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Abstract

A constitutive theory is developed for an open-cell flexible cellular solid consisting of a network of struts each con-
necting two vertex points. A hypothesis is proposed that vertex points move affinely in the large-deformation regime,
when the struts buckle, and that the force carried by a strut is a function of the longitudinal and rotational change
of its vertex-to-vertex vector. The forces consist of one longitudinal force, parallel with the vertex-to-vertex vector of
the strut and one transverse force. The overall stress response is initially dominated by the longitudinal force whilst
the addition of the transverse force becomes significant at large deformations. The model contains three parameters:
longitudinal stiffness, bending stiffness and critical stretch of a strut. These three parameters are calibrated against a sim-
ple compression test. The model is then validated against independent experiments in a simple tension, simple shear and
a combined shear-compression test on an isotropic flexible polyether urethane foam. Excellent agreement is obtained
between the experiments and the model.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Cellular solids are highly compressible materials and their stress—strain response exhibits different regimes
depending on the state of volumetric deformation. One can usually identify three such regimes, denoted I, II
and III in Fig. 1. In the regime I, the response is approximately linear, due to small deformations. At a critical
compressive strain, individual struts begin to lose stability and buckle, whereupon their longitudinal stiffness
reduces drastically. Due to elastic buckling on the micro-level, a plateau in the stress—strain response is
obtained, regime II. The struts then deflect freely until neighbouring struts come into contact. The densifica-
tion, regime III, initiates upon internal contact and continues towards a limiting density where the response
approaches that of the homogeneous solid phase.
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Fig. 1. Typical response to large simple compression of a hyperelastic cellular solid. I, Linear-elasticity; 11, plateau; 111, densification.

Micromechanical models for cellular solids typically belong to either of two categories: (i) cell-models,
which consider some smallest dominant structural member of the cellular solid, e.g., one or a few struts
and (ii)) RVE-models, which explicitly model a representative volume element (RVE) containing a large num-
ber of struts.

Gent and Thomas (1959) developed a cell-model, category (i), based on a single-strut cell with affine motion
of the strut endpoints. Their model is restricted to moderate strains since it ignores any reorientation of the
microstructure. The compressive response of struts undergoing buckling was modelled in a semi-empirical
manner. Zilauts and Lagzdin (1992) used a similar approach with a pin jointed single-strut, subjected to lon-
gitudinal forces, and assumed affine motion of the strut endpoints. This model allows for truly large deforma-
tions, including strut reorientation, and also incorporates a more sophisticated treatment of the response due
to strut buckling. Warren and Kraynik (1991) introduced the more realistic and less restrictive assumption of
affine motion of strut midpoints rather than endpoints. This allows for the non-affine stretching of a strut
which is due to bending of the connecting struts. The model is more complicated than the single-strut models,
since it involves solving the forces on four struts simultaneously. Only small deformations and no strut buck-
ling are included in their analysis. Zhu et al. (1997) considered the high strain compression of open-cell foams
with a body-centred-cubic (BCC) lattice where the struts are treated as built-in at rigid vertices using the elas-
tica approach to model elastic buckling. It is evident that the assumption of rigid connections at the strut ver-
tices makes the constitutive response over-stiff and that the elastica approach, requiring extensive iteration at
the constitutive level, would be costly in a finite element method (FEM) solution scheme. Wang and Cuitino
(2000) used the same kinematic assumption as Warren and Kraynik (1991), but the solution is obtained by
minimisation of energy for the unit-cell consisting of four struts. This allows the authors to examine more gen-
eral configurations, although with the inherent limitation of periodicity. The most important limitation of the
cell-model approach is the restrictive control of cell boundary displacements.

In RVE-models, category (ii), the balance equations on the RVE are typically solved by the FEM. Relevant
background here is, e.g., Shulmeister et al. (1998), Elliott et al. (2002) and Zhu and Windle (2002), where the
cellular solid is modelled as a three-dimensional framework of slender struts, regular as well as random based
on the Voronoi technique. A benefit of such computations is that one may distinguish different mechanisms
and study the effect of non-uniform distributions of strut parameters and connectivity. Thus, Shulmeister et al.
(1998) show that Young’s modulus and Poisson’s ratio increase strongly with increasing disorder. Further,
Van der Burg et al. (1997) conclude that, for cellular solids with higher density, the longitudinal deformation
of the struts is of increasing importance relative to bending deformation. The main limitation of RVE-models
is the high computational cost. Another limitation is the difficulty of choosing the appropriate boundary con-
ditions for the RVE.

