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PII: S0020-7683(16)30335-3
DOI: 10.1016/j.ijsolstr.2016.11.007
Reference: SAS 9360

To appear in: International Journal of Solids and Structures

Received date: 1 August 2015
Revised date: 5 November 2016
Accepted date: 10 November 2016

Please cite this article as: J.A. Rodrı́guez-Martı́nez, A. Molinari, R. Zaera, G. Vadillo,
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Highlights

• Plastic flow instability in ductile plates subjected to dynamic biaxial loading.

• The role of geometrical defects and loading path is analysed.

• The localization pattern is characterized with finite element simulations.

• Numerical results are compared against predictions of a linear stability analysis.

• The effect of the loading path and inertia on the necking pattern is brought to light.
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Abstract

In this work we have investigated the emergence of a critical wavelength which charac-

terizes the localization pattern in ductile plates subjected to dynamic biaxial loading. For

that task we have used a linear stability analysis and finite element calculations. The linear

stability analysis follows the 2D approach developed by Zaera et al. (2015) which includes

specific features to account for inertia and stress triaxiality effects inside the necking. Two

different finite element models are built: (1) a unitary cell model in which the localization

is favoured by a sinusoidal geometrical perturbation and (2) a plate with constant cross

section which allows to assess the collective behaviour of multiple necks. A wide spectrum

of loading paths which range from plane strain to (almost) biaxial stretching has been ex-

plored. We have demonstrated that, if inertia plays a dominant role in the loading process,

the influence of geometrical perturbations in the necking inception is substantially reduced

and the necking pattern shows a deterministic nature. The deterministic nature is directly

connected to the emergence of a critical wavelength which characterizes the neck spacing

at high strain rates. This critical wavelength increases (i.e. the neck spacing increases)

and becomes less prevailing (i.e. the necking pattern becomes less uniform) as we move

away from plane strain to biaxial stretching. This is a key outcome of our investigation

that, from the authors’ knowledge, has not been previously reported in the literature.
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1. Introduction

The problem of flow localization and fragmentation in ductile materials subjected to

dynamic loading has attracted the interest of the Solid Mechanics community for almost

a century. The starting point of this research was the work of Mott (1947) who, moved by

the military concerns of that time, developed during the latter part of World War II a the-

oretical framework to describe the fragmentation of bodies subjected to intense impulsive

loads. Specifically, the attention of Mott was focused on the fragmentation resulting from

the explosive rupture of cylindrical cases. Seventy years have passed since the pioneering

research of Mott was published and, in Grady’s words (Grady, 2002), the fragmentation

of hollow metal shells subjected to rapid expansion by impulsive internal pressure loading

continues to be a problem of both practical and intellectual interest. Grady’s statement be-

comes apparent if one considers the number of works that have been published over the last

years on this specific topic (e.g. Sørensen and Freund (2000); Becker (2002); Guduru and

Freund (2002); Rusinek and Zaera (2007); Vadillo et al. (2012); De Vuyst and Vignjevic

(2013)).

Within this context, the recent and very significant experimental research relied on the

dynamic radial expansion of axially symmetric structures like tubes (Goto et al., 2008;

Hiroe et al., 2008; Zhang and Ravi-Chandar, 2010) and hemispheres (Mercier et al., 2010).

The symmetry of these shell structures nearly eliminates the effects of wave propagation

before flow localization, which facilitates the interpretation of the experimental findings.

Thus, the shell uniformly stretches during loading until homogeneous deformation fails

at large strain, leading to flow localization in the form of multiple necks and subsequent

fragmentation. The experimental research have yielded two fundamental observations:

1. As the loading rate applied to the shell increases, the apparent ductility of the struc-

ture increases.

2. As the loading rate applied to the shell increases, the number of fragments increases.

To this day, there is a lack of consensus in the determination of the physical phenomena

which reside behind these two experimental observations. Particularly, the identification
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of the specific mechanisms which control the fragmentation pattern is a critical concern

that has been debated for many years.

On the one hand we should mention the statistically-based theories, derived from the

(aforementioned) seminal work of Mott (1947), which consider that fragmentation proceeds

through the random spatial and temporal occurrence of fractures resulting in a distribution

in fragment lengths. These theories, significantly moved forward over the last three decades

by Grady and co-workers (Grady, 1981; Kipp and Grady, 1985; Grady and Olsen, 2003),

attribute the distribution of fragment sizes to statistical variability in the strain to failure

of the material and obtain this distribution through an estimate of the propagation of

the unloading or release waves from each fracture event. Very recently, this theoretical

framework has been taken by Ravi-Chandar and Triantafyllidis (2015) in order to show that

the localization and failure patterns of the structure may be dictated by the distribution

of intrinsic material or/and geometrical defects.

On the other hand we should mention the linear stability theories, derived from the

pioneering papers of Fressengeas and Molinari (1985, 1994), which consider that the com-

bination of stress multiaxiality effects and inertia leads to the promotion of some specific

wavelengths which characterize the localization and fragmentation patterns at high strain

rates (Mercier and Molinari, 2003, 2004; Mercier et al., 2010; Rodŕıguez-Mart́ınez et al.,

2013a,b; El Mäı et al., 2014). In such a sense, this approach argues for the inclusion of

a deterministic component within the fragmentation mechanisms. Nevertheless, this idea

has been frequently disregarded in the classical statistical theories.

