenko and Goodier, 1982). 

 

5.5. Three dimensional nature of the hoop stress  

To illustrate the 3-D nature of the present solution, Fig. 8 plots the normalized hoop stress 

0/σσθθ  versus the normalized distance r/R for ν = 0.35, θ = 0 and for various values of z/h.  

The tensile hoop stress in the middle portion of the diameter joining the two contact platens 

increases with z/h from 0 to 0.7. Comparison of Figs. 7 and 8 reveals that the 3-D hoop stress 

is actually larger than the 2-D solution away from the center of the cylinder for the case of ν = 

0.35 (i.e. z/h ≠ 0). It is also clear from Fig. 8 that the concave contact platen of ISRM standard 

produces a larger tensile zone in the middle part of the cylinder than that induced by the flat 

platen of ASTM standard. Figure 8 shows that the maximum tensile stress mainly appears at 
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the center of the cylinder (i.e. r/R = 0) for z/h smaller than 0.7 for both ISRM and ASTM 

indirect tensile tests. Even for the case of ISRM test at z/h = 0.7, the tensile stress at the center 

is only slightly smaller than the maximum value at about r/R = 0.6. Therefore, in the 

subsequent calculations we will focus on the stress concentration along the axis (i.e. r/D = 0) 

of the cylinder.   

Figure 9 plots the 3-D normalized hoop stress 0/σσθθ  along the axis of the cylinder z/h 

for various value of ν (i.e. r/R = 0). The hoop stress for z/h < (z/h)cr (≈ 0.56) decreases with ν 

whereas it increases with ν for z/h > (z/h)cr .  Note that the critical (z/h)cr is roughly the same 

for both ISRM and ASTM standards.  At this critical section along the axis, the hoop stress is 

independent of Poisson’s ratio and equals the 2-D Hertz solution or the 2-D Hondros (1959) 

solution. Note that the 2-D Hondros (1959) solutions shown in Figs. 9 and 10 for ISRM and 

ASTM cases are not the same. It is because the contact angle θ0 depends on the contact width 

b determined from Eq. (5), and consequently the contact width is not the same for ISRM and 

ASTM tests for cylinders of different diameters. This difference in θ0, in turn, affects the 

hoop stress evaluated from Eqs. (B1) and (B2) given in Appendix B for the 2-D Hondros 

(1959) solution. Consequently, the 2-D solutions are not the same in Figs. 9 and 10.  

More importantly, the 2-D solution fails to capture the peaks of the hoop stress at around 

z/h = 0.8 as shown in Fig. 9.  The plots in Fig. 8 also suggest that splitting of the cylinder is 

likely to initiate from the ends of the cylinder, instead of from the center of the cylinder. This 

result agrees qualitatively with the FEM results of Yu et al. (2006). Figure 10 plots the 

normalized compressive radial stress 0/σσ rr  along the axis of the cylinder z/h for various 

value of ν (i.e. r/R = 0). As expected, the 2-D Hondros (1959) solution is independent of the 

value of z/h.  For z/h smaller than the critical value of (z/h)cr (≈ 0.56), the radial compressive 

stress in general decreases with ν, but increases with ν for z/h larger than the critical value. 

Similar to Fig. 9, at the critical value of z/h the radial stress equals the 2-D Hondros (1959) 
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solution. Again, the 2-D solution fails to capture the maximum radial stress near the end 

surfaces of the cylinder. Therefore, it is important to investigate the maximum stress 

concentration within the cylinder under indirect tensile test using 3-D solution.  

 

5.6. The maximum tensile hoop stress within the cylinder 

Figure 9 demonstrates that the maximum hoop stress roughly appears in the range: 0.7 < 

z/h < 0.8 along the axis of the cylinder. However, the plots of hoop stress given in Figs. 8 and 

9 are only for the geometric ratio H/D = 0.5 recommended by the ISRM and ASTM standards.  

Therefore, Fig. 11 plots the maximum tensile stress (solid lines with data point) within the 

cylinder together with the tensile stress at the center (r/R = 0) (solid lines) versus H/D for 

various values of ν. Note that the incompressible limit of ν = 0.5 will lead to mathematical 

singularity in the stress analysis; thus, a value of ν = 0.4995 has been used to approximate the 

incompressible limit. The dotted line is the 2-D Hondros (1959) solution whereas the left 

diagram is for ISRM setup on rocks and the right diagram is for ASTM setup on asphalts. 