The objective of the present work is to develop a hyperelastic, constitutive equation for an open-cell cellular
solid with a random microstructure. The goal is to capture the main aspects of the response at large, in par-
ticular compressive, strains: plateau behaviour due to strut buckling and deformation induced anisotropy due
to strut reorientation. We propose a single-strut model, because such a model will be considerably easier to
generalise for inelastic responses, is more adaptable with respect to random microstructures than multi-strut
models, and is numerically less expensive. The model is based on the hypothesis that struts deform in either of
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two regimes: (1) the linear small-strain regime, where the axial stiffness of a strut is much greater than the
transverse stiffness, or (2) the large-strain regime, where the struts buckle so that their axial and transverse
stiffness are similar. It is assumed that the struts are free to deflect between their ends; so the theory is not
applicable to the densification regime, regime I1I in Fig. 1. It is also assumed that the micro- and macro-scales
are widely separated, so that the length of a strut can be taken as infinitesimal.

2. Geometric model

The material, occupying the macroscopic (denoted by the superimposed bar) region Q C R? is on the micro-
level understood to consist of two phases, one solid phase € and one pore phase €, such that

Q=0uUQ,. (1)
We also introduce the (undeformed) reference configuration
Q) = Qg UQy, (2)

and a macroscopic, uniquely invertible, deformation map y:
X = Z(X, l) : ﬁo — ﬁ, (3)

see Fig. 2. The pore phase Q, will be assumed to have negligible stiffness in comparison to that of the solid
phase €, so that its contribution to the overall stress response is ignored. The solid phase €y, is assumed
to consist of a network of struts, each connecting two vertex points X; € Qy and X} € Qy (i = 1...Ng, where
Ng is the number of struts within the region Q), in the reference configuration, and &, € Q and & € € in the
spatial configuration, see Fig. 3.

X1, 11

Fig. 2. General kinematics of macroscopic region Q.

&~

(b)

Fig. 3. (a) Affine motion of strut vertices in the large strain (post-buckling) regime, (b) illustration of affine motion for strut vertex vectors
at different orientations.
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As illustrated in Fig. 3, each strut i is characterised by the vertex-to-vertex vectors r(; and r; in the reference
and current configurations, respectively, such that

ro = X, — X; = rulN; 4)
and

r =& — & =rm, (5)
where N; and n; are the material and spatial directors of the strut, respectively, i.e., ||N;|| = ||n;|| = 1. For com-

putational efficiency we now wish to link the deformation of a strut directly to the kinematics on the macro-
scopic level. The simplest reasonable assumption is affine motion of the vertices, cf. Fig. 3 and Zilauts and
Lagzdin (1992). We shall make the following hypothesis. Regime I: in the linear elastic regime, it is well estab-
lished that stretching of the (relatively stiff) struts is negligible and any deformation is dominated by transverse
deflection. Thus, the affine assumption is inadequate in this regime. Nevertheless, since the strains are small we
may assume that

I; ™ Iy (6)

Note that although this hypothesis may hold for r; itself, it does not adequately represent the infinitesimal
strain in a strut. Regime II: whenever the deformations are large, the struts are in the post-buckling regime.
In this regime, where the axial stiffness is governed by bending, we assume that the axial and transverse stiff-
ness are similar, and the vertex motion is approximately affine. This implies that the motion of the vertex
points is given by the macroscopic deformation map (%), Eq. (3),

& =7(X,,1) such that & =x; .
& =7%(X,t) suchthat & =x. 5

Assuming that the vertices X, X; and x;, X are, respectively, located within an infinitesimal distance from each
other, a Taylor series expansion in the neighbourhood of x; yields

