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a b s t r a c t 

This article proposes two constitutive models to describe the nonlinear, elastic-plastic behavior of uni- 

directional fiber-reinforced composites at the meso-level. Key ingredients are the formulation of two 

anisotropic yield functions with the aid of representation theorems (invariant formulation), and the set- 

up of governing equations for plastic variables with respect to associative and non-associative flow re- 

sponse. The governing equations are solved using an elastic predictor-plastic corrector algorithm which 

imposes the constraint posed by the yield condition. Both the models are evaluated qualitatively and 

quantitatively by comparison to micromechanics simulations as well as to experimental data. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

With the increasing use of unidirectional fiber-reinforced com-

posites as a primary structural component in the automobile and

aerospace industries, the predictive modeling of the non-linear

behavior of composites has been a topic of intensive research over

the last years. From an experimental perspective, investigations

pertaining to the non-linear behavior of composites are docu-

mented in ( Smith, 20 0 0; Vogler and Kyriakides, 1998; 1999; Weeks

and Sun, 1995 ), among others. It has been observed that the mate-

rial response of the composite to shear and transverse compression

is non-linear and inelastic whereas that in the fiber direction re-

mains essentially elastic up to failure. Due to the brittle behavior

of polymers used in composites, it is usually assumed that the

non-linearity is a result of brittle cracking inside the matrix ma-

terial only. Therefore, previous modeling efforts have emphasized

on continuum damage mechanics ( Rabotnov, 1969; Lemaitre,

1992 ). Recent research implies that under shear dominated loads,

considerable permanent strains develop that cannot be explained

by brittle mechanisms alone. It has been experimentally observed

( Gilat et al., 2005; G’sell et al., 1990 ) and computationally verified

( Schuecker and Pettermann, 2008 ) that the non-linearity is due to

plasticity in the matrix constituent. Moreover, plasticity prior to

damage leads to a redistribution of the stress state in a laminate,

which eventually affects the failure onset. Therefore, accurate con-

stitutive models which capture the elastic-plastic behavior of these
∗ Corresponding author. 
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aterials are required to accurately predict the onset of damage

nd failure of composite materials ( Chang and Chang, 1987 ). 

Generally, the elastic-plastic behavior of composite materials

an be described using either a micromechanical or a homogenized

pproach. Along the lines of a micromechanical approach, fibers and

he matrix are modeled as individual phases. Fibers are assumed to

e linear elastic anisotropic solids (as necessary for carbon fibers)

hereas the matrix is modeled as an isotropic elastic-plastic solid,

ee ( Pettermann et al., 1993; Hsu et al., 1999; Doghri and Ouaar,

003; Doghri et al., 2010 ) for details regarding the constitutive

nd algorithmic framework. The micromechanical approach gives

 better understanding of reasons behind the behavior observed

n experiments. However, this approach comes at a cost where

igher number of material coefficients are required for the descrip-

ion of material response. Although differing in detail with the mi-

romechanical approach, a small number of constitutive models of

nisotropic plasticity, based on a linear transformation of the stress

ensor have been proposed, see ( Car et al., 20 0 0; 20 01 ), with em-

hasis on fiber-reinforced composites. This theory assumes the ex-

stence of a fictitious isotropic space where a mapped problem is

olved. The real and fictitious spaces are related by means of linear

ourth-order transformation tensors which are formulated based

n the available information of strength in the respective spaces.

he real anisotropic space is regarded as a homogenized compos-

te material while the fictitious isotropic space characterizes the

atrix material to which plasticity is usually restricted. 

A majority of relevant research has focused on the formulation

nd experimental validation of anisotropic yield criteria for homog-

nized models. Hill (1950) proposed one of the first yield func-

ions for the description of orthotropy, which is a generalization

https://doi.org/10.1016/j.ijsolstr.2019.07.002
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f the Mises (1928) isotropic yield criterion. The main limitation