Similar to the conclusion for Fig. 9, the maximum tensile stress near the end surface increases 

with ν while the tensile stress at center decreases with ν. The hoop stress at the center 

approaches the 2-D solution for both H/D → 0 and H/D → ∞ whereas the maximum hoop 

stress increases monotonically with H/D and ν. It is clear from Fig. 11 that the 3-D effect is of 

utmost importance in identifying the maximum value of tensile hoop in the cylinder under 

indirect tensile test. For long cylinders (say H/D = 2.3), the error of the maximum tensile 

stress may be as large as 20% to 60%, depending on the value of Poisson’s ratio. For the case 

of ν = 0.4995, the errors of the hoop stress at the center of the cylinder reach 27% and 15% at 

H/D = 1.0 and H/D = 0.5, respectively. The errors are relatively insensitive to whether the 

ISRM or ASTM method is used. Figure 12 plots that the location of the maximum tensile 

stress versus H/D for various values of Poisson’s ratio. When ν = 0.1 and H/D = 0.3, the 
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maximum tensile stress appears at the center of the cylinder (z/h = 0).  More generally, the 

maximum tensile hoop stress appears near the end surfaces (z/h = 1.0) rather than at the 

center of the axis for Poisson’s ratio larger than 0.1 and when H/D > 0.3.  For H/D = 0.5 

recommended by the ISRM and ASTM standards, the maximum tensile stress typically 

appears at z/h ≈ 0.7~0.9.  Therefore, the 2-D solution fails to capture maximum hoop stress 

off the center of the cylinder, especially for long cylinders.  

 

6. Conclusion 

A 3-D analytical solution for solid finite elastic cylinders subjected to the indirect tensile 

test is obtained. The present solution can be considered as the 3-D counterpart of the classical 

2-D solution obtained by Hertz in 1883 (see Timoshenko and Goodier, 1982) and by Hondros 

(1959). The applied loads induced by interaction between the cylinder and the loading platens 

are modeled by using Hertz contact, for both concave platens of ISRM (1978) and flat platens 

of ASTM (2004) standard. As expected, Hertz contact theory leads to a contact width being a 

nonlinear function of the applied load, the size and shape of the specimen, and the elastic 

properties of the specimen. The equilibrium equations are solved by using two displacement 

functions. The general solution forms of these displacement functions are expressed in series 

of Bessel functions, hyperbolic functions and trigonometric functions. By applying Fourier-

Bessel series expansion technique, all the boundary conditions are satisfied exactly.  

One strong material (a typical rock with Young’s modulus of 50 GPa) under ISRM (1978) 

standard and one weak material (typical asphalts with Young’s modulus of 85 MPa) were 

considered. For typical rock cylinders under ISRM indirect tensile tests, the contact width 

ranges from 1.2 mm to 2.6 mm (or corresponding to a contact angle ranges from 2.4° to 6°), 

depending on the actual value of Poisson’s ratio and the applied force. For typical asphalt 

cylinders under ASTM indirect tensile tests, the contact width ranges from 8mm to 16mm (or 
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corresponding to a contact angle ranges from 8° to 20°), depending on the actual value of 

Poisson’s ratio and applied force. The convergence of the series solution is checked and 50 

terms in both Fourier and Fourier-Bessel series expansions are found sufficient to give 

converged solutions. The difference in the hoop stress and radial stress between the 2-D Hertz 

solution or the 2-D Hondros (1959) solution and the present 3-D solution increases with H/D 

ratio as well as Poisson’s ratio (ν). For the case of frictionless contact, the effect of loading 

platen stiffness on tensile stress in cylinders appears to be negligible (i.e. loading platens can 

be viewed as rigid). For the recommended H/D = 0.5, the error in tensile strength may be up 

to 15% for both rocks and asphalts, whereas for larger H/D up to 2.0 the error ranges from 

15% (highly compressible solid with ν = 0.1) to 60% (nearly incompressible solid with ν = 

0.4995) for both materials. In general, the error of the 2-D solutions in the normalized stress is 

roughly independent of the experimental setup (whether ISRM or ASTM standard) and 

independent of the strength of the material (whether rocks or asphalts). In short, the 2-D 

solution in general underestimates the tensile stress and cannot predict the location of the 

maximum hoop stress which typically locates close to the end surface of the cylinder. 

