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1. Introduction

Lattice with long-range interaction is a subject of investigations
in different areas of mechanics and physics (see for example
Kroner, 1967; Eringen and Kim, 1977; Ostoja-Starzewski, 2002;
Luo and Afraimovich, 2010; Tarasov, 2011; Dyson, 1971; Frohlich
et al, 1978; Nakano and Takahashi, 1995; Campa et al., 2009).
The long-range interactions have been studied in discrete systems
as well as in their continuous analogs. As it was shown in Tarasov
(2006b,a) (see also Tarasov and Zaslavsky, 2006; Tarasov, 2011),
the continuum equations with derivatives of non-integer orders
can be directly connected to lattice models with long-range inter-
actions of power law type.

The theory of derivatives and integrals of non-integer orders
(Samko et al., 1993; Kilbas et al., 2006) allow us to investigate the
behavior of materials and media that are characterized by non-
locality of power-law type. Fractional calculus has a wide applica-
tion in mechanics and physics (for example see Carpinteri and
Mainardi, 1997; Hilfer, 2000; Sabatier et al., 2007; Mainardi,
2010; Luo and Afraimovich, 2010; Tarasov, 2011, 2013a; Klafter
et al.,, 2011). The fractional calculus allows us to formulate a frac-
tional generalization of non-local elasticity models in two forms:
the fractional gradient elasticity models (weak power-law non-
locality) and the fractional integral non-local models (strong
power-law non-locality). Fractional models of non-local elasticity
and some microscopic models are considered in different articles
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(see for example Lazopoulos, 2006; Cottone et al, 2009;
Carpinteri et al., 2009a,b, 2011; Di Paola and Zingales, 2008, 2009,
2011; Di Paola et al., 2010, 2014; Tarasov, 2014, 2013, 2014a). Elas-
tic waves in nonlocal continua modeled by a fractional calculus
approach are considered in Cottone et al. (2009), Atanackovic and
Stankovic (2009), Zingales (2011), Sapora et al. (2013) and
Challamel et al. (2013). In Tarasov (2014) and Tarasov (2013) a gen-
eral approach to describe lattice model with power-law spatial dis-
persion for fractional elasticity has been proposed. This approach
can be used for different type of interaction of lattice particles.
Therefore explicit forms of the long-range interactions are not
considered in Tarasov (2014, 2013). In Tarasov (2014a) a model of
lattice with long-range interaction of Griinwald-Letnikov-Riesz
type has been suggested to describe fractional gradient and integral
elasticity of continuum. In this paper we focus on the lattice models
with long-range interaction of power-law type as new type of
microscopic models for fractional generalization of elasticity
theory. We suggest lattice models with power-law long-range
interaction as microscopic model of fractional non-local contin-
uum. The equations for displacement field are directly derived from
the suggested lattice models by the methods of Tarasov (2006b,a).
The suggested generalization of the elasticity equations contains
the fractional Laplacian in the Riesz’s form (Kilbas et al., 2006).
We demonstrate a connection between the dynamics of lattice sys-
tem of particles with long-range interactions and the fractional
continuum equations by using the transform operation suggested
in Tarasov (2006b,a). We show how the continuous limit for the
lattice with long-range interactions of power-law type gives the
continuum equation of the fractional elasticity. We get particular

(2014), http://dx.doi.org/10.1016/].ijsolstr.2014.04.014

Please cite this article in press as: Tarasov, V.E. Lattice with long-range interaction of power-law type for fractional non-local elasticity. Int. J. Solids Struct.



http://dx.doi.org/10.1016/j.ijsolstr.2014.04.014
mailto:tarasov@theory.sinp.msu.ru
http://dx.doi.org/10.1016/j.ijsolstr.2014.04.014
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr
http://dx.doi.org/10.1016/j.ijsolstr.2014.04.014

2 V.E. Tarasov/International Journal of Solids and Structures xxx (2014) Xxx—xxx

solutions of the fractional differential elasticity equations for some
special cases.