A main goal of this paper is to show that the deterministic approach which follows from

the stability analysis theories actually captures key features of the necking inception at high

strain rates. While defects play an important role in the localization and fragmentation

process, it seems that they are not the leading factor which controls the fragmentation

pattern of ductile metallic shells subjected to very high loading rates. In this paper we rely

on finite element calculations and a linear stability analysis to show that, at high strain

rates, there are selected wavelengths that characterize the localization and fragmentation

patterns. We demonstrate that the role played by these selected wavelengths in the neck

spacing and the fragments size is more significant as the contribution of inertia in the
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process of flow localization increases. In addition, we present some results that confirm that

if inertia is the main controlling factor of the loading process, the geometrical defects may

not dictate the neck spacing and the fragments size. A salient feature of this investigation,

which generalizes the results of Xue et al. (2008), is that all these outcomes have been

proven for a wide range of loading paths ranging from plane strain to (almost) biaxial

stretching.

2. Problem formulation

We consider a rectangular sheet of initial thickness h0 and edges of initial length L0
X

and L0
Y , see Fig. 1. Capital letters representing coordinates, displacements, velocities or

accelerations will be used for the Lagrangian frame, and lower-case letters for the Eulerian

frame. The sheet is subjected to constant and opposed velocities on opposed sides and

therefore directions X and Y are of overall principal strain rates. During the stage of

homogeneous deformation, the initial strain rates ε̇0
X and ε̇0

Y fully define the kinematics.

Note that our attention is limited to loading paths for which χε̇ = ε̇0
Y /ε̇

0
X ≥ 0.

X,x

Y,y

{X, Y}: principal strain rate directions

LX

LY eX LX /2
o.

eY LY /2
o.

0

0

0

0

Figure 1: Sheet domain and principal axes of deformation.

The fundamental solution S(X, Y, t) of the previous problem is obtained by integration

of the corresponding governing equations (see Zaera et al. (2015) for details) satisfying the

following initial
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VX(X, Y, Z, 0) = ε̇0
XX; VY (X, Y, Z, 0) = ε̇0

Y Y ; VZ(X, Y, Z, 0) = −
(
ε̇0
X + ε̇0

Y

)
Z (1)

and boundary conditions

VX(L0
X/2, Y, Z, t) = −VX(−L0

X/2, Y, Z, t) = ε̇0
XL

0
X/2

VY (X,L0
Y /2, Z, t) = −VY (X,−L0

Y /2, Z, t) = ε̇0
YL

0
Y /2 (2)

The material behaviour is described with a rate dependent constitutive model based on

the standard principles of Huber-Mises plasticity: hypoelastic behaviour, additive decom-

position of the rate of deformation tensor, isotropic hardening, associated flow rule and

plastic power equivalence

σ∇ = C : de = C : (d− dp) (3)

Ψ = σ̄ − σY = 0 (4)

dp =
∂Ψ

∂σ
˙̄ε
p

=
3s

2σ̄
˙̄ε
p

(5)

where σ∇ is an objective derivative of the Cauchy stress tensor, d, de and dp are the

total, elastic and plastic rate of deformation tensors respectively, C is the Hooke tensor

for isotropic elasticity (defined by the Young modulus E and the Poisson ratio ν), Ψ the

yield function, σ̄ the equivalent stress, σY is the flow stress, s the deviatoric stress tensor

and ˙̄ε
p

is the equivalent plastic strain rate.

Following the work of Rodŕıguez-Mart́ınez et al. (2013a), the flow stress is given as a

function of the equivalent plastic strain rate ˙̄ε
p

through the following power-type relation
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σY = σ0

(
˙̄ε
p

˙̄εref

)m
(6)

Conventional material constants, elastic parameters and parameters related to the flow

stress are given in Table 1.

Symbol Property and units Value

ρ0 Initial density (kg/m3) 7800

E Young modulus (GPa) 200

ν Poisson ratio 0.33

σ0 Reference flow stress (MPa), Eq. (6) 500

˙̄εref Reference strain rate (s−1), Eq. (6) 1000

m Strain rate sensitivity exponent, Eq. (6) 0.01

Table 1: Conventional material constants, elastic parameters and parameters related to the flow stress as

taken from Rodŕıguez-Mart́ınez et al. (2013a).

No doubt, more sophisticated constitutive descriptions could be used to model the

material behaviour (see e.g. Nemat-Nasser and Guo (2000); Rusinek and Klepaczko (2001);

Molinari and Ravichandran (2005); Voyiadjis and Abed (2006)). Nevertheless, we claim

that this simple constitutive model is sufficient to uncover the dominant factors which

control the emergence of a critical wavelength responsible for the fragmentation of ductile

plates subjected to high strain rates. Moreover, as pointed out by Rodŕıguez-Mart́ınez

et al. (2013a), this simple constitutive law is well suited to carry out critical comparisons

between finite elements calculations and stability analysis, see section 8.

3. Linear stability analysis

The linear stability analysis follows the approach developed in Zaera et al. (2015),

which is based on previous works of Dudzinski and Molinari (1988, 1991) and includes

specific features to account for inertia and stress triaxiality effects inside the necking. The
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perturbation is imposed on lines X = constant (see Fig. 1) since this is the orientation

naturally selected by the material to trigger a neck (critical direction of perturbation).

