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In the present work, the singularities of an interface crack between two dissimilar electrostrictive mate-
rials under electric loads are investigated. Within the framework of two-dimensional deformation, the
problem is solved using the complex variable method. Three crack models, that is, permeable, imperme-
able and conducting crack models are considered individually. Complex potentials and intensity factors
of total stresses are derived by considering both the Maxwell stresses in the surrounding space at infinity
and inside the crack. It is found that, for the above three crack models, the singularities of total stress are
the same as those in traditional bi-materials with an interface crack; however, the intensities of the total
stress depend on the actual crack model used.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Multilayer actuators and layered composites which are made of
smart materials have many applications in different engineering
fields. Cracks may occur at the interface when the materials are
subjected to electric and mechanical loads. Suo et al. (1992) stud-
ied an impermeable interfacial crack between two piezoelectric
materials and showed a new type of singularity around the inter-
face crack tips. Gao and Wang (2000), Beom (2003), and Gao
et al. (2004) investigated the interfacial fracture of a permeable
crack between two piezoelectric half-planes, and they found that
the singularities depend on material properties and applied
mechanical loads, but not on applied electric loads. Herrmann
et al. (2005) considered the in-plane problem for a moving inter-
face crack with a contact zone in a piezoelectric bi-material and
showed increases of the contact zone length and stress intensity
factor for the near-critical speed region. Li and Chen (2007) pre-
sented the solution for a semi-permeable interface crack between
two dissimilar piezoelectric materials and discussed the effect of
permittivity of the medium inside the crack on the near-tip
singularity. Hausler et al. (2009) studied the fracture behavior of
metal-piezoceramic interfaces under both mechanical and electri-
cal loadings by four-point bending using commercial multilayer
actuators.

For the problem of interfacial fracture of electrostrictive mate-
rials, Ru et al. (1998) studied the electric field induced cracking
in multilayer electrostrictive actuators for an interface crack lying
between an electrode layer and a ceramic matrix, and an interface
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crack with one tip at an embedded electrode-edge, respectively.
Kim and Beom (2009) presented the numerical analysis of an elec-
trode embedded between dissimilar electrostrictive materials
using finite element method. Introducing the Maxwell stresses in
the matrix and surrounding space (Kuang, 2008, 2009), Kuang
developed the basic equations of Stratton (1941) and Landau and
Lifshitz (1960). Gao and Mai (2011) reported the effects of Maxwell
stresses on the fracture behavior of a permeable interface crack in
an electrostrictive bi-material.

In the present work, we study the singularities of an interfacial
crack between two dissimilar electrostrictive materials by using
the complex variable method. The crack may be electrically imper-
meable, permeable and conducting, respectively. Emphasis is
placed on two problems: what are the types of singularity for the
three crack models, and what factors dominate the intensities of
all the singularities? To this end, we first outline the basic equa-
tions required in Section 2, and derive the general solutions for
the electric potentials and electro-elastic potentials in Sections 3
and 4, respectively. The intensity factors of total stress are given
in Section 5 and conclusions presented in Section 6.

2. Basic equations
Consider an isothermal and isotropic electrostrictive material,

and neglect the piezo-electricity, the constitutive equations can
be expressed as (Jiang and Kuang, 2004):

X 1 -
gjj = ZGE,‘J‘ + Aekk5U — j (a] EiEj + azEkEkéij), (1)
D; = (8,—,151']‘ + aie; + azek/<5ij)Ej (2)

where i,j =1,2,3. 0y, e;, D; and E; are stress, strain, electric dis-
placement and electric field intensity, respectively. a; and a, are
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two independent electrostrictive coefficients in isotropic materials,
&m is permittivity at zero strain and J; is Kronecker delta. 2 and G
are Lame constants given in terms of Young’s modulus E and Pois-
son ratio v by: 2 =Ev/[(1+v)(1 —2v)] and G =E/[2(1 + V)].

The equilibrium equations become (Jiang and Kuang, 2004):

905, fo _

an i 07 (3)
OD;

87)6,'—'— q=0, 4)

where f¢ is body force induced by the electric fields, and q is free
charge density in the body, the repeated indices represent their
summation, and

M
_ 90;

1
= 8—?(1'7 O-g'/’ = SmEiEj - jng’(Ekéijv (5)

fie
where 63-4 is the Maxwell stress.
Substituting Eq. (5) into Eq. (3) yields:
96 _
(9Xj -

0, 6'ij=0ij+0'g-/1, (6)
where gj is the total stress.