2. Equations of lattice model

As a microscopic model, we use unbounded homogeneous lat-
tices, such that all particles are displaced from its equilibrium posi-
tions in one direction, and the displacement of particle is described
by a scalar field. We consider one-dimensional lattice system of
interacting particles. The equations of motion for particles are

d’un(t &
M ;‘tz( ) g, 3 Kon,m) (uy — )

m#n

12, S K m) () + F(n), 1)

m#n

where u,(t) are displacements from the equilibrium, g, and g, are
the coupling constants of particle interactions, and the terms F(n)
characterize an interaction of the particles with the external on-site
force. For simplicity, we assume that all particles have the same
mass M. The function K, (n, m) describes the nearest-neighbor inter-
action with coupling constant g, = K, which is the spring stiffness.
The function K,(n,m) describes the long-range interaction with a
coupling constant g,. For a simple case each particle can be consid-
ered an inversion center and

Ky(n,m) =K,(In —m|).

Equations of motion (1) have the invariance with respect to its dis-
placement of lattice as a whole in case of absence of external forces.
It should be noted that the non-invariant terms lead to the diver-
gences in the continuous limit (Tarasov, 2011).

Using the approach suggested in Tarasov (2006a,b, 2011), we
can consider a set operations that transforms the lattice equations
for u,(t) into continuum equation for displacement field u(x, t). We
assume that u,(t) are Fourier coefficients of the field u(k,t) on
[—ko/2,ko/2] that is described by the equations

1 2 ] L
) = [ ., dkalen @ = £ gk o), 2)
i) = 3 talt) e = Fufun(), 3)

where x, =nd and d =2m/k, is distance between equilibrium
positions of the lattice particles. Egs. (3) and (2) are the basis for
the Fourier series transform F, and the inverse Fourier series
transform F;'.

The Fourier transform can be derived from (3) and (2) in the
limit as d — 0 (kg — oo). In this limit the sum is transformed into
an integral, and Eqgs. (2) and (3) become

t(k,t) = /fm dx e~ ®u(x, t) = F{u(x,t)}, (4)

+00
u(x, £) = 21_n / dk ek, t) = F {a(k, O)}. (5)
Here we use the lattice function

2
up(t) = Eu(xn, t)

with continuous function u(x, t), where x, = nd = (27n) /ko — x. We
assume that u(k,t) = Lii(k,t), where £ denotes the passage to the

limit d — 0 (ko — o), i.e. the function u(k,t) can be derived from
t(k,t) in the limit d — 0. Note that u(k, t) is a Fourier transform of
the field u(x, t). The function i(k,t) is a Fourier series transform of
u,(t), where we can use u,(t) = (27/ko)u(nd, t).

We can state that a lattice model transforms into continuum
model by the combination F~'£ F, of the following operation
(Tarasov, 2006a,b):

The Fourier series transform:

Fa: Up(t) = Fafua ()} = t(k,t). (6)
The passage to the limit d — 0:
L= Llrr(} ok, t) — c{ick,t)} = u(k,t). (7)

The inverse Fourier transform:
F'ooalkt) — F ik, )} = ux,t). (8)

These operations allow us to get continuum equations from the lat-
tice equations (Tarasov, 2006a,b, 2011).

3. Lattice with nearest-neighbor interaction

Let us consider the lattice with nearest-neighbor interaction
that is described by (1), where K,(n — m) = 0, and

3 Kol 1) i (6) = 1 (6) — 200 (6) + ), ©

53
m#n

where the term K, (n, m) describes the nearest-neighbor interaction.
Let us derive the usual elastic equation from the lattice model with
the nearest-neighbor interaction with coupling constant g, =K,
which is the spring stiffness. The following statement (Tarasov,
2006a,b, 2011) gives for this lattice model with the nearest-neigh-
bor interaction the corresponding continuum equation in the limit
d— 0.