Let S1 be the corresponding value of the fundamental solution at time t1, when a small

perturbation δS given by

δS(X, t; t1) = δS1eiξ
LXeη(t−t1) (7)

is imposed over the fundamental solution. In previous expression δS1 is the perturbation

amplitude, ξL the wavenumber in the Lagrangian configuration and η the growth rate of

the perturbation at time t1. The physical solution is the real part of S = S1 + δS with

|δS| � |S1|. By substituting S into the governing equations and retaining only first-order

terms, linearised equations are obtained. A non-trivial solution for δS1 can be derived

only if the determinant of the system of linear algebraic equations is equal to zero. This

condition is found to be a polynomial in η which gives, for a certain value of the time at

perturbation t1, the value of η as a function of the wavenumber in the material description

ξL . The requisite for unstable growth of δS is given by the condition Re (η) > 0. The root

of the quoted polynomial which is real and positive η+ represents the unstable growth.

Note that, according to Rodŕıguez-Mart́ınez et al. (2013b, 2015), the perturbation growth

η+ is assumed to represent the very first stages at which the plastic flow deviates from the

background deformation (the very first stages of diffuse necking). Moreover, imposing the

condition for maximum perturbation growth ∂η+/∂ξL = 0, the critical wavenumber ξL
c

and the critical perturbation growth η+
c are determined.

A full description of the linear perturbation analysis and of its salient features can be

found in Zaera et al. (2015).

4. Finite element models

This section describes the features of the finite element models built to simulate necking

localization in ductile plates subjected to dynamic biaxial loading. The numerical analyses

are carried out using the finite element program ABAQUS/Explicit (Simulia, 2013). Two

different models are built: (1) a unitary cell model in which the localization is favoured
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by a geometrical perturbation and (2) a entire plate with constant cross section which

serves to asses the collective behaviour of multiple necks. We anticipate that the results

obtained from these two models allow to derive relevant conclusions about the emergence

of a critical wavelength which dictates the neck spacing and the necking pattern at high

strain rates.

4.1. Unitary periodic cell

Inspired by the computational model proposed by Xue et al. (2008) for assessing the

necking localization in an infinite plate under plane strain constraint, a plate subjected to

biaxial loading and with geometrical periodic perturbations can be modelled as an array

of unitary cells with sinusoidal spatial imperfections.

The reference configuration of the cell is given by the domain −L0
X/2 ≤ X ≤ L0

X/2,

−L0
Y /2 ≤ Y ≤ L0

Y /2 and −h0/2 ≤ Z ≤ h0/2, with L0
X = L0

Y = L0. As further discussed in

forthcoming sections of this paper, the value of L0 has been systematically varied (while

h0 = 2 mm is fixed) in order to assess the relative contribution of stress multiaxiality

effects and inertia in flow localization. The spatial imperfection is defined by the following

expression

0 ≤ Z ≤ h0/2− δ

2

(
1 + cos

(
2πX

L0
X

))
(8)

where δ is the amplitude of the perturbation. According to the linear stability analysis

outlined in section 3 the perturbation is centred on X = 0 and aligned with the Y axis,

following the critical direction of perturbation for χε̇ ≥ 0 (recall that our attention is limited

to loading cases such that χε̇ ≥ 0). Due to the symmetry of the model, only the Z > 0

half of the specimen has been analysed (see Fig. 2). The applied initial and boundary

conditions are those given in Eqs. (1) and (2). As shown by Rodŕıguez-Mart́ınez et al.

(2013a) and Zaera et al. (2014, 2015), these initial conditions minimize the intervention of

stress waves within the specimen during the loading process.

The finite element model is meshed using eight node solid elements, with reduced

integration and hourglass control (C3D8R). The elements have an initial aspect ratio

close to 1 : 1 : 1 with dimensions ≈ 50 × 50 × 50 µm3. A mesh convergence study has
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been performed, in which the time evolution of different critical output variables, namely

stress, strain and necking inception, were compared against different mesh sizes. While

we have found some mesh sensitivity in the numerical results, we have checked that it

does not affect significantly our results, neither quantitatively nor qualitatively. Our belief

is that viscosity and inertia act as potent regularization factors that contribute to the

well-possessedness of the problem at hand (Needleman, 1988; Rodŕıguez-Mart́ınez et al.,

2013a).

4.2. Entire plate

Based on the computational model proposed by Zaera et al. (2015) for assessing the

collective behaviour and spacing of multiple necks in plates subjected to dynamic biaxial

loading, we rely on calculations performed using (entire) plates with constant cross section

to explore the interaction between necks at high strain rates.

The reference configuration of the sheet is given by the domain −L0
X/2 ≤ X ≤ L0

X/2,

−L0
Y /2 ≤ Y ≤ L0

Y /2 and −h0/2 ≤ Z ≤ h0/2, with L0
X = L0

Y = 100 mm and h0 = 2 mm.

Only the Z ≥ 0 half of the specimen has been analysed, see Fig. 3. The initial and

boundary conditions applied to the model are those given in Eqs. (1) and (2). These

initial conditions minimize the propagation of stress waves in the plate during loading.

