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1. Introduction

Depth-sensing indentation tests are widely used for determin-
ing mechanical properties of small specimens and thin films
(Fischer-Cripps, 2004). Indentation testing has also proved useful
for identification of mechanical properties of biological materials
such as articular cartilage (Jurvelin et al., 1987; Korhonen et al.,
2003). However, while the majority of analytical studies analyzing
depth-sensing indentation have focused on isotropic material
models, articular cartilage has been represented as a transversely
isotropic layered material (Garcia et al., 1998; Wu and Herzog,
2002; Wilson et al., 2005). Recently, Batra and Jiang (2008) have re-
viewed the current state-of-the-art in analytical approaches to
contact problems for anisotropic materials. Using Stroh’s formal-
ism, they studied the plane strain indentation of an anisotropic
elastic layer. An analytical solution of the contact problem for a
for transversely isotropic layer indented by a hemispherically
ended punch was obtained by England (1962). Recently, the
stress–strain state in a transversely isotropic layer was studied in
Cortes and Garcia (2005) and Klindukhov (2009). The stress fields
in the hard-coating and the soft-coating isotropic thin-film/sub-
strate systems were analyzed by Li and Chou (1997). In a series
of papers, Fabrikant (2006, 2011) has developed an analytical ap-
proach to linear (with an a priori fixed contact area) contact
problems for a transversely isotropic layered medium. Neverthe-
less, the lack of analytical closed-form solutions for the load
ll rights reserved.
-displacement relationships prevents using these results for rou-
tine indentation testing. In recent years, finite element models
have been developed for simulations of indentations tests for
transversely isotropic materials (Korhonen et al., 2002; Li et al.,
2009).

As a first approximation, force–displacement data obtained in
the depth-sensing indentation tests performed with a spherical in-
denter are analyzed by fitting them with the Hertzian model of
elastic contact, which is based on the so-called assumption of infi-
nite sample thickness (Johnson, 1985). When the sample thickness
is finite with respect to the radius of the contact area, it is well
known that applications of the Hertzian model lead to systematic
errors due to the infinite sample thickness assumption. The case
of an isotropic elastic layer of finite thickness deposited on a rigid
substrate was studied for several decades (Lebedev and Ufliand,
1958; Vorovich and Ustinov, 1959; Keer, 1964; Hayes et al.,
1972; Vorovich et al., 1974; Sakamoto et al., 1996; Argatov,
2001; Dimitriadis et al., 2002). When the substrate stiffness is
not high enough to neglect the substrate influence, a more compli-
cated two-layered model for the sample-substrate system should
be adopted. This issue has been addressed in the literature (Doern-
er and Nix, 1986; Xu and Pharr, 2006; Gao et al., 1992), where
different finite sample thickness models were developed in the
case of isotropic sample material. Very recently (Argatov, 2010),
asymptotic models were constructed for frictionless and adhesive
(no-slip) indentation of an isotropic elastic layer deposited on an
isotropic elastic substrate under the assumption that the contact
radius, a, is small compared with the layer thickness, h.
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With the advent of the atomic force microscope (ATM) as a
microindenter for measuring elastic properties of biological tissues
such as articular cartilage (Stolz et al., 2009), there have been new
issues to deal with in describing indentation such as application of
conical and pyramidal indenters along with transverse anisotropy
of samples. An analytical solution of the contact problem for an iso-
tropic elastic layer indented with a conical punch was obtained by
Kalaba et al. (1976). Recently, Borodich et al. (2003) and Giannak-
opoulos (2006) developed different analytical approaches to inden-
tation problems for pyramidal indenters in the case of an isotropic
elastic half space, though their results can be easily generalized for
the case of a transversely isotropic elastic half-space. However, to
the best of the author’s knowledge there have been no attempts
to develop a finite sample thickness model for indentation of a
transversely isotropic elastic layer with a non-spherical indenter.

