
 

Accepted Manuscript

Experimental and Finite Element Analysis of cellular materials under
large compaction levels

Bertrand Langrand, Folco Casadei, Vincent Marcadon,
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Abstract

This work aims at investigating the experimental characterisation and the
modelling of the mechanical behaviour of cellular sandwich structures for
large compaction levels, especially focusing on the collapse mechanisms of
their constitutive cells and the role of the contacts created between neigh-
bour cells. For that purpose, brazed cellular sandwich structures made of
tube stackings have been considered as model architectures. The exper-
imental characterisation of stackings consisting of either a square pattern
or a hexagonal one has highlighted that the collapse mechanism was very
reproducible in the case of the square stacking. On the contrary, the one
observed for the hexagonal stacking showed an important sensitivity to the
architectural defects such as missing braze joints or tube misalignment. In-
ternal self-contacts created played also an important role regarding the den-
sification plateau. In parallel, these compression tests have been simulated
through the finite-element method; two different codes have been considered,
one implicit (Z-set) and one explicit (Europlexus). The predictions of both
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codes have been compared to investigate their differences depending on finite
strain and contact formulations. The comparison of their predictions with
the experimental results has highlighted that quadratic meshes were neces-
sary, involving the implementation of a second-order pinball method for the
modelling of contacts in Europlexus. Both codes have also shown very close
predictions whatever the mesh order and the finite strain formulation.

Keywords: Cellular material, Mechanical characterisation, Contact
algorithm, Finite Element Analysis, Finite strain
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1. Introduction1

Cellular materials are widely studied for their various functionalities (Evans2

et al., 1998) which make them attractive for numerous applications. From a3

mechanical point of view, higher specific properties are expected with cellular4

materials compared to the bulk and a large plastic plateau is often observed in5

compression being very useful in the development of lightweight aeronautical6

frames in which impact resistance is required for instance. However, the7

modelling of such cellular materials under large compaction levels presents8

some difficulties because of the collapse mechanisms observed which involve9

many contacts, instabilities and large deformations.10

In the literature one can find many contributions addressing the char-11

acterisation of the elasticity and the beginning of plasticity of such cellular12

structures, especially regarding the influence of both their architecture and13

constitutive material properties on their effective behaviour. Without be-14

ing exhaustive, the reader can refer to the works of Silva and co-authors15

(Silva and Gibson, 1997; Silva et al., 1995), Fazekas et al. (2002), Sanders16

and Gibson (2003a,b), Alkhader and Vural (2009) and Marcadon and Kruch17

(2013) concerning the effect of the morphological parameters or those of Am-18

sterdam et al. (2008a,b), Mangipudi and Onck (2011), Marcadon and Feyel19

(2009) and Marcadon and Kruch (2011) investigating the effect of the consti-20

tutive material behaviour. The issues of large compaction levels and collapse21

mechanisms are more complex. Experimentally, various architectures have22
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been characterised under quasi-static loads by Hönig and Stronge (2002),23

Blazy et al. (2004), Friedl et al. (2008), Marcadon et al. (2012) and under24

dynamic loads by Hayes et al. (2004) and Papka and Kyriakides (1999a). Es-25

pecially, very rich results have been obtained addressing the characterisation26

of the collapse of the constitutive cells, and its influence on the densification27

plateau (i.e. the domain resulting from the competition between the hard-28

ening of the constitutive material and the saturation of the flow stress due29

to the heterogeneous collapse of the constitutive cells), thanks to the use of30

X-ray tomography (Burteau et al., 2012; Dillard et al., 2006; Fallet et al.,31

2008; Jang et al., 2008; Lhuissier et al., 2009).32

However, the modelling of the densification plateau and of the final con-33

solidation stage presents some difficulties. Depending on the geometry of the34

cells, authors proposed different models such as beams in finite strains for35

Kyriakides and co-authors (Gaitanaros et al., 2012; Jang et al., 2010; Papka36

and Kyriakides, 1998, 1999b), shell models of real geometries coming from37

tomography analyses for Caty et al. (2008), or solid models in 2D or 3D for38

Marcadon and Feyel (2009) and Marcadon et al. (2012). Karagiozova et al.39

(2006, 2007) proposed an analytical model, based on the geometrical analysis40

of the hollow sphere collapse, to appreciate the densification plateau generally41

observed experimentally during the compaction of cellular materials. Shim42

and Stronge (1986) and Papka and Kyriakides (1998) were pioneers in inves-43

tigating instability modes in tube stackings under lateral compression. Shim44

and Stronge (1986) had proposed an analytical model for the compression45

of tube stacking in the case of confined compression tests on stacked tubes46

in contact only. Papka and Kyriakides (1998) have focussed on hexagonal47

stacked tubes made of polycarbonate, a material strongly sensitive to rate48

effects. The tubes were bounded to each other to form the stacking and49

the experiments were unconfined. Asymmetrical modes were observed in50

particular when the cellular structure had geometrical defects. These asym-51

metrical modes have a negative influence on the mechanical strength of the52

structures. Symmetrical modes were always observed for perfectly stacked53

cellular structures (containing no visible, insignificant, defect). Papka and54

Kyriakides (1998) have also studied the influence of the loading rate, espe-55

cially because the local displacement rate varied when instabilities progressed56

in the structures. Instability modes have also been investigated in details by57

Gong and co-authors (Gong and Kyriakides, 2005; Gong et al., 2005a,b) in58

the case of open-cell foams. In order to get macroscopic mechanical responses,59

authors used homogenisation techniques too for non-periodic media, see for60
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instance the work of Ostoja-Starzewski (2006). Beam elements were also con-61

sidered in advanced models in order to better capture the architecture and62

the local collapse mechanisms (Florence and Sab, 2006; Harders et al., 2005;63

Mangipudi and Onck, 2011; Papka and Kyriakides, 1998). The main draw-64

back of these kind of modelling is the representation of the joints between the65

tubes which are often considered as rigid bodies. Moreover, many of these66

models assume a perfectly plastic behaviour for the constitutive material ne-67

glecting the contribution of the constitutive material hardening (Fiedler and68

Öchsner, 2008; Fiedler et al., 2010; Karagiozova et al., 2006, 2007; Sanders69

and Gibson, 2003a,b).70

To address the issue of the modelling of cellular structures under large com-71

paction levels, in the present work cellular structures made of tube stackings72

have been considered as model architectures because of the reproducibility73

of both the geometrical and mechanical properties of the tubes. Further-74

more, such extruded architectures can be modelled conveniently in 2D. The75

choice of these particular architectures explains why our literature review76

has been focused on metal foams, hollow-sphere structures and honeycombs77

loaded transversally which exhibit similar collapse modes. Section 2 is de-78

voted to the compression tests campaign that has been carried out. After a79

brief recall of the processing of the samples, the experimental results of the80

compression tests are discussed regarding the stacking type, e.g. square or81

hexagonal. Sections 3 and 4 are dedicated to the finite-element modelling of82

the aforementioned tests using two different finite-element (FE) codes: one83

implicit Z-set and one explicit Europlexus (ePX). The cellular structures84

have been subjected to quasi-static compressive loading conditions. In fu-85

ture works that are not reported here, these cellular structures will be tested86

under compressive impact loads. There was therefore an interest to com-87

pare the numerical results obtained in quasi-static loading conditions from88

the different computational methods implemented in implicit static code Z-89

set and explicit fast-transient dynamic code ePX. Section 3 focuses on the90

implementation of a second-order pinball method to improve the modelling91

of contacts in ePX, whereas Section 4 addresses the modelling assumptions92

and the various formulations evaluated in terms of mesh elements and finite93

strain decomposition. A benchmark is proposed in Section 4 between both94

finite-element codes used to discuss the assumptions of the proposed mod-95

els. To finish, the predictions of the modelling are also compared with the96

experimental results to discuss their relevance in Section 5.97
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2. Experimental analysis98