The sheet has been meshed using a total of 1250000 C3D8R elements, 500 in X and

Y directions, and 5 in Z direction. A mesh convergence study has revealed the mesh

sensitivity of our numerical results. However, we have checked that the mesh dependence

does not affect the conclusions of our investigation. Qualitatively (and quantitatively to

a large extend), all the results and trends presented in the paper regarding the necking

strain and neck spacing are consistent and independent of the discretization (as long as

a sufficiently fine mesh is provided). In absence of geometrical perturbations, localization

is triggered by the perturbation of the field variables caused by the discretization of the

workpiece and the explicit integration scheme used by the finite element code (Rusinek

and Zaera, 2007; Vadillo et al., 2012; Zaera et al., 2015).

The set of equations describing the mechanical behaviour of the material are imple-

mented in the finite element code, considering a large deformation frame, through a
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Figure 2: Finite element model. Unitary periodic cell. Mesh and boundary conditions.
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Figure 3: Finite element model. Entire plate. Mesh and boundary conditions.

user subroutine following the fully implicit integration scheme developed by Zaera and

Fernández-Sáez (2006). Note that the lower limit for the strain rate used in the integration

algorithm is 10−15s−1.

5. Analysis and results: the critical wavelength

In this section we rely on the unitary cell calculations to show the existence of a critical

wavelength which plays a key role in the necking and fragmentation patterns of ductile

plates subjected to high strain rates.

Fig. 4 shows the localized necking strain εneck versus the initial cell size L0/h0 (where

h0 = 2 mm) for χε̇ = 0 (plane strain), ∆ = 2δ
h0

= 2% and ε̇0 = 10000 s−1. This combination

of loading path, imperfection amplitude and initial loading rate will be considered as the

reference configuration for the analyses to be conducted in this paper. According to Xue

et al. (2008) and Triantafyllidis and Waldenmyer (2004) the localized necking strain, from

now on simply called necking strain, is measured when the condition ε̇out

ε̇in
= 10−6 is reached,

where ε̇in and ε̇out are the strain rates inside and outside the localized region, respectively.

The strain rate inside the localized region ε̇in is measured at the centre of the main neck(s)

developed in the cell. The strain rate outside the localized region ε̇out and the necking strain
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εneck are measured: (1) at the ends of the sample when the localization takes place in the

middle of the cell and (2) at the center of the sample when the localization takes place at

the ends of the cell. The necking strain εneck represents the onset of localized necking (this

is not the onset of diffuse necking described by the linear perturbation analysis). Note

that the large strains attained in the simulations favour the formation of well-developed

necks. This is in contrast to more brittle metals which use to show failure by early shear

banding or micro-cracking prior to necking inception. In Fig. 4 we observe that the

necking strain first decreases when the cell size increases, reaches a minimum and then

increases. We have checked that the alternative sine perturbation, minimum section at the

ends of the sample, provides the same values of necking strain. On the one hand, the large

values of εneck obtained for small L0/h0 ratios are caused by the damping effect of stress

multiaxiality on short wavelengths (Mercier and Molinari, 2003; Zaera et al., 2015). On the

other hand, inertia slows down the growth of long wavelengths which leads to the increase

of εneck obtained for large L0/h0 ratios (Fressengeas and Molinari, 1985, 1994; Mercier and

Molinari, 2003; Zaera et al., 2015). Following Zaera et al. (2015), and within the context of

the 2D biaxial loading problem investigated in this paper, the dimensionless number which

represents inertia effects is

Ĩ = h0 ˙̄ε

√
ρ0

σ0
(9)

This dimensionless number accounts for the intrinsic material effects that density, sam-

ple dimensions, flow stress and loading rate all have on necking inception (Knoche and

Needleman, 1993; Mercier and Molinari, 2003, 2004; Zhou et al., 2006).

The combination of the stabilizing aspects of stress multiaxiality on short wavelengths

and of inertia on long wavelengths leads to the promotion of an intermediate wavelength

which determines the minimum necking strain (Rodŕıguez-Mart́ınez et al., 2013a). From

this point on, the cell size corresponding to the minimum necking strain will be denoted as

the critical cell size (L0/h0)c. Recall that lengths are measured in the reference configura-

tion. Note that the value (L0/h0)c ≈ 3 reported in Fig. 4 coincides with the critical cell size

obtained by Xue et al. (2008) from numerical computations conducted under plane strain

conditions. Nevertheless, we have to note that this value of critical cell size varies with the
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imperfection amplitude and the initial loading rate, as further discussed in sections 6 and

7.

Fig. 5 shows contours of equivalent plastic strain ε̄p for different cell sizes. As in Fig.

4, the reference combination of loading path, imperfection amplitude and initial loading

rate is selected. The pictures are taken at times beyond that corresponding to the necking

strain, once the plastic strain is fully localized. All the pictures follow the same colour

coding such that plastic strains ranging from 0.4 to 1 correlate with a colour scale that

comes from blue to red. Plastic strains below 0.4 remain blue and above 1 remain red.

