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A smoothed inverse eigenstrain method is developed for reconstruction of residual field from limited
strain measurements. A framework for appropriate choice of shape functions based on the prior
knowledge of expected residual distribution is presented which results in stabilized numerical behavior.
The analytical method is successfully applied to three case studies where residual stresses are introduced
by inelastic beam bending, laser-forming and shot peening. The well-rehearsed advantage of the proposed
eigenstrain-based formulation is that it not only minimizes the deviation of measurements from its
approximations but also will result in an inverse solution satisfying a full range of continuum mechanics
requirements. The smoothed inverse eigenstrain approach allows suppressing fluctuations that are con-
trary to the physics of the problem. Furthermore, a comprehensive discussion is performed on regularity
of the asymptotic solution in the Tikhonov scheme and the regularization parameter is then exactly deter-
mined utilizing Morozov discrepancy principle. Gradient iterative regularization method is also examined
and shown to have an excellent convergence to the Tikhonov–Morozov regularization results.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Residual stresses are generated in engineering structures as a
result of a variety of manufacturing processes. So it is important
to correctly quantify Residual stress field to determine the integrity
and durability of an engineering structure. It is also well known
that uncontrolled residual stresses are detrimental to the perfor-
mance and lifetime of engineering components (Withers, 2007).
The residual stresses in engineering structures are generally deter-
mined by interpretation of experimental measurements or process
modeling where major limitations exist in both approaches (Jun
and Korsunsky, 2010). Residual stresses can be measured using
various experimental methods (Withers et al., 2008) introducing
uncertainty on the residual field distribution. Although statistical
methods (Faghidian, 2013; Wimpory et al., 2009) provide confi-
dence intervals on the measured residual stress distribution but
the results do not satisfy the necessary continuum mechanics
requirements. Theory of inverse methods has been developed over
the past decades and gained a great attention including determina-
tion of residual stress field from limited experimental measure-
ments (Ma et al., 2012). The inverse eigenstrain method is a
semi-empirical approach based on the theory of eigenstrains that
combines experimental characterization in terms of residual
elastic strains. The general framework of inverse problem of eigen-
strain approach was introduced by Hill (1996), Cao et al. (2002)
and Qian et al. (2004). The approach was then developed by
Korsunsky (2005, 2006), Korsunsky et al. (2007) investigating var-
ious aspects of the framework and a least squares approach was
used to determine unknown eigenstrain distributions from limited
measurements of residual elastic strains. A detail description of the
inverse eigenstrain approach is given by Jun and Korsunsky (2010).
An alternative approach, which does not utilize assumed eigen-
strain distribution, is to introduce a series of stress functions that
directly solve the stress equilibrium equations together with trac-
tion free boundary conditions. In a series of publications (Farrahi
et al., 2009a,b, 2010; Faghidian et al., 2012a,b) the stress function
approach that does not require numerical tools such as the finite
element or boundary element methods, successfully reconstruct
the complete residual stress field in a variety of processes and
geometries. Recently Coules et al. (2014) introduced a finite ele-
ment based method for reconstruction of general three-dimen-
sional residual stress distribution from measurements made in
an incompatible region without determination of the eigenstrain
distribution. Also Nedin and Vatulyan (2013) proposed analytical
solution for the vibration of thin plates with non-homogeneous
pre-stress fields to reconstruct residual stresses by the acoustical
method.
. Solids
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It is well known that the residual stresses may not be measured
directly and experimental methods typically measure the distor-
tion and hence strain in the specimen (Faghidian et al., 2012a,b).
In the present study, variational inverse eigenstrain approach
would be reconsidered and modified to reconstruct the residual
elastic strain, stress and eigenstrain field form experimental strain
measurements. The proposed smoothed inverse eigenstrain
approach results in non-singular and smooth reconstructed
residual fields while satisfying all of the continuum mechanics
requirements. A framework for appropriate choice of non-linear
shape functions based on the prior knowledge of the expected
distribution is also presented in three different process of inelastic
beam bending, laser-forming and shot peening. Furthermore, a
comprehensive discussion is performed on the various mathemat-
ical aspect of the numerical reconstruction consisting of invertibil-
ity, uniqueness, well-posedness and convergence of the asymptotic
residual field solution. The regularity of the approximated solution
is also completely discussed in the Tikhonov scheme and the
regularization parameter is then exactly determined utilizing Mor-
ozov discrepancy principle. Moreover since iterative regularization
methods are known to be an attractive alternative to Tikhonov reg-
ularization, gradient iterative method is examined here and the
results are compared to Tikhonov–Morozov regularization for the
level of accuracy and the rate of convergence issues.
2. Smoothed inverse eigenstrain analysis

