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Abstract 

Higher harmonics in pipes of quadratic nonlinear material behavior have been analyzed in 

this paper. Using shell theory, the mixing of axisymmetric longitudinal waves and torsional 

waves, and the self-interaction of axisymmetric longitudinal waves, have been investigated. The 

dispersion curves of longitudinal waves derived from the linear version of the governing 

equations show excellent agreement with the corresponding curves obtained from thick shell 

theory and three dimensional theory, presented elsewhere. For torsional waves, only the lowest 

mode is taken into consideration. Using the perturbation method, analytical expressions for the 

resonant torsional waves generated by the mixing of longitudinal and torsional waves have been 

obtained. The resonant waves with difference frequencies propagate in the opposite direction of 

the corresponding primary wave. The back-propagation effect has potential application for 

nondestructive evaluation. The nonlinear shell theory is further simplified for applicability to 

thin pipes, to obtain expressions for the cumulative second longitudinal harmonics generated by 

self-interaction of longitudinal waves. For this case, the phase-match conditions, which are used 

to determine phase-match points, are also presented in analytical form.  

Keywords: Higher harmonics; Analytical solution; Shell theory; Back-propagation; Pipe 

 

1. Introduction 

Ultrasonic waves can effectively be used to detect macroscopic defects like cracks, cavities 

and delaminations in an essentially linear elastic material. It is, however, important to detect 

damage at a smaller scale, to obtain an earlier warning of subsequent macroscale damage.  

Smaller scale damage causes nonlinear material behavior which causes ultrasonic waves to 

generate higher harmonics. These higher harmonics can be detected to provide a measure of the 

microscale damage. Many experiments have confirmed the generation of higher harmonics. 
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Hikata et al. (1965) and Hikata et al. (1966) carried out several experiments to show the effect of 

dislocations on the generation of second and third harmonics in solids. Deng et al. (2005) and 

Zhang et al. (2014) made experimental observations of second harmonic generation of Lamb 

waves in an elastic plate and in long bones. Bermes et al. (2007) developed an effective 

procedure to measure the nonlinearity of metallic plates using second harmonics. The above 

mentioned references show that second harmonics have been frequently considered to measure 

the nonlinearity of materials. The quadratic terms cause, however, non-symmetry in the stresses 

with respect to the origin of zero stresses.  

Although, higher harmonics in dispersive and non-dispersive media have attracted wide 

attention, including experimental, numerical and analytical investigations (Gol’dberg, 1961; 

Bender et al., 2013; Matlack et al. 2015; Chen et al.; 2014), there are few investigations of 

higher guided harmonics in dispersive structures like pipes and rods. Due to the dispersion of 

guided waves, which will lead to frequency dependent phase velocities and multi-modes, the 

analysis of harmonics in wave guides becomes quite complex. Recent investigations about the 

generation of higher guided harmonics have been made by Deng (1998, 1999), Pau and Scalea 

(2015) and de Lima and Hamilton (2003) by using the method of normal mode expansion. De 

Lima and Hamilton (2005) adopted perturbation and modal analysis together with numerical 

simulation to calculate the second harmonics propagating in cylindrical rods and shells. Liu et al. 

(2014a, 2014b) proposed a generalized method and used a numerical approach to analyze the 

cumulative nature and the physical interpretation of the generation of higher harmonics in hollow 

circular cylinders. Liu et al. (2013a) formulated a mode selection method to consider strong 

higher harmonics and then simulated the interaction of torsional and longitudinal waves in 

nonlinear circular cylinders. Nonlinear finite element models have been adopted to analyze the 
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cumulative second harmonics in plates and shells by Liu et al. (2013b). Chillara and Lissenden 

(2013) used a large radius asymptotic solution to analyze second harmonics in pipes. They 

concluded that only asymptotic symmetric modes can be efficiently generated from primary 

axisymmetric longitudinal modes. In the limits of long wavelength and weak nonlinearity, an 

approximate one dimensional theory was used to obtain solitons in rods (Wang et al., 2015a, 

2015b). 

Since rods and pipes are widely used in structures such as pipelines, it is highly desirable to 

increase our understanding of nonlinear waves propagating in cylindrical wave guides on the 

basis of a theory that allows relevant analytical solutions (Morsbøl and Sorokin, 2015). In this 

paper, we present an analytical investigation of higher harmonics in pipes based on shell theory 

with quadratic nonlinear material behavior. An analytical approach based on shell theory 

provides physical insight in the deformation modes. Whereas exact three dimensional theory has 

to be dealt with numerically, shell theory yields analytical solutions.  

The work presented in this paper consists of three parts: the derivation of nonlinear 

equations of axisymmetric material behavior of a shell, the mixing of axisymmetric longitudinal 

and torsional waves, and the self-interaction of axisymmetric longitudinal waves. To verify the 

accuracy of the present linear version of the shell theory, the dispersion curves of longitudinal 

waves have been compared with the corresponding curves obtained from thick shell theory and 

three dimensional theory. For axisymmetric longitudinal wave propagation in pipes, the 

dispersion curves agree very well with the curves for the exact theory. For axisymmetric 

torsional waves, we only take the lowest torsional wave mode, derived directly from the three 

dimensional theory, into consideration. It is shown that for mixing of longitudinal and torsional 

waves, no resonant longitudinal waves with sum or difference frequency exist. Using the 
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perturbation method, analytical expressions for the resonant torsional waves have next been 

obtained. The resonant torsional waves with difference frequencies propagate in the opposite 

direction of the primary waves, which may have potential application to the inspection of pipes.  