Another difficulty associated with analytical modeling of micr-
oindentation of thin samples is the need to have finite sample
thickness models valid in a wide range of ratio a/h, where a is
the radius of the contact area, h is the sample thickness. It turns
out that analytical solutions of the contact problems for relatively
thick and thin elastic layers differ greatly, being strongly depen-
dent on the value of Poisson’s ratio with decreasing the layer thick-
ness. Aleksandrov (1969) obtained an asymptotic solution when
Poisson’s ratio, m, of the layer material is not very close to 0.5.
The case of an incompressible layer material with m = 0.5 was first
studied by Matthewson (1981) and after that in Chadwick (2002),
Aleksandrov (2003). For dealing with non-axisymmetric situations,
Barber (1990) developed an approximate method of Jaffar (1989)
and Johnson (1985) extending their axisymmetric solutions for
the three-dimensional problem of elliptical contact. Recently, ana-
lytical solutions were obtained for the indentation problems of
elliptical contact for compressible (Argatov, 2005) and incompress-
ible (Hlaváček, 2008) isotropic elastic layers.

It is known that elastic contact problems can be interpreted as
inverse problems of finding the contact force and contact pressures
that are necessary for imposing a prescribed displacement of the
indenter and, generally, the prescribed displacement field under
the indenter surface. Using Green’s function approach, the problem
of contact pressure evaluation for a linearly elastic material can be
reduced to an integral equation with respect to the contact pres-
sure density over the contact area. At that, the contact area itself
is not known a priori for a blunt indenter. In the latter case, we
have to deal with the so-called unilateral contact problem, which
should be formulated as a variational inequality (Duvaut and Lions,
1972). Considering the integral transform method in contact prob-
lems for layered elastic media, Chen (1971) observed that this
method was slow to converge near the edge of the contact zone,
and especially for relatively thin layers. In order to overcome this
shortcoming of the integral transform method, Chen and Engel
(1972) introduced a new approach by replacing the exact mixed
contact boundary conditions by approximate boundary conditions
of the second kind. The numerical solution of Chen and Engel
(1972) was reduced by Stevanovic et al. (2001) to a simple root
finding procedure for the unknown contact radius, but the force–
displacement relationship was not considered. Thus, numerical
solving the unilateral contact problems (including finite element
simulations) represents a rather tedious approach for routine
AFM indentation applications (Antunes et al., 2006). That is why,
in reviewing the literature on modeling the indentation problem,
Dimitriadis et al. (2002) observed that simple analytical finite sam-
ple thickness models should be very helpful.

In the present paper, we develop simple approximate (but
asymptotically exact in the small-contact limit) analytical solu-
tions to the indentation problem for a transversely isotropic layer
and validate the obtained asymptotic models in the case of an iso-
tropic layer indented with a spherical or a conical indenter. The
analytical method applied is similar to asymptotic techniques used
previously in application to isotropic spherical nanoindentation
(Argatov, 2010). The new aspect of the asymptotic analysis re-
ported herein is the use of the asymptotic method (Argatov,
2005) based on Lagrange’s formula for solving algebraic equations
(De Bruijn, 1958) to derive the force–displacement relationships in
explicit form. Finally, based on the present analysis, the second-or-
der asymptotic model of the substrate effect for the incremental
contact stiffness in spherical indentation (Argatov, 2010) can be
generalized for conical and pyramidal indenters as well as for axi-
symmetric indenters of power-low profile and self-similar non-
axisymmetric indenters.

2. Unilateral contact problem formulation

The unilateral frictionless contact problem for a transversely
isotropic elastic layer resting on a rigid support is formulated as
follows:

pðx1; x2ÞP 0; ðx1; x2Þ 2 R; ð1Þ

pðx1;x2Þ>0)
Z Z

R
G3ðx1�y1;x2�y2;0ÞpðyÞdy¼w�Uðx1;x2Þ; ð2Þ

pðx1; x2Þ ¼ 0)
Z Z

R
G3ðx1 � y1; x2 � y2;0ÞpðyÞdy

P w�Uðx1; x2Þ: ð3Þ

Here, p(x1,x2) is the contact pressure density, w is the indenter’s dis-
placement, R is the domain where the right-hand side of Eq. (2) is
positive, U(x1,x2) is a function describing the indenter’s shape,
G3(x1,x2,0) is the linear surface influence function for the elastic lay-
ered medium.