The current practice of using specimens of shape of H/D = 0.5, as suggested by ASTM 

(2004) and ISRM (1978), does not warrant the use of 2-D solution either the Hertz solution in 

1883 (Timoshenko and Goodier, 1982) or Hondros (1959) solutions. It seems that major 

revision is needed in the current code of practice to reflect the inaccurate prediction of 

indirect tensile strength using the 2-D solution. One simple way to remedy the problem is to 

introduce a correction factor (based on the present 3-D solution) to the classical 2-D solution 

as a function of shape of the cylinder and Poisson’s ratio of the material.   

In summary, the present study should provide a useful solution and theoretical basis in 

allowing us to better interpret the tensile strength of solids under indirect tensile test. 

Although the present analysis is valid only for elastic materials, for most brittle materials (like 
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brittle rocks) there is not much nonlinear response before the splitting fracture of the 

specimen. Therefore, the present analysis is useful in strength interpretation. 
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Appendix B: 2-D solution by Hondros (1959)  

The following stress components in polar coordinates were derived by Hondros (1959) 

for the diametral compression of a circular cylinder over a contact angle of 02θ :  
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where p is the uniform radial pressure applied over the arcs 00 θθθ <<−  and 

00 θπθθπ +<<−  of the curved surface of the cylinder.  This solution is used for 

comparison with our 3-D solution. 
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Figure captions: 

Fig. 1. A finite solid circular cylinder subjected to the indirect tensile test: (a) ISRM Brazilian 

test; (b) Mathematical model; and (c) ASTM test. 

Fig. 2. The half width b of the contact area versus the applied force F (MN/m) for various 

Poisson’s ratio ν for both ISRM and ASTM testing procedures. The parameters used 

for ISRM Brazilian test are: ,50GPaE =  D = 2R = 54 mm, H = 0.5D, R2 = −1.5R. 

The parameters used for ASTM indirect tensile test are: ,85MPaE =  D = 2R = 101.6 

mm, H = 0.5D, and 2R →∞ . Rigid platen is assumed (i.e. E →∞ ). 

Fig. 3. The half contact angle 0θ  of the contact area versus the applied force F (MN/m) for 

various Poisson’s ratio ν for both ISRM and ASTM testing procedures. The 

parameters used for ISRM and ASTM tests are the same as those used in Fig. 2.  

Fig. 4. The normalized hoop tensile stresses 0/σσθθ  at the center of the cylinder subjected to 

both ISRM and ASTM tests for various values of n, s, m and 35.0=ν , where 

)/(20 DF πσ =  is the 2-D Hertz solution. The line forces used in ISRM and ASTM 

tests are mMNF /5.0=  and mMNF /05.0= , respectively. 

Fig. 5. The normalized hoop stresses 0/σσθθ  versus r/R for various values of n, s, m for z/h = 

0, 0=θ  and 35.0=ν  for both ISRM and ASTM testing procedures. Other 

parameters used are the same as Fig. 4. 

Fig. 6. The normalized stresses 0 0/  and /rrθθσ σ σ σ  versus the normalized distance r/R for 

z/h = 0, 0=θ , and for various Poisson’s ratio ν subjected to both rigid platen 

condition and elastic platen condition.  The plots are for ISRM contacts and 

parameters used are:   50 ,E GPa=  D = 2R = 54mm, H = 0.5D, R2 =  −1.5R.  The 

Young’s modulus E  of the loading platen is assumed as 210 GPa whilst the Poisson’s 

ratio being the same as those of the tested cylindrical material. 
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Fig. 7. The normalized radial and hoop stresses 0/σσ rr  and 0/σσθθ  versus the normalized 

distance r/R for z/h = 0, 0=θ  and changing values of Poisson’s ratio ν . The present 

3-D solution and 2-D classical solution by Hondros (1959) are plotted as solid lines 

and center lines, respectively. Other parameters used are the same as Fig. 4. 

Fig. 8. The normalized hoop stress 0/σσθθ  versus r/R for various values of z/h for 0=θ  and 

35.0=ν  for both ISRM and ASTM indirect tensile tests. Other parameters used are 

the same as Fig. 4. 

Fig. 9. The normalized hoop stress 0/σσθθ  versus the normalized distance z/h for r/R = 0, 

0=θ , and various Poisson’s ratio ν . The 2-D Hondros (1959) solutions are also 

included as center lines. 