2.1. Residual stresses

Residual stresses are generally characterized as the stress filed
supported in a continuum with a fixed reference configuration
where there is no external forces and thermal gradients (Hoger,
1986). The region of interest containing the distribution of longitu-
dinal residual stress rxx ¼ rðzÞ is a plate infinitely extended in x
direction with depth of h in the z direction. The plate geometry is
illustrated in Fig. 1. All residual stresses and strains are assumed
to be independent of x and y and only dependent on z coordinate.
This is similar to the approach adopted in earlier works
(Korsunsky, 2005, 2006) to examine residual stress field in beams
and plates.

The residual stress field must satisfy the equilibrium equations
in the absence of body forces which is described as rji;j ¼ 0 in plane
Cartesian coordinates. Furthermore the traction free boundary
conditions should also be satisfied as rjinj ¼ 0 where n denotes
the outward unit surface normal (Timoshenko and Goodier,
1970). A necessary condition for residual stresses is that the Carte-
sian components of the mean residual stress are always zero, soR

V rijdV ¼ 0 where V is the volume of the continuum (Mura,
1987). The zero mean residual stress for the introduced domain
reduces to,

Z h

0
rxxðzÞdz ¼ 0 ð1Þ

Following the stress function approach (Faghidian et al.,
2012a,b), an appropriate form of the Airy stress function is given
by a truncated series that satisfies the stress equilibrium equations
Fig. 1. Illustration of the problem geometry.
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together with the traction free boundary conditions and the mean
residual stress over the entire domain is zero. The proposed Airy
stress function for the domain of interest is given by,

uðzÞ ¼ z2ðz� hÞ2
XM

m¼1

cm f mðzÞ
" #

ð2Þ

where cm are unknown real coefficients yet to be determined and
f mðzÞ is a series of shape functions to be selected based on the prior
knowledge of the expected distribution of residual stress field. Also
note that the shape functions of f mðzÞ should have at least continu-
ous derivatives over the entire domain. Therefore, utilizing the Airy
stress function would result in the final form of the longitudinal
residual stress as,

rxxðzÞ ¼
@2uðzÞ
@z2 ¼

XM

m¼1

cmwmðzÞ

¼ 2 h2 � 6hzþ 6z2
� � XM

m¼1

cm f mðzÞ
" #

þ 4z h2 � 3hzþ 2z2
� � XM

m¼1

cm f 0mðzÞ
" #

þ z2ðz� hÞ2
XM

m¼1

cm f 00mðzÞ
" #

ð3Þ

Since the domain of interest coincides on the x–z plane, no gra-
dient in the y direction is allowed. Hence for both conditions of the
plane-stress and plane-strain, the reconstructed in-plane residual
stress state is credible. Also it should be noted that the smoothed
inverse eigenstrain method works independent of the constitutive
material behavior and the plate bending theory assumptions. The
kinematics of the deformation in terms of the strain compatibility
equations would be completely discussed in Section 2.2. Nonethe-
less, the static equilibrium across the continuum domain
expressed in terms of resultant force and moment is also guaran-
teed respectively as,Z h

0
rxxðzÞdz ¼

Z h

0

@2uðzÞ
@z2 dz ¼ @uðzÞ

@z

����
h

0
¼ 0

Z h

0
zrxxðzÞdz ¼

Z h

0
z
@2uðzÞ
@z2 dz ¼ z

@uðzÞ
@z

����
h

0
� @uðzÞ

@z

����
h

0
¼ 0

ð4Þ

It will be shown in the Section 2.2 that the stress function
approach, developed by the author (Faghidian et al., 2012a,b),
could be appropriately modified to reconstruct the residual elastic
strain and eigenstrain field form of limited strain measurements.

