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a b s t r a c t

The linear elastic analytical solution of an axisymmetric probe indenting a semi-infinite half-space forms the

backbone of most indentation data analysis protocols. It has been noted in the literature that the theoretical

solution relies on a boundary condition that is ill-posed which leads to discrepancies from the actual response

that depends, among other parameters, on the Poisson’s ratio of the indented material. While correction

factors have been proposed, prior studies have concentrated on the positive Poisson’s ratio regime and have

neglected an exciting and developing class of materials: the auxetic systems. The finite element method is

used to simulate the conical indentation response of elastic materials with Poisson’s ratios covering the whole

thermodynamically possible range, −1 ≤ ν ≤ 0.5. Consistent with theoretical predictions, the indentation

resistance and hardness of auxetic materials is enhanced compared to their non-auxetic counterparts. The

stress profiles and contact details are systematically analyzed and the increase in resistance is traced to the

shear stiffening and the reduction of contact area compared to conventional materials. Furthermore, it is

shown that the analytical linear elastic solution falls short in accurately describing the indentation response,

especially for negative Poisson’s ratio materials. In contrast to the theoretical prediction, the contact area

reduces as the Poisson’s ratio increases resulting in increased required force to penetrate the material and

an enhanced pressure distribution beneath the indenter. The analytical solution is corrected for the whole

ν range and best fit polynomials are proposed for ease-of-use. The effects of contact-friction and indenter

cone-angle are also studied and quantified.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

Instrumented indentation has developed into a standardized

ool for nano- and micro-mechanical characterization of materials

Bulychev et al., 1975; Doerner and Nix, 1986; Fischer-Cripps, 2002;

liver and Pharr, 2011,1992). It was initially introduced for character-

zing thin films and sub-micron material volumes but it has expanded

ts application range into studying virtually all classes of material sys-

ems: metals (Schuh, 2006; Tabor, 2000), ceramics (Cook and Pharr,

990; Lawn, 1998; Wachtman et al., 2009), polymers (Tweedie et al.,

007; Vandamme et al., 2012; VanLandingham et al., 2001) and com-

osites (Constantinides et al., 2009, 2006, 2003; Němeček et al.,

013).

The current state of hardware and electronics ensures that loads

nd displacements can be recorded with nN and angstrom scale res-

lutions, respectively, and force-displacement curves are nowadays

outinely collected either in the nanometer or micrometer regime.
∗ Corresponding author. Tel.: +357 25002626; fax: +357 25002666.

E-mail address: g.constantinides@cut.ac.cy (G. Constantinides).
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n equally important step in the nanomechanical characterization of

aterials is the conversion of experimental data into meaningful ma-

erial properties. There are several analytical approaches for complet-

ng this step most of which have focused on the indentation modulus

E∗) and hardness (H) of the material:

∗ =
√

π

2

S√
Ac

(1)

= Pmax

Ac
(2)

here S is the unloading slope at maximum depth (hmax), S =
P/dh|hmax

, Ac is the area of contact at maximum load (Pmax). E∗ and

, under certain circumstances, can be converted to the elastic modu-

us (Borodich and Keer, 2004a, 2004b; Pharr et al., 1992) and strength

haracteristics (Cariou et al., 2008; Ganneau et al., 2006; Tabor, 2000)

f the indented system. In the case of a rigid indenter E∗ relates to the

lane stress modulus of the material, E∗ = E
(1−ν2)

Directly or indirectly most analysis methods make use of the an-

lytical solution of an axisymmetric indenter being pushed against a

emi-infinite, linear elastic half-space. In fact Eq. (1) can be directly

http://dx.doi.org/10.1016/j.ijsolstr.2015.10.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
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derived from the linear elastic solution (Bulychev et al., 1975; Oliver

and Pharr, 1992) and it has been proven that it holds true for any

indenter that can be described as a solid of revolution (Pharr et al.,

1992). Impressively enough, the equation is still valid even if the ma-

terial exhibits elastic–plastic response with the only provision that

the area of contact is properly accounted for in the analysis (Cheng

and Cheng, 1997). In other words all plasticity phenomena are incor-

porated into the area of contact and provided that this is accurately

captured, Eq. (1) continues to hold.