Proposition 1. In the continuous limit (d — 0) the lattice equations
of motion

2
Md unz(t)
dt

are transformed by the combination F~' L F of the operations (6)—(8)
into the continuum equation:

=K - (n1(6) — 2un(£) + 1 (£)) + F(n) (10)

o’u(x,t) 1
g = Cedul.0) + (), (11)
where
2
:M7 ZZEZQ7 :@ (12)
Ad ¢ p M A

and Cﬁ is a finite parameter, A is the cross-section area of the medium,
E is the Youngs modulus, and f(x) = F(x)/(Ad) is the force density.

A detailed proof of Proposition 1 is given in Appendix A.

As a result, we prove that lattice Eq. (10) in the limit d — 0 give
the continuum equation with the Laplacian (see also Tarasov,
2014Db). Note that this result can be derived by methods described
in Section 8 of Maslov (1976), where the relation

.0
exp l(—ld &> u(x,t) =u(x+d,t)

and the representation of (10) by pseudo-differential equation are
used.
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4. Lattice model with long-range interaction

Let us derive a continuum equation for the lattice with long-
range interaction that is described by (1), where K, (n — m) satisfies
the conditions
Ky(n—m) =

K, (jn —m]), )P < oo (13)

Z\Ka

To have fractional gradient elasticity models, we assume that the
function

K. (k Ze*”‘”K 221@ ) cos(kn), (14)
n # 0
satisfies the condition
K. (k) — K,(0)
. = Ay, 15
k=0 |k‘1 o ( )

where A, has a finite value. Condition (15) means that

R (k) — K, (0) = Ay [k|* + Ry (K), (16)
for k — 0, where

lim R (k)/|k" = 0. (17)

The interaction terms K,(|n —m|), which give the continuum
equations of gradient elasticity models, can be defined as

(=1)"
T'(a/2+1+n(o/2+1-n)" (18)

Using the series (Ref. Prudnikov et al., 1986, Section 5.4.8.12)
S oy
= T( v+l+n I'(v+1-n)
22, (k> 1
=—s——sin" (5] —m5——,
r2v+1) 2) 2r%(v+1)
where v > —1/2 and 0 < k < 27, we get

~ ~ 220t 1 k 1 o+2
Rall) ~Ra(0) = gy sin” (2) T oK o)

Here we use v = /2 and sin(k/2) = k/2 + O(k®). The limit k — 0
gives

K.,(n) =

cos(nk)

(19)

lmk"‘(k) —K,0) 1
k-0 k|” S 2T(x+1)

1)

and we have A, = 1/(2T"(a + 1)). To consider a fractional general-
ization of the elastic theory, the variables x and d = Ax are dimen-
sionless. Note that the interaction (18) for integer values of « is
discussed in Tarasov (2014b).

Proposition 2. The lattice equations

d*u,

7gZZK2 (n,m) (U, — Un)

m#n

+00
+8,y Ky(n—m) (uy

m#n

— Up) + F(n), (22)

where g, and g, are coupling constants, K>(n, m) is defined by (9) and
K,(Jn —m|) is defined by (18), are transformed by the combination
F~1L Fa of the operations (6)-(8) into the continuum equation:

o*u(x, t)
ot

= Gy Au(x,t) — Cu (—A)?u(x, t) +% f(x), (23)

where (—A)*? is the fractional Laplacian in the Riesz’s form (Kilbas
et al., 2006; Samko et al., 1993), and

2 o
_gd o g,d
C=Tpr &= 2T (o0 + 1)M 24)

are finite parameters.

A detailed proof of Proposition 2 is given in Appendix B.

In the Proposition 2, we use the Riesz fractional derivative
(—A)*2.1t can be defined as non-integer power of the Laplace oper-
ator in terms of the Fourier transform F by

(=A8)F)(x) = 71 (k*(Ff) (k). (25)

This fractional Laplacian can be also defined in the form of the
hypersingular integral (Samko et al., 1993; Kilbas et al., 2006) by

%/2 _ 1 ' AT
(0N = gy [ e D@z

where m > o > 0, and (A]'f)(z) is the finite difference of order m of a
function f(x) with a vector step z € R" and centered at the point
XeR"

m m'

(A7f)(2) = Z(—l)"mf(x —kz),

k=0
where the constant d,(m, «) is defined by

Tcl+n/2Am(a)
2°T(1+o/2)T(n/2 + o/2) sin(mor/2)’

dy(m, o) =

and

=3 (1)
-0
71
= -J)!
This hypersingular integral does not depend (Samko et al., 1993;
Kilbas et al., 2006) on the choice of m > o > 0.