For the self-interaction of longitudinal waves in pipes, we have employed a more simplified 

shell theory for thin-walled pipes. A nonlinear displacement equation of motion with uncoupled 

linear part was obtained, which is used to obtain analytical expressions of cumulative second 

longitudinal harmonics. Since longitudinal waves according to this theory are dispersive, the 

phase velocities are frequency dependent. The phase-match conditions have been obtained, 

which, together with the dispersion relations, have been used to determine the phase-match 

points. At the phase-match points, the phase velocity of the second harmonic is the same as the 

corresponding phase velocity of the primary wave.  

 

2. Basic equations of axisymmetric motion in a pipe derived from nonlinear shell theory 

Consider a pipe of thickness h  and radius of the middle surface R , see Fig. 1, where r  is 

the distance from the middle surface, thus r R r   is the radial position of any particle in the 

pipe. In this paper, axisymmetric wave propagation in the pipe will be investigated. The 

displacements for the shell theory are taken in the form: 

 
1

( , )   ( , ) ,   ( , ) ( , ),
2

u u x t v v x t r w w x t r x t   ，   (1) 

where u  and w  are the displacement components in the middle surface, in the radial and axial 

direction, respectively, and   is the slope of the axial displacement in the x r  plane. The forms 

of u  and w  in Eq. (1) can also be found in Herrmann and Mirsky (1956). The expression of the 
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circumferential displacement v  in Eq. (1) is chosen to represent the lowest torsional mode, see 

Wang and Achenbach (2016). 

 

Fig. 1 (Color online) An elastic pipe 

The simple form of the radial displacement given by Eq. (11) has advantages, but it also 

poses a problem in that it yields a zero radial strain, 0rr u r     . As proposed by Herrmann 

and Mirsky (1956), a much better assumption is that the linear radial stress is zero through the 

thickness of the shell, i.e. 

 0L

rr    (2) 

This equation yields 

 
1

u u w

r r x





  
  

  
   (3) 

where   is Poison’s ratio. Here the linear stress-displacement relation (Achenbach, 1999, page 

74) has been used. In this paper, we use Eq. (3), except when the thickness behavior of the shell 

is irrelevant, when we use Eq. (11). Substituting Eq. (3) into the general linear axisymmetric 

stress-displacement relations, the resulting linear parts of stresses are 

 

  

 

 

 

R 

 

h 

Nonlinear material behavior 
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,    2 ,  

,   2 ,    0  

L L

rx

L L

x r xx

L

u w u u w

x r r r x

u w w v

r x x x



 

   

    

     
      

     

   
    





  


  (4) 

where [( ) (11 )]2   , and   and   are Lamé’s elastic constants. The superscripts “L” 

and “NL” denote the linear and nonlinear parts of the stresses, respectively. The nonlinear parts 

of stresses are caused by the nonlinear material behavior, which is given by Eqs. (A1)-(A6) in 

Appendix A. Employing Eq. (3) into the nonlinear stress-displacement relations, the nonlinear 

parts of the stresses can be written as  

 4 42
1 1

=
2 1 2NL

rx

u w w u
B

r x r x
 



 


     
    

 
   

    
  (5) 

 

2 22

1 3

2

2 42

1
2

2

NL u u w w u w v
B

r r x x x r x
    

 
 

       
        

        
  (6) 

 

2

1

2 22

42 232NL

xx

w u w u u w v

x r x r x r x
   

 
  

 

        
        

         

  (7) 

 
1

4

NL

r

u w v
A

x r x


   
  

   
  (8) 

 
1 2

2 1

NL

x

A v u w v
B

v r x x


    
    

    
  (9) 

where 

 

 

 
 

 
 

 
 

2

2

4

1 22 2

3 2

1
3

2 1
,

3 2 1 3 3

1 2

1 1

1

2
    

41 2

A B C B C B C C

A
B C C B

 



    

 

  





   

 
   


 




 







， ，

  (10) 

Here, A, B and C are the third-order elastic coefficients, and the relation , 0rv r v  , which 

follows from Eq. (12), has been used. 
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Since we only take axisymmetric motion into consideration, the differential equations of 

motion are given by 

 

2

2

2

2

2

2

2

rx rrrr

r x r

rx xx rx

u

r x r t

v

r x r t

w

r x r t



  

  


  


  


  
  

  

  
  

  

  
  

  

  (11) 

where   is the material density. To obtain the equations of motion for the shell, we multiply the 

three equations in Eq. (11) by r  on each side, and then integrate the equations at both sides 

through the thickness of the shell. We obtain 

 
2

2

rxN N u
h

x R t

 
 

 
 

  (12) 

 
2 3 2

2 212

xxN w h
h

x t R t

 


  
 

  
  (13) 

 
2 2

2 2

1
1

2 12

x rN N h v
Rh

x R R t

  
  

   
  

  (14) 

We also multiply the third equation in Eq. (11) by rr , and integrate over the thickness of the 

shell to obtain 

 
3 2 3 2

2 212 12

x
rx

M h h w
N

x t R t

    
  

  
  (15) 

where 

 

   

   

   