When the strain is very small, the coupling effects between
strain and electric field may be neglected. Hence, the electric field
can be obtained directly from the theory of electrostatics. In this
case, Eq. (2) is reduced to:

D; = &nkE;, (7)
and furthermore, we have:
_ 09

= o 8)
oD; .
o (i=1,2). 9)
Substituting Eqs. (7) and (8) in (9) yields:
Po 0
—— +—=0. 10
ox? - X3 (10)

The general solution of Eq. (10) is:
¢ = Re[w(2)],

where w(z) is the unknown potential function.
Inserting Eq. (11) in (8) gives:

Z =X +ixy, (11)

Ei = —Re[W(2)], E; =ImWw'(2)]. (12)
From Egs. (12) and (7), we obtain:

Ey —iE, = —wW(2), (13)
Dy —iD; = —&nW'(2). (14)

After w(z) is determined from given electric boundary conditions,
all stress fields can be obtained and the final results are outlined be-
low (Jiang and Kuang, 2004):

Total stresses G;

G2z + 611 = KW (@W(Z) +2[¢/(2) + 92, (15)
G2 — 011 + 21613 = KW' (2)W(2) + 2[z2¢" (2) + ¥/ (2)], (16)
where k¥ = —(1 — 2v)(ay + 2a;)/[4(1 — v)], and ¢(z) and y(z) are two
complex functions to be determined.

Maxwell stresses o}/

o +a¥ =0, (17)
oM — oM +2ioY, = —&,Q (2), (18)
where

Pyttt

S, X,
L(

tr ottt Tt

Fig. 1. Permeable or impermeable interface crack in electrostrictive materials.

Q2 = W@ (19)

Similarly, the displacement field is:

2G(un + i) = Kp(2) — 2¢'(2) — ¥ (2) + 1Q(2) —5w(z)W'(2), (20)

where K =3 —4v and y = (a; — 2¢n) /4.
From Eqgs. (15) and (16) we have:

522 ~ 612 = K [WEWE) + WEWD)| +6(2) + T @)

+2¢"(2) +y/(2). (21)
Introduce a new function, W(z), which is:
W(z) = ¢'(2) +2¢"(2) + V' (2). (22)
Then, we have:
W(@) = ¢'(2) +2¢"(2) + /' (2). (23)
Eq. (23) gives:
V@) +V @) =W @) -20"@). (24)

Substituting Eq. (24) into (21) yields:

02 —i012 = 0w(2,2) + ®(2) + W(Z) + (z - 2) ¥ (2), (25)

where &(z) = ¢'(z), and

0w(2,2) = % K [m/(z)sz) + w(z)W(z)] , (26)

which is not an analytical function of z.
Similarly, we have from Eq. (20) that:

2G(h 1 + ity 1) = KB(2) - W(Z) — (2 - 2)0 (2) + 12 (2) — 0w(2,2),
(27)

where u;; = 9u;/0x;.

3. Solutions for electric potential function w(z)

Consider an interface crack between two dissimilar electrostric-
tive half-planes S; and S, , as shown in Fig. 1. Assume that the
upper and lower planes are surrounded by free space with a dielec-
tric constant &, and the electric loading at infinity is D5°.

Similar to solving the problems of thermal stresses, w(z) can be
obtained from the theory of electrostatics. For the three crack mod-
els, detailed derivations for w(z) are given in Appendix A; and final
results (from Egs. (A21), (A34) and (A45)) are summarized below:
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. DX
itz permeable crack,
.D¥

Wi(2) =4 i2VZ - @2,

—ErVz2 —a?,

impermeable crack, z€ Sk (k=1,2).

conducting crack,
(28)
Substituting Eq. (28) into (26) we have:

N|—=

o\ 2
-
Ki (ﬁ) , permeable crack,

> a0 oo\ 2 _
Ow(Z,2)]; 0 =0y = Kk(D%> , impermeable crack, 2€5k (k=1.2).

ok

N|—=

L (E)?, conducting crack,
(29)

Specifically, along the crack-faces where z = |x;| < a, we find:

oo\ 2

1 D

()

=0¢ = py\? . _

Ow=9 —1Ky (ﬁ)  impermeable crack, Z€Sk (k=1.2).