f this criterion is the impossibility of modeling materials that ex-

ibit pressure sensitive behavior, i.e. composite materials, follow-

ng which there have been attempts to modify Hill’s orthotropic

ield criterion for use with unidirectional composites ( Xie and

dams, 1995; Sun and Chen, 1989; Chen and Sun, 1993 ). For metal-

atrix composites, there are a considerable number of thermo-

ynamically consistent models for the description of anisotropic

lastic-plastic effects, see e.g., Dvorak and Bahei-El-Din (1987) ,

ogers (1987) , Spencer (1992) , Voyiadjis and Thiagarajan (1995) ,

oyiadjis and Thiagarajan (1996) , Smith et al. (2015) . The review

rticle of Chaboche (2008) thoroughly treats the formulation and

mplementation aspects of elastoplasticity for metallic-type mate-

ials. However, the treatment of anisotropic plasticity for polymer-

atrix composites is in most cases limited to a purely phenomeno-

ogical approach ( Flatscher et al., 2013; Maimí et al., 2011; Al-Haik

t al., 2004 ), and constitutive modeling using the thermodynam-

cs of irreversible processes has received less attention ( Tsai and

un, 2002; Kontou and Spathis, 2006; Vyas et al., 2011; Vogler

t al., 2013 ). Additionally, none of the aforementioned works for

olymer-matrix composites use functional forms of hardening state

ariables within a thermodynamically consistent formulation. 

Motivated by these aspects, the goal of this paper is to outline

 relatively general, thermodynamically consistent formulation of

nisotropic elastoplasticity, with application to polymer compos-

tes reinforced by unidirectional fibers. Two constitutive models

re formulated based on the following main ideas: 

• The objective of the proposed constitutive models ultimately

is their application to modeling uni-directional plies in multi-

directional laminates. In such materials, plasticity formulations

are primarily needed to accurately predict the constitutive re-

sponse up to initiation of matrix damage, which typically oc-

curs at rather low strains (below 1%). In view of this objec-

tive, the constitutive models are formulated in the framework

of small strains. Even though simulations are performed up to

4% strain, deviations are considered to be acceptable for the

purpose of comparing various modeling techniques ( Hsu et al.,

1999 ). 

• The methodology adopted here is to generate the constitu-

tive functions representing the elastic-plastic response with the

aid of representation theorems. This approach allows for the

formulation of anisotropic constitutive functions in terms of

isotropic counterparts by including structural tensors as addi-

tional arguments ( Boehler, 1979; Liu, 1982; Zheng and Spencer,

1993 ). In this context, a new integrity basis is derived, that

yields a unique representation of the scalar energetic potential,

the stress and the elastic modulus tensor associated with the

potential. 

• A simplifying assumption made at the outset, due to the re-

striction to geometrical linear theory, is that the anisotropy

does not evolve during the plastic deformation. Details related

to the modeling of an evolving anisotropy can be found in

( Miehe, 1998 ). Furthermore, the focus is restricted to trans-

versely isotropic symmetry group which characterizes unidirec-

tional fiber-reinforced composites. 

• The effects associated with the interface between the fibers and

the matrix are not considered, as they are usually observed at

large deformations ( Totry et al., 2008; 2010 ). 

• The formulation of plastic response functions is based on

a physically motivated decomposition of the stress tensor

( Spencer, 1992 ), which ensures a linear elastic fiber response.

Two non-quadratic yield functions with non-linear isotropic

hardening are proposed, with a simple representation in terms

of the invariants of the stress tensor. Non-quadratic yield func-

tions are chosen in order to maintain the same order of the
stress invariants. It should be remarked here that though higher

order yield functions are accurate ( Vogler et al., 2013 ), they re-

quire higher number of coefficients which must be obtained

experimentally ( Cordoso and Adetoro, 2017 ). The main advan-

tage of the proposed yield functions is that they are governed

by only three anisotropic coefficients, and they accurately pre-

dict the trends of experimentally observed behavior when com-

bined with an associated flow rule. An assessment of these

two models reveals that the predictions are more accurate for

lower values of the anisotropic coefficient governing the hydro-

static pressure. Moreover, the conditions for the convexity of

the proposed yield surfaces are simple to derive and impose, as

seen in Appendix A . One of the yield surfaces is conditionally

valid where a certain inequality governs its convexity, while the

other has no such restrictions. 

• Next, the algorithmic treatment of the constitutive models is

presented, where the resulting differential and algebraic equa-

tions of the plastic flow are solved using an implicit time in-

tegration scheme ( Simó and Hughes, 20 0 0 ). This is followed

by a detailed discussion on the methodology designed to cali-

brate constitutive models so that they accurately reproduce the

experimental response. Numerical simulations which serve the

purpose of evaluating the models qualitatively and quantita-

tively are presented at the end. 