/2 /2

/2 /2

/2 /2

/2 /2

/2 /2

/2 /2

+ ,   + 1 ,   

+ 1 ,    + 1 ,   

,    1

h h

L NL L NL

xx xx xx

h h

h h

L NL L NL

rx rx rx x xx xx

h h

h h

L NL L NL

r r r x x x

h h

r
N dr N dr

R

r r
N dr M r dr

R R

r
N dr N dr

R

  

     

   

   

   

 

 

 

 
   

 

   
      

   

 
     

 

 

 

 

  (16) 
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Equations (12)-(15) are the equations governing axisymmetric motion of the shell. The 

justification for these multiplications to obtain these equations stems from energy considerations 

(Herrmann and Mirsky, 1956). By the use of Eqs. (4)-(9), Eq. (16) can be written as  

  2 NLw
N u h N

x
   


   


  (17) 

 
3

( 2 )
12

NL

xx xx

w h u
N h h N

x R x R


  

  
     

  
  (18) 

 
3

( 2 )
12

NL

x x

h w
M R M

R x x


 

  
    

  
  (19) 

 ( ) NL

rx rx

u
N h N

x
 


  


  (20) 

 
2

2

1
1

2 12

NL

x x

v h
N Rh N

x R
 

 
   

  
  (21) 

 NL

r rN N    (22) 

where  

 

1 / 2
ln ,   

1 / 2

h h
h

h R



 


  (23) 

Here   is the shear coefficient, which is introduced to modify the shear stress of the shell or 

plate theory. The motivation is to make the velocity of very short waves in the lowest mode 

coincide with the corresponding velocity of the three dimensional theory. Here   is taken as 

0.86 when the Poisson’s ratio   is 0.3 (Herrmann and Mirsky, 1956). The nonlinear parts of the 

resultant forces can be expressed as 

 

/2 /2 /2

/2 /2 /2

/2 /2 /2

/2 /2 /2

,    1 ,    1 ,

1 ,    ,    1

h h h

NL NL NL NL NL NL

xx xx rx rx

h h h

h h h

NL NL NL NL

x xx r r x x

h h h

r r
N dr N dr N dr

R R

r r
M r dr N dr N dr

R R

 

   

  

  

  

  

   
       

   

   
       

   

  

  

  (24) 
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where the nonlinear stresses are given by Eqs. (5)-(9). 

Substitution of Eqs. (17)-(22) into Eqs. (12)-(15) yields the following displacement 

equations of motion. 

 

 
2 2

12 2

2 2 3 2 3 2

22 2 2 2

3 2 3 2 3 2 3 2

32 2 2 2

( ) 2 [ , , ]

( 2 ) ( 2 ) [ , , ]
12 12

( 2 ) ( ) ( 2 ) [ , ,
12 12 12 12

u u w u
h h h F u v w

x x R x t

u w w h h
h h h F u v w

x x t R x R t

h w u h w h h
h F u v w

R x x R t x t


    

 




     

   
     

   
     

   

    
      

    

    
       

    
2 2 2 2

42 2 2 2

]

1 1
1 1 [ , , ]

2 12 2 12

h v h v
Rh Rh F u v w

R x R t
 

    
      

    

  (25) 

where  

 
/2

1

/2

[ , , ] 1

h NL NL

rx

h

r
F u v w dr

R x R

 



   
    

   
   (26) 

 
/2

2

/2

[ , , ] 1

h NL

xx

h

r
F u v w dr

x R





  
   

  
   (27) 

 
/2

3

/2

[ , , ] 1

h NL
NL xx
rx

h

r
F u v w r dr

x R






   
    

   
   (28) 

 
/2

4

/2

[ , , ] 1

h NL NL

x r

h

r
F u v w dr

x R R

  



   
     

   
   (29) 

Equations (26)-(29) define the nonlinear parts of Eqs. (25). If they are omitted, Eqs. (25) reduce 

to the linear equations governing the propagation of axisymmetric waves in a pipe. 

Since Eqs. (25) are a set of nonlinear equations, the perturbation method is used to 

determine the effects of nonlinearity. Thus, we consider 

 (0) (1) (0) (1) (0) (1),  ,  u u u w w w v v v        (30) 
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where it is assumed that 
(0) (1)

    and 
2

(0) (1)
    are satisfied, where “ ” denotes ,  u v  

and w . Based on these order of magnitude considerations, we can obtain zero-order and first-

order linear governing equations. The zero-order equations are the ones presented in Eqs. (25) if 

the right-side terms are omitted. The first-order equations are given by 

 
2 (1) (1) (1) (1) 2 (1)

(0) (0) (0)

12 2

(1) 2 (1) 2 (1) 3 2 (1) 3 2 (1)
(0) (0) (0)

22 2 2 2

3 2 (1) (1)

2

( ) 2 [ , , ]

( 2 ) ( 2 ) [ , , ]
12 12

( 2 ) (
12

u u w u
h h h F u v w

x x R x t

u w w h h
h h h F u v w

x x t R x R t

h w u
h

R x x


    

  
     

  


   

     
   

    
      

    

 
 

 

3 2 (1) 3 2 (1) 3 2 (1)
(1) (0) (0) (0)

32 2 2

2 (1) 2 (1)
(0) (0) (0)

42 2

) ( 2 ) [ , , ]
12 12 12

1 1
[ , , ]

2 2

h w h h
F u v w

R t x t

v v
Rh Rh F u v w

x t

   
  

 

  
     

  

 
 

 
  (31) 

Here, it has been assumed that terms of orders 2 2 1h R   can be omitted. 