12X +10.0) — 2(X,0) = (X, ) @ V - 10 + O(2). 9)
By Egs. (4), (5), (7) and (8) the Eq. (9) is written as
riﬁi'roi, (10)

where higher order terms are assumed to be negligible, since r is much smaller than the macroscopic dimen-
sions (due to separation of scales). The dot (-) represents a single contraction, and the macroscopic deforma-
tion gradient tensor is defined as

= _ _ox(X, 1)

Now since F ~ 1 (where 1 is the second order identity) for small deformations, Eq. (10) holds in both regimes
(I) and (IT). In order to model the strut response in the next section, we must define objective measures of strut
deformation. Assuming axisymmetry of the struts, two such measures are needed, one longitudinal and one
transverse. We thus introduce the longitudinal stretch,

1 - ~ 1
2= |leiflleal| " = (N, - €N, (12)

where C = FT - F is the macroscopic right Cauchy-Green deformation tensor. The spatial director of the strut
is obtained by combining Egs. (4), (5), (10) and (12):

n; :)v;lF'Nl'. (13)
To describe deflection by bending, we introduce the objective transverse deflection vector

W; ::nl‘—i'N[:(/{i_IF_i)'Ni, (14)
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where R is the rotational part of F, according to the polar decomposition of the macroscopic deformation gra-

dient, i.e., F=R- U, and a corresponding transverse unit vector t,

W'
W 1
ti= (15)
with
w; = [|wi]|. (16)

The definition Eq. (14) is phenomenological, based on the idea that the rotation of vertices is defined by the
rotational part of the deformation gradient (affine rotation of the vertices). The variables /; and w; are non-
dimensional and objective measures of longitudinal and transverse strut deformation, respectively.

3. Strut response

The force f; carried by a strut cannot be modelled precisely, for the following two main reasons: (i) the
geometry and boundary conditions of a strut are not well defined; (ii) the elastic solution for a strut under
buckling is non-unique. However, the restriction to hyperelasticity requires f; to be a unique and continuous
function of r;. Moreover, objectivity requires the strut deformation to be independent of any rigid body rota-
tion. We thus propose the simple deformation illustrated in Fig. 4. We must further assume the strut response
to be axisymmetric, which implies that the force f; is restricted to the sub space of R® spanned by the vectors ry,
and r;, and may therefore be resolved on the two-dimensional, non-rectangular (covariant) basis n;, t;. This
leads to the following form of the force acting on the strut vertex points:

f,‘ :fn(/lia W[)Il,- +ﬂ(/l,, W,’)ti. (17)
In order to keep model parameters to a minimum, we presently restrict ourselves to:
f[ :fn(;bi)n[ +ﬁ(Wl)t, (18)

For the longitudinal response function f;, we assume linearity in the longitudinal stretch. Buckling under com-
pressive load is accounted for by reducing the longitudinal stiffness below a critical stretch 1 < A (with
Ao < 1)

Salde) = k(s = 1) + (k2 = k1) (4 = ) H (4 = Ze), (19)

where k; > 0 is the tensile stiffness of the unbuckled strut, k,(< k) is the reduced post-buckling stiffness and H
is the Heaviside step function. For the transverse response function f;, we assume linearity in w;

Sfiwi) = ksw, (20)

where k3 > 0 is the transverse stiffness of the strut. In order to find support for the above ansatz, and to seek
scaling relations between the stiffness parameters £, and k3, we studied the large-deflection theory of Euler—

n;

RN, / i

Jo(i, wi)ny

ro; i

(a) (b) () (d)

Fig. 4. Kinematics of and forces on strut vertex points in non-rectangular basis (n;, t;), (——) vertex-to-vertex vector, (—) strut curvature; (a)
undeformed, (b) after rigid rotation, (c) tensile stretch: 4; > 1, (d) compressive stretch: 0 < 4; < A., where A, is the critical stretch at which
the strut buckles. Note that n; - r; = 7, and that n; - t; # 0 (in general).