2.2. Residual elastic strains

The direct problem of eigenstrain is known as the problem of
determination of residual stresses resulting from a known eigen-
strain distribution utilizing generalized Hooke’s law (Korsunsky,
2009). The residual stress field is well known to depend on the
internal incompatibility within the continuum. The distribution
of incompatible strain field in such a continuum is known as the
eigenstrain distribution, and it is generally assumed that total
strain tensor eij can be expressed as the sum of the elastic eij and
eigenstrain terms e�ij as (Mura, 1987),

eij ¼ eij þ e�ij ð5Þ

According to Korsunsky (2006), in the absence of external load-
ing being applied, elastic strain presents an illustration of residual
elastic strain (R.E.S.), such as that measured in a diffraction exper-
iments. Also Kinematic analysis of continuous deformation
requires the strain field to be compatible. Hence, the total strain
in method for reconstruction of the regularized residual fields. Int. J. Solids
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compatibility equation in general form, eik;jl þ ejl;ik � ejk;il � eil;jk ¼ 0;
for the introduced domain is reduced to (Timoshenko and Goodier,
1970),

d2exxðzÞ
dz2 ¼ 0 ð6Þ

Thus to satisfy the strain compatibility equation in general
form, total strain should be a linear function of z. The key concept
of inverse eigenstrain approach is that, the residual stress compo-
nents are proportional to the R.E.S. (Korsunsky, 2006). Therefore
utilizing generalized Hooke’s law, the longitudinal component of
the residual stress may be shown to be

rxxðzÞ ¼ ~EexxðzÞ ð7Þ

where ~E ¼ E for plane-stress, ~E ¼ E=ð1� m2Þ for plane-strain and
~E ¼ E=ð1� mÞ for biaxial-stress state (Korsunsky, 2005) with E and
m are the Young’s modulus and Poisson’s ratio of the material,
respectively. Finally the proportionality assumption will result in
a truncated series form of the longitudinal R.E.S. having the same
shape functions as the residual stresses,

exxðzÞ ¼
XM

m¼1

kmwmðzÞ ¼ 2ðh2 � 6hzþ 6z2Þ
XM

m¼1

km f mðzÞ
" #

þ 4zðh2 � 3hzþ 2z2Þ
XM

m¼1

km f 0mðzÞ
" #

þ z2ðz� hÞ2
XM

m¼1

km f 00mðzÞ
" #

ð8Þ

The truncated series form of the longitudinal R.E.S. distribution
clearly satisfies the static equilibrium across the domain due to its
proportionality to residual stresses.

2.3. Eigenstrains

Since there are no continuum requirements on the form of the
eigenstrain distribution, the series form of the longitudinal
eigenstrain e�xxðzÞ could be expressed in terms of the smooth and
appropriately localized eigenstrain base functions w�mðzÞ; as

e�xxðzÞ ¼
XM

m¼1

kmw�mðzÞ ð9Þ

However the longitudinal component of the total strain should
have the linear form of exxðzÞ ¼ k0 þ k1z to satisfy the strain
compatibility equation. Therefore if the measurement data are
available in the eigenstrain form then the R.E.S. distribution would
be expressed as,

exxðzÞ ¼ exxðzÞ � e�xxðzÞ ¼ ðk0 þ k1zÞ �
XM

m¼1

kmw�mðzÞ ð10Þ

It is well known that the choice of eigenstrain base functions is
arbitrary while the R.E.S. filed must satisfy the continuum mechan-
ics requirements expressed here in terms of the static equilibrium
across the domain. So the unknown coefficients of k0 and k1 would
be determined by satisfying the force and moment balance across
the domain (Korsunsky, 2006) as,

k0 ¼
2

h2

Z h

0
e�xxðzÞð2h� 3zÞdz

k1 ¼ �
6

h3

Z h

0
e�xxðzÞðh� 2zÞdz

ð11Þ

It is also important to note that the proposed series form of the
R.E.S. and eigenstrains not only will result in satisfying the
continuum requirements but also produce a smoothed nonsingular
Please cite this article in press as: Faghidian, S.A. A smoothed inverse eigenstra
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residual stress field having the ability of imposing more physical
conditions. Furthermore it should be emphasized that the linear
form of the total strain is due to satisfy the strain compatibility
equations and is valid independent of the plate bending theory
assumptions.
2.4. Least squares approximation