The solutions to the zero-order equations are taken in the forms:  

 
( )

(0) ( ) (0) ( ) (0) ( ) 0,  , , T

x
i t

ci t kx i t kx i t kxu Ue w We e v De
R


  


  

   （ ）
  (32) 

where Tc    is the shear wave velocity,   is the circular frequency and k  is the wave 

number. Equations (25) show that, for the axisymmetric case, linear longitudinal waves are 

uncoupled from linear torsional waves, as is evident from the left-side of Eq. (254), which is 

uncoupled from the linear parts of the other three equations. Substituting Eq. (324) into Eq. (314) 

and omitting the right side-term, the resulting equation governing torsional wave motion is 

satisfied by 

 
0 1

( ) cos ( )
2 T

x
v R r D t

c
  （ ）

  (33) 
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where D is a constant. Equation (33) is the well-known representation of the lowest torsional 

mode in a pipe (Wang and Achenbach, 2016). 

The following relations are introduced.  

 
2 2

,  
c

k
 


 

    (34) 

where c k  is the phase velocity and   is the wavelength. After substituting the first three 

expressions of Eq. (32) into the first three zero-order equations, the equations governing the 

relation between ,  U W  and   become 

 

2

2

2

2

2 2

2

1 1 1

2 2 4 2 2 2

1

1 1 1
0

1
1 0

1 1 1
0

12 12

2 2

1 1 1

2 2 2 2 4

n U i W i

i U n

h h h

W

n
i

h

U h

   



  






  






 





 
      

 

 
    



 



 
     











 

  (35) 

where Tn c c  and h   are the dimensionless phase velocity and the reciprocal of 

dimensionless wavelength. For simplicity, the approximation has been made in the calculation 

that the terms containing 3h R  in the zero-order equations are negligible. The validation will be 

shown by comparison with the exact solution, see Fig. 2. As a consequence, part of the rotary 

inertia and flexural stiffness are neglected. For non-dispersive structures, the value of n  equates 

to L Tc c , where  2Lc      is the longitudinal wave velocity. 

The determinant of the coefficient matrix of Eq. (35) must vanish, which yields the 

dispersion relation (also called the characteristic equation), which relates the dimensionless 

phase velocity and the reciprocal of the dimensionless wavelength. The dispersion curves are 

shown in Figs. 2a and 2b for two values of h R . 
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(a) 1 10h R   

 

(b) 1 4h R   

Fig. 2 (Color online) Comparison of phase velocity versus the reciprocal of wavelength 

with the corresponding results obtained from thick shell theory (Mirsky and G. Herrmann, 1958) 

and three dimensional theory (Herrmann and Mirsky, 1956) for 0.86   and 0.3   
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Figures 2a and 2b show the comparison of the dispersion curves obtained from Eq. (35) 

with the ones obtained from three dimensional theory (Herrmann and Mirsky, 1956) and thick 

shell theory (Mirsky and G. Herrmann, 1958). When the ratio of shell thickness to wavelength is 

small, 0.4h    in this case, which can be called a lower frequency region, the dispersion 

curves for the first and second mode agree very well with the curves obtained from the other two 

theories. As the wavelength becomes smaller, the difference becomes larger for the second mode, 

while the first mode still remains sufficiently accurate. The results confirm that shell theory is 

more suitable in the lower frequency region, where the wall thickness of a pipe is sufficiently 

smaller than the wavelength. As shown in Li and Rose (2006), at higher frequencies (i.e. shorter 

wavelengths), guided waves in pipes can be treated as Lamb waves. The separation line between 

higher and lower frequencies depends on the ratio of the wall thickness to the diameter. Pipes of 

the same wall thickness with larger diameter will have a lower frequency value as the separation 

line. As shown in Fig. 2b, the present shell theory is still valid for fairly thick pipes. The 

dispersion curves show that the curve obtained from the present theory is more accurate for the 

first mode than the curve from the thick shell theory. One possible explanation is that the 

assumption used in Eq. (2) releases the restriction due to the assumed form of the displacement 

given by Eq. (11), which increases the stiffness. However, the discrepancy between three theories 

is very small for a small ratio of the thickness to wavelength. 

We can express the radial displacement and the angle of rotation of the normal to the middle 

surface in terms of the axial displacement of the middle surface. The relations between the 

amplitudes can be obtained from Eqs. (352) and (353) as follows: 

 1 2,  U i W W     (36) 

where 
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2

1

1
1

2

2
n

h






 
  





  

 

   2 12 2 2 22

1

1 6 4

2

2 1

1

nh






 






   




 
 

It follows that the expressions of (0)u  and (0)  can be written as 

 (0) (0) (0) (0) (0)

1
2,  u u i w w

R
 


     (37) 

We then obtain 

 (0) (0) (0) (0)

2(1 )
r

w w r w
R

       (38) 

 

3. The mixing of longitudinal and torsional waves 

Let us consider the case that a longitudinal wave and a torsional wave are excited at the 

same time. As mentioned in the previous section, these two waves will not interact with each 

other within the linear theory. However, when nonlinear material behavior is taken into 

consideration, resonant waves and higher harmonics will be generated. In this section, we are 

interested in investigating mixing primary longitudinal and torsional waves, to obtain a resonant 

wave with difference or sum frequency. 