We can note another possibility to set the interactions
described by K,(n,m). The term K,(n,m) that describes the near-
est-neighbor interaction can be represented in forms that differ
from (9). In general K»(n,m) describes a special form of the long-
range interaction. Let us give some example of these forms.

Example 1. Instead of the nearest-neighbor interaction function
(9) we can use the long-range interaction with

_ |[n—m|
Ko(nm) = U (26)
In —m|
Using (Ref. Prudnikov et al., 1986, Section 5.4.2.12)
00 2
Z cos(nk) = (k2 771_)7 k| <7
n=1 3
we obtain
+00 n 2
by =1 1,
Ky(k) = 2; - cos(kn) = 2k & k| < 7.
Then we have
Ko (k) — K5(0) = % K. (27)

Example 2. If we consider the long-range interaction in the form

(7-1)n+1

Ko(n) =7 (28)

then Eq. (14) gives

(2014), http://dx.doi.org/10.1016/].ijsolstr.2014.04.014
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N 1
For k — 0, we obtain

a

Ka(k) — K»(0) = 2sin(ra)

K +0(k*). (29)

Example 3. The long-range interaction

1

Ky(n,m) = m—m

(30)

with the non-integer parameter o > 3, gives (see Theorem 8.7 in
Tarasov, 2011) the relation

Ky (k) — K5(0) = —{(at — 2)K* + ...,

where {(z) is the Riemann zeta-function.

Proposition 2 allows to demonstrate the close relation between
the lattice structure and the fractional gradient non-local contin-
uum. Let us describe the well-known special cases.

Lattice Eq. (22) have two parameters g, and g,. The correspond-
ing continuum equation (23) have two finite parameters C, and C,.
If we use

g, =4K, g,=0.

then

C,=C=Kd*/M, C,=0

and Eq. (23) gives Eq. (11). If we assume that

gzzg“=4K,
then
o kd ~2C2d7?
G=C=7 C“‘r(ac+1) (1)

and we get relation

o’u(x, t)
or?

242
T(a+1)

where C, = \/E/p is the elastic bar velocity. Let us give a remark
about the scale parameter (). Eq. (31) can lead to incorrect con-
clusion about the behavior of the scale parameter

_Gp Gy

e (33)

= C Au(x,t) —

(fA)“/zu(x,tH%f(X), (32)

£ ()

for d — 0 in the case 0 < o < 2. Using C? = Kd?/M, the parameter
(33) can be written as

Pla) = L‘Z. (34)
Ma+1)CCM

Using that the value of C? is finite, then behavior of the parameter
I (o) for d — 0 has the same form for & > 2 and 0 < « < 2, such that
l?(oc) is proportion to d*. Therefore we assume that the range of
validity of alpha parameter is arbitrary real positive o.

For oo = 4 Eq. (32) is the usual equations of the gradient elastic-
ity models

Fux,t) o éc o, 1

= C; Au(x,t) — € Au(x,t) +—

8t2 e ( ) ) 12 ( ) ) + p

The correspondent stress-strain relation for linear one-dimensional
elasticity has the form

fX). (35)

o(x,t) = E(l - lfA)s(x, ),

where o(x,t) is the stress, &(x,t) is the strain, and [ is the scale
parameter.

In general, the coupling constants g, and g, are independent.
Therefore the sign of the coupling constant g, (including the case
o =4) may differ from the sign of the constant g, =4K. For
o = 4 the second-gradient parameter is defined by the relation

2 _ |84l d*

k= 48K ’ (36)
where the sign in front of the factor lf is determined by the sign of
the coupling constant g,. If the constant g, is positive then we get
the gradient elasticity model with negative sign (Askes and
Aifantis, 2011).