This section addresses the characterisation of the mechanical behaviour of99

cellular structures under quasi-static load. The structures made of a tube100

stacking core have been considered as model cellular structures. First the101

manufacturing process of the cellular structures is briefly described. Then102

the experimental results obtained by performing compression tests on small103

sandwich structures are detailed.104

2.1. Manufacturing process of the specimens105

The cellular materials of interest are brazed tube stackings. The tubes are106

made of Inconel R© 600 alloy which is a standard nickel-base super-alloy used107

when resistance to corrosion at high temperatures is required. The tubes108

implemented in the cellular structures have external and internal diameters109

equal to 5 mm and 4 mm respectively. Skins 1 mm thick, made of the same110

Inconel R© material used for the tubes, were brazed on the top and the bot-111

tom faces of the specimens in order to ensure a better distribution of the112

compressive load.113

To manufacture the cellular structures, the tubes were preliminary coated114

with a 50µm thickness Nickel-Phosphorus (NiP) alloy layer for the brazing.115

The NiP layer was needed to create a large joint between the neighbour116

tubes. The heat treatment considered here consisted in a progressive heating117

under vacuum at 100oC/mn until 1000oC then followed by a dwell of 15 mn118

at 1000oC. A complementary annealing heat treatment was applied to make119

the braze joints less brittle by increasing the diffusion of Phosphorus from the120

brazes towards the tubes (Davoine et al., 2014). This annealing treatment121

consisted in a progressive heating under vacuum at 100oC/mn until 1050oC122

then followed by a dwell of 16 hours at 1050oC. After both heat treatments,123

the samples were cooled down following the natural cooling of the vacuum124

furnace. The tubes and the skins were brazed at the same time.125

Samples of 40 mm width, 40 mm length and about 42 mm height were man-126

ufactured with square or hexagonal stacking cores (Fig. 1). Whereas the127

structures were 8-tube large for both the square and the hexagonal stack-128

ing cores, they were 8-tube high and 9-tube high, respectively. The mean129

length of the braze joints was about 1.5 mm. The equivalent densities of130

the cellular structures were 2.69 10−3 g.mm−3 and 2.89 10−3 g.mm−3 for the131

square and hexagonal stacking cores, respectively, making the use of these132
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materials very attractive compared to the bulk material (8.25 10−3 g.mm−3).133

Before testing, each specimen was at first labelled, measured (height, width134

and length) and manually inspected to check for possible initial defects (e.g.135

tube misalignment, missing braze joints).136

(a) (b)

Figure 1: Cellular structures. (a) square stacking core (b) hexagonal stacking core. The
nominal width and length were 40 mm whatever the stacking core. The nominal height
was 42 mm and 41.6 mm for the square and hexagonal stacking cores respectively.

2.2. Experimental set-up137

The compression tests were performed on an Instron testing machine (ref.138

5887) with a load capacity of about 300 kN. The specimens were placed on139

a fixed circular plate (lower holder) and they were loaded using a plate fixed140

at the end of the jack (upper holder). A spherical link was used between141

the jack and the plate. The spherical link made it possible to reduce the142

influence of the manufacturing defects (e.g. misalignment, specimen flatness)143

that could affect the mechanical response in particular at the beginning of144

the test.145

The global load, noted F , was measured using a piezoelectric cell (Kistler146

9071A) with a load capacity of 400 kN. The load cell was fixed under the147

lower holder in Fig. 2. The deformation applied to the structure in the load-148

ing direction was obtained by the relative distance between the two plates,149

noted U2, and was measured with an optical extensometer Zimmer (200XH).150

Concentricity of the load cell was ensured with the centre of the specimen151

and that of both plates. A digital camera (Photron, SAX) was used to catch152
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pictures of the structures during the test. The spacial resolution of the sensor153

was 1024 × 1024 pixels. Fig. 2 shows the experimental set-up used to test154

the structures under compressive load.155

Camera

Sample

Hydraulic jack

Load cell

Optical
extensometer

Light

Figure 2: Experimental device.

2.3. Experimental results156

The results of the compression tests are presented in terms of nominal stress157

- nominal strain diagrams. The nominal stress is noted Σ22 and is given by158

Σ22 = F/S0, with S0 the initial cross section of the structure (width ×159

length). The nominal strain is noted E22 and is given by E22 = U2/H0, with160

H0 the initial height of the structure. Results are presented for both stacking161

cores investigated for the cellular structures.162

2.3.1. Square stacking core163

Four (nominally identical) cellular structures with a square stacking core164

were tested with the experimental device presented in the previous section.165

Fig. 3 displays the deformation process of the square stacking structure. The166

linear region was very limited and ended when the tubes located in the cen-167

ter of the core started to collapse (Fig. 3(b)). Other tubes then collapsed to168

make a first X-shape shear band (Fig. 3(c)). This deformation process could169
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develop because the specimen was unconfined (lateral faces of the specimen170

were free). When a X-shear band was formed (tubes were closed) then an-171

other one initiated until the densification and the consolidation of the core172

(Fig. 3(d)).173

(a) (b)

(c) (d)

Figure 3: Deformation of the square stacking core cellular structure. (a) E22 = 0 (b)
E22 = −0.10 (c) E22 = −0.25 (d) E22 = −0.45.

The obtained nominal stress - nominal strain response is typical of the174

behaviour of cellular materials under compressive loads. The nominal stress -175

nominal strain diagram is very similar whatever the cellular structure used to176

perform the test (Fig. 4). The linear region is characterised by the effective177

modulus of the structure (Eef ), the plateau corresponding to the collapse178
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and densification region, characterised by the collapse stress (Σc) and a final179

consolidation region. The collapse strain (before the consolidation of the180

structure occurred) is noted Ec. The total energy is notedWt and the collapse181

energy is noted Wc. The linear region ends at a yield stress noted Σ0. Due182

to the collapse of the tubes the yield stress can be greater than the collapse183

stress.184

Mechanical properties are collected in Table 1. The nominal stress - nominal185

strain curve being flat during the plateau phenomena, the collapse stress was186

very close to the yield stress. The experimental scattering was slight for most187

of the mechanical properties analysed from the compression tests, except for188

the results obtained with specimen C12 that were below other results.189

The average effective modulus of the structure was Eef = 1950 MPa. The190

collapse of the cellular structure (first tube to collapse) initiated at an almost191

uniform stress Σ0 and continued until nominal strains close to −0.22, when192

the first X-shape shear band was completely formed. The compression nom-193

inal stress increased because a second X-shape shear band developed across194

the core. X-shape shear bands development within the core was a very stable195

deformation process. The energy absorption was consequently very impor-196

tant during the collapse process. The collapse stress (the average nominal197

stress) was analysed for nominal strains ranging from the corresponding value198

of Σ0 up to the first X-shape shear band was formed (about −0.22). The199

nominal stress increased significantly at a nominal strain, Ec, of about −0.35,200

when many X-shape shear bands had completely developed, because of the201

core consolidation.202

Table 1: Mechanical properties of the cellular structure with the square stacking core.