Let x denote the contact area, which is a subdomain of R. Then,
the unilateral contact problem (1)–(3) is usually formulated in the
form of the governing integral equationZ Z

x
G3ðx1 � y1; x2 � y2;0ÞpðyÞdy ¼ w�Uðx1; x2Þ; ð4Þ

where it is implicitly assumed that the contact pressure is positive
inside of x and vanishes outside of x.

From the equilibrium equation, the external contact force, P, is
related to the contact pressure density p(x1,x2) as follows:

P ¼
Z Z

x
pðyÞdy: ð5Þ

Applying the standard two-dimensional Fourier transform tech-
nique (Sneddon, 1995; Alexandrov and Pozharskii, 2001), it can be
shown (Vorovich et al., 1974) that

G3ðy1; y2;0Þ ¼ #
1
jyj �

1
h
F jyj

h

� �� �
; ð6Þ

where h is the layer thickness, # is an elastic constant, FðtÞ is a
dimensionless function given by the integral

FðtÞ ¼
Z 1

0
½1� LðkÞ�J0ðktÞdk ð7Þ

with J0(x) being the Bessel function of the first kind.
The kernel function LðkÞ depends on the type of elastic layered

medium.

3. Kernel function for transversely isotropic layer

The constitutive relationship for a transversely isotropic mate-
rial referred to the Cartesian coordinates (x1,x2,x3) with the Ox1x2
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plane coinciding with the plane of elastic symmetry can be written
in the matrix form as follows (Elliott, 1948):

r11

r22

r33

r13

r23

r12

0
BBBBBBBB@

1
CCCCCCCCA
¼

A11 A12 A13 0 0 0
A12 A11 A13 0 0 0
A13 A13 A33 0 0 0
0 0 0 2A44 0 0
0 0 0 0 2A44 0
0 0 0 0 0 A11 � A12

2
666666664

3
777777775

e11

e22

e33

e13

e23

e12

0
BBBBBBBB@

1
CCCCCCCCA
:

For a transversely isotropic material, only five independent elastic
constants are needed to describe its deformational behavior. The
elastic moduli A11, A12, A13, A33, and A44 can be expressed in terms
of the engineering elastic constants as follows (Liao and Wang,
1998):

A11 ¼
E 1� E

E0 m
02� �

ð1þ mÞ 1� m� 2E
E0 m02

� � ; A12 ¼
E mþ E

E0 m
02� �

ð1þ mÞ 1� m� 2E
E0 m02

� � ;

A13 ¼
Em0

1� m� 2E
E0 m02

; A33 ¼
E0ð1� mÞ

1� m� 2E
E0 m02

; A44 ¼ G0:

Here, E and E0 are Young’s moduli in the plane of transverse isotropy
and in the direction normal to it, respectively, m and m0 are Poisson’s
ratios characterizing the lateral strain response in the plane of
transverse isotropy to a stress acting parallel or normal to it, respec-
tively, G0 is the shear modulus in planes normal to the plane of
transverse isotropy. Note also that A11 � A12 = E/(1 + m).

In the case of a transversely isotropic elastic layer bonded to a
rigid base, in accordance with the known solution (Fabrikant,
2006), we have

# ¼ ðc1 þ c2ÞA11

2p A11A33 � A2
13

� � ; ð8Þ

LðkÞ¼1

þ
2 mþ c1e�2k1þc2e�2k2

� �
�c�m�e�2k1�2k2 �4c1c2e�k1�k2

� 	
8c1c2e�k1�k2þc�m�ð1þe�2k1�2k2 Þ�cþmþðe�2k1 þe�2k2 Þ :

ð9Þ

Here, c1 and c2 are the roots of the equation

c4A11A44 � c2 A11A33 � A13ðA13 þ 2A44Þ½ � þ A33A44 ¼ 0; ð10Þ

and the following notation has been introduced:

k1 ¼
k
c1
; k2 ¼

k
c2
; cþ ¼ c1 þ c2; c� ¼ c1 � c2; ð11Þ

mþ ¼ m2c1 þm1c2; m� ¼ m2c1 �m1c2;

m1 ¼
A11c2

1 � A44

A13 þ A44
; m2 ¼

A11c2
2 � A44

A13 þ A44
:

In the case of a transversely isotropic elastic layer resting on a
smooth rigid base, the following representation holds true (Fabrik-
ant, 2011):