. Constitutive framework 

In this section, constitutive equations describing the trans-

ersely isotropic elastic-plastic response are formulated in an in-

ariant setting, using the representation theorems of tensor func-

ions. The constitutive relations derived are based on the following

orm of the Clausius-Planck inequality for isothermal conditions 

 = σ : ˙ ε − ˙ � ≥ 0 (1) 

hich defines the local dissipation D of the model per unit vol-

me as a function of the stress σ , the overall strain ε , and the free

nergy function per unit volume � , see Simó and Hughes (20 0 0 ,

hapter 1, Section 1.3.3, pp. 27) for details. The free energy func-

ion is assumed to be of the form 

= �( ε − ε 

p , α) (2) 

n terms of a suitable set { ε p , α} of internal variables. Here, ε p is

 second-order tensor denoting the plastic strain and α is a phe-

omenological hardening variable that characterizes isotropic hard-

ning. Substituting (2) into (1) and applying Coleman’s exploitation

ethod gives the constitutive law for the stress tensor σ and driv-

ng forces { σp , β} as 

σ = ∂ ( ε −ε p ) �( ε − ε 

p , α) 

p = −∂ ε p �( ε − ε 

p , α) 

β = −∂ α�( ε − ε 

p , α) , (3) 

ee Miehe et al. (2002) for details. As a consequence of the geo-

etrically linear theory, it follows that σ p = σ . Insertion of (3) into

1) gives the reduced dissipation inequality 

 = σ : ˙ ε 

p + β ˙ α ≥ 0 . (4)

he equation above represents the restriction imposed by the sec-

nd axiom of thermodynamics which demands that the dissipation

lways be non-negative. In what follows, explicit forms of the free

nergy function and the yield function are derived with the aid

f representation theorems for the transversely isotropic symme-

ry group. 



86 S.G. Nagaraja, M. Pletz and C. Schuecker / International Journal of Solids and Structures 180–181 (2019) 84–96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

s  

i  

s  

w

 

i

�  

w  

n  

s  

i

2

 

a

S  

w  

s  

s

χ  

T  

d  

S  

t  

S  

a

t  

 

d

s  

 

p  

p  

p  

v

2

 

y  

(

J

J  

s  

i

t  

 

i  

o  

s  

a  

w  

(  

o

2.1. Invariant formulation of transverse isotropy 

Let a be a positively oriented vector denoting the preferred di-

rection, such that the symmetry group can be fully described by

rotations and reflections relative to this vector. The symmetry group

C of the considered transversely isotropic material is identified by

a set of orthogonal transformations Q , i.e. 

C = { Q ‖ a , Q 

π
⊥ a } ⊂ O(3 ) with O(3 ) := { Q | Q 

T Q = 1 & 

det [ Q ] = 1 } , (5)

where Q ‖ a are arbitrary rotations relative to the vector a , Q 

π
⊥ a 

are rotations about a vector perpendicular to a by the angle π ,

O(3 ) is the set of orthogonal transformations and 1 is the second-

order identity tensor. The principle of material symmetry strongly

restricts the free energy function (2) and demands invariance such

that 

�( Q ( ε − ε 

p ) Q 

T 
, α) = �( ε − ε 

p , α) ∀ Q ∈ C , (6)

which indicates � is a transversely isotropic scalar function, see

Lu and Zhang (2005) . In view of a coordinate free formulation, it

has been proven in ( Boehler, 1979 ) that such an anisotropic func-

tion (6) can be expressed as an isotropic function with an extended

set of arguments denoted as structural tensors . Furthermore, it has

been established in ( Boehler, 1979; Zheng and Spencer, 1993 ) that

transverse isotropy is fully characterized by a single second-order

structural tensor m , expressed as 

m := a � a with Q m Q 

T = m ∀ Q ∈ C . (7)

Appealing to the representation theorem for isotropic scalar-

and tensor-valued functions of the arguments ( ε − ε p ) and m , an

irreducible integrity basis for scalar functions of a transversely

isotropic response, consists of the following invariants 

I 1 = tr [ ε − ε 

p ] , I 2 = tr [( ε − ε 

p ) 2 ] , I 3 = tr [( ε − ε 

p ) 3 ] , 

I 4 = tr [ m ( ε − ε 

p )] and I 5 = tr [ m ( ε − ε 

p ) 2 ] (8)

see Zheng (1994) . Based on (8) , a new integrity basis is introduced

that will yield a unique representation of the free energy function,

the stress associated with the free energy function and the elastic

modulus. This basis is constructed by reformulating the isotropic

invariants of the elastic strain ( ε − ε p ) as follows 

tr [ ε − ε 

p ] = tr [ m ( ε − ε 

p )] + tr [( 1 − m )( ε − ε 

p )] and 

1 

2 

tr [( ε − ε 

p ) 2 ] = tr [ m ( ε − ε 

p ) 2 ] + tr [( 
1 

2 

1 − m )( ε − ε 

p ) 2 ] . (9)