P. Hard af Segerstad, S. Toll | International Journal of Solids and Structures 45 (2008) 19781992 1983

Bernoulli beams, see Appendix A, although this theory is strictly valid only for slender beams. In the small-
deflection regime, assuming the deformation mode in Fig. 4(d), one finds that &, as well as k; scale as r;2, with
the ratio

— =c~0.55, (21)
initially.
4. Averaging

Consider a general micro body occupying a region Q with volume vq in static equilibrium, ¢ -V = 0,
loaded by surface tractions t = ¢ - n. The average Cauchy stress within such a body is given by

1
o-dvg:—/x@)a ) - Vdug
(%o}

:i (x® 6) -ndsg
Vo Jao

1
Va Jaa

In the case where the surface loading is concentrated to m discrete points this becomes

1
[ adua - Zxk@apk, (23)

Ua
where p, are point forces acting at points X;.

To obtain the average stress in a strut, cf. Eq. (23), we consider the free body diagram in Fig. 5(c). For
simplicity, we split the strut force f; into one component, (f; - n;)n;, parallel with the strut director n;, and
one component, f; — (f; - n;)n; = f;*9;, orthogonal to n; (||9;]| = 1). Thus, applying Eq. (23), to the half-strut
in Fig. 5(c) we obtain

1 1 0 0
/ o-vasi:2(51',-@(fi-n,«)nl»—i—zr,»@fil—i—i’ﬁi@ f + 'l9 ® f )

=rimf,+f;®n — (f;-n)n; @ny), (24)

where ¢ is the (arbitrary) separation distance of the force couple acting on the vertex at the origin of the strut.
The macroscopic stress & is now obtained as the volume average of the local stress within the struts
1 1 &
6=— | 6dQ,=— / odQ, 25)
Ug Jo, U ; Qi (
where v5 is the volume of Q, € is the portion of Q occupied by the struts and Qy; is portion of Q, occupied by
strut i. The sum is taken over all struts in Q. Introducing Eq. (24) into Eq. (25) yields

x)

£, — (f;- ny)n; = fi-9;

Ty 191’

) o fitn;
(a) (b) (c)

Fig. 5. (a) Forces on a strut vertex point in the non-rectangular basis n;, t;, (b) free body diagram of the half-strut, (c) free body diagram
with forces resolved parallel and orthogonal to the strut director n; and the couple m; represented by a force couple with separation J.
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6=n{rnf +f on — (fi-n)n; Qn)), (26)
where (o) = A}TZ?, “ (e;) denotes the arithmetic average and » is the number fraction of struts, defined as
Q
N=
ni=—2 (27)
Ug

Here Q is a representative region of the cellular solid.
Finally we assume, for simplicity, that r, is uniform and introduce the conservation of struts,

n=noJ ", (28)

where n is the number fraction of struts in the reference configuration and J = det(F) > 0. The Egs. (26) and
(27) combined with Egs. (12)—(15), (18)—(21) and (28) yield the constitutive equation

6 =np 'r(F- ((N®N) F' —ckr,(F- (N®N)-R" +R- (N®N) - F")), (29)
or, in terms of the second Piola—Kirchhoff stress tensor,

S=nro(((N®N) —ck,(N@N) - U '+ U - (N®@N))). (30)
Here,

(N &N =2 iN ®N; (31)

N— P ’
1 &

((N; ® N)) N_Zlg IN; @ N;, (32)
with

() = ki + (chka — k)27 + (ky — &y ) (1 — Aedy Y H (A — Ao) + ckad*N; - U - N, (33)

Notice that this constitutive response, Eq. (29), only depends on the initial structure and the macroscopic
deformation gradient F. The structure tensors in Eq. (32) are evaluated from the initial orientation distribution
of the struts, discretised by a set of N unit vectors {N;}. In this work we use a random orientation distribution
for {N;}, thus assuming that the material is isotropic in its undeformed state.

The suitable discretisation level will be a trade-off between accuracy and CPU time efficiency. To illustrate
the convergence of the overall response as the orientation discretisation is refined, Fig. 6 shows the macro-
scopic stress response for three different realisations using 15 (Fig. 6a), 50 (Fig. 6b), 100 (Fig. 7a) and 200
(Fig. 7b) directors, respectively. The material parameters k =72x 10° N, k =1.0x 10° N and
(4. = 0.974) were used throughout. The material directors are isotropically distributed in all cases. It can be
noted from Fig. 6 that about 50 strut directors seem sufficient for convergence with this method in the case
of initial isotropy.