permeable crack,

ow(z,z

:7) Iz:\xl |<a

~1K(EY)?, conducting crack,

(30)
Similarly, ahead of the crack tip where z = |x;| > a, we obtain:
oo\ 2
Tk (f—i) , permeable crack,
i} , R 3
Ow(Z.2) |y 50 = Ow= %Kk<D—> , impermeable crack, Z€ 5k (k=1,2).
&
Iki(EY)?, conducting crack,
31)

4. Solutions for electro-elastic potentials

Mathematically, the upper and lower half-spaces come together
at infinity; thus, the following continuous conditions apply (Gao
and Wang, 2000):

(022 — iG12]° = [G22 — 10712]5, (32)
[ur1 + iUzJ]TO =11+ iuzﬂ?- (33)

Taking the limit z — co in Eqs. (25) and (27) and inserting those two
equations into Eqgs. (32) and (33) above gives:

T + P1(00) + Wi(o0) = a3, + P2(00) + Wa(c0) = [022 — iG12]7,
(34)
1 K@ w Q' >
5e; [K191(00) = Wa(o0) + 1, @) (o) — 031
= 3¢ [Kaa(00) ~ Waloo) + 1,50) - 032 35)

In addition, it is assumed that K; /&2 = K, /&2 for impermeable
crack and K; = K5 for conducting crack. Conversely, along the x;-
axis, we have:

[6’22 — 1.6'12]1 = [622 — i612]2, -0 < X1 < +o00. (36)
From Eq. (25) we can obtain:

[6’22 — i&]z]] = O-sv] + @T(Xl) + W]_(X])7 (37)
(022 —1G12], = O}, + @, (X1) + W (x1). (38)

Substituting Eqs. (37) and (38) into Eq. (36) yields:

(D7 (%1) = W (%1) + 03,1 — [@5(%1) —

— 00 < Xy < +00,

Wi (1) +0y,] =0,

which gives (Muskhelisvili, 1975):

®1(2) — W1(2) = @ (c0) — Wa(c0), z€ S, (39)
@2(2) -W; (Z) = @2(00) -W; (OO)7 zeS,. (40)
Now, define a jump function as:

Auy(x1) = [Ur1(x1) + iz (X1)]; — [ (%) + iUz (X)), (41)

Then, on the crack-faces, we have from Eq. (27) that:

. ] - / C
1+ 1]y = o [Ka ] (x0) = Wi 00) + @ 00) — 5], (42)

; 1 _ 7 c
1+ t21]; = o (Kot (x1) = W3 01) + 1,2 00) — 03] (43)

Inserting Eqs. (41) and (43) into (41), and using Eqs. (39) and (40),

we have:
2Au 1 (x1) = Py (%1) — 2P, (x1) + é @(x) - éz Q(x1)

+C7 - (5, (44)
where
CF = - [a(o0) = Wi(o0) = 05, (46)
G5 = g [#1(0) = Waloo) - 5] (a7)
Introduce a new function, F(z), whereby:
Fa) - {11451 (2) - é? 2@2)+CF, zes, s)

12®:(2) -8 Q1(2)+ . z€S,.

Then, Eq. (44) becomes:
2Auy =F'(x) = F (x1). (49)
Except on the crack, we have Au; = 0, that is,
Fr(x) =F (x1) =F(x1), |x1]>q, (50)

which means that F(z) is an analytic function in the whole plane ex-
cept the crack.
Using Eq. (40) we obtain from Eq. (37) that:

(622 — 612)y = @} (%1) + Dy (%1) + 65 — Pa(00) + Wi(o0).  (51)
From Eq. (34) we also obtain:
Wi(o0) = [022 — iG12]7 — oy — Pi(c0). (52)
Inserting Eq. (52) into (51) gives:
(022 —i012]; = [022 — i012]7 + (Ufm —am) + @7 (x1)

+ @, (X1) — [P2(00) + P1(00)]. (53)
Since the crack is traction-free on the crack-faces, we have:
(622 —i612); = [0 —i03] . (54)

where [o%, —iol}]_ are the Maxwell stresses inside the crack.
Inserting Eq. (54) in Eq. (53) gives:

Dy (x1) + @, (x1) = G0 + [3(00) + P1(o0)), (55)

where

oo = (0%, — o] —

([022 —i612]7" + (001 — o)) (56)
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Conversely, using the following identities:

qsy(m:;—]mmu <229'(x1) c;’°>, (57)
@300) = - F(x) + 5 (B - 67 ), (58)

Eq. (55) can be reduced to:

F*(x1) +j:—;F’ (X1) =41 00 + A1 [P2(00) + P1(0)]

(39)
Using Eqs. (34), (35), (46) and (47), Eq. (59) becomes:
F'(x1) - gF (x1) = f(x1), (60)
where
g=-M/4 <0, (61)

fa) = 100 — L2 Q) (xy) - 171 % x). (62)

G,
The general solution of Eq. (60) is (Muskhelisvili, 1975):
X(2) f(x1)dx;
F2)===% | —&——+——
@) 2mi Jp X7 (%) (%1 — 2)
where ¢; and ¢, are constants to be determined, and
X@2) =@z+a)(z-a)", (64)

1 *l—l’S
/72 )

+X(2)(c1z + o), (63)

1
8:E1n|g|. (65)

From Egs. (64) and (65), we have:
1 (Z + a)’lE
V2 —a@?\z-a

Following Muskhelisvili (1975) we can determine from Eq. (63)
that:

X(z) = (66)

1

F(z) = T g (2) — 2X(2)2100] + X(2)(€1Z + Co). (67)

In this case, the single-valued condition of displacement can be ex-
pressed as:

j{ F(z)dz =0, (68)

where A is a clockwise contour enclosing the crack.

Eq. (68) combined with the result obtained by taking limit
z — oo in Eq. (67) leads to ¢; = ¢y = 0. Thus, the final solution for
F(z) can be simplified as:

1

F(z) = T-g [f(z) — 2X(2) 21 00]- (69)
With Egs. (69) and (48), the unknown functions @;(z) and @,(z) can
be determined, and thence, W;(z) and W,(z) are readily obtained
from Eqgs. (39) and (40).

5. Solutions for intensity factors of total stress

We define the intensity factor of total stress as:

k1 — ikz = 111‘1(')1 risv 27'[7'[6'22 — i&]z]l. (70)
Ahead of the crack tip, from Eq. (25) and using Eq. (31), we have:
(022 — iG12]; = Ol + ®F (x1) + W (x1), (71)
Similarly, Eq. (71) can be reduced to:
~ s _ A s
(622~ i12), = 75" | (1~ F(x1) — AL Qo) — 5+ 22 o)
Gy J2 Gy
(72)

where a constant without any effect on stress singularities is
neglected.
Inserting Eq. (69) into (72) leads to:

(622 —iG12]y = 47" |f(%1) = xiX(x1) 2100 — él Qo(x1) — al éz Qo(x1) |-
(73)

Substituting Eq. (62) into (73) yields:

[022 — i012]; = [00 — X1X(X1)00]. (74)

Inserting Eq. (74) into (70) we finally obtain:

k1 — lkz = 7(2a)i£\/ﬁ0'0. (75)

Substituting Eq. (56) into (75) now gives:

k1 — lkz = (20)@/&([6}2 — 1621];0 + [Gsﬂ — O-vﬁ\fl} — [GZMZ — 102M1L>
(76)

For traditional materials loaded by mechanical stresses ¢53 and
033 at infinity, we have:

[622—i&21}f20'§—i0';, [GC oY

wl — wl} 207 [O-IZWZ_I‘G%]C:O'
In this case, Eq. (76) degenerates to:
ki — ik, = (2a)"v/ma(o35 — i0%;), (77)

which is expected for a traditional bi-material.
If the mechanical stresses are zero at infinity, then

~ AT M _ =M
G2y — 02| = [03; — i03],, (78)
where [0}, —io¥ ] are the Maxwell stresses in the surrounding

space at infinity.
In this case, Eq. (76) becomes:

ky — ik, = (2a)i8\/ﬁ< (0% —io%]  + 05 — o] — (0% — i02M1L>~
(79)

Eq. (79) shows that the singularity of total stress depends on the
Maxwell stresses in the surrounding space at infinity and on the
crack-faces. Since the Maxwell stresses on the crack-faces relate
to the electric boundary conditions there, we will discuss below
three specific cases individually.