Substituting (9) in (8) and replacing tr [( ε − ε p ) 3 ] by det [ ε − ε p ]
using the Cayley–Hamilton’s theorem, the new integrity basis

reads 

˜ I 1 = tr [ m ( ε − ε 

p )] , ˜ I 2 = tr [( 1 − m )( ε − ε 

p )] , 

˜ I 3 = tr [ m ( ε − ε 

p ) 2 ] , 

˜ I 4 = tr 

[ (
1 

2 

1 − m 

)
( ε − ε 

p ) 
2 
] 

and 

˜ I 5 = det [ ε − ε 

p ] (10)

where the first two modes in (10) are normal and the next two

modes are shear. In the remainder of this article, the cubic in-

variants are neglected as they are most suitable for modeling the

plastic response of metallic-type materials. The scalar free energy

function can now be constructed by taking combinations of the in-

variants defined above and assuming appropriate hardening rules. 

2.2. Elastic response functions 

A quadratic free energy function � can be written with the aid

of (10) as 

� = 

μ1 ˜ I 2 1 + 

μ2 ˜ I 2 2 + μ3 ̃
 I 1 ̃  I 2 + 2 μ4 ̃

 I 3 + 2 μ5 ̃
 I 4 + �(α) (11)
2 2 
here μ1 −5 are five independent Lamé parameters required to de-

cribe the transversely isotropic response. A prescription for the

dentification of Lamé parameters in terms of engineering con-

tants suggested in ( Schröder et al., 2002 ) has been used in this

ork. 

Power law based isotropic hardening is incorporated by defin-

ng the function �( α) as 

(α) = 

h 

n + 1 

( ̄α + α) n +1 (12)

here h is the hardening modulus, n > 0 is the hardening expo-

ent, and ᾱ is a parameter describing prestrain, which is neces-

ary for numerical reasons and is set to a very low value such that

t has negligible effect on the results. 

.3. Plastic response functions 

As a main characteristic of the elastic-plastic material response,

n elastic domain S is assumed, defined by 

 = { ( σ, β) ∈ R 

6 × R | χ( σ, m , β) ≤ 0 } , (13)

here χ = χ( σ, m , β) is the yield function in the admissible stress

pace. The yield function can also be expressed as an isotropic

calar function such that 

( Q σQ 

T 
, Q m Q 

T 
, β) = χ( σ, m , β) ∀ Q ∈ O(3 ) . (14)

he two yield functions formulated subsequently, are based on the

efinition of a plasticity inducing stress s , originally introduced by

pencer (1992) in the context of formulating plastic response func-

ions for unidirectional fiber-reinforced composites. According to

pencer (1992) , the second-order tensor s is required to be devi-

toric and stress free in the fiber direction such that 

r [ s ] = 0 and tr [ m s ] = 0 . (15)

These two conditions allow for the definition of s , for a given fiber

irection m , as 

 = σ − 1 

3 

tr [ σ] 1 − 3 

2 

tr [ m 

′ σ] m 

′ with m 

′ = m − 1 

3 

1 , (16)

see also Lu and Zhang (2005) . With the preceding definitions in

lace, two pressure-dependent, threshold-type yield functions are

roposed that are suitable for unidirectional fiber-reinforced com-

osites. The underlying difference is the condition for their con-

exity which is elaborated subsequently. 