Test Eef −Σ0 −Σc −Ec Wc −Et Wt

number MPa MPa MPa . MPa . MPa

C10 2436 19.1 18.8 0.347 6.82 0.456 9.92
C11 2080 17.8 18.1 0.348 6.64 0.457 9.65
C12 1454 15.9 16.2 0.363 6.20 0.455 8.33
C14 1824 19.0 19.3 0.346 6.92 0.463 10.3

average 1948.5 17.9 18.1 0.351 6.64 0.457 9.55

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

−E22 (.)

−
Σ
2
2

(M
P

a)
C10

C11

C12

C14

Figure 4: Nominal stress - nominal strain diagrams obtained for the square stacking core.

Some defects were unfortunately present in the cellular specimens due to203

the manufacturing process. Fig. 5 displays two kinds of initial defects ob-204

served for the square stacking core structures. The lowest curve in Fig. 4 was205

obtained for the structure with missing braze joints between the top skin206

and the tubes (specimen C12 in Fig. 5(a)). This brazing defect caused an207

horizontal displacement larger than that observed with the structure without208

defect. Nevertheless, the force-displacement response was not much affected209

by tube misalignment and/or when braze joints were missing between tubes.210

2.3.2. Hexagonal stacking core211

Four (nominally identical) cellular structures with an hexagonal stacking212

core were tested with the experimental device presented in the previous sec-213

tion. Fig. 6 displays the deformation process of the hexagonal stacking struc-214

ture. The linear region was very limited and ended when the tubes brazed215

on the skins started to collapse (Fig. 6(b)). The deformation process of the216

tubes was very different if brazes were missing between the tubes and the skin217

(e.g. the top and the bottom skin on Fig. 6(b)). The tubes within the core218

collapsed until the consolidation of the structure (Fig. 6(d)). The tests were219

stopped when the consolidation of the structure started (to avoid exceeding220

the load capacity limits of the experimental set-up).221
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(a) (b)

Figure 5: Initial manufacturing defects in the square stacking core (a) brazes are missing
between the top skin and tubes for the specimen of test C12. (b) tubes are misaligned
and brazes are missing between tubes for the specimen of test C14.

The analysis of the pictures of the structures taken during each test showed222

that the core deformations initiated near the brazing defects (Fig. 7). Once223

the deformation pattern initiated near a defect, a shear band propagated224

within the core. The different deformation modes were responsible for an225

irregular/chaotic nominal stress - nominal strain response during the defor-226

mation process of the structure (Fig. 8).227

Mechanical properties are synthesised in Table 2. The experimental scatter-228

ing was slight for the yield stress. Because the tests were stopped when the229

consolidation of the structures had started, the collapse stress (Σc) was anal-230

ysed for nominal strain E22 between the corresponding value of Σ0 until the231

end of the test. One should notice that the collapse energy was consequently232

equalled to the total energy. The scattering was slight too for the collapse233

stress even if the nominal stress - nominal strain response was irregular. The234

same conclusion stands for the energy.235

2.3.3. Stacking influence236

Shim and Stronge (1986) have performed confined compression tests and237

a V-shape shear band collapse mode was observed whatever the stacking238
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(a) (b)

(c) (d)

Figure 6: Deformation of the hexagonal stacking core cellular structure H11. (a) E22 = 0
(b) E22 = −0.12 (c) E22 = −0.27 (d) E22 = −0.42.
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(a) (b)

(c) (d)

Figure 7: Local deformation observed at E22 = −0.27 for the hexagonal stacking core
specimens: (a) H11 (b) H12 (c) H14 (d) H15.

Table 2: Mechanical properties of the cellular structure with the hexagonal stacking core.

Test Eef −Σ0 −Σc −Ec Wc −Et Wt

number MPa MPa MPa . MPa . MPa

H11 2354 60.1 57.7 0.430 23.4 0.430 23.4
H12 3772 61.1 57.2 0.445 24.9 0.445 24.9
H14 3661 62.5 52.9 0.433 21.4 0.433 21.4
H15 4284 61.2 56.6 0.426 23.1 0.426 23.1

average 3518 61.2 56.1 0.433 23.2 0.433 23.2
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Figure 8: Nominal stress - nominal strain diagrams obtained for the hexagonal stacking
core.

(square or hexagonal). The confinement was beneficial for the hexagonal239

stacking. The difference between the elastic modulus of both stacking cores240

was much larger in the case of confined tests compared to the unconfined ones.241

Papka and Kyriakides (1998) have performed unconfined compression tests242

on the hexagonal stacking only and a simple shear band was observed. In the243

experiments presented in this paper, the compressions tests were unconfined244

and a X-shear band was observed for the square stacking core while a simple245

shear band, comparable to that of Papka and Kyriakides (1998), was observed246

for the hexagonal stacking core.247

Shim and Stronge (1986) have observed also that the first tubes to collapse248

were located next to the skins (Fig. 6). This was because the brazed joints249

were less numerous in the hexagonal stacking between the tubes and the skins250

compared to the number of brazed joints within the core. The brazed joints251

being less numerous in the square stacking core, the elastic modulus of the252

hexagonal stacking was greater than that of the square stacking one. This253

was confirmed by the computations of Iltchev et al. (2015). The specimens254

tested by Papka and Kyriakides (1998) were manufactured with no top and255

bottom skins. A simple, narrow, shear band was clearly developing within256

the core in that case (no additional shear band next to the skins). The257

deformation process was very repeatable and created a stress plateau with258

15
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undulations, less irregular compared to the results in Fig. 8.259

In the case of stacked tubes in contact only (Shim and Stronge, 1986),260

plastic hinges were located at the inter-tube contact points and at points261

mid-way between them. In the case of brazed stacked tubes, plastic hinges262

were on both sides of the brazes and mid-way between the brazes.263

Many analytical models in the literature assume that the density is the main264

parameter governing the mechanical properties of cellular structures (Gibson265

and Ashby, 1982, 1997). Here, both the hexagonal and square stacking cores266

have very similar equivalent densities (2.6910−3 g.mm−3 and 2.8910−3 g.mm−3
267

for the square and hexagonal stacking cores), but their mechanical properties268

are very different due to the cellular architecture.269

The effective elastic modulus of the square stacking was approximatively270

half that of the hexagonal one. The yield and collapse stresses obtained with271

the square stacking were about one third of those of the hexagonal one. The272

total energies Wt given in Tables 1 and 2 were obtained for almost identical273

values of nominal strain, 0.45 and 0.43 for the square and hexagonal stacking274

cores respectively. The total energy dissipated by the square stacking was275

about 40% of the hexagonal one. As mentioned previously, the total energy276

for the square stacking was computed with the consolidation of the structure277

taken into account. On the contrary, the tests with the hexagonal stacking278

cores were stopped before the consolidation stage had started. Moreover,279

the collapse energy Wc given in Tables 1 and 2 were obtained for different280

values of collapse strain Ec (0.35 and 0.43 for the square and hexagonal281

stacking cores respectively). It is shown in Table 3 that, when normalized282

(W 1
c = −Wc/Ec), the collapse energy for the square stacking was about one283

third of that of the hexagonal stacking.284

This disagreement with the models of the literature can be explained by285

the fact that the number of neighbours for each tube is not the same for the286

hexagonal and square stackings. Each tube in the hexagonal stacking has six287

braze joints (instead of only four for the square stacking) which stiffen the288

tube walls, hence an increased resistance to compression.289

The compression tests have shown for both stacking cores very large defor-290

mations, displacements and rotations, and also many contact points. The291

deformation of the structures under compressive load is consequently very292

challenging to simulate. To this aim, a contact algorithm developed for bi-293

parabolic elements and implemented in the explicit software package is first294

presented.295
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Table 3: Normalized collapse energy.