As a result the second-gradient model with negative and posi-
tive sign can be derived from a microstructure of lattice particles
by suggested approach. The suggested approach as shown above
uniquely leads to second-order strain gradient terms that are pre-
ceded by the positive and negative signs.

5. Stationary solution for fractional gradient elasticity

We can consider more general model of lattice with long-range
interaction, where all particles are displaced from its equilibrium
in one direction, and the displacement of particles is described
by a scalar field u(r,t), where r € R" (n = 1,2,3). The correspon-
dent continuum equation of the fractional elasticity model is

2*u(r,t)
ot?

=Gy Au(r,t) — Cy (—A)u(r, t) + %f(r), (37)

where r and r = |r| are dimensionless variables.
Let us consider the static case (du(r,t)/0t = 0, i.e. u(r,t) = u(r))
in this fractional elasticity model. Then Eq. (37) has the form

Cy Au(r) — C, (—A)™2u(r) + 7 f(r)=0. (38)
We can use the Fourier method to solve fractional differential

Eq. (38), which is based on the relations

}‘[(—A)“/zu(r)](k) = |k*u(k), F[Au(r)|k) = —kzﬂ(k). (39)

Applying the Fourier transform F to both sides of (38) and using
(39), we have

i = (Co I+ Colke™) (o) (40)

Eq. (38) (see, for example, Section 5.5.1. in Kilbas et al., 2006) has a

particular solution that can be represented in the form of the con-

volution of the functions G} (|r|) and f(|r|) as follow

um =1 [ cle- e ar, (41)
P Jar

where G (r) is the Green function (see Section 5.5.1. in Kilbas et al.,

2006) of the form

Glr)y=r" [(cz K +C, \k\“)q (r)

-1 .
= / (C2 kP +C, |k|”> eilkn) g, (42)
[Rﬂ
We can use the relation
n/2 %)
[ =S [T o @

that holds (see Lemma 25.1 of Samko et al., 1993) for any suitable
function f such that the integral in the right-hand side of (43) is con-
vergent. Here J, is the Bessel function of the first kind.

(2014), http://dx.doi.org/10.1016/j.ijsolstr.2014.04.014
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Using relation (43), the Green function (42) can be represented
(see Theorem 5.22 in Kilbas et al., 2006) in the form of the integral
with respect to one parameter . as

G'(r) = "7 / © Ay (AlF) d2
g m)"* Jo Cuit+Cu i

where n=1,2,3, and J,_,)/, is the Bessel function of the first kind.
For the 3-dimensional case (n = 3), we can use

; (44)

Jip(2) = \/% sin(z) (45)
and we have
) 1 0 J sin(A|r])di (46)

T2 Jo G 24 C i

For the 1-dimensional case (n = 1), we can use

Jop@) = \/% €os(z) (47)

and we have (see Theorem 5.24 in Kilbas et al., 2006) the function

Glr) 1 cosz(),\r|)df ' (48)
TJo Cua”+Cyi*

Let us determine the deformation of an infinite elastic continuum,
when a force is applied to a small region of the medium. This is
the well-known Thomson’s problem (Landau and Lifshitz, 1986).
We solve Thomson’s problem in the framework of the fractional
elasticity model. If we consider the deformation for |r|, which are
larger compare with the size of the region, we can suppose that
the force is applied at a point. In this case, we have

f(r) =fod(r) = fos(x)o(y)o(2). (49)

Then the displacement field u(r) of fractional elasticity has a simple
form of the particular solution that is proportional to the Green
function

u(r) =22 1(v) (50)
0
Therefore, the displacement field for the case (49) has the form
1 fo [> Zsin(dr|)

u(r) (51)

:ﬁm o Coi24+C, 2"

The asymptotic behavior |r| — oo of the displacement field u(r) in
the model described by (51) with (49), is given by

_ JoI'(2 — o) sin(ma/2) 1
= 3 Cyp mya

u(r) (o0 < 2), (52)

ur) ~ 1 fo

N IR (o> 2). (33)

Note that the asymptotic behavior |r| — oo does not depend on the
parameter « for o > 2. In the case o < 2 the displacement field on
the long distances is determined only by term with the fractional
Laplacian of the order o.