.3.1. Model-I 

Analogous to (8) , the integrity basis for the formulation of the

ield function χ in terms of argument tensors s and m , taking

15) into account, consists of the invariants 

 1 = tr [ σ] , J 2 = tr [ s 2 ] , J 3 = tr [ s 3 ] , J 4 = tr [ m σ] and 

 5 = tr [ m s 2 ] (17)

ee also Spencer (1992) . In line with (9) , the linear and quadratic

sotropic invariants in (17) can be reformulated as 

tr [ σ] = tr [ m σ] + tr [( 1 − m ) σ] and 

r [ s 2 ] = tr [ m s 2 + s 2 m ] + tr [ s 2 − ( m s 2 + s 2 m )] . (18)

It should be noted that the reformulation of quadratic invariants

n (18) 2 is slightly different from that in (9) 2 . This particular form

f quadratic invariants has been chosen because the plastic re-

ponse functions formulated subsequently using these invariants,

re found to capture the observed experimental behavior quite

ell, as seen in the later part of this paper. Substituting (18) into

17) and replacing tr [ s 3 ] by det [ s ] using the Cayley–Hamilton’s the-

rem, the new integrity basis reads 
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˜ 
 1 = tr [( 1 − m ) σ] , ˜ J 2 = tr [ m s 2 + s 2 m ] , ˜ J 3 = tr [ s 2 −( m s 2 + s 2 m )] ,

˜ 
 4 = tr [ m σ] and 

˜ J 5 = det [ s ] . (19)

The linear invariants ˜ J 1 and 

˜ J 4 characterize the two normal modes,

amely the hydrostatic pressure in transverse and fiber direction,

espectively, and the quadratic invariants ˜ J 2 and 

˜ J 3 characterize the

wo shear modes, denoting the in-plane and transverse shear, re-

pectively. An advantage of using the plasticity inducing stress ten-

or s for the definition of quadratic invariants in (17) is the result-

ng decoupled representation of the shear stress as defined above.

s a consequence, parameter identification is significantly simpli-

ed. With the basis (19) at hand, the plastic response function can

e defined analogous to the elastic response function (11) , how-

ver, the following aspects help towards the precise development

f the yield function, in the context of modeling the inelastic re-

ponse of polymeric composites: 

1. For polymeric composites, the plastic response is independent

of stress in the fiber direction ( Vogler et al., 2013 ). 

2. The plastic response function should be pressure-dependent as

the yield behavior of polymers is significantly affected by the

hydrostatic pressure ( Colak, 2005 ). 

3. Plastic yielding should be governed by limited number of coef-

ficients. 

Taking into to account these aspects, the yield function for

odel-I, which can be regarded as an analogue of the classical

sotropic Drucker–Prager pressure-dependent yield function, is pro-

osed as 

= η1 ̃
 J 1 + 

[ 
η2 ̃

 J 2 + η3 ̃
 J 3 

] 1 / 2 
−

(
1 − β

y 12 

)
≤ 0 (20) 

here η1 −3 are material parameters governing the transversely

sotropic plastic yielding. These parameters are related to the

ompressive yield stress y 22 c , in-plane shear yield stress y 12 and

ransverse shear yield stress y 23 respectively. They are deter-

ined by the evaluation of the yield function (20) for one com-

ression and two shear modes, with a = [1 , 0 , 0] T and β = 0

chröder et al. (2002) , as 

1 = 

1 

2 y 23 

− 1 

y 22 c 

, η2 = 

1 

2 y 2 
12 

and η3 = 

1 

2 y 2 
23 

. (21)

onvexity of the yield function is a necessary requirement

or minimization problems in order to have a unique solution

 Drucker, 1964 ). It ensures the dissipation to remain positive for

ll admissible thermodynamic processes, which is the central idea

f the second axiom of thermodynamics. For the particular model

t hand, the inequality η3 ≥η2 , i.e. y 12 ≥ y 23 must be true for the

ield surface (20) to be convex (see Appendix A for proof). This

estriction serves as a motivation for the subsequent Model-II. 

.3.2. Model-II 

In order to overcome the restriction imposed by the convexity

ondition of the Model-I, use is made of the Euclidean norm in the

ontext of defining the second yield function. To this end, a further

ecomposition of the plasticity inducing stress tensor s into two

istinct shear terms denoting the in-plane and transverse stresses

s considered such that 

 2 = m s + s m and s 3 = s − ( m s + s m ) . (22)

see also Lu and Zhang (2005) . The decomposition above is an ex-

ension of the additive stress split introduced in ( Spencer, 1992 ),

nd facilitates a unique way to the formulation of the yield func-

ion. 

