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Theoretical and experimental studies on large deflection analysis of

double corrugated cantilever structures
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Abstract

Corrugated structures are made up of panels with periodic profiles. These are used as a compliant

mechanism and as core in sandwich plates for their direction dependent stiffness. Modeling and

large deflection analysis of corrugated structure play an essential role in their design and applica-

tion. This work proposes an iterative scheme for the large deflection analysis of double corrugated

cantilever structures subjected to end point loads and uniformly varying load using a chain algo-

rithm. The double corrugated structure is modeled by discretizing it into several basic corrugated

units. Each basic unit is then split into two halves, and a solution is arrived at using an error

minimization. The deflection of each of the halves is obtained, discretizing it into beam elements.

Finally, the deflection of the double corrugated structure is calculated by assembling the deflection

of each of the basic corrugated units. Furthermore, prototypes of the double corrugated structure

are fabricated using aluminum sheets, and a moment actuation test is performed. The deflections

of these prototypes obtained using the proposed iterative scheme are compared with ABAQUS®

and validated with experiments, and the results are found to be in good agreement. An example

problem is also solved, demonstrating the practical application of the proposed iterative scheme in

the design of a double corrugated variable camber morphing wing with aerodynamic load actuated

by the tendon-pulley system.
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1. Introduction

For a long time, corrugation has been seen as a simple and effective method of forming flexi-

ble and lightweight structures with high anisotropic behaviour, buckling load stability and energy

absorbing capacity. It has been used in a wide range of engineering applications. Numerous in-

novative improvements in corrugated structures have taken place in recent years, involving more

intricate and ingenious corrugation geometries and a combination of corrugations with advanced

materials [1–4]. There are mainly two kinds of corrugated structures reported in literature, i,e.

single corrugated structures and double corrugated structures for structural and aerospace applica-

tions [5–9].

In structural engineering applications, single corrugated plates have been widely used as shear

walls in multi-storied or high-rise buildings. In recent years, single corrugated plate shear walls

are designed towards a higher load-resistant [10–13]. However, the shear resistance of the conven-

tional single corrugated plate shear walls is limited [14]. To meet the requirements of large shear

resistance, a double corrugated plate shear walls have been designed [15]. Double corrugated

plate shear walls are composed of two single corrugated plates that are symmetrically installed and

assembled using connecting bolts.

In aerospace engineering, research on morphing wings has gained significant interest in recent

years, due to their better aerodynamic efficiency and performance. Performance enhancement is

possible by changing the wing shapes at different flight conditions [16]. Due to their axial com-

pliance and orthotropic properties, corrugated structures represent a fascinating morphing wing

solution [17]. These structures have been used as both morphing wing core structures and morph-

ing skins as well [18, 19]. Single corrugated composite sheets were firstly proposed for flexible

wing skins applications [17]. But one major drawback of corrugated skins is the potential increase

in the aerodynamic drag. The skin drag can be reduced with the use of a discontinuous segmented

skin and single corrugated core coated with an elastomer [19, 20]. Previtali et al. [21] proposed a

new type of corrugation, called double-walled corrugated structure (DCo), which can be consid-

ered as a combination of two rectangular corrugation, one inside the other. The results reported that

the DCo allows achieving higher axial compliance while retaining a high flexural rigidity, both un-
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der tension and compression loads. Due to this, it can be considered as a promising morphing skin

concept representing a possible solution to the previously described limitations of conventional

single corrugations. Yokozeki et al. [18] developed a trailing edge (TE) morphing wing using a

single corrugated structure as the core structure. The wind tunnel tests show that the morphing

wing was superior to the conventional wing with hinged control surfaces. A framework to anal-

yse single corrugated structure using nonlinear mechanics has been reported in Kumar et al. [8].

Experiments were also reported that matches well with the analytical framework. Kumar et al. [7]

also introduced a variable camber morphing configuration with a double corrugated structure as

the core. The proposed double corrugated structure is composed of two single corrugations that

are symmetrically placed one over the other. The results show that the variable camber morphing

configuration with double corrugated structure can take larger loads without severe deformation

resulting in higher aerodynamic efficiency than the other available configurations.

Numerous studies have also investigated the mechanical behavior of single corrugated struc-

tures using analytical models, finite element analysis, and experimental approaches [22–26]. Still,

very few studies have presented double corrugated structure. Tong et al. [14] presented the elastic

buckling behavior of trapezoidal double corrugation shear wall subjected to pure in-plane shear

loads. The double corrugation shear wall is modeled as an orthotropic plate, and the rigidity

constants are compared with finite element (FE) analyses. Further theoretically, Tong et al. [27]

investigated the shear resistant behavior of the double corrugation shear wall through monotonic

shear tests and finite element analysis. Previtali et al. [28] reported bending and axial stiffness

of the double-walled corrugated structure (DCo) using a finite element model. It is shown that

the bending stiffness depends nonlinearly on the applied moment. Experimental tests confirm the

numerically predicted performance. From the literature, a need for a nonlinear model for double

corrugated structure is identified. The model should be able to pick up nonliniarity due to large

deflection in the design for example in morphing wing application. Although the deflection of

the double corrugated structure can be calculated using the finite element method. But for detailed

modelling and design of the structure will lead to a high computational cost, which also encourages

the study of analytical based models.