The asymptotic behavior [r| — 0 of the displacement field u(r)
that is described by Eq. (51), where the force f(r) is applied at a
point (49), is given by

T fo

u(r) =~ 72 D (< 2), (54)

(B -w)/2) 1
U0~ T EpC, T2 i 2 <r< )

fo
u(r) =~ ;o (o> 3). 56
2napey ¢/ sin(3m/o) ( ) 8)

Here the Euler’s reflection formula for Gamma function is used.
Note that the asymptotic behavior |r| — 0 does not depend on the
parameter « for o < 2. In the case a > 2, the displacement field on
the short distances is determined only by term with the fractional
Laplacian of the order c.

The functions

u(x) = % C/I im(}x) ,

JO 2 ) + Ca( j.

for the different orders of 1 < o < 6 and with C; = C, = 1 are pres-
ent on Figs. 1-4, where x = |r|. Figs. 1,2,4 allows us to see that the
field u(x) tends to a constant value (u(x) — const) at x — 0 for the
parameters o >3 («=3.6,0=4.1,0=5.2 and o =5.6). Figs. 2
and 3 demonstrate that the asymptotic behavior of the type
ux) ~ 1/x>* for the field u(x) at x — 0 for the parameters
2<o<3(x=26,0=2.7). Figs. 3 and 4 show that the asymptotic
behavior of the type u(x) ~ 1/x for the field u(x) at x — 0 for the
parameters 0 < o0 < 2 (¢ =1.4,00 = 1.9).

We can determine the deformation of an infinite non-local elas-
tic continuum, when a pair of forces with equal in magnitude and
oppositely directed is applied to a small region of the medium. We
assume that these forces are separated by small distance. If we
consider the deformation for |r|, which are larger compare with
the size of the region, we can suppose that two force are applied
at two points such that

f(r) =fod(r+a) —fod(r—a). (57)

This problem is analogous to a dipole system as a pair of electric
charges of equal magnitude but opposite sign, separated by small
distance. Then the displacement field u(r) of fractional elasticity
has a form of the particular solution

ur) 2 (G a) - - ). (58)

Therefore, the displacement field for the case (57) has the form

u(r) 1 fo '°°(sin(2|r+a|)sin(i\rfa\)) ) 4 (59)
G2 +C*

“2mp o r+a r—aj

Fig. 1. Plots of function u(x) for the orders o = 3.6 and o = 5.2, where x = |r| and
C=C,=1.
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X

Fig. 2. Plots of function u(x) for the orders o = 2.6 and o = 5.6, where x = |r| and
C=C=1.

12+

107

3

Fig. 3. Plots of function u(x) for the orders o = 1.4 and « = 2.7, where x = |r| and
CG=C=1

s
61
Y
o
o
0 1 2 3 4 5

X

Fig. 4. Plots of function u(x) for the orders o = 1.9 and « = 4.1, where x = |r| and
C,=Cy=1.

For |r| > |a], we can use |r — a| — [r + a| =~ 2|a| cos 0, where 6 is the
angle between r and a, and |r — a||r + a| ~ |r|>. Then the displace-
ment field can be represented in the form

_f0|a\ cosf > Asin(lr|)

u(r
( mz h GG
/°° /. sin(4|a] cos 0) cos(Ar]) i (60)
ﬂzp\r\ G2+ Cy 2

For the suggested lattice equation and correspondent contin-
uum limit, we can use all positive values of alpha parameter.
There is no reason to limit of the range alpha values in the used
fractional differential equations for the suggested form of frac-
tional gradient and integral elasticity. It allows us to state that
the range of validity of alpha parameter is arbitrary real positive
values. As a result, we can distinguish two following particular
cases in the fractional elasticity model described by (38): (1) frac-
tional integral elasticity (o < 2); (2) fractional gradient elasticity
(oe > 2). Note that for the first case the order of the fractional
Laplacian in Eq. (37) is less than the order of the term related
to the usual Hooke’s law. In the second case the order of the frac-
tional Laplacian is greater of the order of the term related to the
Hooke’s law.