LðkÞ ¼ 1þ
2 c�e�2k1�2k2 � c1e�2k1 � c2e�2k2
� 	

c�ð1� e�2k1�2k2 Þ þ cþð1� e�2k1 � e�2k2 Þ : ð12Þ

Here, k1, k2 and c�, c+ are determined by formulas (11).
We underline that the contact problem for a transversely isotro-

pic elastic layer and the contact problem for an isotropic elastic
half-space differ only by the analytical representations of the
kernel function LðkÞ.
4. Second order asymptotic model

According to Vorovich et al. (1974), there is a neighborhood of
zero on which the function (7) is represented by an absolutely con-
vergent power series

FðtÞ ¼
X1
m¼0

amt2m ð13Þ

with the coefficients

am ¼
ð�1Þm

½ð2mÞ!!�2
Z 1

0
½1� LðkÞ�k2mdk: ð14Þ

Substituting (13) into (6), we obtain

#�1
Z Z

x
G3ðx1 � y1; x2 � y2;0ÞpðyÞdy

¼
Z Z

x

pðyÞdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � y1Þ

2 þ ðx2 � y2Þ
2

q � 1
h

X1
m¼0

am

h2m

�
Z Z

x
ðx1 � y1Þ

2 þ ðx2 � y2Þ
2

� �m
pðyÞdy: ð15Þ

Now, keeping only the first term of the infinite series in (15), we re-
place the governing integral Eq. (4) with the following approximate
equation (Argatov, 1999):

#

Z Z
x

pðyÞdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � y1Þ

2 þ ðx2 � y2Þ
2

q ¼ wþ a0

h
#P �Uðx1; x2Þ; ð16Þ

where P is the contact force related to the unknown contact pres-
sure according to Eq. (5).

We emphasize that since the right-hand side of (13) is a series
in even powers of the variable t, Eq. (16) represents the second-or-
der asymptotic approximation even though only the first correc-
tion in (15) has been taken into account.

5. Spherical indenter

For an indenter shaped as a paraboloid of revolution, we have

Uðx1; x2Þ ¼
1

2R
x2

1 þ x2
2

� �
; ð17Þ

where R is the curvature radius of the indenter surface at its apex.
Asymptotic solutions to the contact problem (15) in the case

(17) under the assumption that the radius of the contact area, a,
is small compared with the layer thickness, h, were obtained in
Vorovich et al. (1974) and Argatov (2001). The fourth-order asymp-
totic model looks as follows (Vorovich et al., 1974):

pðrÞ ¼ 2
p2#R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2
p

1� e3 8a1

3p
þ Oðe5Þ

� �
; ð18Þ

P ¼ 4a3

3p#R
1� e3 8a1

3p þ Oðe5Þ
� �

; ð19Þ

P ¼ 4wa
3p#

1þ e
4a0

3p
þ e2 4a0

3p

� �2

þ e3 4a0

3p

� �3

þ 8a1

15p

( )"

þe4 4a0

3p

� �4

þ 64a0a1

45p2

( )
þ Oðe5Þ

#
: ð20Þ

Here, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
is a polar radius, a0 and a1 are asymptotic con-

stants (14), e = a/h is a small parameter.
First of all, it is clearly seen from (18)–(20) that the second cor-

rection in (15), which introduces the asymptotic constant a1, is
responsible for the terms of order e3. This gives another evidence
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that the approximate integral Eq. (16) represents the second-order
asymptotic model.

Second, the two algebraic Eqs. (19) and (20) combine three vari-
ables, namely, the contact force P, the indenter’s displacement w,
and the radius a of the contact area x. From (19) and (20), it fol-
lows that

P ¼ 4a3

3p#R
1� e3 8a1

3p

� �
; ð21Þ

w¼a2

R
1�e3 8a1

3p

1þe4a0
3p þe2 4a0

3p

� �2þe3 4a0
3p

� �3þ 8a1
15p

n o
þe4 4a0

3p

� �4þ64a0a1
45p2

n o:
ð22Þ

Eqs. (21) and (22) give a parametric representation of the load-dis-
placement curve.