In this paper, an iterative scheme is developed to analyze double corrugated structure. The
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model is derived using Euler-Bernoulli beam theory considering geometric nonlinearity. The pro-

posed model is used to calculate large deflection of a double corrugated cantilever structure under

the action end point load and uniformly varying load. Large deflections of a basic corrugated

unit and the double corrugated structure with cantilever boundary condition are investigated using

nonlinear shooting method integrated to a chain algorithm. Results of the analytical method are

compared with ABAQUS® simulations and validated using experiments. Sections 2 and 3 give

the formulation of the proposed iterative scheme developed for the double corrugated structure

for end point loads and uniformly varying load, respectively. In Section 4, study on the effect of

rivets layout on the structure has been presented. Section 5 provides the details of the experimental

setup. In Section 6, results from iterative scheme and ABAQUS® simulations are compared with

the experiments for the double corrugated structure. In addition, the results included the practical

application of the proposed method to the design of a double corrugated morphing wing. In Sec-

tion 7, the current work has been summarized and conclusions are drawn based on the analytical,

numerical and experimental studies.
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(Flexible direction)
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Figure 1: Schematic of the double corrugated structure used in this study. (a) Double corrugated structure with

anisotropy, (b) projection of the structure in X-Y plane with variable spacing, end loads and boundary conditions
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2. Large deflection analysis of double corrugated structures with end loads

In this section, the mathematical formulation of a double corrugated structure under the action

of free end loads is presented. The double corrugated structure considered in this study is composed

of two single corrugations as shown in Fig. 1(a). The structure is uniform along Z direction and

the corrugation is along X-Y plane. Hence, a two dimensional model (plane stress) as shown in

Fig. 1(b) is considered for the analysis. The structure is fixed at the end O and loads are applied

at the free end a11. The direction of forces and moment as shown in Fig. 1(b) are assumed to be

positive. Geometrical and material parameters considered for the analysis are given in Table 1.

Ph

Pv

M0
a1 a2 a3 a5a4 a✼ a✽a6

a✾

❨

❳
O

a10

a11

(a)

(b)

❩

Figure 2: Geometry of double corrugated structure. (a) Double corrugated structure consisting of 11 basic units, (b)

shows a basic unit and split of basic unit into top and bottom halves which are further discretized into beams. Proper

compatibility conditions are enforced during the solution process.

As shown in Fig. 2, the double corrugated structure is made of basic corrugated units which

can be of same or different sizes. In this work, we considered different sizes of corrugation unit
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(see Fig. 2(a)). The basic analysis remains same and can be extended to a special case of same

sized corrugation unit. The structure is divided into 11 basic corrugated units. Basic corrugated

units (as shown in Fig. 2(b)) are repeated to generate the double corrugated structure. As shown

in Fig. 2(b), each basic corrugated unit is split in to two, i.e., top and bottom open chain units.

Each open chain unit is further divided into multiple straight, semi-circular and quarter-circular

segments. The deflection of the top and bottom open chain units are determined using a chain

algorithm [29]. The process is explained in detail in subsection 2.1. An analytical formulation for

large deflection analysis of the double corrugated structure is attempted through the understanding

of load-deformation analysis of the basic corrugated unit. The study is then extended to the com-

plete structure taking appropriate care of continuity conditions at the joints (namely at a1, . . . , a11 in

Fig. 2(a)). Deflection of the double corrugated structure is calculated by combining the deflections

of each unit appropriately.

This section is divided into four subsections. Subsection 2.1 gives a description of the geometry

and free body diagrams of the basic units of double corrugated structure. The second and third

subsections outline a solution scheme (chain algorithm) to obtain the deflected profile of basic unit

and the double corrugated structure respectively. In the fourth subsection, the proposed algorithm

is summarized as applicable for the total structure with the help of a flow chart.

Table 1: Geometrical parameters of the double corrugated structure made of aluminum

Parameter Value

L0 150 mm

L1 128 mm

Z 12.73 mm

R1 4 mm

R2 3 mm

R3 2 mm

R4 1 mm

Width (b) 75 mm

Sheet thickness (tcs) 0.5 mm

Modulus of elasticity of aluminum (E) 70 GPa
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0

Figure 3: Open chain unit with applied loads and moment at free end (H = 50 N, V = 50 N and M0 = 1000 N-mm).

It is split into 4 beams.

2.1. Large deflection analysis of a open chain unit using chain algorithm

In this subsection, the chain algorithm is described as a numerical procedure to cope with the

geometric nonlinearity in open chain unit. The chain algorithm exploits the moment distribution

generated by any triplets of external loads, namely axial/transverse loads and moment (H,V,M0).

The end O of the open chain unit is fixed and loads are applied at the free end a1 (H = 50 N, V = 50

N and M0 = 1000 N-mm). The open chain unit is then divided into two straight (OA, BC) and two

curved beams (AB,Ca1) as shown in Fig. 3. Each beam is treated as a cantilever which is fixed

to the end of the previous beam. The slope and deflection of the free end of the previous beam

are considered as rigid body motions at the fixed end of the following beam. The displacement

of each beam member is then determined using the Euler-Bernoulli beam theory considering large

deflections (geometric nonlinearity) [30]. Fig. 4 shows the flowchart for determining the deflection

of the basic corrugated unit.

The chain algorithm does not yield correct solution after first iteration, owing to the nonlinear

moment-curvature relation. Therefore the moments acting on the various elements of the structure

must be calculated from the previous deformed state. It is thus necessary to iteratively update the

moment with respect to the deformed state until convergence is attained between the successive

deformed states.
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The moment Mi
j
at ith node of the structure and for the jth iteration is calculated as,

Mi
j = M0 + [V(x

a1

j
− xi

j) − H(y
a1

j
− yi

j)] i = A, B,C, ..., a1; j = 1, 2, ..., n1 (1)

where xi
j
and yi

j
are coordinates of ith node of the open chain unit at jth iteration and n1 denotes the

number of iterations.