In agreement with the results obtained by Xue et al. (2008), we observe that the plastic

deformation is concentrated in a smaller (narrower) region as the cell size approaches the

critical one. Thus, we identify three distinctive scenarios:

• The cell size is smaller than the critical one L0/h0 < 2: there is a mild influence of

the imperfection on the necking pattern. The plastic strain is spread over a major

portion of the cell, the size of the necked region is large. The neck develops at late

stages of the deformation process due to stabilizing effects of stress multiaxiality. A

large amount of external energy is required to trigger full localization.

The weak influence of the geometrical imperfection on the geometrical pattern is

clearly apparent for L0/h0 = 1.5. In this case, the necking does not develop from the

initial imperfection but it is located at the ends of the cell. This specific behaviour

occurs because the imperfection is smoothed during the loading process up to an

extent that it ultimately vanishes (see Rodŕıguez-Mart́ınez et al. (2013b)). Next,

the cell shows a uniform cross section which allows for the inception of the neck

either at the center or at the edges. Then, we assume that the fact that the necking

occurs in one place (at the center) or another (at the edges, as in this specific case) is

determined to a large extent by the spurious disturbances caused by the discretization

of the workpiece and the explicit integration scheme used by the code, as discussed

in section 4.2. The condition to be fulfilled by the localization pattern is to keep the

symmetry enforced by the initial and boundary conditions.

• The cell size is close to the critical one 2 ≤ L0/h0 ≤ 4: there is a strong influence of
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Figure 4: Unitary cell calculations. Necking strain εneck versus initial cell size L0/h0 (where h0 = 2 mm).

Reference configuration: loading path χε̇ = 0 (plane strain), imperfection amplitude ∆ = 2% and initial
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the imperfection on the necking pattern. The plastic strain is mostly concentrated

in a small region at the center of the cell. The geometrical imperfection triggers the

neck at early stages of the loading process. Little investment of external work is

required to reach the stage of full localization.

• The cell size is greater than the critical one L0/h0 > 4: there is a moderate influence

of the imperfection on the necking pattern. The plastic strain is spread over a large

area in the center of the plate. Flow localization only takes place at late stages of

the loading process.

For L0/h0 = 8, instead of having a single neck, we have three that are symmetrically

placed with respect to center of the cell. This makes apparent the mild effect of

the imperfection on the necking pattern. As described by Rodŕıguez-Mart́ınez et al.

(2013a), this specific behaviour occurs because the material prefers to localize with

a shorter wavelength than that determined by the cell size since this requires lower

amount of external work to trigger the neck. This conclusion reinforces the idea of the

existence of a critical wavelength which plays a significant role in the necking pattern

of ductile plates subjected to high strain rates. This role can become so important

that it governs the multiple localization process, setting aside those theories which

assume that the localization pattern is exclusively controlled by material/geometrical

flaws. We have checked that, for cell sizes greater than L0/h0 = 8, the number of

necks continues increasing and the localization pattern becomes gradually more (and

more) regular.
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6. Analysis and results: the effect of imperfection amplitude

In this section, relying on the unitary cell calculations, we analyse the role played by

the imperfection amplitude in the necking process. Fig. 6 shows the necking strain εneck

versus the initial cell size L0/h0 for different imperfection amplitudes ∆ = 1%, ∆ = 2%

(reference) and ∆ = 4%. While we have carried out calculations with smaller and larger

imperfection amplitudes, they are not shown in the paper for the sake of brevity: the effect

of the imperfection on the necking is properly captured by the simulations shown here. It

was reported by Rodŕıguez-Mart́ınez et al. (2013a) that the increase of the imperfection

amplitude essentially affects the stress state in the necked region, decreasing the damping

effect of stress triaxiality on short wavelengths. As in Figs. 4 and 5, the reference combi-

nation of loading path and initial loading rate is selected. As a general rule, we observe a

significant decrease in the necking strain with the increase of the imperfection amplitude

(there is one exception discussed in the following paragraph). This causes that, as ∆ in-

creases, the minimum of the curve εneck − L0/h0 becomes weaker and tends to move to

(slightly) larger values of L0/h0.

In addition, the strong connection between the imperfection amplitude and the multi-

dimensional character of the stress state in the cell serves to explain the drastic drop in the

necking strain obtained in the case of L0/h0 = 1 (smallest cell size) and ∆ = 4% (greatest

imperfection amplitude). For this specific case we do not observe the inception of a neck.

The localization process takes the form of a pair of shear bands which are incepted at a

early stage of the loading process, see Fig. 7. This dominant shear stress state is caused by

the large curvature of the imperfection which results from the combination of a short cell

and a large defect amplitude. Shear banding becomes the dominant instability mode. We

have checked that the development of the shear bands is suppressed as the imperfection

amplitude is reduced.

7. Analysis and results: the effect of inertia

In this section the unitary cell computations are used to illustrate the main role played

by inertia effects on the emergence of a critical cell size which controls the localization

pattern at high strain rates. Fig. 8 shows the necking strain εneck versus the initial cell
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Figure 6: Unitary cell calculations. Necking strain εneck versus initial cell size L0/h0 for different values

of the imperfection amplitude ∆ = 1%, ∆ = 2% (reference) and ∆ = 4%. Reference loading path χε̇ = 0

and initial loading rate ˙̄ε
0

= 10000 s−1.
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size L0/h0 for different values of the initial loading rate ˙̄ε
0

= 5000 s−1, ˙̄ε
0

= 10000 s−1

(reference), ˙̄ε
0

= 20000 s−1 and ˙̄ε
0

= 50000 s−1. The reference combination of loading path

and imperfection amplitude is selected.