Test −Ec Wc W 1
c Test −Ec Wc W 1

c

number . MPa MPa number . MPa MPa

C10 0.347 6.82 19.6 H11 0.430 23.4 54.4
C11 0.348 6.64 19.1 H12 0.445 24.9 55.9
C12 0.363 6.20 17.1 H14 0.433 21.4 49.4
C14 0.346 6.92 20. H15 0.426 23.1 54.2

average 0.351 6.64 18.9 average 0.433 23.2 53.5

3. Pinball contact-impact method296

The cellular structures tested under compressive loads are subjected to297

many contacts during the deformation process. Contact algorithms are also298

an important component of numerical simulation software in fast transient299

dynamics. Such algorithms have been traditionally based on the so-called300

sliding lines and sliding surfaces (Hallquist et al., 1985). Sliding-based algo-301

rithms may present some difficulties in detecting contacts in complex geomet-302

rical situations. Therefore, an alternative formulation based on the so-called303

pinball metaphor has been proposed by Belytschko and Neal (1991) and Be-304

lytschko and Yeh (1993). This approach is more robust in detecting contacts.305

The details on the development of the contact algorithm compatible with bi-306

parabolic elements are given in the Appendix A for the sake of brevity. Only307

the base-line of the pinball method is reminded in the following paragraphs.308

In the pinball method used in ePX, a computer program for the Finite309

Element simulation of fast dynamic phenomena, the user defines the elements310

that may enter in contact with one another and a ‘parent’ pinball (a sphere311

for 3D problems or a circle for 2D problems) is associated with each one of312

these elements. The centre of each pinball is simply the average of the nodal313

positions of the associated element. By default, the radius of the pinball314

is computed so as to encompass all nodes of the element in the current315

configuration. While the pinball radius is kept constant, by assuming that316

element deformation is not too large and occurs (plastically) at constant317

volume, the centres of the pinballs are calculated at every time step.318

Interpenetration is checked by comparing the distance of the centres of319

two pinballs with the sum of their radii. If interpenetration of a couple of320
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pinballs is detected, equal normal velocity is enforced at the relevant nodes by321

the method of Lagrange multipliers and the corresponding contact forces are322

computed (Fig. 9). It is worth noting that the distinction between master and323

slave pinballs, that is maintained by Belytschko and Neal (1991) for historical324

and practical reasons, is rather artificial. In fact, the pinball algorithm is325

inherently symmetric and no distinction is needed a priori between a master326

and a slave (unlike in sliding surface and sliding line methods).327

A set of pinballs forms one body that may come in contact with other328

bodies. Normally, contact between pinballs belonging to the same body is329

not checked. However, the contacts that may occur inside the tubes are330

typical of the so-called ‘auto-contact’ or ‘self-contact’ conditions. In this331

case, thanks to a special input command contact is also checked different332

pinballs belonging to the same body.333

Sometimes the representation of an element by just one (parent) pinball334

is geometrically crude. Optionally, contact may be verified on a hierarchy335

of ‘descendent’ pinballs derived from the parent pinballs described above by336

recursively halving (upon to a certain level or to a certain size specified by337

the user) the pinball dimensions. This allows finer spatial resolution of the338

contact conditions. A parent (0-level) pinball is associated with each element.339

Then, the pinball radius is roughly divided by two at each new level produced340

as shown in Fig. 9.341

By default, the radius of any descendent pinball is computed so as to342

encompass all ‘nodes’ of the corresponding element portion in the current343

configuration. Optionally, the radius of final-level descendent pinballs may344

be computed in such a way that their volume equals the initial volume of345

the associated element portion. This further increases slightly the accuracy346

of contact detection.347

The pinball method is applied to the cellular structures tested under com-348

pressive load. The next section illustrates the models used to simulate the349

tests and to investigate the influence of the type of elements (i.e. quadran-350

gular, triangular, linear, quadratic) and the type of numerical scheme (i.e.351

implicit or explicit) on the mechanical behaviour of the structure.352

4. Finite Element Analysis353

The square and hexagonal stacking cores were modelled with implicit static354

code Z-set and explicit fast-transient dynamic code ePX. Since the problem355
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Figure 9: Pinball contact-impact method: general principle on the left, hierarchy pinball
levels on the right (picture taken from Belytschko and Neal (1991)).

presented here is practically static, it can be anticipated that its solution356

with an explicit fast-transient dynamic code such as ePX will be expensive357

in terms of CPU time. The cellular structures have been subjected to quasi-358

static compressive loading conditions. In future works that are not reported359

here, these cellular materials will be tested under compressive impact loads,360

for which ePX is much better suited. There is therefore an interest to com-361

pare the numerical results obtained in quasi-static loading conditions from362

the different computational methods implemented in implicit static code Z-363

set and explicit fast-transient dynamic code ePX when using the same type364

of elements and the same mesh grid.365

4.1. Material properties366

The tubular specimens, with the dimensions given in Fig. 10, were made of367

Inconel R© 600 material. After the tubes were machined, each specimen was368

submitted to NiP layer coating and then subjected to the same heat treat-369

ments as in the brazing and annealing processes (section 2.1). Tensile tests370

were performed to characterise the material isotropic hardening (Portemont371

et al., 2014). Experimental results have shown that the isotropic hardening372

could be modelled with the Ramberg-Osgood constitutive law presented in373

Eq. (1).374

σ = σ0 + Cpn (1)
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Black/white marks

Strain gauge

Figure 10: Tubular specimen for tensile tests. The dimensions of the specimen are given in
mm and the external diameter in the thinner central part of the tube is 5 mm. The strain
is measured on one side of the specimen by the optical extensometer with the black/white
marks, and on the other side a gauge is bonded.

where p is the cumulative plastic strain, σ0 is the initial yield stress. C and375

n are the isotropic hardening modulus and exponent, respectively.376

The model parameters were determined thanks to the true-stress - true-377

strain diagrams obtained for the different tests performed under quasi-static378

tension (2 mm.mn−1) and for plastic strains up to 0.2. (The necking starts379

for plastic strains above 0.2.) The model parameters, z = {σ0, C, n}, were380

identified using a numerical optimisation procedure based on a Simplex algo-381

rithm with the cost function f defined by relation (2), which is the quadratic382

sum of errors made for each experimental data point. In relation (2), d (i)383

stands for the distance, for a given plastic strain pi between the constitutive384

model, σ (z, pi), and the corresponding experimental data, σexp (i).385

f (z) =
N∑

i=1

d (i)2

σexp (i)2
=

N∑

i=1

(σ (z, pi)− σexp (i))2

σexp (i)2
(2)