5. Experimental

A flexible polyether urethane foam with density p = 26.0 kg/m? was studied in order to evaluate the con-
stitutive Eq. (29). The foam was examined by Scanning Electron Microscopy (SEM) to characterise its micro-
structure in both the rise and the transverse directions, respectively, see Fig. 7. The SEM photographs revealed
an isotropic orientation distribution and typical strut dimensions of »y = 340 um and dy, = 90 um, where rq
and d, are the initial length and diameter, respectively.

Stress—strain data in compression, tension, simple-shear and coupled shear-compression were obtained
using an apparatus developed for soft compressible solids, such as felts, foamed rubbers and plastics, Alkhagen
and Toll (2002). In the apparatus a sample is confined between two horizontal parallel plates and deformed by
imposing a vertical and/or horizontal motion on one plate relative to the other. The relative plate displace-
ment is measured by laser sensors. The stress is measured by means of a load cell, specially designed to elim-
inate any influence of the free edge, see Fig. 8.
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Fig. 6. Effective response. Convergence behaviour with different levels of (initially isotropic) discretisations (a) 15, (b) 50, (c) 100, (d) 200
strut directors. Each plot shows three different realisations of the discrete orientation distribution.

04 08 12 16 20
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Fig. 7. Microstructure; (a) in the rise direction and (b) perpendicular to the rise direction, of the open-cell polyether urethane foam (units
in mm).

The foam was cut into cylindrical specimens with different heights, 10.0 < Ay < 25.0 mm and diameter
d = 95.0 mm. Prior to measurement, the specimens were cycled to eliminate the Mullin’s effect, Gong et al.
(2005), Holzapfel (2000), see Fig. 9, and exposed to a hysteresis loop to ensure that the dissipation was small,
since we assume hyperelasticity. A hysteresis loop is shown in Fig. 10. All measurements were performed at a
constant displacement rate of 0.0005 m/s to eliminate any dynamic effects, and at temperatures in the range of
20-23 °C. The humidity was also controlled but had no significant effect on the results. The model was vali-
dated against three different independent experiments: (i) simple tension, see Fig. 12, (ii) simple shear, see
Fig. 13 and (iii) combined shear-compression, see Fig. 14. In the experiments (ii) and (ii1), b is a displacement
perpendicular to 4. In experiment (iii) the foam was first compressed to (20%) of its initial height (4/hy = 0.8),
corresponding to a point at the beginning of the plateau (regime II, Fig. 1) in the stress—strain diagram, then
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Fig. 8. Apparatus with sample deformations. The stress is measured in the undisturbed region Ry;. The arrows indicate the plate motion.
(a) Compression test. (b) Shear test.
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Fig. 9. Compressive stress—strain response, open-cell polyether urethane foam. The bottom curve is the first cycle and the top curves are
the following cycles. (Notice that loading is from right to left.)

subjected to a simple shear deformation. In all the experiments (i), (ii), (iii), the samples were adhesively
bonded to the load cell and the maximum deformation was limited by debonding between the load cell and
the sample, not by densification, see Figs. 12-14.

6. Results

In the three-parameter model, k1, k, and A, can be calibrated against a simple compression test. The param-
eter k; was adjusted to fit the slope of the response in the initial linear-elastic regime I, k£, was used to fit the
slope of the plateau regime II and A, was obtained from the intercept between regime I and II, see Fig. 1. The



P. Hard af Segerstad, S. Toll | International Journal of Solids and Structures 45 (2008) 19781992

|
o
.

|
—_
o

Normal stress 33 [kN/m?]

|
—
33

T

Unloading

K Loading

e
e,
of
e

® ons

0.2

Fig. 10. Hysteresis loop, open-cell polyether urethane foam. (Notice that loading is from right to left.)