The necking strain shows a significant increase with the loading rate. This rise is em-

phasized as the ratio L0/h0 increases, since inertia (via strain rate, see Eq. (9)) particularly

contributes to the stabilization of long wavelengths (Molinari et al., 2014).

Moreover, the cell length corresponding to the minimum necking strain decreases with

loading rate running to L0/h0 ≈ 2 for ˙̄ε
0

= 50000 s−1. Further, the minimum of the

curve εneck−L0/h0 is more pronounced as the loading rate increases. These results suggest

that as the role of inertia in the loading process becomes more dominant the necking

pattern will be more regular and the neck spacing shorter. The conclusions derived from

our unitary cell calculations agree with the experimental and theoretical considerations

reported by Mercier et al. (2010) and Mercier and Molinari (2003) who developed specific

investigations to demonstrate the damping effect of inertia on ductile materials subjected

to plane strain extension. They showed that as the loading rate increases the contribution

of inertia takes a dominant role in the localization process leading to the emergence of

regularly spaced necks with similar rates of growth. We further elaborate on this specific

question in section 9.

The profound effect that inertia has on the neck spacing is clearly revealed, for instance,

in the case of L0/h0 = 8 and ˙̄ε
0

= 20000 s−1 for which the localization pattern consists

of multiple necks located all along the cell, Fig. 9. This behaviour occurs because the

imperfection is largely smoothed during loading (it is not extinguished, but it is largely

smoothed) and the cross section of the cell becomes rather constant. Then, with little

influence of the geometrical imperfection, the material is prone to develop a neck spacing

which requires less investment of energy than the neck spacing corresponding to the cell

length.
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8. Analysis and results: the interplay between loading path and critical cell

size

In this section, relying on the unitary cell calculations and the linear stability analysis,

we uncover the interplay between the loading path and the critical cell size. This is a

salient feature of this paper which, from the authors’ knowledge, has not been addressed

before.

Fig. 10(a) shows the necking strain εneck versus the initial cell size L0/h0 for different

loading paths χε̇ = 0 (reference), χε̇ = 0.25, χε̇ = 0.5 and χε̇ = 0.75. The reference

combination of imperfection amplitude and initial loading rate is selected. It is shown

that as the parameter χε̇ increases the whole εneck − L0/h0 curve is shifted upwards. This

means that the material becomes more stable as we move away from plane strain, in

agreement with the experimental evidences and the theoretical considerations reported by

Verleysen et al. (2011) and Zaera et al. (2015) who analysed the effect of loading path

on necking inception at high strain rates. Moreover, the cell size corresponding to the

minimum necking strain is shifted to larger values of L0/h0 as the loading parameter χε̇

increases. This is because the interplay between inertia and stress multiaxiality leads to

greater values of the critical wavelength as the loading path parameter χε̇ increases. This

finding agrees with the numerical results obtained by Zaera et al. (2015) who reported a

monotonic increase of the neck spacing with the increase of χε̇.

Moreover, Fig. 10(b) shows the normalized necking strain ε̄neck versus the normalized

initial cell size L̄0/h̄0 for χε̇ = 0 (reference), χε̇ = 0.25, χε̇ = 0.5 and χε̇ = 0.75. The refer-

ence combination of imperfection amplitude and initial loading rate is selected. For each

loading path, we have calculated the normalized necking strain as the ratio between εneck

and the minimum necking strain. Similarly, the normalized cell size has been calculated

as the ratio between L0/h0 and the critical cell size. This plot brings to light that the

minimum of the ε̄neck − L̄0/h̄0 curve is weaker as the parameter χε̇ increases. This result

suggests that the critical wavelength becomes less prevailing as we move away from plane

strain, i.e. the neck spacing shall be less regular as χε̇ increases. This is a key point of our

research that is further investigated in section 9.

Further, in Fig. 11 we compare the critical cell size (L0/h0)c obtained from our unitary
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cell calculations (blue shaded points in Fig. 10(a)) with the predictions of the linear

stability analysis. In order to obtain the critical cell size from the stability analysis we

have considered, relying on the lack of strain hardening of our material (see Eq. (6)),

that the instability process (onset of diffuse necking) starts at t1 = 0 (see Eq. (7)).

Moreover, as discussed by Rodŕıguez-Mart́ınez et al. (2013a), the selection of t1 = 0 as

the onset of diffuse necking is consistent with the high level of the dimensionless critical

perturbation grow η̄+
c = η+c

˙̄ε
0 (always above 3) observed for all the values of χε̇ considered.

Then, following the procedure described in section 3, we calculate the critical wavenumber

ξL
c as a function of χε̇. We associate to this critical wavenumber a prevailing neck spacing:

L0
c = 2π

ξL
c

. The critical cell size (L0/h0)c obtained from the linear stability analysis shows

very good agreement with the predictions of the unitary cell calculations, see Fig. 11.

On the one hand this comparison shows that there is a critical wavelength which plays

a key role in the neck spacing at high strain rates, on the other hand it becomes clear

that this critical wavelength increases with the increase of the loading path parameter χε̇.