The following values were identified for the model parameters:386

• elastic properties: E = 197600 MPa, ν = 0.29,387
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• initial yield stress: σ0 = 252 MPa,388

• isotropic hardening properties: C = 1697 MPa and n = 0.71.389

These material constants were used in the following FE simulations using390

Z-set or ePX software packages. One should note that the material density391

was set to 8.25 10−3 g.mm−3 for the computations performed with explicit392

FE code ePX.393

4.2. Geometry and FE meshing394

The dimensions of the structures, the diameters of the tubes and the thick-395

ness of the skins were already given in section 2.1. The cellular structures396

were modelled with 2D plane-strain elements for cost efficiency.397

In ePX only quadrangular elements and a polar decomposition for the finite398

strain formulation were available. Four-node quadrangular finite elements399

with linear shape functions are commonly used by ePX users for continuum-400

like elastoplastic solids subjected to impact loads, although nine-node finite401

elements with quadratic shape functions are more accurate. However, when402

using elements of the same size, the time step (for computational stability)403

of 9-node elements is half that of 4-node elements, and the number of degrees404

of freedom is higher. For these both reasons, the computational cost with405

ePX is higher when using parabolic 9-node finite elements than with linear406

4-node finite elements.407

The size of the element used in the computations with the quadrangular408

finite elements was about 0.125 mm (4 FE through the tube wall thickness).409

This size was determined thanks to a mesh convergence parametric study410

performed on single tube lateral compression using bi-parabolic elements.411

FE simulations were performed with meshes varying from 1 FE to 8 FE per412

tube wall. The results showed that the global responses and the deformation413

modes were well predicted when the tube had at least 4 FE per wall. Of414

course, FE results with more than 4 FE per wall were better, but the stability415

time step of the explicit scheme became too small for the modelling of the416

cellular structures. The numbers of nodal points and finite elements are given417

in Table 4. The FE models implemented for the square stacking core and418

the hexagonal stacking core are presented in Fig. 11.419
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(a) (b)

Figure 11: Quadrangular FE Meshes for the tested cellular structures. (a) square stacking
core (b) hexagonal stacking core.

In Z-set both quadrangular and triangular elements were implemented as420

well as both polar and co-rotational decompositions. Different meshes were421

considered, the quadrangular one used for explicit simulations (Fig. 11) and a422

triangular one with refined elements in the neighbourhood of the braze joints423

(Fig. 12). Whereas for quadrangular meshes only a polar decomposition was424

used for the finite strain formulation, for triangular meshes either a polar or425

a co-rotational decomposition was used. The numbers of nodal points and426

finite elements are given in Table 4. For the triangular meshes, the choice427

of three elements in the thickness of the tubes resulted from our previous428

works on hollow-sphere (Marcadon and Feyel, 2009; Marcadon and Kruch,429

2013) and tube (Marcadon et al., 2012; Marcadon and Kruch, 2011) stackings430

which have shown that calculations converged in terms of element size for431

such refined meshes.432

Since the cellular structures tested in this paper were subjected to large433

compaction levels, involving large strains and rotations, a full-integration434

formulation was applied. The comparisons between the predictions from435

both ePX and Z-set software packages were performed in terms of both436

element type and size and finite strain formulation.437

4.3. Contacts and initial conditions438

In ePX, the internal contact was modelled by the pinball method (see439

section 3 and Appendix A) with the maximum hierarchy level set to 2 for440

a finer spatial contact resolution (to avoid spurious contacts in particular441

in the case of self-contacts). The radius of the pinballs generated in the442

hierarchic method was computed in such a way that its volume equalled the443
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(a) (b)

Figure 12: Triangular FE Meshes for the tested cellular structures (implicit simulations
only). (a) square stacking core (b) hexagonal stacking core.

Table 4: Synthesis of the FE models for the tested cellular structures.
Computational Element Number of Number of Number of

FE model type nodes FE (physical) Gauss points

Square 4-node linear 31658 26240 104960
stacking core 9-node quadratic 115922 26240 236160

3-node linear 29100 48720 146160
6-node quadratic reduced 107046 48720 146160

Hexagonal 4-node linear 34135 28736 114944
stacking core 9-node quadratic 125927 28736 258624

3-node linear 34167 58332 174996
6-node quadratic reduced 126851 58332 174996
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initial volume of the associated element portion. These options delivered444

satisfactory results during the parametric study performed with a simplified445

model of cellular structure (Casadei et al., 2014b).446

Different bodies for the pinball method were created for each self-contact447

zone in the FE models (e.g., inside each tube and between tubes, see Fig. 13448

for the square stacking core) for cost efficiency. It should be noted that defin-449

ing a single self-contacting zone would give identical results. The numbers of450

local (parent) pinballs were 8708 and 8526 for the FE models of the square451

and the hexagonal stacking cores, respectively.452

In Z-set, the internal self-contact was modelled in implicit by using clas-453

sical frictionless Coulomb contact without any penalty condition.454

Figure 13: Self-contact zones for the pinball contact-impact method and the square stack-
ing core.

The anvils were not implemented in the simulation to model the anvil/top455

skin and anvil/bottom skin contact conditions because no friction model was456

compatible yet with the pinball method in ePX and the Coulomb contact in457

Z-set was chosen frictionless. A vertical displacement U2 was consequently458

prescribed for the nodal positions of the bottom and top skins. The bottom459

skin was blocked: U2 = 0. The top skin was subjected to an imposed dis-460

placement: U2 = 20 mm at the end of the computation (the final physical461

time of calculation was 20 ms with ePX), corresponding to a final expected462
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nominal strain of E22 = −0.48. The node located at the centre of the bottom463

skin was blocked in the horizontal direction (U1 = 0).464

4.4. Numerical results465

The computations with ePX were performed on a computer cluster using466

8 threads and the following performances: Intel R© Ivy-Bridge E5-2667v2 @467

3.29 GHz, 132 GB RAM, 10 GB swap. The computations with Z-set were468

performed on computer clusters using 4 threads and the following perfor-469

mances: AMD R© Opteron Magny-Cours 6176 SE @ 2.3 GHz, 72 GB RAM.470

For a sake of briefness and because similar collapse modes were predicted471

by both explicit and implicit simulations, contour plots are presented only472

from ePX (see Appendix B).473

The computed nominal stress - nominal strain responses are presented in474

Fig. 14. There was a very good agreement between the predictions of both475

FE codes, explicit one ePX on one side and implicit one Z-set on the other476

side. The mechanical responses were very close for a given order of the477

meshes (i.e. linear or quadratic), whatever the element type (i.e. triangular478

or quadrangular) and the finite strain formulation (i.e. polar or co-rotational).479