Several finite element studies (Bolshakov and Pharr, 1998; Cheng

and Cheng, 1999, 1998; Dao et al., 2001; Troyon and Huang, 2011)

have pointed out that computational results deliver consistently

higher values of the modulus of elasticity when calculated through

Eq. (1). A detailed analysis by Hay et al., (1999) in her, by now, classic

paper of 1999 has deciphered the origins of this discrepancy which

has its roots on an inaccurate boundary condition used in the for-

mulation of the mathematical problem that has been analytically

solved (see Section 2); the issue of tangential displacements has also

been reported in several other studies (Argatov, 2004; Kindrachuk

et al., 2009), see also discussion and references in Borodich (2014)).

Through finite element modeling they have quantified this uncer-

tainty and they have formulated analytical approximations for a cor-

rection factor γ for Eq. (1) based on simple modifications of Sned-

don’s solution, which proved to be a function of Poisson’s ratio of the

material (ν) and the cone semi apex angle (θ ):

E∗ = 1

γ

√
π

2

S√
Ac

(3)

γ = 1 + β

4 tan θ
(4)

γ = π
π
4

+ 0.15483073 cot θ β
4(

π
2

− 0.83119312 cot θ β
4

)2
(5)

where β = 1−ν
1−2ν . Eq. (4) is best suited for cube-corner indenters

whereas Eq. (5) for Berkovich/Vicker-type geometries. While correc-

tion factors have already been proposed (Hay et al., 1999; Poon et al.,

2008; Xu, 2008), the majority of studies (with a few recent analytical

exceptions (Argatov and Sabina, 2014; Argatov et al., 2012) have con-

centrated in the positive Poisson’s ratio regime and have neglected an

exciting and developing class of materials: the auxetic systems. The

thermodynamic constrains on the materials elastic properties allow

for Poisson’s ratio of the material to move into the negative domain,

more specifically −1 ≤ ν ≤ 0.5. This leads to the counter-intuitive be-

havior, in which materials tend to expand in the lateral dimension

in response to stretching. This geometrically/kinematically-driven re-

sponse to loading leads to an increase in volume and thus materials

that fall into this category have been termed auxetic. Equivalently

the same materials will tend to reduce their volume when com-

pressed (thus miotic). Ever since the experimental reporting of such

a response by re-entrant structures polyurethane in 1987 by Lakes

(1987), many other systems have been found to exhibit similar defor-

mation patterns. Most of these systems fall into man-made or nat-

urally occurring microporous systems like polytetrafluoroethylene

(Lakes, 1987), microporous ultra high molecular weight polyethy-

lene and polypropylene (Alderson et al., 2000, 1994), various types

of rocks and crystals (Zouboulis et al., 2014), a-cristobalite (Grima

et al., 2005), zeolites (Gatt et al., 2008), various laminate compos-

ites (Milton, 1992), defected graphene (Grima et al., 2015), and many

others. For a more detailed exposition of this particular material be-

havior the reader is referred to the reviews of Lakes (1993), Yang et al.

(2004) and Greaves et al. (2011).

The finite element method is used in this paper to simulate the

conical indentation response of elastic materials with Poisson’s ratios

covering the whole thermodynamically possible range, −1 ≤ ν ≤ 0.5.
he aim of this particular study is twofold: on one side we aim to

uantify the increased indentation resistance reported in the liter-

ture when indenting auxetic materials and identify through com-

utational simulations the mechanisms that lead to this particular

esponse. On the other hand we aim to deal with the discrepancy

aused by the existing analytical solution when indenting auxetic

aterials and extract correction factors that will eliminate any inac-

uracies and will correct the analytical solution for the entire possible

pan of Poisson’s ratios.

. Theoretical background

The main focus of contact mechanics is the determination of size

nd exact shape of the contact area. Unlike classical mechanics prob-

ems, the contact zone is unknown so that areas where displacements

in the contact region), and those where forces (free surface) are pre-

cribed are not known a priori. This renders the analysis intrinsically

on-linear, since the surface boundary conditions have to be formu-

ated under restrictions of a point z that is either situated in the con-

act zone or in the stress-free area. The contact problem between a

igid axisymmetric indenter and an infinite half-space is described by

he following set of equations, written in polar coordinates (ρ , ϕ, z):

iv σ = 0 (6)

= F (ε) (7)

= 1

2

(∇u + ∇t u
)

(8)

= −
∫ a

ρ=0

∫ 2π

θ=0

σzz(ρ,ϕ, 0)ρdρdϕ (9)

z(ρ,ϕ, 0) = −h + f (ρ);ρ < α (10)

ρz(ρ,ϕ, 0) = 0;ρ > 0 (11)

zz(ρ,ϕ, 0) = 0;ρ > a (12)

here P is the applied load, in direction z, f(ρ) defines the axi-

ymmetric shape of the indenter, and a is the contact radius. Eq. (6)

s the static equilibrium condition, Eq. (7) provides the stress–strain

elation of the indented material (here linear isotropic elastic),

q. (8) links strain to displacements and the remaining relations

Eqs. (9)–(12)) are the boundary conditions for the total load (Eq.