Discritize the open chain 

unit into four beams
Load for ith beam

Obtain the deflected profile 

of each beam

Assemble each beam 

(rigid body motion)

Obtain the deflected profile 

of open chain unit

Converged solution of

open chain unit

Update the moment

 , using Eq. (1)

YesNo

Figure 4: Flow chart to obtain the deflected profile of an open chain unit.

The chain algorithm, described in Fig. 4, proceeds as follows:

• Iteration 1: The initial moment Mi
0

generated by the external forces and moment is applied

to the undeformed state of the open structure. The deformed shape δ1( j = 1) is obtained

after the application of Mi
0
.

• Iteration 2: The moment distribution Mi
1

is derived from the deformed shape δ1( j = 1). The

new deformed shape δ2( j = 2) is obtained through the application of Mi
1
.

• Iteration j: The jth moment distribution Mi
j
as given by Eq. (1) is applied to deformed shape

δ j to determine the deformed state corresponding to the ( j + 1)th iteration.

Iterations continue until a convergence is achieved according to a criterion (Eq. (2)). When the

error percentage, E1, in the magnitude of tip displacement (U) between two successive iterations is

less than 10−4% iterations are stopped. As it can be noted in Fig. 5(a), the convergence is obtained
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Figure 5: Application of the chain algorithm to open structure (a) deformed shapes δi of open structure with every

iteration i, (b) the moment variation ∆MC for the node C.

within 14 iterations.

E1 =
|U

a1

j
− U

a1

j−1
|

U
a1

j

× 100%, where U
a1

j
=

√

(x
a1

j
)2 + (ya1

j
)2 (2)

Reporting the variation of the moment ∆Mi
j
= Mi

j
− Mi

j−1
, we obtain the plot reported in Fig. 5(b)

for the node C. As specified previously, the value of ∆MC also converges within 14 iterations.

2.2. Solution scheme for large deflection of the basic corrugated unit

The basic corrugated unit as shown in Fig. 6 is split in to two open chain units. The applied

loads (H,V,M0) are shared between the two such that equilibrium is satisfied at the free end (see

Fig. 6). The deflections of the top and bottom open chain units are obtained using the flowchart

shown in Fig. 4. There are three unknown variables (Fh, Fv, p) to be determined. The variables

are determined such that the free end of the top and bottom open chain unit move together which

implies the free end coordinates and angles [(xt, yt, tt) (xb, yb, tb)] should be equal. An error metric,

ED, is defined as a function of the end coordinates of the deflected profiles of the top and bottom

sections as shown below.

ED(Fh, Fv, p) =
√

(xt − xb)2 + (yt − yb)2 + (tt − tb)2 (3)
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Figure 6: Basic corrugated unit subjected to end forces and an end moment. It is split into two open chain units.

where (xt, yt, tt) are the end point coordinates and tip angle of the top open chain unit and (xb, yb,

tb) are of the bottom open chain unit (see Fig. 6).

In order to solve this problem we need to minimize ED given in Eq. (3). The minimization

problem is described by the following equation

min ED(Fh, Fv, p) (Fh, Fv, p) ∈ R

s.t. xb − xt = 0,

yb − yt = 0,

tb − tt = 0

(4)

To solve the above minimization problem the fmincon() function is used from the MATLAB®

Optimization Toolbox [31], by taking into account the constraints of the problem, as stated in
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Eq. (4). The optimum values Fopt,h, Fopt,v, popt obtained by solving Eq. (4) are used to obtain the

deflected profile of the basic corrugated unit for the given loading conditions (H,V,M0). Figure 7

shows the flowchart for determining the deflection of the basic corrugated unit for the given input

loads (H,V,M0).

Initial guess for         

        (Fig. 6)

Obtain the deflected profile of top/bottom

open chain unit using flowchart-1 (Fig. 5)

Set up optimization problem

as given in Eq. (4)

Obtain the deflected profile

of basic corrugated unit

Figure 7: Flow chart to obtain the deflected profile of a basic corrugated unit.

Sensitivity of initial guess and bounds on minimization function:

The sensitivity of initial guess in solving the basic corrugated unit is studied using the Block

Classification pre-search technique [32]. In this technique, the search space for the f mincon()

function used in the iterative scheme can be reduced to a set of potential subspaces, Ω which is

likely to contain the global minima. The technique is explained through the following steps:

Step 1: An initial search space, α0 with bounds wide enough to contain the global minima is chosen

based on the applied loads and physical constraints of the problem.

Step 2: The error function, ED is evaluated at the points, X′i s, (Fh, Fv, p) contained in α0.

Step 3: In order to find the potential subspaces, Ω, a virtual threshold error function value, E∗D

is chosen between the minimum and maximum error function values calculated in step 2. The

potential subspaces are identified from α0 based on the condition,

Ω : ED(X) ≤ E∗D, X ∈ α0 (5)

Step 4: A set of initial guesses, X0,i (i = 1, 2, ...n, n = number of initial guesses) which have

the least error function values are chosen from the potential subspace and are used in the global

optimization function f mincon(). The initial guess from this set which takes the least computation

time is taken to be the optimal one.
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(a) (b)

(c) (d)

(e)

Figure 8: Surface plots for different p values to evaluate potential subspaces, with virtual threshold plotted as E∗
D
= 0.5

and applied end loads, M0 = −1000 N-mm, Ph = −50 N, Pv = −75 N (a) p = 0.1, (b) p = 0.3, (c) p = 0.5, (d) p = 0.7

and (e) p = 0.9.