In line with previous works of the authors (e.g. Fressengeas and Molinari (1985, 1994);

Molinari (1997); Mercier and Molinari (2003, 2004); Rodŕıguez-Mart́ınez et al. (2013a);

Zaera et al. (2014)), these results should be understood as an additional evidence of the

ability of the linear stability analysis to predict and rationalize fundamental aspects which

control flow localization in ductile materials subjected to dynamic loading.

9. Analysis and results: the effect of loading path and loading rate on the

necking pattern

In this section, relying on unitary cell and entire plate calculations, we explore the effect

of loading path and loading rate on the necking pattern.

Fig. 12 shows results obtained from numerical simulations conducted using the entire

plate model for χε̇ = 0 and χε̇ = 0.25. The initial loading rate is ˙̄ε
0

= 10000 s−1. On the

one hand we show contours of equivalent plastic strain ε̄p which illustrate the emergence of

multiple necks aligned with the Y axis. On the other hand we show the equivalent plastic

strain ε̄p versus the normalized plate coordinate X̄ = X
L0 for different loading times. These
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results are enlightening:

1. The number of necks is larger for χε̇ = 0 than for χε̇ = 0.25. The average (Lagrangian)

normalized neck spacing is ≈ 2.2 for χε̇ = 0 and ≈ 2.5 for χε̇ = 0.25. The trends find

satisfactory agreement with the results reported in Fig. 10(a). It becomes clear that

the Lagrangian neck spacing increases with the loading parameter χε̇. The difference

with the values found in the unitary cell calculations, (L0/h0)c = 3 for χε̇ = 0 and

(L0/h0)c = 4 for χε̇ = 0.25, comes from the fact that the necking strains in the entire

plate simulations are larger than those registered in the unitary cell calculations for

the same loading conditions (see comments below for Fig. 13). This is because the

geometrical perturbations included in the unitary cell calculations affect the necking

process to a greater extent than the numerical errors which trigger localization in

the entire plate simulations. Decreasing the amplitude of the defect in the unitary

cell calculations will provide values of the critical cell size closer to the average neck

spacing obtained in the entire plate simulations.

2. The neck spacing is more regular for χε̇ = 0 than for χε̇ = 0.25. This result is in

agreement with the unitary cell calculations reported in Fig. 10(b). It appeared in

Fig. 10(b) that the minimum of the curve εneck−L0/h0 is sharper as χε̇ decreases, thus

demonstrating that the dispersion observed in neck spacing has to be tighter for small

values of χε̇ (i.e. more regular neck spacing). This is a key result of our research

that seems to confirm that the critical wavelength which controls the localization

process at high strain rates becomes less prevailing as the parameter χε̇ increases.

Therefore, the proportion of necks that will develop into fracture sites increases as

we approach plane strain. In other words, the proportion of arrested necks increases

as we move away from plane strain. Indeed, it is apparent that the occurrence of

neck arrest by unloading waves is increased when the neck spacing is less uniform.

Theoretically, a perfectly periodic distribution of identical necks would lead to an

identical distribution of fracture sites. By contrast, in the case of a non-uniform

neck distribution, some necks could be early arrested by unloading waves emanating

from dominant localization sites. Then, fracture only occurs at the sites of dominant

necks (Mott, 1947; Grady, 1981; Kipp and Grady, 1985; Grady and Olsen, 2003). A
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thorough discussion of the role of defects and unloading waves on the proportion of

arrested necks can be found in Molinari et al. (2014).

Previous results show the effect of the loading path on the flow localization pattern.

Specifically, we have shown that the necking pattern and the neck spacing become less

uniform as χε̇ increases. Next, we explore the role played by the strain rate on the flow

localization pattern.
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Fig. 13 shows results obtained from unitary and entire plate calculations. We have

explored initial loading rates which range from 5 · 103 s−1 to 5 · 104 s−1. Two different

loading paths are investigated: χε̇ = 0 (reference) and χε̇ = 0.25. In the unitary cell

calculations we have taken the critical cell size and the reference imperfection amplitude

∆ = 2%.

Fig. 13(a) shows the necking strain εneck versus initial strain rate ˙̄ε
0
. As anticipated

in previous paragraphs, the values of εneck are smaller in the case of the unitary cell

calculations due to effect of the geometric perturbation included in the model (see Fig.

6). This is a clear illustration of the role of defects’ amplitude in the necking strain. It

is apparent that the magnitude of the numerical perturbations which trigger localization

in the entire plate calculations is smaller than the geometric imperfection included in the

unitary cell model. Note that (irrespective of the initial strain rate) the necking strain is

larger for χε̇ = 0.25 than for χε̇ = 0. Furthermore, the εneck − ˙̄ε
0

curves corresponding to

χε̇ = 0.25 run practically parallel to those obtained for χε̇ = 0.

Moreover, we observe that the necking strain increases with the loading rate which

brings to light the neck retardation caused by inertia (Xue et al. (2008)). The relationship

between necking strain and initial strain rate for unitary cell and entire plate calculations

is very similar. This confirms that the main trends reported in this paper are rather

insensitive to the amplitude of the defects which trigger localization, provided that those

defects are sufficiently small. The quantification of the neck retardation with increasing

strain rate, and therefore of the inertia effects, is addressed using two different measures:

• Absolute measure: we rely on the difference between the necking strains correspond-

ing to the greater and the smaller strain rates investigated, i.e. εneck5·104 s−1 − εneck5·103 s−1 .