Papka and Kyriakides (1998) have shown that the computed responses re-480

mained monotonically increasing when the stacking deformed symmetrically.481

This was particularly true for the computations presented in this paper us-482

ing linear elements and the square stacking that deformed symmetrically483

(Fig. B.19, see Appendix B).484

The mesh order had a very important influence on the numerical nominal485

stress - nominal strain responses. The model made with linear elements486

were too stiff whatever the element type and the mesh refinement in the487

braze joint areas. The convergence of linear mesh was studied with ePX488

and the model of the square stacking core using a refined 4-node elements489

mesh. The mesh refinement had consisted in splitting each element of the490

initial mesh (Fig. 11(a)) in two in each direction. The computational results491

were improved by refining the linear mesh. However, the computed response492

with the refined mesh still largely differs from the data obtained with the493

parabolic FEs.494

The local plastic strains obtained for both stackings are presented in Figs. B.19495

and B.20 (see Appendix B) for the the linear and quadratic meshes respec-496

tively. The mesh order had a very important influence on the local responses497
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Figure 14: FE predictions of nominal stress - nominal strain responses: comparison be-
tween the two FE codes evaluated and the FE formulations (a) for the square stacking
core (b) for the hexagonal stacking core. When referring to meshes the abbreviation quad.
means quadratic, whereas it means quadrangles when it refers to the element geometry.
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of the models. A simple shear band, comparable to the computations by498

Papka and Kyriakides (1998), was initiated in the hexagonal stacking when499

the model was set up with quadratic elements. The horizontal displacement500

of the top skin was very different depending on the mesh order. When using501

linear meshes, it was almost zero in the case of the square stacking and was502

larger in the case of the hexagonal stacking. The tubes collapsed and the503

local strains were more localised within the folds or plastic hinges, when the504

computations were performed with quadratic meshes. This was particularly505

true for the hexagonal cellular structure; tubes collapsed row after row and506

the cells were almost closed at the end of the computations.507

For the explicit FE code, the stability time step decreased significantly dur-508

ing the computations. However, this was typical of solid structure computa-509

tions under large compression levels. No numerical instability was observed510

and every computations were successfully performed until the physical time511

prescribed in the input file. Implicit simulations needed considerably longer512

computation durations compared with the explicit ones and their conver-513

gence was more difficult because of some geometrical locking of the elements514

around braze joints. Thus, even after several weeks of computation (few515

months for some cases), the compaction levels reached from implicit simula-516

tions remained significantly lower than those reached from explicit ones.517

5. Discussions518

The models made of linear elements did not reproduce well the experimen-519

tal data. For the quadratic meshes, the type of element had a very limited520

influence on the nominal stress - nominal strain responses and also on the521

local deformations. Only the results from the code ePX obtained with the522

quadratic meshes (quadrangular elements) are compared in this section with523

the experimental data. The tests were stopped when the consolidation of the524

structure started (to avoid exceeding the load capacity limits of the exper-525

imental set-up). Computational results are given over this range to assess526

the numerical stability over a compaction level of 50%, especially during the527

consolidation of the structure.528

First, the top skin of the cellular structures was free to move in the horizon-529

tal direction. The experiment did not exhibit such large horizontal displace-530

ments of the top skin. In the experiments, the development of X-shape shear531

bands had prevented such horizontal displacement in the case of the square532
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stacking structures (see Fig. 3). Such horizontal displacement was observed in533

the deformation mode of the hexagonal stacking structure shown in Fig. 7(d)534

which was close to the model (Fig.B20(b)). The nominal stresses were over-535

estimated by the models, especially for the hexagonal stacking (Fig. 15).536

Then, the FE models were also re-computed by blocking the horizontal537

displacement of the node located at the central position of the top skin. For538

the square stacking, the rotations of some braze joints located near the skins539

were larger in that case. The model did not reproduce well the X-shape shear540

bands. In the case of the hexagonal cellular structure, the position and the541

orientation of the first row that collapsed were different. The nominal stress542

- nominal strain responses were not significantly affected by this change in543

the boundary conditions.544

As already mentioned, most of the tubes in the models collapsed within545

the core and many were completely closed. Large plastic strain developed in546

the tubes and the maximum values were in the hinges. However, the braze547

joint zones were not subjected to strong plastic strains. With Z-set, trian-548

gular meshes were refined in the braze joints (compared to the quadrangular549

meshes), but this refinement had very limited influence on the numerical550

responses (both local and global).551

The stronger overestimation of the nominal stress - nominal strain responses552

observed in the case of the hexagonal stacking might be explained by the553

fact that, experimentally, this stacking exhibited a more scattered and irreg-554

ular behaviour than that of the square stacking because of more numerous555

stacking defects, such as missing braze joints and tube misalignment, which556

were not modelled. In the computations of Papka and Kyriakides (1998),557

a numerical instability was initiated at approximately the same row as in558

the experiment. This instability influenced the deformation of the pattern559

but not the overall response of the specimen. Moreover, some braze joints560

failed during the compression of the structure but failure was not modelled561

in the simulations. Consequently, the stress increase, induced by internal562

self-contact occurrence, was more spread experimentally than that predicted563

numerically.564

In the present work, the Inconel R© 600 material was characterized consid-565

ering the effects of the process used to manufacture the cellular structures.566

Thus, the mechanical material properties were consequently correctly known567

and defined for the tubes. However, the issue of the mechanical properties568

of the brazes is more complex. This material differs from that of the tubes569
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in terms of composition and microstructure (Davoine et al., 2014), hence its570

mechanical properties are probably different. They cannot be characterised571

easily. Some previous works on tube stackings (Marcadon et al., 2012) in-572

vestigated this issue by introducing a specific behaviour and damage into573

the braze, but the effect was rather limited. On the contrary, our previous574

works on hollow-sphere stackings (Marcadon and Feyel, 2009; Marcadon and575

Kruch, 2013) suggested that the geometry of the brazes and the existence of576

some geometrical defects is a more critical issue.577

The numerical analysis of the influence of defects would need a fully para-578

metric description of the geometry of the structures and also of the defects.579

This model is not available for the moment. To verify if defects could have an580

important influence on the numerical results, the authors tentatively modi-581

fied the models of the cellular structures by affecting a weakened material to582

the FE of the braze joints (the material model of section 4.1 was previously583

affected to all FE of the models). The Young’s modulus of the braze joint584

material was arbitrarily taken 10 times less than that of the tubes and skins.585

All other material properties were unchanged. This modification simply in-586

volved larger elastic strains for the same stress state.587

The influence of the mechanical behaviour of the braze joints was very588

limited in the case of the square stacking core. The deformation of the589

structure was slightly modified, as shown in Fig. B.21, but the local plastic590

strains were not significantly increased in the braze joints. At the same591

compaction level, the horizontal displacement of the top skin was however592

less when the model was set-up with the weakened material law for the593

braze joints (see Figs.B.20(d) and B.21(c) for a compaction level of −0.42).594

The mechanical behaviour of the braze joints had a little influence of the595

nominal stress - nominal strain response of the square stacking core structure596