12



Table 2: Candidate initial guesses from surface plots

S. No.

Potential subspace Initial Guesses

Fh (N) Fv (N) p Min. ED

Fh

(N)

Fv

(N)
p

1 [-90,-10] [-90,-78] 0.1 0.3604 -90 -90 0.1

2 [-90,-10] [-90,-55] 0.3 0.1028 -90 -90 0.3

3 [-90,-10] [-90,-31] 0.5 0.0369 -31 -90 0.5

4 [-90,-10] [-90,-10] 0.7 0.0139 -90 -51 0.7

5 [-90,-10] [-90,-10] 0.9 0.0155 -11 -31 0.9
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Figure 9: Effect of initial guess on (a) Computational time, (b) Minimization function ED.

In our case, for the initial search space, α0, bounds for p, Fh and Fv are chosen as [0.1, 0.9],

[−90N,−10N] and [−90N,−10N] respectively. Fig 8 shows the error function evaluations at all

p, Fh and Fv combinations within these bounds, with the virtual threshold of the error function

taken as E∗D = 0.5. The p, Fh and Fv combinations which satisfy the condition given in Eq. 5 and

having the least error function value corresponding to each p value are taken as candidate initial

guesses to study their sensitivity on computation time and accuracy (See Table 2). From Fig. 9

(a) it can be seen that initial guess 4 corresponding to the least value of ED (See Table 2) has the

smallest computation time. For the given end loads this initial guess is used to solve the first basic

corrugated unit in the double corrugated structure and the solution of this unit is taken as the initial

guess for the next unit. Similarly the initial guess for the subsequent basic units are taken from their
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predecessor’s solution. Fig. 9 (b) shows that the accuracy of the iterative scheme is independent of

initial guess.

The effect of bounds in f mincon() function, for solving a basic corrugated unit (End loads:

Ph = 50 N, Pv = 50 N, M0 = 1000 N-mm), on computation time and accuracy are studied for

six different bound cases as shown in Table 3. From Figs. 10 (a) and (b) it can be seen that the

maximum difference between the computational time taken is less than 1s and the minimization

function value remains constant. This implies that bounds have negligible influence on computa-

tion time and accuracy for our problem. Hence, in our case we have not specified any bounds for

solving.
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Figure 10: Effect of bounds in minimization problem on (a) Computational time, (b) Minimization function ED.

Table 3: Lower and upper bounds for sensitivity study

Bound

cases

Lower Bound Upper bound

Fh (N) Fv (N) p Fh (N) Fv (N) p

1. No bounds No bounds

2. 0 0 0 5000 5000 1

3. 0 0 0 2000 2000 1

4. 0 0 0 1000 1000 1

5. 0 0 0 500 500 1

6. 0 0 0 100 100 1
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Figure 11: Double corrugated structure divided in to 11 basic units.

2.3. Solution scheme for large deflection of the double corrugated structure

The deflected shape of the double corrugated structure is obtained using a chain algorithm. The

structure is divided into N corrugated units, here N = 11 as shown in Fig. 11. The deflected profile

of each corrugated unit is obtained using the flowchart shown in Fig. 7. The moment at free end of

the ith corrugated unit is given by

Mi
j = M0 + [V(x

a11

j
− xi

i) + H(y
a11

i
− yk

i )] i = a1, a2, ..., a11; j = 1, 2, ..., n2 (6)

where xi
j
and yi

j
are coordinates at the free end of ith corrugated unit at jth iteration and n2 denotes

the number of iterations.

The deflected profile of the double corrugated structure is obtained by combining the deflected

shapes of each of the units keeping continuity conditions at the joints intact. Figure 12 shows

the flowchart for determining the deflection of the double corrugated structure. The convergence is

achieved when the error percentage, E2, (Eq. (7)) in the magnitude of tip displacement (U) between

two successive iterations is less than 10−4%.

E2 =
|U

a11

j
− U

a11

j−1
|

U
a11

j

× 100%, where U
a11

j
=

√

(x
a11

j
)2 + (y

a11

j
)2 (7)
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Update the moment 
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Assemble each basic unit 

(rigid body motion)
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Yes

Converged solution of the

double corrugated structure 

No

End

Figure 12: Flow chart to obtain the deflected profile of the double corrugated structure.

2.4. Summary of the algorithm for large deflection analysis of the double corrugated structure

In this subsection, a summary of the algorithms described in Subsections 2.1, 2.2 and 2.3 is

presented for the large deflection analysis of the double corrugated structure for given free end

loads (Ph, Pv,M0) as shown in Fig. 2(a). To better clarify the proposed algorithm, the logic is

described through flowcharts as shown in Figs. 13(a), (b) and (c). The double corrugated structure

is first divided into N = 11 basic corrugated units. The moment at ith basic corrugated unit for jth

iteration is calculated as

Mi
j = M0 + [Pv(x

a11

j
− xi

j) + Ph(y
a11

j
− yi

j)] i = a1, a2, ..., a11; j = 1, 2, ..., n3 (8)
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where xi
j

and yi
j

are free end coordinates of ith corrugated unit at jth iteration and n3 denotes the

number of iterations.
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Figure 13: Illustration of proposed method using flow charts, (a) flow chart for calculating the deflection of double

corrugated structure, (b) internal loop: flow chart to obtain the deflected profile of corrugated unit, (c) chain algorithm

for both the top/bottom half.
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The basic corrugated unit is then further split into two, i.e, top and bottom open chain units.