5.1. For a permeable crack

In this case, from Egs. (29) and (30), we have:

00
0 ]_G‘”’l_%K](i]) . (80)
Also, Eq. (28) implies that the electric displacement is uniform
everywhere, meaning that the electric displacement inside the
crack equals that applied. Moreover, assume the interior of the
crack and the surrounding space at infinity are filled with different
gases, and (&3, &m, &) represent the dielectric constants of the crack
interior, matrix and surrounding space at infinity, respectively. If we
assume &2 < &, and & < &, , the Maxwell stresses become:

env

Dy)’
0320 = (282(:‘11)1} ) O-Ilwho =0, (81)
(03)"  u
022 = TR 012 =0. (82)

Inserting Eqs. (81) and (82) into Eq. (79) we obtain:

kl—ikZ:(Za)“\/ﬁ[ 1 L} (D). (83)

26ens 26
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5.2. For an impermeable crack

In this case, Egs. (29) and (30) together give:
. 1 D> 2 1 Drx; 2
Gw‘l = EK] <é) ’ 0-3/1 = 7§K1 (??) . (84)
The Maxwell stresses inside the crack are zero, that is,
ah. =0, ¥ =0. (85)
Inserting Eqs. (81), (84) and (85) into (79) yields:

LS o), (86)

26y &

ki — ik, = (2a)"8\/ﬁ[

5.3. For a conducting crack
In this case, we obtain from Eqgs. (29) and (30) that:
1 or 2
O :§K’<(El )%
and the Maxwell stresses at infinity are given by:

wl —

¢ —%Kk(E;”)z, (87)

88” 00
o = —SUEY), ot =0, (88)
Thus, substituting Eqgs. (87), (88) and (85) into (79) yields:
ky — ik — —(2a)”’\/ﬁ[8‘?2”” 16| (E7) (89)

When the interface crack degenerates to a crack in a homogeneous
material, it can be shown that the above results for a permeable
crack agree with those obtained by Gao et al. (2010a,b) who derived
the solutions for a single crack by using an elliptical-hole model and
the solutions for collinear cracks by solving the Riemann-Hilbert
boundary-value problem, respectively. However, for an imperme-
able crack or a conducting crack, previous results (Gao et al,,
2010a,b) have missed a constant in the solutions for intensity fac-
tors of total stresses (i.e., second term within the brackets in Eqgs.
(86) and (89), respectively).

6. Conclusions

We have studied the 2D problem of an interface crack between
two dissimilar electrostrictive solids by using the complex variable
method. The general solutions for complex potentials and intensity
factors of total stress are obtained for a permeable interface crack,
an impermeable interface crack and a conducting interface crack. It
is found that for these three crack models, the singular nature of
total stress is the same as that in traditional bi-materials with an
interface crack, but the intensities of the total stress depend on
the adopted crack models because the Maxwell stresses on the
crack-faces are directly related to these crack models. In general,
the applied electric field may enhance or retard crack growth
depending on the electric boundary conditions on the crack-faces,
the medium inside the crack and the surrounding space at infinity.
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Appendix A. Solutions of w(z) for the three crack models

From Egs. (13) and (14) we have:

er —
D, =5:[w(@-w@), (A1)
A (W) +w@)] (A2)
1="5 .
In general, w/(z) can be expressed as:

W(2) = I'o + Wy(2), (A3)

where Iy is a constant, and wy(z) is analytic at infinity, i.e.,
Wy (oo) = 0.

Inserting Eq. (A3) in (A1) and (A2) and taking the limit z — oo
gives:

Iy~ Ty =2iDY /e, (A4)
I'y +TO = 72E? (AS)
which leads to:
I'o= % —ET. (A6)
Finally, substituting Eq. (A3) into (A1) and (A3) produces:
00 & A ()
Dz = D5 +5:[wi(2) - w4 (@), (A7)
00 & J ) ()
By = By — 5 [wh@) + W@ (A8)

A.1. Case 1: Permeable crack model

For the case shown in Fig. 1 with a permeable interface crack,
we can use the following conditions:

D; (x1) = D5 (x1),E{ (x1) = E{ (x1), along the crack, (A9)
D, =Dy, Ey=EF=0, z— oo, (A10)
}{Dzdz:a (A11)
JA

where A is a clockwise contour enclosing the crack.
Substituting Eqgs. (A7) and (A8) into (A9) gives:

& [Wip(X]) — Wi (x7)] = &2 [whg (%) — Why(x7)],  —o00 < X1 < +o0,

(A12)
[Wio(X7) + Wig(X7)] = [Who(X7) + Why(X])],  —o0 < X1 < +o0.
(A13)
That is,
[e1Wig(X1) + EaWho(X1)] " — [EaWho(X1) + &1W)(x1)] =0,
— 00 <X < 400, (A14)

[Wig (1) = Wio(x1)] " — [Who(x1) = Wyp(x1)] " =0, —o0 <X < +oc.