We consider the axial displacement in the middle surface in the form 

 (0)

1 1cos( )w W t k x    (39) 

The primary longitudinal wave with frequency 1  and wave number 1k  can then be determined 

through Eqs. (371) and (38) as 

 

1 1

1 1

( )(0)

1 1 1 1

( )(0)

2 2 1 1

Re sin( ),

Re (1 ) (1 ) cos( )

i t k x

i t k x

u i We W t k x

r r
w e W t k x

R R





  

  





     

 
     

 

  (40) 
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where 
1  and 

2  are defined by: 

 
2

1 11 1
2 1

2
n

h


 



 



  

 
  (41) 

 
 

   
1

2 12 2 2

1

2 2

1 1

1

1 1 4

1

6

2

2h n













   




 
  (42) 

Here 
1 1h  , with

1 12 k   being the wavelength of the longitudinal wave, and 

1 1 1( )Tn k c . The primary torsional wave with frequency 
2  and wave number 

2k  is given by 

  (0)

2 2

1
cos( )

2
v D R r t k x     (43) 

where 2 2 Tk c   for the lowest torsional wave mode. 

It is noted that there are no terms in the expressions (26)-(28) of 1F , 2F  and 3F  containing 

the coupling of v  with u  or w , which is evident by the absence of products of v  with u  or w  

in the nonlinear stress-strain relation (5)-(7). Thus, we can conclude that the mixing of primary 

longitudinal waves and torsional waves will not give rise to nonlinear terms with sum or 

difference frequency for the first three equations in Eq. (31), which govern the generation of 

resonant longitudinal waves. Thus, resonant longitudinal waves with sum or difference 

frequencies cannot occur through the mixing of primary longitudinal waves and torsional waves 

in a pipe. A similar conclusion that the mixing of primary transverse waves and longitudinal 

waves in an unbounded nonlinear media cannot give rise to a resonant longitudinal wave with 

difference or sum frequency, was stated in Korneev and Demčenko (2014). However, a different 

condition exists for the expression of 4F . Substituting Eqs, (40) and (43) into Eqs. (8), (9) and 

(29), we have 

 
4 1 2sin( ) sin( )

1 1

2 2
F WDk t k x WDk t k x               (44) 
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where 1 2      and 1 2     , also 1 2k k k    and 1 2k k k   , and 

 

2 1
1 1 2

1 2

2 1
2

0

0 1 2

1 2

21
,

1 2

2 1

1 2

8 ( )

21

82 )1 (

A v B hA

h

v B

h

A A

v

h

v 



 
 

  

 
 

  

 
  

 

 
  



 
    

  

 
   




 



  (45) 

where 

  
2

2 1 2 1 2
0 2 1 22 1 2

6

h

h

    
          (46) 

and 2 2h  , and 2 22 k   is the wavelength of the torsional wave. It should be noted that 

the special condition 1 2 0   , for which the resonant wave with difference frequency does not 

exist, is not considered here. The quantities ( 0,  1,  2)i i  , as defined by Eqs. (45) and (46), 

defines three coefficients for the specified primary waves. In view of Eqs. (314) and (44), we 

have 

 
2 (1) 2 (1)

1 22 2 2

1
sin( ) sin( )

T

v v WDk WDk
t k x t k x

x c t Rh Rh
 

 
    

     
 

  (47) 

The resonant waves have to meet the phase-match conditions, which are given by 

 
T

k
c


  or 

T

k
c


  (48) 

For case one: 
Tc k  , the longitudinal phase velocity can be expressed by 

 1
1 1

1

Tc n c
k


    (49) 

Then, the first resonant condition in Eq. (48) becomes 

 2 1

1 1

1

2

n

n






   (50) 
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For this case, we assume 
1 1n  . Thus, the wave solution to Eq. (47) will have the following form 

 (1) sin( ) cos( )v a t k x a x t k x            (51) 

Substituting Eq. (51) into Eq. (47), we can get the following equality 

 

2
2

2

1 2

sin( ) 2 sin( )

sin( ) sin( )

T

a k t k x k a t k x
c

WDk WDk
t k x t k x

Rh Rh


 

 


       

 
   

 
    

 

    

  (52) 

The values of amplitudes in Eq. (52) can then be calculated as  

 
2

1 2

2

2

,   
2

T

Dk DW W
a a

h R h
R k

c




 




 
  

 
 

 

  (53) 

In view of Eq. (50), the phase velocities of the generated waves are given by 

 1

1

3 1
,  

3
T T

n
c c c c

k n k

  
 

 


    


  (54) 

The minus phase velocity in Eq. (542) means that the corresponding wave travels in the opposite 

direction of the primary waves. Finally, by virtue of Eqs. (51)-(54), the generated torsional wave 

can be expressed by 

 
2

(1) 1 1 2

2
1

2

31
( ) sin ( ) cos ( )

2 3 1 2T T

T

WDk n Dx W x
v R r t x t

n c R h c
Rh k

c

 



 




 
 

       
  

  
   

  (55) 

which shows that there is no cumulative behavior for the wave with sum frequency. For the wave 

with difference frequency the amplitude increases, however, linearly with the propagation 

distance. It should be noted that the waves with difference frequency propagates in the opposite 

direction of the primary waves. This back-propagating resonant wave may be useful for 

nondestructive testing purposes. 
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For case two: 
Tc k  , the value of 

1n  must be equal to 1, which is possible for 

longitudinal waves propagating in pipes, see Fig. 2. The wave solution has the following form 

 (1) cos( ) cos( )v a x t k x a x t k x            (56) 

Substituting Eq. (56) into Eq. (47) and following the analysis procedure (i.e. Eqs. (52)-(54)) used 

in case one, the expression of the generated torsional wave for case two is obtained as 

 (1) 1 21
( ) cos ( ) cos ( )

2 2 2T T

D DW x W x
v R r x t x t

R h c R h c
    

     
 

  (57) 

To obtain this kind of resonant waves, the phase velocity of the primary longitudinal wave 1c  has 

to be equal to Tc , which implies that the primary longitudinal wave has to propagate at a 

frequency where its velocity equals to the shear wave velocity. 