9)), the vertical displacement in the contact region (Eq. (10)), the

ero shear stress on the surface (Eq. (11)) which includes the fric-

ionless contact condition and the stress-free boundary condition

utside the contact zone (Eq. (12)).

There are several ways of solving the above set of equations, the

ore traditional one being the method developed by Lee and Radok

1960), and further formalized by Sneddon (2010) and (1965) which

onsists in performing on all problem equations two dimensional

ourier transforms in the directions of the surface coordinates x and y.

n the case of axi-symmetry, this integral transform is called a Hankel

ransform on the polar coordinates ρ and ϕ which are transformed

nto a variable ϕ of dimension L−1. The area of contact is circular by

ymmetry and its projected radius a is kept as an unknown. It turns

ut that the equations written with a new set of non-physical coordi-

ate can be solved analytically in the transformed space. Finally the

ntegral transforms are performed backwards to return to the original

roblem. Following this procedure, the expressions for h and P for an

sotropic half-space read:

= α

∫ α

ρ=0

f ′(ρ)dρ√
a2 − ρ2

(13)

= 2
E

1 − ν2

∫ α

ρ=0

ρ2 f ′(ρ)dρ√
a2 − ρ2

(14)
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Fig. 1. (a) Schematic of the geometry modeled in this study. (b) Details of the mesh
here f is any smooth convex function, and f′ stands for its deriva-

ive with respect to ρ . The origin of Eqs. (13) and (14) can be traced

ack the work of Galin in 1946 (see references and discussion in

orodich(2014)). This result implicitly relies on an assumption about

he contact area, through a. By inverting Eqs. (13) and (14), the con-

act radius α can be expressed as a function of the prescribed depth

or load P. The displacements in the half space are given by:

ρ (ρ, z) = 1

2(1 − ν)

∫ ∞

0
(1 − 2ν − ξz)A(ξ )e−ξzJ1(ρξ )dξ (15)

z(ρ, z) = 1

2(1 − ν)

∫ ∞

0
(2 − 2ν + ξz)A(ξ )e−ξzJ0(ρξ )dξ (16)

here A(ξ ) depends on the shape of the indenter and J0, J1 are Bessel

unctions of the first kind. We here present the solutions of Eqs. (13)–

16) for an axisymmetric indentation with a cone of semi-apex angle

f θ for which

f (ρ) = ρ

tan θ
(17)

n this case,

(ξ ) = 1

tan θ

1 − cos αξ

ξ 2
(18)

nd

ρ (ρ < a, 0) = β

4

ρ

tan θ

⎡
⎣ln

ρ/α

1 +
√

1 −
(

ρ
α

)2
−

1 −
√

1 −
(

ρ
α

)2

(
ρ
α

)2

⎤
⎦

(19)

ρ (ρ > a, 0) = 1

tan θ

[
αsin

−1 α

ρ
+

√
ρ2 − α2 − ρ

]
(20)

zz(ρ < α, 0) = 1

2 tan θ

E

1 − ν2
cosh

−1
(
α

ρ

)
(21)

Eq. (21) shows a stress singularity for ρ = 0 right below the tip of

n infinitely sharp cone. This is not the case for smooth indenters, but

t appears in the case of a flat punch for σρz(ρ = a, 0). Eqs. (20) and

21) provide explicit relations of depth and load as a function of the

ontact radius:

= π

2

α

tan θ
(22)

= π

2

E

1 − ν2
tan θh2 (23)

As expected from dimensional analysis, P is scaled with h2, which

rovides an interesting insight into the nonlinear nature of the con-

act problem: for each increment of load, both the area of contact

nd the depth of indentation increase. Similarly, a and h are linearly

elated and can define the contact depth as the distance measured

n the z-axis between the indenter tip and the contact edge. From

q. (22) we obtain the following relation:

c = α

tan θ
= 2

π
h (24)