Each corrugated unit is subjected to an end load (Ph, Pv,M
i
j
). The applied moment Mi

j
at ith basic

corrugated unit and for jth iteration is spilt in the ratio of p and (1− p) between the top and bottom

open chain units. Force balance between the top and bottom open chain units is ensured by equal

and opposite forces, Fh and Fv in the horizontal and vertical directions respectively. The top and

bottom open chain units are thus subjected to loads (Ph ± Fh, Pv ± Fv, pMi
j
/(1 − p)Mi

j
). Each open

chain unit is further subdivided into straight beams (OA; BC in the top and OA′, BC′ in the bottom

open chain units) and curved beams (AB, Ca1 in the top and A′B′, C′a1 in the bottom open chain

units) of constant radius R1. The moment at kth node of the top and bottom open chain units for lth

iteration are calculated as

Mkt

l = pMi
j + [Pv(x

ai

l
− xkt

l ) + Ph(y
ai

l
− ykt

l )] kt = A, B, ...,Ca1; l = 1, 2, ..., n4

Mkb

l = (1 − p)Mi
j + [Pv(x

ai

l
− xkb

l ) + Ph(y
ai

l
− ykb

l )] kb = A′, B′, ...,C′a1; l = 1, 2, ..., n4

(9)

where (xkt

l
, ykt

l
) and (xkb

l
, ykb

l
) are free end coordinates of kth node of the top and bottom open chain

unit, respectively, at lth iteration and n4 denotes the number of iterations.

The flowchart shown in Fig. 13(c) depicts the logic of the chain algorithm for obtaining the

deflected shapes of the top and bottom open chain units subjected to end loads of (Ph + Fh, Pv +

Fv, pMi
j
) and (Ph − Fh, Pv − Fv, (1 − p)Mi

j
) respectively. For each node (free end of beam) and

iteration, the bending moments are calculated using Eq. (9). The deflected profile of each beam

is then obtained by means of the Euler-Bernoulli beam model. Then compatibility conditions are

applied to the free end of every beam. This procedure is continued till the last beam is reached. The

error is then calculated using Eq. (2) (as given in Subsection 2.1). The loop is terminated if this

error is within the specified tolerance (10−4%). Otherwise the new moment calculated by Eq. (9)

is in be applied to the next iteration.

The flowchart reported in Fig. 13(b) is for determination of the deflection of each corrugated

unit. The input for this flowchart is the equivalent load from the first flow chart (Ph, Pv,M
i
j
) (See

Fig. 13(a)). For an initial guess of the unknown forces (Fh, Fv, p), the flowchart shown in Fig. 13(c)

is evaluated to determine the deflection of the top and bottom open chain units. A minimiza-
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tion problem with constraints described by Eq. (4) is set up and solved using fmincon() from the

MATLAB® Optimization Toolbox (see subsection 2.2). The deflected profile is calculated using

the optimal values (Fopt,h, Fopt,v, popt) of the unknown variables.

Deflected shape of the double corrugated structure is then obtained by combining the deflected

shapes of each of the basic units keeping the continuity conditions at the joints intact. After ob-

taining the deflected profile of the structure, the convergence criterion given in Eq. (7) is checked

(as given in subsection 2.3). If the convergence criterion is met, the loop is exited and the con-

verged solution of the double corrugated structure is obtained. Otherwise the moment at each unit

is updated as given by Eq. (8).

q

X

Y

✥

X

Y

✥

F11

M11

F1

M1

F✷
M✷
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M✸

[...............................................
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a✷

a✸

a10 a11

Ph

Pv

M0

Ph

Pv

M0

a11

Figure 14: Schematic of the cantilever corrugated structure under the action of uniformly varying load and end point

loads.
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3. Double corrugated structure under uniformly varying (triangular distribution) load and

end point loads

In this section, formulation for double corrugated structure subjected to a uniformly varying

load and point loads at end a11 is presented with large deflection analysis. Figure 14 shows the

double corrugated structure with end O fixed and subjected to uniformly varying load (peak value

of q) and end point loads (Ph, Pv,M0). The double corrugated structure shown in Fig. 14 is divided

into 11 basic corrugated units. These units are considered to be cantilevered structure fixed to the

end of the previous unit like a chain link. The uniformly varying load is resisted by the semicircular

segments and load between two the gap of two semicircle segment is transferred to the previous

semicircle. The equivalent load for the jth unit is calculated by integrating force distribution be-

tween jth and ( j + 1)th unit. This load is then transferred as force and moment (F j,M j) to the

free end of the jth unit. These equivalent loads (F1,M1, F2,M2, ..., F11,M11) due to the uniformly

varying load are applied to semicircular segments (loads are applied at red dot on the semicircles)

as shown in Fig. 14. The deflected profile of the double corrugated structure is obtained using the

chain algorithm as explained in Section 2.

4. Effect of rivet layout on the structural behaviour of double corrugated structure

The double corrugated structure is assembled by placing two corrugated sheets one above the

other and riveting them at some or all contact locations. In order to study the effect of rivet layout

on the structural behaviour of the double corrugated structure modelled in ABAQUS®, we have

chosen two different rivet layouts in the longitudinal direction, as shown in Fig. 15. In layout-1

riveting is done at all contact locations and in layout-2 alternative contact locations are riveted, as

shown in Figs. 15(a) and (b) respectively. Since the sheet thickness is small compared to the rivet

diameter, the rivets are considered to be stronger than the sheet in view of failure. The constraints

produced by a rivet joint is idealized by rigidly constraining the nodes that are part of the sheet

surface equal to the rivet area [33]. In our case we have accomplished this in ABAQUS® by

connecting the two corrugated sheets at the rivet location using two rigid elements at a distance of

2mm apart equal to the rivet diameter, as shown in Fig. 15.
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Figure 15: Double corrugated structure with different rivet layouts modelled using FEA in ABAQUS® (a) layout-1

and (b) layout-2.
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Figure 16: Effects of rivet layouts on structural behaviour of the double corrugated structure (a) Tip displacement

against actuation moment, (b) Maximum stress developed in sheet near rivet joints against tip displacement.
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Fig. 16 shows the effects of rivet layouts on structural behaviour of the double corrugated

structure. Fig. 16 (a) shows the increased stiffness of layout-1 compared to layout-2 due to more

number of rivet attachments. From Fig. 16 (b) it can be seen that for a particular tip displacement,

the maximum stress developed in the sheet near rivet joints is more for layout-1 compared to

layout-2. Also, considering the failure stress of the sheet to be 50 percent of the tensile strength of

Aluminium, the sheet in layout-1 fails for a lesser tip displacement than the one in layout-2. Since

layout-2 facilitates larger deflection than layout-1 without failure, it has been incorporated in the

experimental prototype.