Following Argatov (2005) and using the asymptotic method
based on Lagrange’s formula for solving algebraic equations (De
Bruijn, 1958), we can exclude the variable a from the system
(21) and (22) as follows:

P ¼ 4h3a3

3p#R
1þ a

2a0

p
þ a2 14a2

0

3p2 þ a3 320a3
0

27p3 þ
32a1

15p

� ��

þa4 286a4
0

9p4 þ
64a0a1

5p2

� �
þ Oða5Þ



: ð23Þ

Here we introduced the notation

a ¼
ffiffiffiffiffiffiffi
wR
p

h
: ð24Þ

The second-order asymptotic model employing only the first
asymptotic constant a0 results in the following load-displacement
relationship:

P ¼ 4
ffiffiffi
R
p

w3=2

3p#
1þ 2a0

p

ffiffiffi
R
p

h
w1=2 þ 14a2

0

3p2

R

h2 w

 !
: ð25Þ

The contact radius is given by

a ¼
ffiffiffiffiffiffiffi
wR
p

1þ 2a0

3p

ffiffiffi
R
p

h
w1=2 þ 10a2

0

9p2

R

h2 w

 !
: ð26Þ

Note that as it was previously shown (Argatov, 2010), with appro-
priate choice of the asymptotic constants a0 and a1, Eqs. (21) and
(22) as well as Eqs. (25) and (26) are valid for a two-layered elastic
medium with axisymmetric anisotropy.
6. Conical indenter

For a cone (a Rockwell indenter), we have

Uðx1; x2Þ ¼ r tan h; ð27Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
is a polar radius, h is the angle between the con-

tact surface and the site surface of the cone.
Using the analytical solution first derived by Love (1939), we

obtain a closed-form solution to Eq. (16) in the case (27) as follows:

pðrÞ ¼ p0 ln
a
r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

r2 � 1

r !
: ð28Þ

Here, p0 = P/(pa2) is the mean contact pressure.
At that, the main contact parameters are connected through the

system
wþ a0

h
#P ¼ p

2
a tan h; ð29Þ

P ¼ a2

2#
tan h: ð30Þ

Applying the asymptotic method, we can exclude the contact radius
a from the system (29) and (30), arriving at the following load-dis-
placement relationship:

P ¼ 2 cot h
p2#

w2 1þ 4a0

p2

w
h
þ 20a2

0

p4

w2

h2

� �
: ð31Þ

The contact radius is given by

a ¼ 2 cot h
p#

w 1þ 2a0 cot h
p2

w
h
þ 8a2

0cot2h
p4

w2

h2

� �
: ð32Þ

Note that we keep only three terms in the asymptotic expansions
(31) and (32) according to the asymptotic accuracy of Eqs. (29)
and (30).

7. Indenter of power-law profile

Let now the indenter’s shape function is

Uðx1; x2Þ ¼ Ark
; ð33Þ

where k is not necessarily an even positive number.
Using the analytical solution first obtained by Galin (2008), we

get a closed-form solution to Eq. (16) in the case (33) as follows:

pðrÞ ¼ ðkþ 1Þ
2

p0

Z ffiffiffiffiffiffiffiffi
1�q2
p

0
ðq2 þ r2Þðk�2Þ=2dr: ð34Þ

Here, p0 = P/(pa2) is the mean contact pressure, q = r/a is the dimen-
sionless polar radius.

The contact force P, the indenter displacement w, and the con-
tact radius a are connected through the system

wþ a0

h
#P ¼ AN1ðkÞak; ð35Þ

#P ¼ AN2ðkÞakþ1: ð36Þ

Here we introduced the notation

N1ðkÞ ¼ 2k�2k
C k

2

� �2

CðkÞ ; N2ðkÞ ¼
2k�1k2

pðkþ 1Þ
C k

2

� �2

CðkÞ ð37Þ

with C(x) being the gamma function.
Applying the asymptotic method, we can exclude the contact

radius a from the system (35) and (36), deriving the following
load-displacement relationship:

P ¼ N3ðkÞ
#A1=k w

kþ1
k 1þ ðkþ 1Þ

k
a0

h
N3ðkÞ
A1=k w1=k

�

þðkþ 1Þð2kþ 3Þ
2k2

a0

h
N3ðkÞ
A1=k

� �2

w2=k

!
: ð38Þ

Here we introduced the notation

N3ðkÞ ¼
N2ðkÞ

N1ðkÞ
kþ1
k

:

The contact radius is given by the formula

a¼ w1=k

A1=kN1ðkÞ1=k
1þ1

k
a0

h
N3ðkÞ
A1=k w1=kþðkþ3Þ

2k2

a0

h
N3ðkÞ
A1=k

� �2

w2=k

 !
:

ð39Þ

It can be checked that Eqs. (38), (39) reduce to Eqs. (25), (26) and
Eqs. (31), (32) for k = 2 and k = 1, respectively.
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8. Pyramidal indenters

For a pyramidal indenter, we have

Uðx1; x2Þ ¼
r cos w
tan H

; 0 6 w 6 W; ð40Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
is a polar radius, w is a polar angle, W is the an-

gle of the periodic sector (e.g., p/4 for the Vickers indenter and p/3
for the Berkovich indenter), H is the angle of the pyramidal plane
with its vertical axis.

Following Giannakopoulos (2006), we assume that the contact
pressure for the pyramidal indenters follows a similar to (28) log-
arithmic-type distribution

pðrÞ¼p0 ln
aðwÞ

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðwÞ2

r2 �1

s0
@

1
A; 0< r6aðwÞ; 06w6W; ð41Þ

where p0 = P/(pa2) is the mean contact pressure, a(w) is the contact
perimeter radius given by the equation

aðwÞ ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 cos2 w� 1

q ; ð42Þ

where k is the eccentricity of the contact perimeter.
The contact force P, the indenter displacement w, and the char-

acteristic size of the contact area b are connected through the
system

wþ a0

h
#P ¼ pb

2 tan H
I4

I2
; ð43Þ

#P ¼ b2

2 tan H
I4

I1
: ð44Þ

The eccentricity of the contact perimeter k and the elliptic integrals
I1, I2, and I4 depend on the (known) angle W (see Table 1).

Again, the application of the asymptotic method for excluding
the geometrical parameter of the contact area b form the system
(43) and (44) yields the load-displacement relationship

P ¼ I0

#
w2 1þ 2I0a0

h
wþ I0a2

0

h

� �2

w2

 !
; ð45Þ

where we used the notation

I0 ¼
2
p2

I2
2 tan H

I1I4
:

Finally, note that by analogy with Eq. (32), the variable characteris-
tic size of the contact zone b can be expressed in terms of the inden-
ter’s displacement w.

9. Comparisons with analytical and numerical solutions for an
isotropic layer

9.1. Spherical indentation of an isotropic elastic layer

In the case of an isotropic elastic layer, we have c1 = c2 = 1 and
Table 1
Summary of the results of Giannakopoulos (2006) for the pyramidal indenters and the
auxiliary parameter I0.

Parameter W H k I1 I2 I4 I0

Vickers indenter 45� 68� 2.1 0.5017 0.3283 0.1889 0.5705
Berkovich indenter 60� 65.3� 2.7 0.5687 0.3386 0.1518 0.585
# ¼ 1� m2

pE
; ð46Þ

where E is the elastic modulus, and m is Poisson’s ratio.
For an elastic layer which is bonded to a rigid base, formula (9)

reduces to

LðkÞ ¼ 2, sinh 2k� 4k

2, cosh 2kþ 1þ ,2 þ 4k2 ; ð47Þ

where , = 3 � 4m is Kolosov’s constant.
In the case of an elastic layer resting on a smooth rigid base, for-

mula (12) simplifies as follows:

LðkÞ ¼ cosh 2k� 1
2 sinh 2kþ 2k

: ð48Þ

Let us compare the obtained asymptotic formulas (23) and (25)
with an approximate formula obtained by Dimitriadis et al.
(2002), which can be written in our notation as