(A15)
The solutions of Eqs. (A14) and (A15) are given by:
gWiy(2) + &aWhy(2) =0, z€ Sy, (A16)
E2Wy(2) +E1Wo(2) =0, Z€ S, (A17)
and
Wio(2) —Wh(2) =0, z€Sy, (A18)
Wio(2) = Wig(2) =0, z€S,. (A19)
From Egs. (A16)-(A19) we have:
Wi(z) =0, Wwh(z) =0. (A20)

Thus, from Eq. (A3), (A6) and (A20), we obtain:
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At
_1D;

Wi(2) %
K

z, zeS (k=1,2). (A21)

A.2. Case 2: Impermeable crack model

For the case shown in Fig. 1 with an impermeable interface
crack, the following conditions can be used:

D; (x1) = D; (x1) = 0, along the crack, (A22)

D, =Dy, Ey=E*=0, z— oo, (A23)

?{ Dydz = 0. (A24)
A

Here, D3 (x;) = D5 (x1) is true along the whole x;-axis so that Egs.
(A16) and (A17) are still valid.

But the condition Dj (x;) = 0 on the upper face of the crack re-
sults in:

S W o(X7) — eaWyo(x7) = —2iDy, —a <x; < +a, (A25)

Similarly, the condition D (x;) = 0 leads to:

SWho(X]) — EaWh (X)) = —2iD5°, —a <x; < +a. (A26)

Eqgs. (A25) and (A26) give:

[e1Wio(x1) — E2Whao (%1)] " + [E2Who (1) — E1Wyp(x1)]” = —4iD5’,
—a<x;<+a. (A27)

Introduce a new analytic function #,(z) in the whole plane as:

E1Wy(2) — EaWhyo(2), z € Sy,
10~ { i) i 225 29
Then,
M (X7) + 1 (xy) = —4iDy,  —a <X < +a. (A29)
The solution of Eq. (A29) is:
(@) = ~2iD; {1 - \/ZZZ— az} \C/]Zzztt;o2 ' (A30)

Using the condition #,(cc) = 0 and Eq. (A24), we obtain ¢; =, =0
and finally:

M (2) = —2iD5 {1 - ﬁ} . (A31)
Solving Egs. (A16) and (A28), we have:
Wig(2) = —i22 [1 7#} zeSe (k=1,2) (A32)
&k 72 — a?
Eq. (A32), combined with Eqgs. (A3) and (A6), yields:
R z B
W (2) =1 o VA zeS, (k=1,2) (A33)
That is,
DY o
Wk(Z):lg— 2—a?, zeS (k=1,2). (A34)
k

A.3. Case 3: Conducting crack model

For the case shown in Fig. 2 with a conducting interface crack,
we can now use the following boundary conditions:

E{(x1) = E{ (x1) = 0, along the crack, (A35)
Ey =EF, Dy=Dy =0, z— oo, (A36)
74 E;dz =0. (A37)
JA

S, x

— 2

2a

=

> S,

E” L, L, E”

Fig. 2. Conducting interface crack in electrostrictive materials.

In this case, E] (x;) = E; (x1) holds along the whole x;-axis so that
Eqs. (A18) and (A19) are still true.
However, the condition Ef (x;) = 0 on the crack-faces gives:

Wio(x)) + Wig(x;) = 2B, —a <X < +a, (A38)
Who(X7) +Who(x]) = 2E°, —a<x < +a. (A39)
Similarly, introduce another new function as:

Wig(2) +Wio(2), Z € Sy,

Z) = _ A40
() {w’zo(z)+w’10(z)7 z€S,. (A40)
Then, Egs. (A38) and (A39) become:

() +1,(6) = 4B, —a<x < +a. (A41)
Similarly, the final solution of Eq. (A41) becomes:
- z
Solving Egs. (40), (A18) and (A19) we have:
Wo@ =B [1 - 2] zesk=12) (A43)
22 _ a2
Eq. (A43), combined with Eqgs. (A3) and (A6), leads to:
W, (2) :—E?#, ze S (k=1,2). (A44)
22 _ a2
Hence, we have:
Wy(z) = —ETVZ2 —a?, zeS (k=1,2). (A45)

References

Beom, H.G., 2003. Permeable cracks between two dissimilar piezoelectric materials.
International Journal of Solids and Structures 40 (24), 6669-6679.