If the eigenstrain distribution and elastic properties of a contin-
uum are known, the residual stress field can be determined
directly. Solution of the direct eigenstrain problem has widespread
application in engineering and micromechanics (Mura, 1987). To
achieve the best values for the coefficients of km appearing in the
asymptotic expansion of residual elastic strain, R.E.S., a least
squares approximation analysis is developed here. Provided a lim-
ited set of experimental data consisting of the values of R.E.S. as En

are measured at positions zn, then evaluating the shape function of
wmðzÞ at each n measurement positions of zn, results in predicted
values of wmn ¼ wmðznÞ. The following functional error that is the
sum of squares of deviations of the observed values of En from its
predicted values Wmn; should be minimized,

J ¼ WTK� E
� �T

WTK� E
� �

ð12Þ

where the matrix notation of W ¼ ½wmn�, K ¼ fkmg and E ¼ fEng are
introduced over the n = 1 . . .N measurement points and m = 1...M
the number of truncated series used to approximate the residual
elastic strain field and the superscript T refers to the transposed
form of a matrix. Also the gradient of the functional error with
respect to coefficients K may be shown to be,

rkJ ¼ 2WðWTK� EÞ ð13Þ

Hence, unique values of coefficients K can be determined by
setting the gradient of the functional with respect to coefficients
equal to zero,

K ¼ ½WWT ��1
WE ð14Þ

Although the residual stress field in a continuum is not uniquely
defined by the geometry, material behavior and boundary
conditions as is the case for stress field arising solely from external
loading (Timoshenko and Goodier, 1970). Instead in approximation
theory, it can be shown that in an inner product space, if a set of
shape functions is linearly independent then the symmetric posi-
tive-definite matrix WWT is nonsingular and the uniqueness of
the solution in the sense of a least squares approximation is guar-
anteed (Cheney, 1982). To check linear independency of the set of
shape functions wmðzÞ; the Wronskian determinant of this set is
tested numerically on the interval [0, h] and there is at least one
point where the Wronskian is not equal to zero. Hence this set
must be linearly independent.

To quantify the accuracy of the numerical computations, a prac-
tical footnote is also addressed here. The well-posedness of the
solution utilizing the present method is related to the condition
number of the system of linear equations appearing in the equa-
tion of rkJ ¼ 0. If the condition number of matrix WWT is small,
where ‘‘small’’ means roughly the condition number to have the
less order of the of matrix entries, then the numerical linear system
is well-posed and has a well numerical behavior (Allaire and Kaber,
2008).

Also for each continuous function there corresponds a formal
expansion which has the property that its partial sums is the best
approximations to the function in the least squares sense. It can be
shown that this partial sum in the least squares sense will always
converge to the function under the conditions of linear
independency of the shape functions (Cheney, 1982) that is already
in method for reconstruction of the regularized residual fields. Int. J. Solids
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satisfied here. However the rate of convergence for the asymptotic
solution would be studied numerically in Section 3.

At last it should be noted that when the measurement data are
available in the eigenstrain form E� instead of R.E.S. measurements
E; similar least square analysis would be utilized to determine the
coefficients of K while the R.E.S. shape functions would be replaced
by the eigenstrain base functions and the coefficients would be
evaluated as K ¼ ½W�ðW�ÞT �

�1
W�E�:

2.5. Regularization

In regularity discussion of the approximate solution, the focus is
on the issue of continuous dependence on the measured data.
Among many different regularization methods, perhaps the classic
and most familiar is Tikhonov method. Tikhonov regularization
method takes the output least squares formulation, Eq. (12), and
adds a stabilizing term to the least squares functional (Tikhonov
and Arsenin, 1977). Finally the Tikhonov functional JðaÞ is defined as,

JðaÞ ¼ WTKðaÞ � E
� �T

WTKðaÞ � E
� �

þ aKTðaÞKðaÞ ð15Þ

where the positive parameter of a is known as the Tikhonov regu-
larization parameter. Unique values of coefficients KðaÞ can be
found by minimizing the Tikhonov functional,