04 0.6 0.8
h/ho

1.0

0 ................
: — == 4/
~ - . N
Z I TS
=, —5Ht ._,""w
)
& re
z s

4
Z-10p
E J
=
8
z.
_15.
0.2 0.4 0.6 0.8

h/ho

1.0

1987

Fig. 11. Simple compression test, (-) predicted total Cauchy stress, (-) contribution from transverse force to the Cauchy stress, (—)

contribution from longitudinal force to the Cauchy stress, (- --) experiment. (Notice that loading is from right to left.)
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Fig. 12. Tension test, (—) predicted total Cauchy stress, (- - -) experiment.
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resulting parameter values were k; = 72 x 10 N, k, = 1.0 x 107° N and A, = 0.974. In Fig. 11, the contribu-
tions from the longitudinal and transverse forces to the macroscopic Cauchy stress are plotted for a simple
compression test together with the total macroscopic Cauchy stress. In Figs. 12-14, the model is validated
against a simple tension, simple shear and combined shear-compression test, respectively, holding the param-
eters from the simple compression test, cf. Fig. 11, fixed. It may be noted that, as expected, the initial slope is
the same in the compression and tension tests, compare Figs. 11 and 12. In the calibration/validation process

of the model a set {N;} of 100 initially isotropic unit vectors was used throughout.
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Fig. 13. Simple shear test, (—) predicted total Cauchy stress, (- - -) experiment.
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Fig. 14. Combined shear-compression test, (—) predicted total Cauchy stress, (- - -) experiment.

7. Discussion

Clearly a general micromechanically derived constitutive theory regarding open-cell cellular solids should
consider the stretching, bending and twisting of struts. The approach taken here, i.e., modelling a single strut
assuming affine endpoints in the large strain regime is rather simplistic. Our reasons for this choice are that (i)
it will be considerably easier to generalise to inelastic responses, which we intend to do, (ii) it is more adaptable
with respect to random microstructures since the set of material directors {N;} is easily chosen in accordance
with the specific morphology of the considered foam, but also because no assumption is made with respect to
the connectivity of the struts and (iii) it is computationally inexpensive as compared to multi-strut (unit-cell) or
RVE models, since the equilibrium forces on the micro-level are not solved.

The non-orthogonal split of the force f, Eq. (17), has two advantages. First, the vector t is considerably
easier to express than a vector which is orthogonal with n. Secondly, this choice reduces the coupling between
fn and w and f; and 4, respectively. This happens because the transverse force due to w, f; = fi(w)t, contains a
component in the direction of n, which is consistent with the longitudinal force required to keep A constant.

Our assumption that the stretch is close to unity in the pre-buckling regime, so that r; ~ r(; appears to hold.
The prediction of f works, because the strut stiffness & is adjusted to the experimental response. In the post-
buckling regime, a sufficient number of members of the structure respond by bending, making their stiffness
much more uniform, and the affine assumption realistic.

The hysteresis loop, see Fig. 10, shows that some energy is dissipated during the experiments. This is not
taken into consideration in the hyperelastic constitutive model and therefore influences the values of the
parameters. The average strut length (r) in the model does not take into account the geometry of the vertex
points, referred to as dead volume by Gent and Thomas (1959). The dead volumes set the boundary conditions
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(a) (b) ()

Fig. 15. Reorientation of spatial strut directors (evolution of deformation induced anisotropy) due to; (a) simple tension in the x;
direction, (b) no deformation, (c) simple compression in the x; direction. The black dots represent the tips of individual directors
originating at the center of the depicted unit sphere.

for the struts at the vertices and may play a significant role in especially the densification regime III which is
not covered by our model. The bending of connecting struts, accounted for by Warren and Kraynik (1991),
and other deformation modes, such as torsion, see Warren et al. (1997), are accommodated phenomenolog-
ically in this model by the parameters k; and k,.

The consistently good predictions under different deformation modes indicate that the model decouples and
captures the governing mechanisms in an adequate manner. This includes deformation induced anisotropy
which is inherent in the model via the assumption of affine motion of strut vertices. Fig. 15 illustrates the dis-
tribution of spatial strut directors {n;} as induced by simple tension, Fig. 15(a), and simple compression,
Fig. 15(c). Fig. 15(b) shows the initial isotropic distribution of material strut directors {N;}.