6. Conclusion

We suggest lattice models with long-range interaction of
power-law type as microscopic model of fractional non-local elas-
tic continuum. The continuum equations with derivatives of non-
integer orders are directly derived from the suggested lattice mod-
els. We prove that the fractional gradient and fractional integral
models can be derived from lattice models with long-range particle
interactions. The suggested approach uniquely leads to second-
order and fractional-order strain gradient terms that are preceded
by the positive and negative signs. Fractional calculus allows us to
obtain exact analytical solutions of the fractional differential
equations for continuum models of a wide class of material with
fractional gradient and fractional integral non-locality. A charac-
teristic feature of the behavior of a fractional non-local continuum
is the spatial power-tails of non-integer orders in the asymptotic
behavior. The fractional elasticity models, which are suggested in
this paper to describe complex materials with fractional non-
locality, can be characterized by a common or universal spatial
behavior of elastic materials by analogy with the universal tempo-
ral behavior of low-loss dielectrics (Jonscher, 1977, 1996, 1999;
Tarasov, 2008). The asymptotic behavior (52) and (54) allows us
to state that fractional integral elasticity effects are important on
the macroscopic scales. The asymptotic behavior (53), (55) and
(56) allows us to state that fractional gradient elasticity effects
are very important for the mesoscopic and nano scales. As a results
the fractional gradient elasticity models can be very important for
nanomechanics (Cleland, 2003; Chuang et al.,, 2006; Liu et al,,
2006; Li and Gao, 2013; Gopalakrishnan and Narendar, 2013) of
nonlocal materials with long-range particle interactions.

Appendix A. Proof of Proposition 1

To derive the equation for the field ii(k, t), we multiply Eq. (10)
by exp(—iknd), and summing over n from —oco to +oc. Then

+00
Z e”""de ”’LK Z e M Uy = 2Up+Un 1)+ Y e ¥F(m).  (61)

n=—oc n=—oc n=—oc
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The first term on the right-hand side of (61) is

400

K- Z e MM (nmu, =K - Y e

n=-00 n*—oc

~fknd (Uns1 — 2Up + Up_q)

+0oo
=K. Z e—lknd - 2K - Z e—xkndu +K- Z e—xknd 5
n=—o0 ”7*30

+0o0
_ etkd K- Z e—lkmdum 2K - Z e—lkndun + e—lde . Z e—thduj

m=—oc n=-o00 Jj=—00

Using the definition of i(k, t), we obtain

K- Z e MK, (n,myu, = K - (e u(k, t) — 2ai(k, t) + e ik, t))
—K- ( lkd —Ikd ) (k l’)
= 2K - (cos (kd) — 1) 1i(k,t).

As a result, we have

kd\ .
iknd
K- HZ; e~ kK, (n, m)u, = —4K - sin <2>u(k, t). (62)
Substitution of (62) into (61) gives
2/\
9 l(;(t’;’ 2 = —4K - sin’ (g)ﬂ(k, t) + Fa{F(us(t))}. (63)

For d— 0, the
sin(kd/2)

—4 sin? (g) = —(kd)® + O((kd)*).

asymptotic behavior of the sine is

=kd/2 + O((kd)?). Then

Using the finite parameter C2 = Kdz/M, the transition to the limit

d — 0in Eq. (63) gives
21k, t) 2,2~ 1
8t2 = —Ck’u(k,t) +M}'{F(x)}, (64)

where Cﬁ is defined by (12). The inverse Fourier transform F~! of
(64) has the form

21

TFkO) ) + e, (©5)
ot P

where f(x) = F(x)/(Ad) is the force density, and p = M/(Ad) is the

mass density. Then using
FHak, )}y =ux,t), F{Puk t)} = —Au(x,t),

we obtain the continuum Eq. (11). This ends the proof.