rkðaÞJ ¼ 2W WTKðaÞ � E
� �

þ 2aKðaÞ ¼ 0 ð16Þ

Therefore the regularized coefficients may be shown to be,

KðaÞ ¼ WWT þ aI
� ��1

WE ð17Þ

where I is the identity matrix. Although in the class of bounded
solutions, it may be shown that the approximate solution in the Tik-
honov scheme converges to the exact solution but the Tikhonov
regularization method does not allow one to explicitly give the opti-
mal value of regularization parameter (Samarskii and
Vabishchevich, 2007). However the appropriate choice of the regu-
larization parameter is primarily important, since its value needs to
be properly matched with measured data inaccuracies. In fact, a
regularization method should give an alternate method of con-
structing an approximate solution for which it is guaranteed the
convergence of the regularized solution to exact solution as the
noise level d converges to zero. Among different criteria for choos-
ing the regularization parameter, perhaps Morozov discrepancy
principle (Morozov, 1984) is the most popular. The regularization
parameter is chosen so that the norm of the discrepancy is of the
order of the noise in data. The heuristic motivation of the principle
is that the method should not produce results more accurate than
the level of error in the given data, so according to the Morozov dis-
crepancy principle,

d2 ¼ 1
N

WTKðaÞ � E
� �T

WTKðaÞ � E
� �

ð18Þ

In practice, the measurement error d is not generally reliably
known and values previously determined by the measurement
equipment manufacturer or experimenters may not utilized. How-
ever, a good estimate for the measurement error in Morozov dis-
crepancy principle could be the unbiased estimator for variance
of the measured data (Faghidian et al., 2014). Hence the governing
equation on the Tikhonov regularization parameter according to
Morozov discrepancy principle is,

WTKðaÞ � E
� �T

WTKðaÞ � E
� �

¼ N
N � 2

WT WWT� ��1
WE� E

� �T

WT WWT� ��1
WE� E

� �
ð19Þ

where the regularized coefficients of KðaÞ had been already evalu-
ated as Eq. (17).
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Iterative regularization methods are recently investigated
extensively and it seems that they are an attractive alternative to
Tikhonov regularization technique. The major advantage of itera-
tion methods over the Tikhonov regularization is that they need
no special definition of the regularization parameter. Among differ-
ent iterative methods, the methods based on the minimization of
the functional error J by gradient descent methods is one of the
most effective and commonly used (Bakushinsky et al., 2011). In
gradient descent method, by varying the descent step size cm and
adjusting the direction of the descent, minimizing sequence could
be constructed as (Kabanikhin, 2012),

Kmþ1 ¼ Km � cmrkJðKmÞ ð20Þ

where the descent parameter of cm could be determined by mini-
mizing the function of JðKmþ1Þ as (Kabanikhin, 2012),

cm ¼
rkJðKmÞð ÞTðrkJðKmÞÞ

2 WTrkJðKmÞ
� �T

WTrkJðKmÞ
� � ð21Þ

It is also important to estimate the rate of convergence and to
have a stopping criterion for the iterative process. The most com-
monly used criterion is Morozov discrepancy principle which is
based on the credible speculation that it is probably not worth
continuing the process after the residual ð1=NÞ WTKm � E

� �T

WTKm � E
� �

becomes less than the measurement error d. In other
word, Morozov discrepancy principle determines that the iterative
method does not have mathematical meaning to be continued after
the residual of approximation and measured data becomes less than
the measurement error (Bakushinsky et al., 2011; Kabanikhin,
2012). It should be noted that the initial guess for coefficients K0 is
usually chosen on the basis of some a priori information about the
solution and here the initial guess of coefficients is chosen to be
un-regularized coefficient of Eq. (14) as K0 ¼ WWT� ��1

WE:
Finally it should be noted that the regularized coefficients of KðaÞ

could be determined by the similar regularization analysis for the
reconstruction of the eigenstrain field, replacing the R.E.S. shape
functions with the eigenstrain base functions and the regularized

coefficients would be evaluated as KðaÞ ¼ W�ðW�ÞT þ aI
h i�1

W�E� .
3. Reconstruction results and discussion

The new framework of smoothed inverse eigenstrain method
developed in the previous sections would be applied to three
experimental data sets here. First the residual elastic strain mea-
surements in an inelastic bent beam using high energy synchrotron
X-ray diffraction studied by Korsunsky (2006) would be examined.
The Ti-6Al-4V alloy specimen had the length of 50 mm, thickness
of 8.5 mm and depth of 4 mm and bent under four point bending
conditions. The X-ray diffraction strain measurements and the
reconstruction results of high order approximation of residual elas-
tic strain by the variational inverse eigenstrain method (Korsunsky,
2006) are shown in Fig. 2. However to reconstruct the residual
elastic strain utilizing smoothed inverse eigenstrain method, the
mathematical form of the shape functions of f mðzÞ must be first
determined base on the physical conditions of the inelastic bend-
ing residual stress field. The residual stress field through the thick-
ness of inelastic bent steel beam is also studied by Faghidian et al.
(2012a) utilizing the stress function approach and the Chebyshev
polynomial of the second kind is shown to be an excellent choice
for shape functions. So for the measurements shown in Fig. 2, sim-
ilar to the stress function approach, the shape functions are
selected to be f mðzÞ ¼ Tm�1ðzÞ where Chebyshev polynomial of
the second kind are defined as TmðzÞ ¼ cosðm cos�1ðzÞÞ. The coeffi-
cients of K are then determined and consequently the residual
in method for reconstruction of the regularized residual fields. Int. J. Solids
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elastic strain distribution given by Eq. (8) is reconstructed and
exhibited in Fig. 2.