The analytical expressions of resonant waves with sum and difference frequencies are 

shown in Eqs. (55) and (57). The coefficients 1  and 2  can be calculated through Eq. (45) for 

the specific primary longitudinal and torsional waves.  

As examples, we determine the numerical values of 1  and 2  for several combinations of 

primary longitudinal and torsional waves, see Table I. The ratio of thickness to mean radius h R  

is taken as 1 10 . The material constants are the same as used in Liu et al. (2013b), i.e. 

 116.2 GPa, 82.7 GPa, 325 GPa, 310 GPa, 800 GPaA B C           (58) 

The Poison’s ratio   is 0.3 and the shear coefficient   is 0.86. 

 

TABLE I. Values of 1  and 2  calculated from Eq. (45) for several combinations of primary 

torsional wave modes with the first and second modes of longitudinal waves 

Group 
1 1h   1 1 1( )Tn k c  2 2h   1  2  
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With the first mode of longitudinal waves 

1 0.025 1.000 0.05 1.191 1.188 

2 0.1 0.383 0.05 9.717 10.101 

3 0.2 0.511 0.10 44.355 48.808 

4 0.3 0.633 0.15 109.220 124.499 

With the second mode of longitudinal waves 

5 0.1 1.692 0.05 -4.086 -4.086 

6 0.2 1.691 0.10 -16.283 -16.283 

7 0.3 1.691 0.15 -36.669 -36.669 

 

It is noted that the combination of primary waves in group 1 applies to case two (i.e. 1 1n  ). 

The analytical expressions presented in this section are not limited to the combinations in Table I. 

They are applicable to any combination of primary longitudinal and torsional waves, except the 

case that 1 2=  . It can be noted from Fig. 2 and Table I that the change of phase velocity is very 

small for points lying on the dispersion curve of the second longitudinal mode. This means that 

the dispersion effect of the longitudinal wave is weak in these regions. So the group velocity is 

very close to the phase velocity and the longitudinal wave is undistorted in these regions. 

 

4. The self-interaction of longitudinal waves in a pipe 

In this section, we analyze the self-interaction of axisymmetric longitudinal waves 

propagating in a thin-walled pipe. Compared with the equations of motion of plates in 

rectangular coordinates, the equations of motion of pipes in cylindrical coordinates become quite 

complex and require a numerical approach. Here, we will, however, investigate the second 

longitudinal harmonics propagating in thin-walled pipes using shell theory with nonlinear 
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material behavior. For thin-walled pipes, we further simplify the nonlinear governing equations 

(12)-(14) by neglecting rotatory inertia (the terms containing 3 12h ). We then have  

 
2

2

rxN N u
h

x R t

 
 

 
 

  (59) 

 
2

2

xxN w
h

x t


 


 
  (60) 

 0x
rx

M
N

x


 


  (61) 

Substituting Eq. (61) into Eq. (59), we obtain 

 
2 2

2 2

xM N u
h

x R t

 
 

 
 

  (62) 

For thin-walled pipes, we also assume that the shear deformation is very small and may be 

neglected, which implies 

 0  or  =rx

u w u

x r x
 

  
   
  

  (63) 

Using Eq. (63), the nonlinear stresses for longitudinal waves given by Eqs. (5)-(7) are 

further simplified to 

 

1

22

1 2 32

2 2

22 3

=0,   2 ,

2

NL

NL

xx

NL

rx

u u w w

r r x x

w u w u

x r x r

 

  






  

    
  

  
  

 


 

  (64) 

In this section, the definitions of NLN , NL

xxN  and NL

xM are the same as stated by Eq. (24), 

while the expressions of the nonlinear stresses (5)-(7) should be replaced by the corresponding 

stresses in Eq. (64). Substituting Eqs. (17)-(19) into Eqs. (60) and (62), with consideration of 

zero shear deformation (i.e. Eq. (63)), we obtain the displacement equations of motion as 
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  
23 4 2

4 2 2
( 2 ) 2

12

NL NL

xM Nh u u h w u
h

x R R x t x R

      
  

      
   

  (65) 

 
2 2

2 2
( 2 )

NL

xxNw h u w
h h

x R x t x
   

  
    

   
  (66) 

Here, the terms containing 
22h R  have been neglected. The corresponding linear homogenous 

equations of Eqs. (65) and (66) are the Donnell’s equation for axially symmetric motion of a thin 

shell given by Junger and Feit (1986, page 217). After some simple manipulations, Eqs. (65) and 

(66) can be written as two equations with uncoupled linear parts. 