(a) (b)

Figure 17: Fabrication of double corrugated structure (a) mould of the corrugated structure, (b) prototype of double

corrugated structure joined using rivets.

5. Experimental observation

To validate the proposed numerical scheme experiments are carried out on fabricated proto-

types. The double corrugated structure is designed and fabricated using aluminum sheets. The

mould used for the fabrication is shown in Fig. 17(a) which is prepared by steel blocks using

a numerical control machine. The aluminum sheet is pressed between the moulds to make the

prototype of the corrugated structure. Holes are drilled in the corrugated structure by placing the

structure in between the moulds. The fabrication of double corrugated prototype is done by joining

two single corrugated structures by means of rivets (flat head with 2 mm diameter). For riveting,

one single corrugated structure is placed on top of the other and 3 rivets are punched along the

width and along the length placed at every alternatively crest as shown in Fig. 17(b).
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Figure 18: Experimental setup for the tendon-load application (a) schematic representation, (b) deformed aluminum

prototype under applied load.

Experimental setup for the tendon-load application on the double corrugated structure is shown

in Fig. 18. For this experiment, the double corrugated structure prototype is clamped vertically on

a vibration isolation table. The actuation force is applied through the spectra fiber wire (tendon)

which is threaded through the holes and connected at the end of the structure. The diameter of the

holes (0.2 mm) is made slightly larger than the wire diameter (0.1 mm), for smooth movement of

the wire. Then known masses are suspended from the free end of the wire by using a load hanger

to generate a known tension in the wire (F). The wire is connected with an offset of d = 4mm w.r.t.

to the center line of double corrugation (as shown in Fig. 18(a)). The offset in the wire connection

produces an axial load (F) and equivalent moment (M = Fd) when shifted to point A located

at center point of the end of double corrugation. In simulations, the effects of any interactions

between wire and holes are not considered in this study. The displacements at tip of the aluminium

corrugated sheet is measured using the digital photographs (Fig. 18(b)) for static load. The images

are taken using a combination of point grey GS3-U3-41C6M sensor and TAMRON 180 mm 1:3.5

MACRO 1:1 lens.
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Figure 19: FEA models in ABAQUS® (a) Top open chain unit with the boundary conditions and the applied end loads,

(b) deflected profile of top open chain unit due to the applied end loads (Ph = 50 N, Pv = 50 N, M0 = 1000 N-mm),

(c) double corrugated structure with the boundary conditions and the applied end loads, (d) deflected profile of double

corrugated structure due to the applied end loads (Ph = −1 N, Pv = −2 N, M0 = 1000 N-mm).
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6. Results and discussion

Finite element models of the open chain unit, the basic corrugated unit and the double cor-

rugated structure, considering geometric nonlinearity, are developed in ABAQUS® commercial

software (see Fig. 19) [34]. A two noded in-plane Euler-Bernoulli beam element (B23 element)

with cubic interpolation function is used for discretization. Figures 19(a) and (c) show the struc-

ture model of top open chain unit and double corrugated structure with boundary condition and

applied end loads modeled in ABAQUS®. The deflected profiles of top open chain unit and double

corrugated structure are shown in Figs. 19(b) and (d) for one particular set of applied end loads.

Geometrical and material parameters considered for the analysis are given in Table 1. Linear elastic

material behavior is considered in the analysis.

Convergence study

Computational cost and time play important role in choosing the type of element for numerical

analysis. A convergence study has been done based on the same for the double corrugated structure

model. Convergence criteria is given by Eq. 10 in which δ1 and δ2 are the tolerance values for the

convergence of element size and load increment size respectively. δ1 = δ2 = 10−4 are considered

for the simulations and U is the magnitude of tip displacement. Fig. 20 (a) shows the element

size and Fig. 20 (b) shows the load increment size convergence studies for the double corrugated

structure. The results are plotted from element size 2 mm to 0.05 mm and load increment size from

0.05 to 0.005 in descending order to achieve convergence. From the study, it is observed that an

element size of 0.1 mm and load increment size of 0.01 would provide good convergence.

δ1 =
|Ui+1 − Ui|

Ui

and δ2 =
|U j+1 − U j|

U j

(10)

Where Ui = Magnitude of tip displacement for the ith element size (i = 1, 2, ..., 7) and U j =

Magnitude of tip displacement for the jth load increment size ( j = 1, 2, ..., 7).
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Figure 20: Convergence study for double corrugated structure (a) Element Size, (b) load increment size.
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Figure 21: Deflected profiles of the open chain units and the basic unit due to the applied end loads (a) top open chain

unit, (b) bottom open chain unit and (c) basic corrugated unit.
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6.1. Open chain unit and the basic corrugated unit with cantilever boundary condition subjected

to end point loads

The results of the iterative scheme have been compared with the ABAQUS® solution for the

open chain units and the basic corrugated unit due to applied end point loads. The deformed

configurations of the open chain units and the basic corrugated unit due to the applied end point

loads are shown in Figs. 21(a), (b) and (c) respectively. Two loading cases are considered for

comparison-Load-1 and Load-2 as given in Table 4. The results obtained from the proposed model

are found to be in good agreement with ABAQUS® for both the load cases.