Appendix B. Proof of Proposition 2

To derive the equation for the field u(k, t), we multiply Eq. (22)
by exp(—iknd), and summing over n from —oco to +oc. Then

+00 ) d2
Z e—xkndM Fun(t) =g,
n=—oc

+o0  +0o0

>0 e Ky (n,m) (U — )

N=—oc M=—0c
m#n

+o00 400

8, > > e MK, (n—m) (U, —Up) + Z e~*kndE(p (66)
n=—oc0 ”";?‘C n=—o00
The left-hand side of (66) gives
+00 2 2  +oo 2 -~
Z e*iknd 0 g:z(t) _ % efikndun(t) _ 0 l’é(tli t) . (67)
n=-o00 n=—

where ii(k, t) is defined by (3). The second term of the right-hand
side of (66) is

+00
Z e—ikndF(n

n=-—o00

) = FafF(m)}. (68)

The limit for the first term on the right-hand side of (66) is
described in Proposition 1.

The second term on the right-hand side of (66) with a multiplier
g, is

f Ze kAR, (n — m) Uy — Upn)

N=—o00 M=
m#n

Zx Ze—lkndK Tl— )

N=—o00 M=7%
m#n

+oo  +00

= > e MK, (n — mup,. (69)

Nn=—opoM=-
m#n

Using (3), the first term in the right-hand side of (69) gives

+00 400

Z > e kK, (n—mu, = Ze*”‘"du ZK
el s
=Ko (0)u(k,t), (70)

where we use (13) and K, (m’' +n —n) = K,(m’), and

+o0

k“(kd) = Ze’"‘”dlg(n) = Fa{K.(n)}. (71)
w0

Note that

i Ze kndge (n —m Ze*”‘"dK (n—m) Zum

= Z e-*rdK (n Z Upe md — g (kd) a(k, t), (72)
where K,(m — (n' + m)) = K, (n') is used.
As a result, Eq. (66) has the form
ok, t) N N X
M= =g (KZ(O) - 1<2(kd)) i(k,t)
+ 8, (Kal0) — K (kd) ) a(k, €) + Fa{F(n)}, (73)

where F,{F(n)} is an operator notation for the Fourier series trans-
form of F(n).

The Fourier series transform F, of (22) gives (73). We will con-
sider the limit d — 0. Using (16), Eq. (73) can be written as

. . 1
Tan(k) U(k,t) M

2 o
i) =825 7 a0+ &2 FAFm), (74

0t2 M

where we use (20), the Proposition 1 for K, (n,m), and the following
notations

T = s 6+ €O (75)
Toa(k) = =k + d* O(K*). (76)

In the limit d — 0, we get

1

YCES)) Ikl*, (77)

Ta(k) = LT yalk) = —

Ta(k) = LT2a(k) = —K°. (78)

As a result, Eq. (74) in the limit d — 0 gives

2 o
%u(k £) = gfv(,j Tz(k)ﬂ(k?t)Jr%Ta(k)ﬂ(k,t)+%}‘{F(x)}, (79)
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where u(k,t) = Ci(k,t) and F(k) = F{F(x)} = LFA{F(n)}. The
inverse Fourier transform of (79) is

g, d
M

where f(x) = F(x)/(Ad) is the force density, the operators 7, (x) and
7 ,(x) are defined by
To(0) = F {Ta(k)} = A, To(x) = F {Tu(k)}
- _ 1 (-
- 2T(e+1)

Ta(x) u(x,t) +

() u(x,t) + %f(X), (80)

A2 (81)

Here, we use the connection between the Riesz’s fractional Lapla-
cian and its Fourier transform (Kilbas et al., 2006) in the form

FI(=8)"u(0)(k) = k" (k). (82)

Using the finite parameters C, and C,, which are defined by (24),
the substitution of (81) into (80) gives continuum Eq. (23). This
ends the proof.
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