  
22 3 4

2 4 2

1
( 2 ) 2

12

NL NL

xM Nw u h u u
h

x h t x R x R

     


   
        

    
  (67) 

and 

 

 

4 3 6 2 4 3 6

2 2 6 4 2 4

2 2 2 2

2 2

( 2 ) +
12 2 12

2 + [ , ]
2

u h u u h u
h h

x t x t t x

h h u h u
F u w

h R x R t


   

 


  

 

   
   

      

   
    

   

  (68) 

where 

 
2 4 2 4 2

2 2 2 2 4 2

1 1
[ , ]

2 2

NL NL NL NL NL

xx x xN M N M Nh
F u w

h x t x R t x R x

  

   

       
        

          
  (69) 

Note that for a thin shell (i.e. 1h  ), we have 

 h    (70) 

To solve Eq. (68), we consider in the usual manner.  

 (0) (1) (0) (1),   u u u w w w      (71) 

Substituting Eq. (71) into Eq. (68), we get a zero-order and a first-order equation. The zero-order 

equation is the same as Eq. (68) when the right-hand side term F  is omitted.  

The first-order equation is obtained as 
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 

4 (1) 3 6 (1) 2 4 (1) 3 6 (1)

2 2 6 4 2 4

2 2 2 (1) 2 (1)
(0) (0)

2 2

( 2 ) +
12 2 12

2 + [ , ]
2

u h u u h u
h h

x t x t t x

h h u h u
F u w

h R x R t


   

 


  

 

   
   

      

   
    

   

  (72) 

The solution to the zero-order equation is taken in the following form. 

 (0) ( )cos( ) Re i t kxu U t kx Ue          (73) 

where “Re” denotes the real part of the quantity in the bracket. Substituting Eq. (73) into the 

zero-order equation, we obtain the following dispersion relation for a thin pipe. 

 

   

   

2 2 2 2 2 4 4 4

4 2

2

24 2 2 2

1 1

1
1

4

3

2
1 0

3 2

2 n n

n h h n

      




  




  



 



  (74) 

where n  and   are defined in Eq. (35). 

 

Fig. 3 (Color online) Dispersion curves and phase-match points for 0.3   
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Figure 3 shows the comparison between the dispersion curves obtained from the Donnell 

equation and thick shell theory (Mirsky and Herrmann, 1958). When the ratio of wall thickness 

to wavelength is small, these two results agree very well with each other. The thick shell theory 

fits well with the exact theory for small values of  , as shown in Fig. 2. Therefore, on the basis 

of dispersive behavior, the governing equation (68) is acceptable for waves with long 

wavelengths in a thin-walled pipe. 

By the use of Eqs. (13) and (63), the following relations can be obtained. 

 
(0)

(0) (0)Re
w

kiu
r




    
  (75) 

In view of Eqs. (67) and (73), the relation between (0)w  and (0)u  can be written as 

 (0) (0)

1Rew iC u      (76) 

where 

 2 3 3

1

1 1 2 1 1 1

3 2

1 1
C n h

h h
   





   


     (77) 

We can then express the axial displacement by 

  (0) (0) (0) (0)

1 1Rew iC u ikru i C kr u        (78) 

Using Eqs. (73) and (78), together with Eqs. (24) and (64), the nonlinear resultant forces become 

 
2

2

1 2= cos ( )NL

xx

U
N t kx

h
     (79) 

 2 2

2 2 cos ( )NL

xM U t kx      (80) 

 
2

2

3 2 cos ( )NL U
N t kx

h
       (81) 

where 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

25 
 

 

31
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       



  


  

 
     

 

 
    











 
   

 


  (82) 

These expressions define three coefficients for the longitudinal primary wave. Substituting Eqs. 

(79)-(81) into Eq. (69), we obtain 

 
 

(0) (0)

2
2 2 2 2 2

2 1 2 3 4

[ , ]

2
4 1 32 2 cos 2( )

2 2

F u w

U
h n h t kx

h

 
     

   

  
         

   

  (83) 

Let us consider a solution to Eq. (72) in the form 

 (1) sin 2( )u Ux t kx    (84) 

Substituting Eqs. (83) and (84) into Eq. (72), we get the following equation: 

 

 
 

 
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1 2 3 4
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2 2 4 4 4 4

2
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16 64
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U

h
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h
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
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     

  











  



   

 




 
   

 
         

  

  (85) 

where 

 

   

   

22 2 4 4 2 2

4

2

4 2

4

2 2 2 2

64
1 4 1

3

32 1
       1

3

8

1
2

n n

n h h n

      


  

  


   

   



  (86) 

Equation (85) has a solution which does not depend on time when 0  , which implies 
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   

   

2 4

2 2

22 2 4 4 2 2

4 4 2 22

64
1 48

1

1
3

32 1
1

3 2
0

n n

n h h n

      




  

  


  

 



  (87) 

Since 0  , we can obtain the amplitude of the second longitudinal harmonic, Eq. (84), from 

Eq. (85) as 

 
3

2

2
U

U

h
   (88) 

where 
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  




  
       







 
 

  






 




  (89) 

Basically, Eq. (87), which gives the relation between 2  and 2k , is the dispersion relation 

for second harmonics. For a non-dispersive structure like an unbounded medium, the dispersion 

relation for the primary wave is the same as the corresponding relation for the second harmonics, 

and the phase velocities keep unchanged when the frequencies vary. For waves in dispersive 

structures, there exist only limited phase-match points where the phase velocities of primary 

waves are the same as the corresponding phase velocities of second harmonics. If we plot the 

two dispersion relations (74) and (87) in the same figure, the intersections of the two curves are 

phase-match points. In this paper, we obtain a relation between   and n  by subtracting Eq. (74) 

from Eq. (87). The resulting equation can be reduced to 

 
2 2 2 21 1

5 3 1
2

0
2

n n
 


      