Table 4: Loading parameters for the open chain units and the basic corrugated

Load-1 Load-2

Top open chain unit Ph = 50 N, Pv = 50 N,

M0 = 1000 N-mm

Ph = 50 N, Pv = −100 N,

M0 = 1000 N-mm

Bottom open chain unit Ph = −50 N, Pv = 50 N,

M0 = 1000 N-mm

Ph = −50 N, Pv = −100

N, M0 = 1000 N-mm

Basic corrugated unit Ph = 50 N, Pv = 50 N,

M0 = 1000 N-mm

Ph = −50 N, Pv = −75 N,

M0 = −1000 N-mm
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Figure 22: Convergence study using the chain algorithm. The moment variation ∆M for the node C and C′ plotted

against the number of iterations (a) top open chain unit, (b) bottom open chain unit.

Figures 22(a) and (b) show the convergence for the open chain units in which the variation of
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the moment increment ∆Mi
j
= Mi

j
−Mi

j−1
is plotted against the number of iterations for node C and

C′ in the top and bottom open chain unit respectively. For all load cases, the values of ∆MC and

∆MC′ converge within 26 iterations.

In order to quantitatively assess the accuracy of the iterative scheme, the end point co-ordinates

(xa1
, ya1

) obtained by the proposed method and that of the ABAQUS® are presented in Table 5.

Error metrics, %Ex and %Ey are calculated as %Ex =

∣

∣

∣

∣

∣

xiter−xFEA

xiter

∣

∣

∣

∣

∣

100 and %Ey =

∣

∣

∣

∣

∣

yiter−yFEA

yiter

∣

∣

∣

∣

∣

100 as

shown in Table 5 for the end point co-ordinates (xa1
, ya1

). The numerical results are obtained with

a tolerance for the error metric, E1 (Eq. (2)) as 10−4%. In terms of prediction accuracy, it can be

seen that the proposed iterative scheme shows excellent agreement with the ABAQUS® results.

The error metrics, %Ex and %Ey are for all the cases are less than 2%.
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Figure 23: Deformed profiles of the double corrugated structure due to end loads.

6.2. Double corrugated structure with cantilever boundary condition subjected to end point loads

The deformed configurations of the double corrugated structure due to the applied end point

loads are shown in Fig. 23. Two loading cases are considered for comparison-Load-3 and Load-

4 as given in Table 6. The results obtained from the proposed model are found to be in good

agreement with ABAQUS® for both the cases.

The response of the double corrugated structure, with loading conditions as given in Fig. 11,
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Table 5: Comparison of solutions obtained using the iterative scheme and FEA (ABAQUS®) for the open chain units

and the basic corrugated unit

Loads (Top open chain

unit)

Iterative scheme FEA (ABAQUS®) %Ex =

∣

∣

∣

∣

∣

xiter−xFEA

xiter

∣

∣

∣

∣

∣

100

xa1
(mm) ya1

(mm) xa1
(mm) ya1

(mm) %Ex %Ey

Ph = 50 N, Pv = 50 N,

M0 = 1000 N-mm

15.0604 20.1038 15.1080 20.0654 0.3156 0.1913

Ph = 50 N, Pv = −100 N,

M0 = 1000 N-mm

9.9573 -1.6055 10.0037 -1.5843 0.4657 1.3197

Ph = 50 N, Pv = 100 N,

M0 = 500 N-mm

13.3614 23.8683 13.3634 23.8658 0.0144 0.0105

Loads (Bottom open

chain unit)

Iterative scheme FEA (ABAQUS®) %Ex =

∣

∣

∣

∣

∣

xiter−xFEA

xiter

∣

∣

∣

∣

∣

100

xa1
(mm) ya1

(mm) xa1
(mm) ya1

(mm) %Ex %Ey

Ph = −50 N, Pv = 50 N,

M0 = 1000 N-mm

8.5087 3.0321 8.4754 3.0502 0.3919 0.5975

Ph = −50 N, Pv = −100

N, M0 = 1000 N-mm

16.5939 -5.5385 16.5940 -5.5395 0.0004 0.0181

Ph = 25 N, Pv = 25 N,

M0 = 1000 N-mm

1.5352 2.82345 1.5373 2.8194 0.1358 0.1433

Loads (Basic corrugated

unit)

Iterative scheme FEA (ABAQUS®) %Ex =

∣

∣

∣

∣

∣

xiter−xFEA

xiter

∣

∣

∣

∣

∣

100

xa1
(mm) ya1

(mm) xa1
(mm) ya1

(mm) %Ex %Ey

Ph = 50 N, Pv = 50 N,

M0 = 1000 N-mm

11.4096 1.1836 1.1985 0.05327 0.4131 1.2387

Ph = −50 N, Pv = −75 N,

M0 = −1000 N-mm

12.5941 -1.4903 12.6193 -1.5120 0.1994 1.4368

Ph = 0 N, Pv = 0 N, M0 =

1000 N-mm

11.9882 0.6827 11.9773 0.6960 0.0917 1.9097

is shown in Fig. 24. The nonlinear behaviour can be seen in both the displacements, along x-axis

(U1) and along y-axis (U2), for the proposed iterative scheme results, which is expected given
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Table 6: Loading parameters for the double corrugated structure

Load-3 Ph = 0 N, Pv = 0 N, M0 = 1000 N-mm

Load-4 Ph = −1 N, Pv = −2 N, M0 = −1000 N-mm
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Figure 24: Deflection at the tip (a11) of the double corrugated structure under various end loads (Ph = 2.5 N and

Pv = 2.5 N). (a) Displacement along x-axis (U1), (b) displacement along y-axis (U2).

the nonlinear nature of this formulation. ABAQUS® also predicts a nonlinear response over the

applied moment range (Ph = 2.5 N and Pv = 2.5 N). In terms of prediction accuracy, it can be seen

that the proposed iterative scheme shows excellent agreement with the ABAQUS® results. In the

numerical studies, it is observed that the iterative scheme converges to the required solution atmost

1.15 times faster, in terms of computational time, than the ABAQUS® simulation without the loss

of accuracy, as is evident from the results shown in Fig. 24.