P ¼ 4h3a3

3p#R
1� 2a0

p
aþ 4a2

0

p2 a2 � 8
p3 a3

0 þ
4p2

15
b0

� �
a3

�

þ16a0

p4 a3
0 þ

3p2

5
b0

� �
a4
�
: ð49Þ

When the elastic layer is bonded to the rigid base, the dimension-
less parameters a0 and b0 are given by

a0 ¼ �
1:2876� 1:4678mþ 1:3442m2

1� m
;

b0 ¼
0:6387� 1:0277mþ 1:5164m2

1� m
; ð50Þ

and, when the elastic layer is not bonded to the rigid base, they are
given by

a0 ¼ �0:347
3� 2m
1� m

; b0 ¼ 0:056
5� 2m
1� m

: ð51Þ

First of all, observe that in both formulas (23) and (49), the factor
outside the brackets has the Hertzian form, and it is readily seen
that their overall structure is similar. However, we would like to
emphasize that formula (49) is not asymptotically exact as a ? 0.
This circumstance comes from the fact that the approximation for
the contact pressure obtained in Dimitriadis et al. (2002) does not
vanish at the contour of the contact area, while the contact radius
itself has been determined by the Hertzian equation a ¼

ffiffiffiffiffiffiffi
wR
p

. At
the same time, in the fourth-order asymptotic model, the contact
radius a is determined by Eq. (22). A second source of small error
arises from the application of the images method for constructing
Green’s function entering the governing integral Eq. (4). In fact, as
it is clearly seen from Eq. (48), the terms inside the brackets in
(23) and (49), giving the corrections due to the finite thickness of
the layer sample, should not depend on the Poisson’s ratio m,
whereas according to (51), the correction terms in (49) depend on
m. Nevertheless, it should be recognized that formula (49) provides
a good approximation even up to the relative radius values a/h � 1
(see Figs. 1–5).

From the comparison of formulas (23) and (49), is follows that
a0 � �a0 and a1 � �b0, where a0 and a1 are determined by Eq.
(14), while a0 and b0 are given by (50). The numerical calculations
show that the error of the approximation a0 � �a0 is less than 2%
for 0.15 6 m 6 0.5. At the same time, the second approximation is
less accurate (6% for 0.3 6 m 6 0.5) and its accuracy decreases dra-
matically with decreasing Poisson’s ratio m.

To determine the ranges of validity of Eqs. (23), (25), and (49),
we make comparisons with the numerical solution presented by
Hayes et al. (1972). Note that another numerical solution was gi-
ven by Sakamoto et al. (1996), and it was reported that both meth-
ods show a good agreement (maximum error is about 2%).



Fig. 1. Error of the analytical approximations for m = 0.3. Spherical indentation of an isotropic layer.

Fig. 2. Error of the analytical approximations for m = 0.35. Spherical indentation of an isotropic layer.

_

_ _

_

_

_

_

_

v
v

=

=

Fig. 3. Error of the analytical approximations for m = 0.4. Spherical indentation of an isotropic layer.

I.I. Argatov / International Journal of Solids and Structures 48 (2011) 3444–3452 3449
Comparing the second-order asymptotic formula (25) with the
approximate formula (49) by Dimitriadis et al. (2002) (see Figs.
1a–5a), it should be taken into account that the last formula is of
the same complexity as the four-order asymptotic formula (23).
It is interesting to observe that the accuracy of the approximate
formula (49) increases as Poisson’s ratio approaches 0.5, whereas
the accuracy of the second-order asymptotic formula (25) loses
quickly its range of applicability at for incompressible materials.

Note that inside their range of validity (for small values of the
dimensional parameter e = a/h), the accuracy of the asymptotic
models should decrease with increasing values of the parameter
e (see Figs. 1a–5a). Moreover, for those values of the parameter e
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Fig. 4. Error of the analytical approximations for m = 0.45. Spherical indentation of an isotropic layer.
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Fig. 5. Error of the analytical approximations for m = 0.5. Spherical indentation of an isotropic layer.
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Fig. 6. Error of the second-order asymptotic model. Conical indentation of an
isotropic layer.
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that cannot be considered small, asymptotic formulas, generally,
do not work at all. It was observed by Dimitriadis et al. (2002) that
the analytical approximation (49) has a moderate error in the
range of the relative contact radius 0 6 a/h 6 3 and may be used
outside of its range of validity.