The order of polynomials used for reconstruction of residual
elastic strain by variational inverse eigenstrain analysis is M = 10
(Korsunsky, 2006) while the order of the Chebyshev polynomial
utilized for shape functions in smoothed inverse eigenstrain
method is M = 12. It is clearly deduced from Fig. 2 that both recon-
structions have an excellent agreement with the experimental
measurements. However it should be noted that the reconstructed
R.E.S. profile by smoothed inverse eigenstrain method has the
higher order polynomials with less fluctuating numerical behavior.
Also due to the asymmetry of titanium plastic behavior in tension
and compression, residual elastic strain state is asymmetric
(Korsunsky, 2006). Therefore in contrast to anti-symmetric resid-
ual stress field of steel bent beam (Faghidian et al., 2012a) both
even and odd terms of Chebyshev polynomial are utilized here.
Also to regularize the reconstructed residual strain field using Tik-
honov method, first the regularization parameter should be deter-
mined using Eq. (19), afterward the regularized coefficients KðaÞ
would be determined according to Eq. (17). The regularized R.E.S.
fields by Tikhonov–Morozov regularization method together with
the results of the gradient iterative regularization method are
shown in Fig. 3. It is obviously inferred from Fig. 3 that the gradient
iterative method has an excellent convergence to the Tikhonov–
Morozov regularization results and the level of accuracy of the iter-
ative regularization may be expressed as follows,

ðKreg � KitrÞTðKreg � KitrÞ
KT

regKreg
ð22Þ
Fig. 3. R.E.S. measurements (Korsunsky, 2006) compared with the regularized
reconstructed R.E.S. by Tikhonov–Morozov and iterative regularization method.
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where Kreg and Kitr are the regularized coefficients according to Tik-
honov–Morozov and gradient iterative regularization method,
respectively. The regularization parameter, iteration steps and
regularization relative error are given in Table 1.

The second residual elastic strain field considered here are the
R.E.S. measurements in laser-formed steel plate using synchrotron
X-ray diffraction studied by Korsunsky et al. (2008). The mild steel
SABS 1431 plate was under hot rolling followed by laser bending
process. A rectangular test samples with dimensions of 200 � 60
� 8 mm were cut from the plates and treated with three laser
passes along the center-line of one face perpendicular to the long
side. The X-ray diffraction strain measurements and the R.E.S.
approximation achieved using line-wise bending approximation
through the thickness coordinate by the variational inverse eigen-
strain analysis (Korsunsky et al., 2008) are shown in Fig. 4. How-
ever in the framework of smoothed inverse eigenstrain method,
the physical conditions of the laser-forming residual stresses must
be applied to the shape functions. Similar to the stress function
approach (Farrahi et al., 2009a,b), first a modulation function of
!ðzÞ would be selected and a family of shape functions are derived
from it by translation and dilation. The shape functions f mðzÞ are
subsequently obtained as,

f mðzÞ ¼ !
z� am

bm

	 

ð23Þ

The modulation function should be a smooth analytical non-lin-
ear function which results in the shape functions exhibiting the
expected distribution that is experimentally observed (Korsunsky
et al., 2008). To this end, an exponential form is selected for mod-
ulation function where !ðzÞ ¼ expðczÞ. It should be noted that the
shape function parameters are chosen on the basis of well-
posedness of the solution considering relatively small condition
number of the system and fast convergence rate of the solution.
Thus for laser-forming residual field, the constant of c ¼ �2 and
the sequence of bm ¼ ð1=2Þm is selected while it is assumed that
am is constant and equal to the thickness of the plate. Therefore
the explicit form of shape functions are given by,