6.3. Validation of the proposed iterative scheme with experiments

The experiments described in Section 3 use standard weights suspended at an eccentricity from

the center of the double corrugated structure through a tendon wire as shown in Fig. 17. This

tendon force produces an equivalent axial load and a moment about point A due to its eccentric

attachment. These loads are applied in FE analysis and iterative scheme as shown in Fig. 25. The

comparison of the force–displacement curve between the numerical, analytical and experimental

results is shown in Fig. 26. Three prototypes made of aluminium with identical geometry as given

in Table 1 are tested. The thickness of the fabricated double corrugated sheet is not constant due to
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localised plastic deformation in the semi-circular sections. Therefore in FEA and iterative scheme

model, thickness of corrugated sheets are given by measuring the sample thickness at semi-circular

portion at different locations and the mean value is given as the thickness of entire structure.

Y

X A

Figure 25: Double corrugated structure modeled using FEA in ABAQUS® with loading and boundary conditions to

compare with experiments
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Figure 26: Deflection of the tip of the double corrugated structure under tendon force. (a) Displacement along x-axis

(U1), (b) displacement along y-axis (U2).

Due to the large deformations, the force–displacement curve shows nonlinear variation with the

applied load. Figures 26(a) and (b) compare the experimentally measured displacement along x-

axis (U1) and along y-axis (U2) respectively, of the corrugated structure to that from the ABAQUS®

and iterative scheme results. It can be seen from the Fig. 26, that results obtained from the

ABAQUS® and the iterative scheme match closely to the results obtained from the experiments.
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Figure 27: (a) Double corrugated variable camber morphing airfoil, (b) airfoil modeled as a cantilever double corru-

gated structure along with forces acting on it.

6.4. Practical application of the iterative scheme applied to a morphing structure

A novel concept of morphing wing with double corrugation has been proposed in Kumar et

al. [7]. The proposed iterative scheme is applied to calculate the deflection of the morphing struc-

ture. As shown in Fig. 27 (a), the morphing wing consists of double corrugated structure as a core

member which is connected to a elastomeric skin surface. The baseline shape of the wing is a

symmetric NACA 0012 airfoil. The trailing edge of the morphing wing is actuated by actuators

mounted in the rigid D-spar of the airfoil which drive a tendon spooling pulley system. Rotation of

the pulley creates equal but opposite forces in tendons. These forces generate a bending moment

on the trailing edge, thereby inducing bending of the trailing-edge morphing structure to create

large changes in the airfoil camber.

The morphing wing is modeled as a cantilever double corrugated structure with an end moment

as shown in Fig. 27(b). Furthermore, it is also subjected to a uniformly varying (triangular distri-

bution) load, which results from the aerodynamic load [35] acting on the wing. The uniformly

varying load has the peak value of q N/mm. For simplification only double corrugated structure is
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Table 7: Loading parameters for double corrugated morphing wing

Load-5 q = 52.5 N/mm, M0 = −750 N-mm

Load-6 q = 26.25 N/mm, M0 = 750 N-mm

considered and the aerodynamic loads are applied directly to the semicircular segments and loads

as concentrated forces. The concentrated forces are obtained as equivalent nodal forces. The prob-

lem defined is solved for different combination of loads as given in Table 4. The deflection of the

double corrugated structure under the action of these forces, as shown in Fig. 27(b), is carried out

using the proposed iterative scheme as given in Section 3. The results obtained for the two loading

cases are shown in Fig. 28. Again, iterative scheme predicts the deflected profile with very high

precision as compared with ABAQUS® simulations.
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Figure 28: Deformed profiles of the double corrugated structure due to end loads.

7. Summary

In this paper, analytical, numerical and experimental studies on the large deflection of double

corrugated cantilever structures are reported. Nonlinear shooting technique is integrated with a

33



chain algorithm in analytical solution. The deflections of a basic corrugated unit and a double

corrugated structure are obtained using the proposed iterative scheme. Furthermore, prototypes of

the corrugated structure are manufactured using aluminum sheets. The deflection of the prototypes

is measured from photographs of the deformed structure. The deflected profile obtained from the

iterative scheme is verified and compared with ABAQUS® and experiments. The results obtained

from the iterative scheme are in close agreement with ABAQUS® while being substantially faster.

There is a small difference in the values of the tip deflection obtained by the iterative scheme and

ABAQUS® with experiments. The geometrical non-uniformity (localised plastic deformation due

to riveting and fabricating process) and the residual stress developed due to the fabricating pro-

cess of aluminum prototype could be possible reasons for the deviation of the iterative scheme

and ABAQUS® results from experiments. The proposed method is capable of handling concen-

trated forces, distributed loads, concentrated moments thus providing reliable and versatile tool for

catering to such complex geometry.

Future work can be focused on the development of iterative scheme for the double corrugated

structure using composite material instead of aluminium for morphing application. However the

implementation of composite material in our model poses the following challenges:

a. Composites have material nonlinearity while our model uses the linear elastic assumption.

b. Composite materials have direction dependent material properties [36, 37], hence it will be

difficult to include in the current form of iterative scheme which is based on Euler-Bernoulli beam

model.

c. Interface effect between two layers in a composite laminate is a challenging part to include in

the current model.
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