Finally, it should be emphasized that the accuracy of the sec-
ond-order asymptotic models for the force–displacement relation-
ship strongly depends on the value of Poisson’s ratio, namely, on
whether the sample material is compressible (with Poisson’s ratio
not too close to 0.5) or incompressible (with Poisson’s ratio nearly
0.5).

9.2. Conical indentation of an isotropic elastic layer

Let us now make a comparison of the asymptotic formula (31)
with the numerical solution given by Kalaba et al. (1976) in the
case of an elastic layer resting without friction on a rigid substrate.
Notice that as a result of non-dimensionalising, the left-hand side
of their Eq. (34) should be corrected according Eqs. (28), (29b), and
(29c) by dividing by wa, where w is the indenter displacement, a is
the contact radius.

In the case of an isotropic elastic layer resting on a smooth rigid
base, according to Eqs. (14) and (48), we have a0 = 1.168. The re-
sults of numerical calculations are presented in Fig. 6 for the case
h = 45�. Observe that for a relatively small contact area or, to be
more precise, when the diameter of the contact area is less than
the layer thickness, the accuracy of the second-order asymptotic
formula (31) is less than 2.5 %.

Note that the approximations a0 � �a0 and a1 � �b0 with Eq.
(50) taken into account can be also used in the case of conical or
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pyramidal indentation of an isotropic elastic layer attached to a ri-
gid base.

10. Discussion and conclusions

Observe that the asymptotic model constructed in Section 7 can
be generalized for the non-axisymmetric case when the indenter
shape function satisfies the condition of self-similarity

UðKx1;Kx2Þ ¼ KdUðx1; x2Þ ð52Þ

for an arbitrary positive scaling parameter K. Here, d is the degree
of the homogeneous function U(x1,x2). In this case, according to
Borodich et al. (2003), the load-displacement relationship for self-
similar indentation of an elastic half-space takes the form

w ¼ w1
P
P1

� �d=ðdþ1Þ

; ð53Þ

where P1 is some initial value of the external load, w1 is the depth of
indentation at this load, d is the exponent in Eq. (52).

In view of (53), the second-order asymptotic model for indenta-
tion of an elastic layer with a self-similar indenter (52) can be for-
mulated as follows:

wþ a0

h
#P ¼ w1 þ

a0

h
#P1

� � P
P1

� �d=ðdþ1Þ

: ð54Þ

By analogy with (38), we obtain

P ¼ P1

W1
w

dþ1
d 1þ ðdþ 1Þ

d
a0

h
#P1

W1
w1=d

�

þðdþ 1Þð2dþ 3Þ
2d2

a0

h
#P1

W1

� �2

w2=d

!
; ð55Þ

where we introduced the notation

W1 ¼ w1 þ
a0

h
#P1

� �dþ1
d
:

Note also that Eq. (55) is valid not only in the case of frictionless
contact but also for frictional contact problems (Borodich and Keer,
2004).

The present asymptotic modeling analysis is confined to the
case of frictionless indentation. It is known that at micro/nano
scales effects of friction and adhesion can be very important. The
method for determination of mechanical characteristics of solids
using JKR and DMT theories of adhesive contact (Derjaguin et al.,
1975; Johnson et al., 1971) was proposed by Borodich and Galanov
(2008). The second-order asymptotic model for adhesive (no-slip)
spherical indentation was developed in Argatov (2010). Very re-
cently, Espinasse et al. (2010) extended JKR and DMT contact the-
ories for transversely isotropic materials.

The developed asymptotic modeling approach applied to the
frictionless depth-sensing indentation testing has resulted in
approximate (but asymptotically exact in the small-contact limit)
force–displacement relationships under the assumption that the
material response to indentation is described by the elastic trans-
versely isotropic model. The second-order asymptotic models for
spherical (25), conical (31), and pyramidal (45) indenters as well
as for axisymmetric indenters of power-low profile (38) and self-
similar non-axisymmetric indenters (55) constitute the main result
of the present paper. The obtained second-order asymptotic mod-
els for the force–displacement relationship can be used for esti-
mating the finite sample thickness effect appearing in the
indentation testing of a thin sample an a rigid substrate. The appli-
cability of the asymptotic models is governed by the ratio of the
diameter of the contact area to the specimen thickness as well as
by the measure of incompressibility of the sample material.
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