Eq. (24) suggests that the elastic indentation always produces

ink-in. In fact, provided that the material remains purely elastic the

ontact depth to indentation depth ratio will always be a constant at

c/h = 2/π = 0.64. Furthermore, if one rewrites P and h in Eqs. (22)

nd (23) as a function of the projected area of contact Ac = πa2, then

ne obtains:

=
√

π

2

√
Ac

tan θ
(25)

= 1

2

E

1 − ν2

Ac

tan θ
(26)
u

Eq. (26) suggests that the hardness of the material is constant and

ndependent of the depth of penetration:

= P

Ac
= 1

2 tan θ

E

1 − ν2
(27)

We reiterate that the above solution relies on a linear elastic form

f the constitutive relations, Eq. (7), and is therefore only valid for

inear elastic solids. Furthermore, the solution presented above im-

licitly relies on the restriction posed on the vertical displacements

t the contact interface described by Eq. (10). The radial movements

f the indented surface have been neglected, leading to deformed ge-

metries that essentially ‘penetrate’ the indenter during loading (Hay

t al., 1999), resulting in inaccuracies on the predicted load and in-

erfering with any experimental analysis protocol that relies on the

bove analysis. The accuracy of Eqs. (23), (24) and (27) will be nu-

erically scrutinized in the following sections.

. Finite element simulations

Two dimensional axisymmetric finite element simulations are

erformed to investigate the elastic indentation response of cones on

aterials with various Poisson’s ratios, with emphasis being placed

n auxeticity. The indenter was modeled as a rigid cone with half-

pex angle of θ = 70.3°. This conical angle ensures the same con-

act depth vs. projected area of contact relation (Ac = f (hc)) as in

ickers and Berkovich pyramidal indenters which are commonly em-

loyed in experimental investigations. Previous numerical studies by

ing (1987) showed that the assimilation of three-(Berkovich) and

our-sided (Vickers) pyramidal indenters with a cone of equivalent

emi-apex angle is accurate within 1–3%. Details of the model ge-

metry are shown in Fig. 1. The ‘semi-infinite’ half-space is modeled

s a 101 × 101 μm2 linear elastic isotropic domain characterized by

oung’s modulus (E) and the Poisson ratio (ν). The indentation sim-

lations were restricted to depths below 500 nm, much smaller than

he domain such as to avoid any boundary effects. The continuum

pace is discretized using 4-node axisymmetric, isoparametric ele-

ents (CAX4–full integration). The element size was continuously re-

ned in five successive regions (Fig. 1(b)) as approaching the indenter

ontact region for greater accuracy. A mesh sensitivity analysis was

erformed to ensure that the simulations results were insensitive to

he mesh size. The computational contact was modeled using an an-

lytic rigid surface for the probe and an element based surface for

he contacting material, ensuring an accurate calculation of contact

tresses at each node. The contact formulation includes the use of a

onstrained enforcement method for the pair surfaces of the master

indenter) – slave (sample) and accounts for finite strain, rotations

nd sliding. This direct method of Lagrange multipliers attempts to

trictly enforce a given pressure-overclosure behavior per constraint.
sed.
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Lagrange multipliers can add to the computational cost but also pro-

tect against numerical errors related to ill-conditioning that can occur

if high contact stiffness is in effect. Any Lagrange multipliers associ-

ated with contact, are present only for active contact constraints so

the number of equations will change as the contact status changes.

By using this method, Lagrange multipliers are automatically selected

based on the calculated stiffness (Abaqus, 2012). Frictional effects in

the indenter–material interface were included in the analysis through

an isotropic Coulomb model, in which the local shear stress τ c is re-

lated to the local normal pressure pc through τc = μpc where μ is the

friction coefficient between the indenter and the surface. We assume

that the loading rate is slow enough such as static friction can se-

curely model the interface response. Simulations proceeded in two

steps: the indenter was firstly subjected to a ramped vertical dis-

placement, followed by an indenter retraction to the original position

which corresponded to complete unloading at zero load. During this

process the lower edge of the material was constrained vertically. Ax-

isymmetric boundary conditions were used along the symmetry axis

beneath the indenter region (Sarris and Constantinides, 2013).