Since the εneck − ˙̄ε
0

curves for χε̇ = 0 and χε̇ = 0.25 are virtually parallel, this mea-

sure suggests that the role played by inertia effects on necking localization is largely

independent of the loading path.

• Relative measure: we rely on the normalized difference between the necking strains

corresponding to the greater and the smaller strain rates investigated
εneck
5·104 s−1−εneck

5·103 s−1

εneck
5·103 s−1

.

Since the εneck− ˙̄ε
0

curves for χε̇ = 0 and χε̇ = 0.25 are virtually parallel, the relative
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measure (contrary to the absolute measure) suggests that the role played by iner-

tia effects on necking localization decreases as we move from plane strain to biaxial

loading.

Form previous analysis it becomes apparent that to provide a precise idea about the

interplay between loading path and inertia effects is a complicated task that still needs

further investigation. In this regard we should note that, at least, our analysis rules out

that the role played by inertia in flow localization increases with the parameter χε̇.

Fig. 13(b) shows the critical cell size (unitary cell calculations) and the average La-

grangian neck spacing (entire plate calculations) versus the initial strain rate ˙̄ε
0
. As antic-

ipated in previous paragraphs, the values of (L0/h0)c are greater in the case of the unitary

cell calculations due to effect of the geometric perturbation. Moreover note that, irrespec-

tive of the initial strain rate, the critical cell size / neck spacing is larger for χε̇ = 0.25 than

for χε̇ = 0. Furthermore, the (L0/h0)c − ˙̄ε
0

curves obtained for χε̇ = 0 and χε̇ = 0.25 run

practically parallel. We also observe that the critical cell size and the neck spacing decrease

with the strain rate. The latter behaviour is caused by inertia effects, as anticipated in

section 7.

10. Summary and conclusions

In this paper we have studied necking localization in ductile plates subjected to dynamic

biaxial loading. For that task we have used a 2D linear stability analysis and fully 3D finite

element calculations. The linear stability analysis was developed by Zaera et al. (2015)

and includes specific features to account for inertia and stress triaxiality effects inside the

necking. The finite element computations are conducted using two different models: (1) a

unitary cell in which the localization is favoured by a sinusoidal geometrical perturbation

and (2) a plate with constant cross section which allows to asses the collective behaviour

of multiple necks. A key feature of this investigation is that we have explored a wide

spectrum of loading paths ranging from plane strain to (almost) biaxial stretching. Below,

we summarize the main outcomes of this work:
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Figure 13: Unitary cell and entire plate calculations. (a) Necking strain εneck versus initial strain rate ˙̄ε
0

and (b) critical cell size/neck spacing
(
L0/h0

)
c

versus initial strain rate ˙̄ε
0

(lengths are measured in the

initial configuration). Two different loading paths are investigated: χε̇ = 0 (reference) and χε̇ = 0.25. In

the unitary cell calculations we have taken the reference imperfection amplitude ∆ = 2%.
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• We have run unitary cell calculations using various cell sizes in order to show the

emergence of a critical wavelength which characterizes the neck spacing at high strain

rates. This critical wavelength, which defines the minimum investment of energy

required to trigger the neck, is promoted because short wavelengths are stabilized by

stress multiaxiality effects and long wavelengths by inertia.

• Unitary cell computations conducted for different loading rates have shown the sta-

bilizing effect of inertia on neck localization. As the role played by inertia on the

loading process increases the deterministic character of the necking pattern becomes

more significant. It is suggested that at sufficiently high strain rates the geometri-

cal defects may play a secondary role in the necking pattern of viscoplastic shells

subjected to impulsive loading.

• Unitary cell and entire plate calculations performed for different loading paths have

shown that the neck spacing increases as we move away from plane strain to biax-

ial stretching. This is because the interplay between inertia and stress multiaxiality

leads to greater values of the critical wavelength as the loading path parameter χε̇

increases. This finding is an original outcome of this investigation that, from the

authors’ knowledge, has not been previously addressed in the literature. It has to be

highlighted that the values of the neck spacing obtained from the numerical computa-

tions find satisfactory agreement with the predictions of the linear stability analysis.

This agreement should be understood as an additional evidence of the ability of the

linear stability analysis to capture fundamental aspects which control flow localiza-

tion in ductile materials subjected to dynamic loading.

• Entire plate calculations performed for different loading paths have revealed that the

necking pattern becomes less regular as we move away from plane strain to biaxial

stretching. This is because the critical wavelength which controls the localization

process at high strain rates becomes less prevailing as the parameter χε̇ increases,

as deduced from the unitary cell calculations. This is an original outcome of this

investigation which has not been reported before in the literature.
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All in all, the combination of analytical and numerical approaches shows that there is

a critical wavelength which plays a key role in the necking pattern of plates subjected to

dynamic biaxial loading when very high strain rates are considered. The salient feature of

this paper was to shed light into the close connection between this critical wavelength and

the loading path.
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