f mðzÞ ¼ expð�2mþ1ðz� hÞÞ ð24Þ

The residual elastic strain distribution would now be recon-
structed and exhibited in Fig. 4. The order of line-wise approxima-
tion used for reconstruction of residual elastic strain by variational
inverse eigenstrain analysis is M = 13 (Korsunsky et al., 2008) while
just M = 6 terms of non-linear shape functions are utilized in the
smoothed inverse eigenstrain method. It is clearly deduced from
Fig. 4 that the reconstructed R.E.S. by smoothed inverse eigenstrain
approach has an excellent agreement with the measurements
whereas some disagreement between the variational eigenstrain
model and experimental data is observed (Korsunsky et al.,
2008). Following the previously described regularization proce-
dure, the regularized R.E.S. field by Tikhonov–Morozov and the
gradient iterative method for laser-forming process are shown in
Fig. 5. Again the gradient iterative regularization shows an excel-
lent convergence to the Tikhonov–Morozov regularized results.
Also the regularization parameter, iteration steps and regulariza-
tion relative error for laser-forming R.E.S. are tabulated in Table 1
too.

As the last data set, the eigenstrain and residual stress distribu-
tion of shot-peened specimen is examined here. The aluminum
alloy thick coupon has dimensions of 150 � 50 � 4 mm and in tests
is peened to full coverage (Levers and Prior, 1998). The eigenstrain
and residual stress profile by the variational inverse eigenstrain
analysis (Korsunsky, 2005) are shown in Figs. 6 and 7, respectively.
Since data are available as the eigenstrain measurements, the
truncated series form of the longitudinal eigenstrain as Eq. (9) is
in method for reconstruction of the regularized residual fields. Int. J. Solids
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Table 1
Regularization parameter, iteration steps and regularization relative error.

Regularization
parameter

Iteration
steps

Relative
error

Titanium bent bar 7.90542 � 10�5 28 0.24994
Laser-formed steel plate 1.17995 � 10�4 12 0.06165
Shot-peened thick coupon 4.95766 � 10�7 19 0.04249

Fig. 4. R.E.S. measurements (Korsunsky et al., 2008) compared with the recon-
structed R.E.S. by variational (Korsunsky et al., 2008) and smoothed inverse
eigenstrain analysis.

Fig. 6. Eigenstrain data (Korsunsky, 2005), reconstructed and Tikhonov–Morozov
regularized eigenstrain field by smoothed inverse eigenstrain analysis.
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utilized here. The shot peening residual stress field is also studied
utilizing the stress function approach (Farrahi et al., 2009a) and the
shape functions derived from exponential modulation function is
shown to effectively satisfy the physical conditions of the shot
peening process and exhibit the expected residual stress distribu-
tion. Therefore for the eigenstrain data shown in Fig. 6, eigenstrain

base functions are determined according to w�mðzÞ ¼ ! z�am
bm

� �
from

an exponential modulation function of !ðzÞ ¼ expðczÞ. Moreover
based on the well-posedness of the solution considering relatively
small condition number of the system and fast convergence rate of
the solution, the constant of c ¼ 6 and the sequence of bm ¼ ð1=3Þm

is selected while it is assumed that the sequence of am is constant
and equal to the thickness of the specimen. Consequently the
explicit form of eigenstrain base functions is given by,
w�mðzÞ ¼ exp 2� 3mþ1ðz� hÞ
� �

ð25Þ

Once the explicit form of the eigenstrain base functions is deter-
mined, the coefficients of the truncated series of the eigenstrain
Fig. 5. R.E.S. measurements (Korsunsky et al., 2008) compared with the regularized
reconstructed R.E.S. by Tikhonov–Morozov and gradient iterative regularization.

Please cite this article in press as: Faghidian, S.A. A smoothed inverse eigenstra
Struct. (2014), http://dx.doi.org/10.1016/j.ijsolstr.2014.09.012
field could be evaluated utilizing the least square analysis and
the longitudinal eigenstrain profile given by Eq. (9) is recon-
structed and exhibited in Fig. 6.