    
   




    (90) 

which gives rise to the following relations 

 
10

3(1 )
n  





  (91) 
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and 

 
2

1
n





  (92) 

Equations (91) and (92) are phase-match conditions, which are independent of the ratio of the 

thickness to radius of a pipe. Equation (91) defines a straight line in the n   plane, shown in 

Fig. 3. The intersections of the line with the dispersion curves yield the phase-match points. The 

numerical values of the phase-match points have been verified by substitution in Eqs. (74) and 

(87). Another two phase-match points can be obtained by substitution of Eq. (92) into Eq. (74) or 

Eq. (87) for the two different ratios of wall thickness to mean radius considered here. For the 

pipes with the ratio of thickness to mean radius of 1/10 and 1/30, the phase-match point lying on 

the dispersion curve of the first mode is in the region of accuracy of the Donnell theory, see Fig. 

3. The dispersion curves of the second harmonics are neglected in Fig. 3. Since the ratio of 

thickness to wavelength of the second harmonic is 2 , the region of accuracy of the second 

harmonic is smaller. The phase-match points lying on the dispersion curve of the second mode 

are out of the accuracy region shown in Fig. 3. Considering the second longitudinal harmonics in 

the pipe with ratio of thickness to mean radius of 1/10 and 1/30, we can determine the phase-

match points by using the present theory, which lie on the dispersion curves of the first mode in 

Fig. 3. Once the phase-match points have been calculated, the amplitudes of the second 

harmonics can be obtained through Eqs. (89) and (94). The phase-match points and the 

corresponding amplitude coefficients of the second harmonics in Eqs. (89) and (94) are given in 

Table II. The material constants used here are given by Eq. (58).  

Substitution of Eqs. (80), (81), (84) and (88) into Eq. (67) yields the expression for the axial 

strain as 
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(1) 2 2 2

4 5 62 2 2
sin 2( ) cos 2( )

w U x U U
t kx t kx

x h h h h
 


     


  (93) 

where the amplitude coefficients in Eq. (93) are given by 
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 
  

 





 









 
    

 

 
     


  

  (94) 

As the propagation distance increases, the cumulative second harmonic with the amplitude 

coefficient 4  will be dominant in Eq. (93).  

TABLE II. The phase-match points and the corresponding coefficients of the amplitudes of 

second harmonics 

h R  h   Tn c c  3  4  5  6  

1/10 0.065 0.445 1.80×10
-2

 -5.11×10
-4

 -2.80×10
-3

 -8.77×10
-2

 

1/30 0.037 0.252 2.45×10
-3

 -3.67×10
-5

 -1.53×10
-4

 -9.34×10
-3

 

 

From Table II, we observe that the amplitudes of second harmonics in the thinner-walled pipe 

are smaller than the amplitudes of second harmonics in the thicker-walled pipe. That means a 

lower power flux from the primary wave to the second harmonic occurs in the thinner pipe. 

To validate the analysis in this section, the phase-match point lying on the dispersion curve 

of first mode is compared with the corresponding point given by Liu et al. (2013b). The ratio of 

thickness to mean radius is 150/975. Our result is ( 0.080,  0.546)n    compared with the 

result of Liu et al. ( 0.086,  0.536)n   . The discrepancy between the two results is small.  
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5. Conclusions 

In this paper, guided waves propagating in pipes with quadratic material nonlinearity have 

been investigated. The paper is composed of three main parts: the derivation of the shell 

equations, the mixing of longitudinal and torsional waves, and the self-interaction of longitudinal 

waves. Analytical expressions of cumulative second harmonics have been obtained based on 

shell theory.  

The derivation of governing equations of axisymmetric motion of a pipe with nonlinear 

material behavior has been given in the first part. By use of the perturbation method, the zero and 

first order equations have been derived. The dispersion curves obtained from the linear version 

of the present theory, the linear thick shell theory and the linear three dimensional theory show 

excellent agreement. It was shown that no resonant longitudinal harmonic with sum or difference 

frequency exists. Analytical expressions of the resonant torsional harmonics with difference and 

sum frequencies were obtained. The resonant torsional harmonics generated by the mixing of 

longitudinal and torsional waves propagate in the opposite direction of the primary wave. 

For thin-walled shells, the shell theory has been further simplified to yield uncoupled linear 

and nonlinear parts of the governing equations. The simplified shell theory has been used to 

analytically investigate the self-interaction of longitudinal waves in thin-walled pipes. To 

validate the thin shell theory, the dispersion curves for longitudinal waves were compared with 

the corresponding curves obtained from thick shell theory. It was shown that the dispersion 

curves agree very well with each other when the ratio of thickness to wavelength is small. For 

second longitudinal harmonics in pipes, analytical expressions for the phase-match conditions 

are presented, which together with the corresponding dispersion relation, have been used to 
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determine the phase-match points. The analytical solutions presented in this paper may provide a 

benchmark to numerical and experimental investigations. 
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Appendix A: 

In cylindrical coordinates, the nonlinear parts of the Cauchy stress components only 

including quadratic material nonlinearity for axisymmetric wave fields are given by (Wang and 

Achenbach, 2016) 
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Equations. (A1)-(A6) can also be reduced from the corresponding equations in Liu et al. 

(2013a) if we only consider axisymmetric motion with small deformations (but considering 

material nonlinearities). The subscript letter following the comma denotes the corresponding 

differential derivative. 
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