4. Results and discussion

4.1. Indentation resistance of auxetic materials

Fig. 2 shows the evolution of simulated P − h responses for mate-

rials with an elastic modulus arbitrarily set to E = 100 GPa and var-

ious Poisson’s ratios. The computational results suggest that the in-

dentation resistance increases when ν �= 0. While a small increase is

observed for positive Poisson’s ratio (Fig. 2(a)) the resistance of the

material significantly increases as the Poisson’s ratio moves into the

negative regime (Fig. 2(b)).
Fig. 2. Computational force-depth (P–h) responses for materials with E = 100 GPa and

v in the (a) positive (0 to 0.5) and (b) negative (–1 to 0) regime.

Fig. 3. Normalized hardness for various Poisson’s ratios.
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F

(

In order to better quantify the influence of ν on the material’s abil-

ty to resist penetration we have calculated the elastic hardness of the

aterial in the whole possible span of ν , −1 ≤ ν ≤ 0.5 (Fig. 3). The

hysical meaning of hardness for elastic materials signifies their abil-

ty to resist penetration by a probe and relates to the average pressure

enerated beneath the indenter tip. Fig. 3(a) presents the numerical

nd theoretical hardness: the numerical results are calculated using

q. (2) where P and Ac are numerically estimated, whereas the theo-

etical predictions conform to Eq. (24). It is observed that, with the

xception of ν = 0.5, the numerical results are consistently higher

han the analytical solution. Furthermore, their deviation becomes

ore significant as ν reduces. The origins of this discrepancy will be

urther explored in the following sections.

Data in Fig. 3(b) corresponds to the normalized results of

ig. 3(a) by the hardness for ν = 0 such as to present the relative
ig. 4. Evolution of elastic material constants as a function of Poisson’s ratio

E = 100 GPa).
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mplification factor that the material experiences compared to the

alue at ν = 0. Consistent with P − h responses, the minimum possi-

le resistance to penetration is provided for ν = 0 and hardness in-

reases for any deviation. The maximum within the positive regime

s obtained for incompressible materials ν = 0.5, H/Hν=0 = 1.17
ig. 5. (a)–(i) Von-Mises stress-profiles for the various Poisson’s ratios (ν = 0.5, 0.4, 0.2, 0, –

k) Poisson’s ratios. The elastic modulus of the material is kept constant at E = 100 GPa.
numerical results). Of particular interest is the rapid amplification

f hardness observed into the negative regime (auxetic materials)

or which a sevenfold enhancement for the lowest ν simulated in

his study (H/Hν=0 = 7.13 for ν = −0.9) is observed, distinctly dif-

erent than the fivefold increase predicted by the analytical solution
0.2, –0.4, –0.6, –0.8, –0.9). Contact pressure distributions for negative (j) and positive
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Fig. 6. (a) Surface profiles at maximum depth of penetration for various Poisson’s ra-

tios. (b) Normalized contact depth for various Poisson’s ratios.
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Fig. 7. Theoretical, numerical and experimental (data from Alderson et al. (1994)) re-

sults of normalized hardness for various Poisson’s ratio materials. The experimental

outlier (for ν ≈ 0.1) corresponds to a sintered material.
(H/Hν=0 = 5.26 for ν = −0.9). The ability of the material to enhance

its resistance to penetration is consistent with the experimental ob-

servations reported in Alderson et al. (2000) and (1994). Before pro-

ceeding with a quantitative comparison between theory, simulations

and experiments a few words on the nature of the indentation re-

sponse of auxetic systems is due. In search of the physical mecha-

nisms that lead to this amplified response we have investigated the

interdependence of the elastic constants, the stress distributions be-

neath the indenter, and the contact depth evolution with Poisson’s

ratio.

Fig. 4 assists the interpretation of the previously reported results

by plotting the evolution of the three elastic constants (K, G, E∗) as a

function of ν . The relations between K, G and ν are given by classical

elasticity theory:

G = E

2(1 + ν)
; K = E

3(1 − 2ν)
(28)

The analytical solution (Eq. (23)) suggests that the plane stress

modulus, E∗ = E/(1 − ν2), controls the indentation resistance of the

material. It is evident that E∗ experiences a minimum at ν = 0 and

increases for all other values. The increase is more significant in the

negative Poisson’s ratio domain especially for values of ν < −0.5, be-

low which E∗ approaches the response of the shear modulus and to-

gether, thereafter, asymptotically increase to infinity as ν approaches

–1. The transition to low ν values can therefore be interpreted as a

shear-stiffening mechanism that also has implications on the inden-

tation response. The limiting responses of the elastic constants are

summarized below:

ν → 0.5 : G → E

3
, K → ∞, E∗ → 4

3
E (29)

ν → −1 : G ≈ E∗ → ∞, K → E

9
(30)

Fig. 5 shows the von Mises stress – which relates to the distor-

tional energy of the material – profiles for the various Poisson’s ratio

materials. It appears that as ν reduces, the resistance to penetration

increases. This is manifested in (a) an increase in the absolute val-

ues of stresses generated within the indented material and (b) an

increase in the normal stresses generated on the tip surface. These

observations are consistent with the increase of maximum force re-

quired to penetrate lower Poisson’s ratio materials to the same depth

as observed in the simulated P − h responses (see Fig. 2).

Fig. 6(a) presents the fully loaded deformed surface profiles and

Fig. 6(b) indicates the numerically estimated contact depth nor-

malized by the maximum indentation depth (here constant at h =
500 nm) for the various Poisson’s ratio materials. For positive Pois-

son’s ratio materials, hc/hmax appears to be relatively constant and

in close agreement with theoretical prediction hc/hmax = 2/π = 0.64

(to two decimal places). The response assumes identical values to the

theoretical prediction as the material approaches an incompressible

system (ν = 0.5). In that particular case the physical problem con-

verges to the assumed boundary conditions of the analytical solution.

It is interesting to observe that as Poisson’s ratio moves into the nega-

tive regime (auxetic response) the normalized contact depth reduces,

reaching a value of hc/hmax = 0.57 for ν = −0.9. This response which

cannot be captured analytically due to the ill-posed boundary con-

dition can probably be attributed to the tendency of the material to

‘shrink’ (reduce its volume) under the high compressive stresses gen-

erated by the tip, with a subsequent reduction in the contact area.

This reduction of contact depth, and subsequently contact area, is in

part responsible for the increased hardness observed in the negative

Poisson’s ratio regime.

Based on the above analysis and recalling Eq. (2) one can there-

fore trace the enhanced indentation resistance offered by auxetic sys-

tems to (a) the shear stiffening response which leads to increased re-

quired load for penetration and (b) the reduced area of contact that
eads to higher stresses beneath the indenter tip. A literature search

n available experimental indentation data on auxetic materials re-

ealed a limited number of publications on the subject, all of which

ave used cylindrical or spherical indenters to probe the material.

trictly speaking, hardness is not a material property but rather a

napshot of material properties; it subsequently depends on many

actors among them the geometry of the tip. One should, therefore,

ot expect that the hardness of the material obtained with a spher-

cal tip would correspond to the hardness of the material obtained

ith a conical tip. Nevertheless, theoretical solutions for both ge-

metries exist that provide estimates of the amplification of elas-

ic hardness as a function of the Poisson’s ratio: H
Hν=0

= (1 − ν2)−1

or cones and H
Hν=0

= (1 − ν2)−2/3 for spheres. The theoretical dis-

repancy between the hardness amplifications obtained by the two
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eometries is expected to increase as ν moves away from ν = 0:

ithin −0.5 < ν < 0.5 the maximum error is contained within ±9%

due to symmetry around ν = 0), for ν = −0.6 it grows to 14% and

or ν = −0.8 to 30%. Given the relatively small discrepancies (maxi-

um of 14%) predicted within −0.6 < ν < 0.5 we decided to present

he experimental data from spherical indentation and contrast them

o the numerical results computed in this study, having in mind in

arallel the limitations presented above. Alderson et al. (1994) per-

ormed spherical indentation data on auxetic polyethylene. The aux-

tic materials consisted of microporous ultra high molecular weight

olyethylene (UHMWPE) that have been fabricated through a three-

tage thermal route (Alderson et al., 1994). Materials with Poisson’s
Fig. 8. Analytical and computational force–depth (P–h) responses f
atios down to –0.8 have been synthesized and tested under spherical

5 mm diameter ball) indentation. Results with axial loads of 25, 50,

00 and 200N have been presented. It was reported that high values

f axial loads led to non-linear phenomena caused by large strains,

lasticity and anisotropy. We here include the data collected with

5N axial load which ensures the elastic response of the system. Ex-

erimental data, theoretical predictions and numerical simulations

re plotted in Fig. 7. It is interesting to note that the experimental

ata shows a hardness enhancement higher than the theoretical pre-

ictions of both conical and spherical indentation, approaching the

umerically simulated response. While this observation is encour-

ging regarding the validity of our results, additional experiments
or materials with E = 100 GPa and v in the range of 0.5 to –1.
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are required in order to confirm this scaling relation. While not pre-

sented here, it is interesting to note that the experimental data even

for lower Poisson’s ratios (ν < −0.6) is in close agreement with our

simulations. Nevertheless, the interpretation of this data should be

treated with caution given the discrepancy that might be included

from the spherical geometry used in those experiments.