Fig. 10. The normalized radial stress 0/σσ rr  versus the normalized distance z/h for r/R = 0, 

0=θ , and various Poisson’s ratio ν . The 2-D Hondros (1959) solutions are also 

included as center lines. 

Fig. 11. The maximum normalized hoop stress 0/σσθθ  (solid lines with data points) and 

hoop stress at the center (solid lines) versus the height-to-diameter ratio H/D for 

various Poisson’s ratio ν . The 2-D classical solution by Hondros (1959) are plotted as 

dotted lines.  

Fig. 12. The location z/h where the maximum tensile hoop stress is induced versus the height-

to-diameter ratio H/D for various Poisson’s ratio ν . 
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Fig. 1. A finite solid circular cylinder subjected to the indirect tensile test: (a) ISRM Brazilian test; (b) Mathematical model; and (c) 

ASTM test. 
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Fig. 2. The half width b of the contact area versus the applied force F (MN/m) for various Poisson’s ratio ν for both ISRM and ASTM 

testing procedures. The parameters used for ISRM Brazilian test are: ,50GPaE =  D = 2R = 54 mm, H = 0.5D, R2 = −1.5R. The 

parameters used for ASTM indirect tensile test are: ,85MPaE =  D = 2R = 101.6 mm, H = 0.5D, and 2R → ∞ . Rigid platen is 

assumed (i.e. E → ∞ ). 
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Fig. 3. The half contact angle 0θ  of the contact area versus the applied force F (MN/m) for various Poisson’s ratio ν for both ISRM and 

ASTM testing procedures. The parameters used for ISRM and ASTM tests are the same as those used in Fig. 2.  
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Fig. 4. The normalized hoop tensile stresses 0/σσθθ  at the center of the cylinder subjected to both ISRM and ASTM tests for various 

values of n, s, m and 35.0=ν , where )/(20 DF πσ =  is the 2-D Hertz solution. The line forces used in ISRM and ASTM tests are 

mMNF /5.0=  and mMNF /05.0= , respectively. 
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Fig. 5. The normalized hoop stresses 0/σσθθ  versus r/R for various values of n, s, m for z/h = 0, 0=θ  and 35.0=ν  for both ISRM and 

ASTM testing procedures. Other parameters used are the same as Fig. 4. 
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Fig. 6. The normalized stresses 0 0/  and /rrθθσ σ σ σ  versus the normalized distance r/R for z/h = 0, 0=θ , and for various Poisson’s ratio 

ν subjected to both rigid platen condition and elastic platen condition.  The plots are for ISRM contacts and parameters used are:   

50 ,E GPa=  D = 2R = 54mm, H = 0.5D, R2 =  −1.5R.  The Young’s modulus E  of the loading platen is assumed as 210 GPa 

whilst the Poisson’s ratio being the same as those of the tested cylindrical material. 
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Fig. 7. The normalized radial and hoop stresses 0/σσ rr  and 0/σσθθ  versus the normalized distance r/R for z/h = 0, 0=θ  and changing 

values of Poisson’s ratio ν . The present 3-D solution and 2-D classical solution by Hondros (1959) are plotted as solid lines and 

center lines, respectively. Other parameters used are the same as Fig. 4. 
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Fig. 8. The normalized hoop stress 0/σσθθ  versus r/R for various values of z/h for 0=θ  and 35.0=ν  for both ISRM and ASTM 

indirect tensile tests. Other parameters used are the same as Fig. 4. 
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Fig. 9. The normalized hoop stress 0/σσθθ  versus the normalized distance z/h for r/R = 0, 0=θ , and various Poisson’s ratio ν . The 2-D 

Hondros (1959) solutions are also included as center lines. 
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Fig. 10. The normalized radial stress 0/ σσ rr  versus the normalized distance z/h for r/R = 0, 0=θ , and various Poisson’s ratio ν . The 2-

D Hondros (1959) solutions are also included as center lines. 
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Fig. 11. The maximum normalized hoop stress 0/σσθθ  (solid lines with data points) and hoop stress at the center (solid lines) versus the 

height-to-diameter ratio H/D for various Poisson’s ratio ν . The 2-D classical solution by Hondros (1959) are plotted as dotted 

lines. 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. The location z/h where the maximum tensile hoop stress is induced versus the height-to-diameter ratio H/D for various Poisson’s 

ratio ν . 
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