(Fig. 15(a)). The response of the FE model with the weakened material law597

affected to the braze joints was a little lower. The percentage difference598

between both models was almost constant during the deformation process of599

the structure (-7.5%).600

The influence of the mechanical behaviour of the braze joints was much601

more significant in the case of the hexagonal stacking core. The deformation602

of the structure showed different mechanisms, because the braze joints ex-603

perienced larger plastic strains in the model (see Figs.B.20(b) and B.21(a)604

for a compaction level of −0.24). This can be explained by the fact that,605

the brazes being more numerous compared with the square stacking, they606
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stiffen considerably the tubes and their contribution to the overall behaviour607

of the stacking is important. On the contrary, for the square stacking it is608

the tubes behaviour that governs the overall behaviour of the structure. The609

nominal stress - nominal strain response was significantly affected when the610

weakened material law was considered for the braze joints (Fig. 15(b)). A611

percentage difference of -30% was progressively reached for a nominal strain612

of −0.16. This maximum difference was almost constant until a nominal613

strain of −0.26 and differences between -10% and -30% were observed for a614

nominal strain above −0.16.615

It is worth noting that, to go further it might be interesting to weaken only616

one or few brazes each time to investigate the influence of the distribution617

of the defects on the overall behaviour and the collapse modes. Indeed,618

some previous works have shown that particular distributions of the weakest619

elements towards the loading direction are more detrimental to the overall620

behaviour of the structure (Marcadon and Kruch, 2013; Silva and Gibson,621

1997).622

The introduction of a weakened material law did not affect the numerical623

stability of the models. The numerical results showed that the braze joints624

have a more important influence on the mechanical response of the hexagonal625

stacking. This conclusion was anticipated experimentally because the braze626

joint defects affected more the mechanical responses (both local and global)627

of the hexagonal stacking core.628

6. Conclusion629

This work aimed at studying the mechanical behaviour of cellular structures630

made of tube stackings under compressive loads. Experimental results have631

shown that the crushing behaviour of the square stacking core is a very632

stable process. The mechanical response has a very smooth and flat plateau633

even though defects are present in the cellular specimens. The deformation634

process of the hexagonal stacking core being more influenced by initial defects635

in the core, the mechanical response was consequently more chaotic during636

the crushing process. Both the hexagonal and square stacking cores had very637

similar equivalent densities, but their overall mechanical properties were very638

different due to the cellular architecture.639

The compression tests have shown for both stacking cores very large defor-640

mations and displacements and also many contact points. The deformation641
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Figure 15: Comparison of nominal stress - nominal strain responses: (a) for the square
stacking core (b) for the hexagonal stacking core. The influence of the braze joints me-
chanical behaviour on the nominal stress - nominal strain responses is given by the curves
FEA-braze.
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of the structures under compressive load is consequently very challenging642

to simulate. To this aim, a pinball contact algorithm compatible with bi-643

parabolic element has been implemented in the explicit software ePX and644

validated for all quadratic elements available in the FE code.645

The models used to simulate the tests and to investigate the influence of646

the type of elements and the type of numerical scheme (implicit with Z-647

set, explicit with ePX) on the mechanical behaviour of the structure were648

presented. Results on both the square and hexagonal stacking cores have649

been presented and compared with the experimental data. A very good650

agreement between the predictions of both FE codes, explicit (ePX) on one651

side and implicit (Z-set) on the other side, was found. The computational652

results were very dependent upon the FE order implemented in the cellular653

structure. The nominal stress - nominal strain response obtained with the654

models made of linear FE was always greater than the one given by the655

models with parabolic elements. This result was particularly true for the656

hexagonal stacking core cellular structure that behaved completely differently657

depending on the type of elements implemented in the model. For a given658

order of the elements, both codes gave very close predictions whatever the659

geometry of the elements or the finite strain formulation. Compared with the660

experimental results, the relevance of the FE model was discussed. A better661

agreement was achieved between the predictions of the parabolic elements662

and the experimental results when the braze joint defects were tentatively663

introduced in the FE models by using weakened material properties.664
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Appendix A. Computational aspects of the Pinball method in ePX669

The pinball contact-impact method has been implemented in the FE code670

ePX initially based upon a ‘strong’ (coupled, implicit) Lagrange multiplier671

solution strategy of the contact constraints (Casadei, 2002). Recently, an672

alternative penalty-based (fully explicit) solution of the contact constraints673

has been introduced by Casadei et al. (2014a) as an option in the code.674
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Following Belytschko and Neal (1991) and Casadei (2003a), the penetration675

can be calculated as follows. Consider two interpenetrating pinballs, 1 and676

2, as shown in Fig. A.16, with the velocities v1 and v2; the normals of the677

associated surfaces are n1 and n2. The position vectors of the two pinballs are678

given by C1 and C2. The interpenetration is given by g and is defined as the679

relative displacement of the centers of the pinballs in the average direction680

n needed to eliminate the interpenetration (see relations (A.1) and (A.2)).681

The average normal direction is given by the relation (A.3).682

Figure A.16: Interpenetration of two pinballs (picture taken from Belytschko and Neal
(1991)).

dtd = (R1 +R2)
2 (A.1)

683

d = C1 − C2 + gn (A.2)

n =
n2 − n1

‖n2 − n1‖
(A.3)

where ‖ ‖ is for the length of a vector.684

The penetration g can be determined by relations (A.4) and (A.5). Note685

that only the positive radicand in the relation (A.4) needs to be considered.686

The negative root corresponds to a negative value of g which is irrelevant.687

Besides the interpenetration g, the rate of penetration ġ may be computed688

following relation (A.6).689

g = −b+
√
b2 − c (A.4)
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where b and c are defined by:690

b = nt (C1 − C2)

c = ‖C1 − C2‖2 + (R1 +R2)
2 (A.5)

ġ =
∆g

∆t
=

1

N

N∑

i=1

(
v
(2)
i − v(1)i

)
· n (A.6)

where v(j)i are the nodal velocities (i ∈ {1, N}, with N the number of nodes)691

of element j. Note that the quantity g can also be considered to be given by692

the time integral of ġ (A.7). In a surface-based slide-line algorithm, ġ is not693

path-independent.694

g =

∫ t

t1

ġdt (A.7)

where t1 is the time when penetration begins.695

Note that the calculation of the penetration amount is only needed when696

the penalty-based approach is adopted for the calculation of the contact697

forces. The Lagrange multipliers approach only needs a check of whether or698

not there is interpenetration, but the amount of the latter is irrelevant. A699

more detailed algorithm than the one summarised above for the calculation700

of the penetration, used in conjunction with the penalty approach and the701

ASN algorithm, is reported by Casadei et al. (2014a), and is not presented702

here for the sake of brevity.703

Besides the detection of contact (interpenetration) conditions presented in704

the previous paragraph, any contact-impact algorithm requires the deter-705

mination of suitable contact forces, acting on the touching bodies and pre-706

venting (further) interpenetration of the two domains. Belytschko and Neal707

(1991) present two implementations of contact force determination for the708

pinball algorithm, one based on the penalty method and the other based on709

the Lagrange multipliers. In the latter case, contact forces should ensure the710

relation (A.8)711

(v1 − v2) · n ≤ 0 (A.8)

where v1 and v2 are the velocities of the two pinballs and n represents a suit-712

able normal direction to the contact surface. Note that relation (A.8) is an713

inequality and not an equation. The case with the < sign corresponds to the714
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possibility of rebound and must be suitably treated in the implementation.715

Two alternative implementations of rebound, one based on an a priori esti-716

mation of rebound (this is the one used here) and the other on an a posteriori717

checking of the sign of the Lagrange multipliers, are implemented in ePX,718

but are not detailed here for the sake of brevity.719

The contact condition (A.8) can also take the form given by relation (A.9)720

and the velocities at the two pinball centers are expressed by relations (A.10)721

and thus involve the velocities of all nodes of elements 1 and 2 through722

suitable shape functions N . The unit normal n12 is directed along the line723

joining the two pinball centers and is oriented from 1 towards 2. A problem724

is to determine the normalised coordinates of the pinball centers to compute725

N1i (1) and N2i (2) in relations (A.10). v1i and v2i are given by the explicit726

integration scheme.727

v1 · n12 − v2 · n12 ≤ 0 (A.9)

and728

v1 =
∑n1

i=1N1i (1) v1i v2 =
∑n2

i=1N2i (2) v2i (A.10)