Gao, CF., Wang, M.Z, 2000. Collinear permeable cracks between dissimilar
piezoelectric materials. International Journal of Solids and Structures 37 (36),
4969-4986.

Gao, C.F,, Mai, Y.-W., 2011. Permeable interfacial crack in electrostrictive materials.
In: Kuna, M., Ricoeur, A. (Eds.), The Proceedings of the IUTAM Symposium On
Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials
Systems. Springer, Dordrecht, pp. 133-139.

Gao, CF., Hausler, C, Balke, H., 2004. Periodic permeable interface cracks in
piezoelectric materials. International Journal of Solids and Structures 41 (2),
323-335.

Gao, C.F, Mai, Y.-W., Zhang, N., 2010a. Solution of a crack in an electrostrictive solid.
International Journal of Solids and Structures 47 (3-4), 444-453.

Gao, CF, Mai, Y.-W., Zhang, N., 2010b. Solution of collinear cracks in an
electrostrictive solid. Philosophical Magazine 90 (10), 1245-1262.

Hausler, C., Jelitto, H., Neumeister, P., Balke, H., Schneider, G.A., 2009. Interfacial
fracture of piezoelectric multilayer actuators under mechanical and electrical
loading. International Journal of Fracture 160 (1), 43-54.

Herrmann, K.P., Komarov, A.V., Loboda, V.V., 2005. On a moving interface crack with
a contact zone in a piezoelectric biomaterial. International Journal of Solids and
Structures 42 (16-17), 4555-4573.

Jiang, Q., Kuang, Z.B., 2004. Stress analysis in two dimensional electrostrictive
material with an elliptic rigid conductor. European Journal of Mechanics A -
Solids 23 (6), 945-956.

Kim, Y.H., Beom, H.G., 2009. Numerical analysis of an electrode embedded between
dissimilar electrostrictive materials. International Journal of Solids and
Structures 46 (18-19), 3441-3450.



C.-F. Gao, Y.-W. Mai/International Journal of Solids and Structures 48 (2011) 1395-1401 1401

Kuang, Z.B., 2008. Some variational principles in elastic dielectric and elastic
magnetic materials. European Journal of Mechanics A - Solids 27 (3), 504-514.

Kuang, Z.B., 2009. Internal energy variational principles and governing equations in
electroelastic analysis. International Journal of Solids and Structures 46 (3-4),
902-911.

Landau, L.D., Lifshitz, E.M., 1960. Electrodynamics of Continous Media. Pergamon
Press, Oxford.

Li, Q., Chen, Y.H., 2007. Solution for a semi-permeable interface crack between two
dissimilar piezoelectric materials. Journal of Applied Mechanics 2007 (74), 833-
844.

Muskhelisvili, N.I., 1975. Some Basic Problems of Mathematical Theory of Elasticity.
Noordhoff, Gronigen.

Ru, C.Q., Mao, X., Epstein, M., 1998. Electric-field induced interfacial cracking in
multilayer electrostrictive actuators. Journal of the Mechanics and Physics of
Solids 46 (8), 1301-1318.

Stratton, J.A., 1941. Electromagnetic Theory. McGraw-Hill, New York.

Suo, Z., Kuo, C.M.,, Barnett, D.M., Willis, J.R,, 1992. Fracture mechanics for
piezoelectric ceramics. Journal of the Mechanics and Physics of Solids 40 (4),
739-765.



	Singularities of an interface crack in electrostrictive materials
	Introduction
	Basic equations
	Solutions for electric potential function ? 
	Solutions for electro-elastic potentials
	Solutions for intensity factors of total stress
	For a permeable crack
	For an impermeable crack
	For a conducting crack

	Conclusions
	Acknowledgements
	Solutions of ? for the three crack models
	Case 1: Permeable crack model
	Case 2: Impermeable crack model
	Case 3: Conducting crack model

	References