The most remarkable ability of the model is to capture accurately the shear-compression coupling. Figs. 13
and 14 show that the shear modulus (initial slope of the solid curves) drops dramatically when the material is
compressed to beyond the linear-elastic regime. This happens because a large portion of the struts in the pre-
compressed material have reached their buckled state, and lost most of their stiffness. Notice that the model
predicts the effect quantitatively, based on a calibration performed under simple compression only.

8. Conclusions

The model is based on a representation of the cellular solid by a network of struts. The forces at the vertex
points are assumed to be a function of the strut deformation, which depends directly on the macroscopic
deformation. The present model is formulated in terms of hyperelasticity; thus no strain rate effects or dissi-
pation of energy are considered.

The overall stress—strain response of the cellular solid is governed primarily by longitudinal deformations of
the struts including buckling. The contribution of the transverse force to the Cauchy stress is only significant
at large compressive strains, where reorientation and buckling of the struts reduce the longitudinal strut
response.

The model uses only three parameters, which can all be determined from a single compression test. The
results of independent tests in other modes, including simple shear, are then accurately predicted. Even the
peculiar shear-compression coupling is captured accurately. This strongly supports the underlying assump-
tions, in particular the hypothesis of affine stretch of the strut vertex-to-vertex vector at large deformations.
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Appendix A. Elastica theory

In order to support the linear ansatz (20), and reduce the number of model parameters, a scaling relation
between the parameters k, and k3 is sought via the large-deflection theory of slender beams. This theory is
based on Newton’s differential equation, obtained by combining the mathematical expression for the curva-
ture of an analytical function, i.e.,

d (du du\ 2\
— z 1 z =0 A.l
dy<dy)”< +<dy)> / (A1
with the Euler—Bernoulli beam theory,
do M

K== (A.2)

Thus, let y be a coordinate along the centre-line of the beam in its material configuration, see Fig. A.1, sis a
coordinate along the centre-line of the beam in its spatial configuration, u, an axial displacement along y, u, is
a displacement orthogonal to y, 6(y) is the inclination angle at position y and EI is the flexural rigidity of the
beam, Mattiasson (1979). There is no analytical solution to Eq. (A.1) but the axial displacement u, and the
transverse displacement u, may be solved explicitly by means of elliptic integrals, see e.g., Mattiasson
(1979) and Aristizabal-Ochoa (2004):

=3 (1= Bpsinie) cos(@) + cos()F(p.6) ~ K(p) + 26(0) - 2600, 8] ). (A3)
Uy = %0 (é [2pcos(¢) cos(¢) — sin(@)[F(p, ¢) — K(p) +2G(p) — 2G(p, d))]])v (A4)

in case of a column, with unconstrained displacement in the y direction at one end, an unconstrained displace-
ment in the x direction at the other and all other end displacements and rotations constrained. This implies
that the column can be divided into two half beams according to Fig. A.1. Here

Fip.¢) = /qsL,
0 (/1 —p?sin’(¢)

is the incomplete elliptic integral of the first kind,

G(p,¢) == /0¢ \/1—=p2sin®(§)dé, 0<p<, (A.6)

0<p<l, (A.5)

—ul | Xw

= T

Fig. A.1. Schematic of the half-beam.
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Fig. A.2. fi(w) versus w for different values of £, € {0,0.3,0.5}, where £, = 0.5 is the lower curve.

is the incomplete elliptic integral of the second kind and

s
T
G(p) = G(p.5), (A8)
are the complete elliptic integrals of first and second kind, respectively. Also
g
= A.
4EI (A9)

where fis the total applied load. Finally, ¢ is the angle between the load f and the y-axis, see Fig. A.1. For a
prescribed value of f the iteration variable p is computed from

q=K(p) = F(p,¢) (A.10)

and

¢ = arcsin (Sinp(%)) (A.11)

Through a somewhat lengthy analysis of the covariant basis n, t one obtains the following relations:

5 1 1 w 2 1 2
f = — (1 _Mft + 1 _wfn> + <_1 _wfn) , (A12)
4 2 2 2

- (1))

(w)? =1 + (2 + 1 - 1), (A.14)
2

”

P =14 (u,+ 1) (A.15)

Fig. A.2 plots the solution of f; for various constant values of f,. It is seen that f; oc w/r3 roughly up to
w = 0.3.
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