In Finite Element formulations use is often made of interpolations (map-729

pings) of the form: f (x) =
∑n

i=1Ni (ξ) f (xi), whereby the value of a func-730

tion at a point in the space of global coordinates x, usually lying within a731

finite element characterised by n nodal points i, is computed by a weighted732

interpolation of the function values at the nodal points f (xi) by means of ap-733

propriate shape functions Ni. These functions are usually expressed in terms734

of the so-called normalised coordinates ξ, that map the element or volume735

onto a parent element or volume. The inverse mapping problem consists in736

finding the normalised coordinates of a point in space with respect to a known737

geometric figure (i.e an element). These methods have been developed and738

presented by Casadei (2001, 2003b) for elements with linear shape functions.739

The inverse mapping method is used to compute the normalised coordinates740

of the pinball centers based on their corresponding coordinates and then to741

compute the velocities at the pinball centers: v1 and v2 in relations (A.10).742

The method developed for the bi-parabolic element in Fig. A.17 is similar743

to the one developed for the bi-linear quadrilateral element (Casadei, 2001,744

2003b). The actual local numbering of the element nodes implemented in745
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ePX is the one given in Fig. A.17 in order to make it compatible with746

QUA9 element shape of Cast3m pre-processor (circular numbering). With747

the numbering of Fig. A.17, the shape functions are given by relations (A.11).748

N1 (ξ, η) = 1
4
ξη (ξ − 1) (η − 1) N5 (ξ, η) = 1

4
ξη (ξ + 1) (η + 1)

N2 (ξ, η) = 1
2
η (1− ξ2) (η − 1) N2 (ξ, η) = 1

2
η (1− ξ2) (η + 1)

N3 (ξ, η) = 1
4
ξη (ξ + 1) (η − 1) N7 (ξ, η) = 1

4
ξη (ξ − 1) (η + 1)

N4 (ξ, η) = 1
2
ξ (ξ + 1) (1− η2) N8 (ξ, η) = 1

2
ξ (ξ − 1) (1− η2)

N9 (ξ, η) = (1− ξ2) (1− η2)

(A.11)

The direct coordinate mapping is defined by:749

x =
∑9

1Nixi and y =
∑9

1Niyi (A.12)

and by developing relations (A.12) with relations (A.11), we get:750

F1 (ξ, η) = a1ξ
2η2 + b1ξ

2η + c1ξη
2 + d1ξη + e1ξ

2

+ f1η
2 + g1ξ + h1η + i1 − 4x = 0

F2 (ξ, η) = a2ξ
2η2 + b2ξ

2η + c2ξη
2 + d2ξη + e2ξ

2

+ f2η
2 + g2ξ + h2η + i2 − 4y = 0

with:751

a1 = x1 − 2x2 + x3 − 2x4 + x5

− 2x6 + x7 − 2x8 + 4x9

a2 = y1 − 2y2 + y3 − 2y4 + y5

− 2y6 + y7 − 2y8 + 4y9
b1 = − x1 + 2x2 − x3 + x5

− 2x6 + x7

b2 = − y1 + 2y2 − y3 + y5

− 2y6 + y7
c1 = − x1 + x3 − 2x4 + x5

− x7 + 2x8

c2 = − y1 + y3 − 2y4 + y5

− y7 + 2y8
d1 = x1 − x3 + x5 − x7 d2 = y1 − y3 + y5 − y7
e1 = 2x4 + 2x8 − 4x9 e2 = 2y4 + 2y8 − 4y9
f1 = 2x2 + 2x6 − 4x9 f2 = 2y2 + 2y6 − 4y9
g1 = 2x4 − 2x8 g2 = 2y4 − 2y8
h1 = −2x2 + 2x6 h2 = −2y2 + 2y6
i1 = 4x9 i2 = 4y9

(A.13)
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Figure A.17: Bi-parabolic 2D quadrilateral element.

System (A.13) being non-linear and not easy to be solved analytically, it is752

rather preferable to resort to a numerical solution obtained by the well-known753

Newton-Raphson iterative method. To this aim, the problem is formulated754

by posing:755

χ =

[
ξ
η

]
and F

(
χ
)

=

[
F1 (ξ, η)
F2 (ξ, η)

]
=

[
F1

(
χ
)

F2

(
χ
)
]

The value χ?, such that F
(
χ?
)

= 0, is sought with iterations of the Newton-756

Raphson method.757

The velocity constraint for a contact between two parent (0-level) pinballs is758

written along a ‘normal’ direction which, by default, coincides with the line759

joining the two pinball centres (Fig. 9). For a contact between descendent760

pinballs (in the hierarchic method) one can alternatively use a ‘common’761

normal (CNOR). One such normal is determined for each couple of contact-762

ing element faces. When multiple contacts between sub-pinballs occur in763

case of flat (face to face) element contact, the common normal is a better764

approximation than the standard one to the real contact direction.765

The so-called Assembled Surface Normal (ASN) algorithm of Belytschko766

and Law (1985) may be optionally activated to compute an unique (nor-767

malised) normal to each external node of the mesh portion subjected to768

contact, and an unique (normalised) normal to each pinball (parent or de-769

scendent), as shown in Fig. A.18. The penetration direction between contact-770

ing pinballs is then computed using the ASNs of the two pinballs according771

to a set of rules. This improves the treatment of flat contact, especially in772

conjunction with a penalty formulation to compute the contact forces. ASN773

algorithm cannot be used together with CNOR method.774
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This method has been extended to all other linear and quadratic finite775

elements of FE code ePX. The implementation and the relevant test cases776

are reported by Casadei et al. (2014b).777

Figure A.18: Assembled surface normals (picture taken from Belytschko and Neal (1991))

Appendix B. Contour plots778

This Appendix presents some contours plots of the cellular structures FE779

simulations. The pictures were obtained by the explicit fast-transient dy-780

namic code ePX.781
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(a)

(b)

(c)

(d)

Figure B.19: Numerical deformation of the cellular structures (contours: cumulative plas-
tic strain). The deformations were obtained with the meshes made of quadrangular linear
FE. (a) E22 = −0.12 (b) E22 = −0.24 (c) E22 = −0.36 (d) E22 = −0.47.
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(a)

(b)

(c)

(d)

Figure B.20: Numerical deformation of the cellular structures (contours: cumulative plas-
tic strain). The deformations were obtained with the meshes made of quadrangular bi-
parabolic FE. (a) E22 = −0.12 (b) E22 = −0.24 (c) E22 = −0.36 (d) E22 = −0.47.
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(a)

(b)

(c)

(d)

Figure B.21: Numerical deformation of the cellular structures (contours: cumulative plas-
tic strain). The deformations were obtained with the meshes made of quadrangular bi-
parabolic FE. The FEs of the braze joints were set-up with weakened material properties.
(a) E22 = −0.24 (b) E22 = −0.36 (c) E22 = −0.47 (d) E22 = −0.54.
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