4.2. Correction factor for the analytical solution

The simulated P − h responses presented in Fig. 2 can also be pre-

dicted by the analytical solution of Sneddon, Eq. (23). Fig. 8 con-

trasts the analytical and numerical results for the various Poisson’s

ratios. The discrepancy between the two increases as Poisson’s ratio

decreases. This phenomenon has firstly been reported by Hay et al.

(1999) in the positive Poisson’s ratio regime and has been attributed

to the ill-posed boundary conditions of the analytical problem formu-

lation which results in a deformed material surface shape that pen-

etrates into the indenter. In this section we compute the correction

factor for the whole possible span of Poisson’s ratios and we also in-

vestigate the effect of friction and indenter angles.

It is interesting to note that the error observed in the load is con-

stant throughout the depth of indentation suggesting that a multi-

plicative correction factor on Sneddon’s equation will resolve the ob-

served discrepancy:

P = γ
π

2

E

1 − ν2
tan θh2 (31)

This load discrepancy propagates into the fundamental equations

used for calculating the elastic modulus and hardness of the material

during a nanoindentation experiment. Eqs. (1) and (2) can therefore

also be corrected using γ :

E∗ = 1

γ

√
π

2

S√
Ac

(32)

H = γ
Pmax

Ac
(33)

From a materials perspective it appears that the correction fac-

tor is independent of the elastic modulus of the material. We have

checked the correction factor for three different elastic moduli,

E = 1 GPa, 10 GPa, 100 GPa with nearly identical results. The most

notable influence comes from Poisson’s ratio of the material (Fig. 9).

As ν reduces the discrepancy between the numerical results and the

analytical solution increase, with higher deviations observed in the

negative Poisson’s ratio regime with values reaching up to 23% for the

lowest possible ν that has been simulated in this study (ν = −0.9).

For positive ν the error is contained below 10% with the results be-

tween theory and simulations to converge when ν → 0.5 (incom-

pressible media). The numerical results of Hay et al. (1999) and Poon

et al. (2008) and the analytical formulation proposed by Hay et al.
Fig. 9. Correction factor for various Poisson’s ratios.

F

r

t

f

Eq. (4)) are also presented in Fig. 9 and compare favorably with our

imulations, with the observed deviations being within 1% and could

e potentially attributed to numerical details between the different

tudies.

.3. Effect of friction

The contact friction between the indenter and indented materials

as been simulated at three different values: μ = 0, 0.5, 1. Fig. 10(a)

uggests that the P − h response remains mostly unaffected to the

ontact friction. A similar response is observed on the correction fac-

or scaling function in which the presence of friction shifts the curve

lightly upwards with the maximum observed deviation being in the

rder of 5% for the lowest simulated ν . The mathematical problem

f adhesive contact by a flat punch has been analytically treated by

ossakovskii in 1954 (see references in (Borodich and Keer, 2004a,

004b)) who has later extended his solution to parabolic and spher-

cal punches (Mossakovskii, 1963). The geometry of cone, that per-

ains to our case, has been tackled by Spence (1968). More recently,

uilding on the early mathematical developments of Mossakovksii,

he results of adhesive (non-slip) indentation have been generalized

y Borodich and Keer to any probe that can be described by a mono-

ial shape (Borodich and Keer, 2004a, 2004b). They concluded that

he results on adhesive conical indentation on a semi-infinite half

pace are similar to the frictionless case but with a correction factor
ad that is introduced in the relation between the contact stiffness

nd the elastic modulus of the material:

= dP

dh
= γ ad 2E

1 − ν2

√
Ac√
π

(34)
ig. 10. (a) P–h curves for three different coefficients of friction: μ = 0, 0.5, 1. Inset

epresents a magnified region on the highest load/depth area. (b) The dependency of

he correction factor on Poisson’s ratio is computed for three different coefficients of

riction: μ = 0, 0.5, 1. Solid lines represent polynomial fits.
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Fig. 11. (a) The dependency of the correction factor on Poisson’s ratio is computed for three different cone half-apex angles: θ = 60°, 70.3°, 80°. Solid lines represent polynomial

fits. Von Mises stress fields for three different cone half-apex angles: (b) θ = 60°, (c) 70.3°, (d) 80°.
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here γ ad is the correction factor for the case of adhesive (no-slip)

ontact of a rigid probe (Borodich and Keer, 2004a, 2004b):

ad = ln (3 − 4ν)

β
(35)

Eq. (35), which is included in Fig. 10(b) compares well with the

imulated results suggesting that the actual deformed geometry in

he presence of friction is much closer to the assumed boundary con-

ition of the analytical solution (minimal radial displacements) re-

ulting in significantly reduced discrepancies compared to the fric-

ionless case

.4. Effect of indenter angle

Results on the correction factor for three different indenter ge-

metries (θ = 60°, 70.3°, 80°) are plotted in Fig. 11(a). The results

f Hay et al., 1999 for positive ν are also included for comparison.

he data collected in this study is in excellent agreement with pre-

iously published results confirming the accuracy of the simulations.

urthermore, the data extends the correction factor into the nega-

ive regime in which the discrepancy becomes more severe. Over-

ll, it appears that γ decreases with decreasing cone angle and/or

ncreasing ν . All of the geometries converge to the theoretical solu-

ion for ν = 0.5. The correction factor also vanishes as the cone angle
Table 1

Best fit polynomials for Poisson’s ratio dependency of the cor

Cone semi-apex

angle, θ [°]
Friction coefficient, μ

[dimensionless]

70.3 0

70.3 0.5

70.3 1

80 0

60 0
pproaches 90° consistent with the boundary condition of the an-

lytical solution in which radial displacements are eliminated. The

tress profiles for ν = −0.2 and three different indenter geometries

re shown in Fig. 11(b)–(d). Since the load scales with the area of

ontact, blunt indenters, in which the area˗to˗depth scaling relation

s more rapid, tend to offer more resistance to penetration. This how-

ver is accompanied with a load˗spreading over a larger area and a

ubsequent smoothing/reduction of the stress distribution/intensity

ver the indenter-material contact region.

. Concluding remarks

Consistent with theoretical predictions, auxetic materials enhance

heir indentation resistance especially for Poisson’s ratio’s approach-

ng ν → −1. This amplified response can be attributed to a shear

tiffening phenomenon and an associated material miotic response

shrinking) beneath the indenter region with a subsequent reduction

n the contact area. The hardness enhancement as predicted by the

umerical simulations presented in Fig. 3(b) for a 70.3° conical in-

enter (Berkovich equivalent), can be approximated by:

/Hν=0 =
(
1 − ν2

)−1.193; R2 = 0.9887 (36)

Eq. (36) has the same form as predicted by the analytical solu-

ion ( H
Hν=0

= (1 − ν2)k) but with a different best-fitted k exponent to
rection factor γ .

Polynomial fit

γ = 1.1070 – 0.1821ν – 0.0306ν2; R2 = 0.9996

γ = 1.1231 – 0.2106ν – 0.0406ν2; R2 = 0.9995

γ = 1.1240 – 0.2145ν – 0.0369ν2; R2 = 0.9994

γ =1.0629 – 0.0842ν – 0.0357ν2; R2=0.9960

γ = 1.1633 – 0.3033ν – 0.0396ν2; R2 = 0.9998
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capture the corrected indentation hardness enhancement as calcu-

lated through numerical simulations. The assumptions incorporated

in the analytical solutions of a rigid axisymmetric probe being pushed

against a semi-infinite linear elastic half-space become increasingly

inaccurate for elastic indentations on auxetic materials (ν < 0). The

linear elastic solution for load (Eq. (31)), contact stiffness (Eq. (32))

and elastic hardness (Eq. (33)) that form the basis for many exper-

imental data analysis protocols can be corrected to account for the

effect of Poisson’s ratio, contact angle and contact friction. The poly-

nomial correction functions γ = f (ν) (valid for −1 ≤ ν ≤ 0.5) calcu-

lated in this study and which can serve in eliminating errors during

experimental investigations are summarized in Table 1.
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