Subsequent to the reconstruction of eigenstrain field, the
unknown coefficients of the linear total strain would be deter-
mined as Eq. (11) and consequently the R.E.S. and residual stress
distribution would be evaluated as Eqs. (10) and (7), respectively.
The reconstructed longitudinal residual stress profile is shown in
Fig. 7. It is obviously inferred from Fig. 7 that the results of the
smoothed inverse eigenstrain approach have an excellent agree-
ment with the residual stress profile of the variational inverse
eigenstrain analysis (Korsunsky, 2005) in the entire shot peening
domain. The physical behavior of the longitudinal residual stress
exhibits the expected distribution of residual stresses in shot pee-
ned plates that is in agreement with other shot peening results of
thin specimens found in the literature (Miao et al., 2010). Also the
reconstructed residual stress field has a fast convergence rate with
just M = 9 terms of smooth and appropriately localized base
functions.

Once the eigenstrain field is reconstructed and the residual
stress profile is determined, they may be regularized by Tikho-
nov–Morozov and gradient iterative regularization with replacing
the R.E.S. shape functions with eigenstrain base functions in the
regularization analysis. The regularized eigenstrain and residual
stress field are shown in Figs. 6 and 8, respectively. The gradient
iterative method once more shows an excellent convergence to
the Tikhonov–Morozov regularization results. The regularization
Fig. 7. Reconstructed residual stress field by smoothed inverse eigenstrain analysis
compared with the variational inverse eigenstrain results (Korsunsky, 2005).

in method for reconstruction of the regularized residual fields. Int. J. Solids
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Fig. 8. Regularized reconstructed residual stress field by Tikhonov–Morozov and
gradient iterative regularization compared with the variational inverse eigenstrain
results (Korsunsky, 2005).
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parameter, iteration steps and regularization relative error for shot
peening eigenstrain field are also tabulated in Table 1.

It worth to note that, the main idea of regularization is to penal-
ize large values in potential solutions, while still asking that the
matching of the model output to data occurs to some degree
(Engl et al., 1996). In all reconstructed residual fields, Tikhonov
regularization method is shown to effectively reduce the influences
of measurement noise without considerably distorting the recon-
structed curve. Also it has been shown that the gradient iterative
method examined here for regularization of the residual fields
has an excellent convergence to the Tikhonov–Morozov regulariza-
tion results. However the effect of regularization is more distinct
on polynomial shape functions while the non-linear smooth shape
functions seem to be more numerically stabilized. Moreover it
should be noted that even if the gradient iterative methods do
not utilize Tikhonov regularization parameter but Morozov dis-
crepancy principle still has an important role for definition of stop-
ping criterion of the iterative process.
4. Conclusion

A smoothed inverse eigenstrain method is developed in the
present study for reconstruction of residual fields from limited
residual strain and eigenstrain measurements. The well-rehearsed
advantage of the proposed eigenstrain-based approach is that it
not only minimizes the deviation of the residual measurements
from its predicted values but also will result in an inverse solution
satisfying the full range of continuum mechanics requirements
(strain compatibility, stress equilibrium, traction free boundary
conditions and vanishing the mean value on the entire domain).
However, even within this class of solutions, different levels of
smoothness can be obtained from minimization. The smoothed
inverse eigenstrain approach allows suppressing oscillations or
sharp gradients that are contrary to the physics of the problem.
The analysis is successfully applied to three case studies where
residual stresses have been introduced by inelastic beam bending,
laser-forming and shot peening. It is shown that appropriate choice
of shape functions based on the expected physical conditions of the
process would results in stabilized numerical behavior. Also the
smooth and non-singular base functions are achieved analytically
without need to utilize numerical tools such as the finite element
or boundary element methods. Furthermore a detailed discussion
is made on the invertibility, uniqueness, well-posedness and con-
vergence of the asymptotic residual field solution. The residual
field solution is also regularized by Tikhonov–Morozov and
gradient iterative method. The exact value of the regularization
Please cite this article in press as: Faghidian, S.A. A smoothed inverse eigenstra
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parameter is then determined and it has shown that regularization
effectively reduce the influences of measurement noise without
considerably distorting the reconstructed profile. Furthermore it
has been found that the gradient iterative method has an excellent
convergence to the Tikhonov–Morozov regularization results.

Although in the present study, the analytical method is applied
to one-dimensional residual data but it must be pointed out that
the smoothed inverse eigenstrain approach is not limited to
one-dimensional problems and can be generalized to higher-
dimensional cases. The new analytical approach for determination
of the residual fields therefore has the potential to provide signif-
icant improvement in the quality of residual data interpretation.
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