Let p denote the hydrostatic pressure such that 

p = tr [( 1 − m ) σ] . (23)
ppealing to (22) and (23) , a Drucker–Prager-type pressure-

ependent yield function is proposed in the stress space as 

= η1 p + 

[ 
η2 ‖ 

s 2 ‖ 

2 + η3 ‖ 

s 3 ‖ 

2 
] 1 / 2 

−
(

1 − β

y 12 

)
≤ 0 (24)

where ‖ · ‖ denotes the Euclidean norm of a second-order tensor,

ee also Papadopoulos and Lu (2001) . Analogous to Model-I, the

ield surface parameters are evaluated to be 

1 = 

1 √ 

2 y 23 

− 1 

y 22 c 

, η2 = 

1 

y 2 
12 

and η3 = 

1 

y 2 
23 

. (25)

aking into account the fact that the Hessian of the squared Eu-

lidean norm is the identity matrix, which is positive definite, the

equirement for convexity of the yield function (24) is given by

2 > 0 and η3 > 0 (cf. to Naghdi-Trapp inequality Naghdi and Trapp,

975; Casey, 1984 ), which is generally fulfilled by (25) . 

.3.3. Evolution of internal variables 

Taking into account (11) and (20) / (24) , the generalized normal-

ty rules ( Lubliner, 1997; Aldakheel and Miehe, 2017 ) which define

he evolution equations for the plastic variables take the form 

˙ 
 

p = λ∂ σχ and ˙ α = λ∂ βχ (26) 

hich are supplemented by plastic loading-unloading conditions 

≥ 0 , χ ≤ 0 and λχ = 0 . (27)

ere, λ is the plastic multiplier determined by the consistency

ondition ˙ χ = 0 . Evolution laws of type (26) are referred to as as-

ociated flow rules and are characterized by the fact that the rates

f the internal variables are normal to the yield surface ( χ = 0 ). 

In situations where the canonical normal directions of the evo-

ution equations (26) do not characterize the real material re-

ponse, i.e. non-associative flow, the constitutive response is modi-

ed by introducing an additional constitutive function 
, referred

o in what follows as the plastic flow potential. It is assumed to

epend on the same variables as the yield function (20) / (24) such

hat 

= 
( σ, m , β) (28)

ased on which the evolution equations for the plastic variables

ake the form 

˙ 
 

p = λ∂ σ
 and ˙ α = λ∂ β
. (29)

ote that (29) replaces the normality rules in (26) , though the

lastic loading conditions remain unchanged. In the present work,

 plastic flow potential of the form 

= χ | η
1 
=0 (30) 

s considered, such that (29) is independent of the hydrostatic

ressure and fiber stress. 

It should be emphasized here that the proposed plastic re-

ponse functions (20) and (30) in the present work differs from

hat in ( Vogler et al., 2013 ) in two aspects. Firstly, the number

f anisotropic coefficients governing the yield function in (20) is

ignificantly less. Secondly, the evolution of hardening variable in

he present work is formally derived by invoking and relaxing

he principle of maximum dissipation, with respect to the asso-

iative and non-associative plasticity, respectively, and assumed

o be ˙ α = 

√ 

1 
2 

∥∥ ˙ ε p 
∥∥ in ( Vogler et al., 2013 ). Furthermore, to the

nowledge of the authors, the use of the pressure-dependent,

ransversely isotropic yield function (24) , in combination with a

ressure-independent plastic flow potential (30) to constitutively

rame the model within non-associative plasticity is novel, and has

een pointed out here for the first time, with application to poly-

eric composites. 
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Remark 1. Normally, the plastic flow potential should be deter-

mined based on the experimental observations, where the direc-

tion of the plastic flow shows significant deviations from the di-

rection of the normal to the yield surface ( Dvorak et al., 1988 ).

This non-associativity of plastic strains has been investigated in

( Voyiadjis and Thiagarajan, 1995 ), with emphasis on metal-matrix

composites. However, due to the lack of experimental data for

polymer-matrix composites, a plastic flow potential of the form

(30) is considered, following conceptually ( Hsu et al., 1999; Mosler

and Bruhns, 2009 ). 

3. Algorithmic implementation 

In this section, aspects of the algorithmic implementation of the

proposed plasticity models are discussed. In particular, the focus is

on the numerical integration of the set of constitutive equations

developed in Section 2 . The algorithmic treatment is in the spirit

of predictor-corrector method, widely used for implicit simulations.

A detailed discussion of the relevant literature is provided in the

monograph of Simó and Hughes (20 0 0) . 

At first, the evolution laws are approximated by a backward Eu-

ler time integration scheme in a finite time step [ t n +1 , t n ] , with

�t := t n +1 − t n . To have a compact notation, all variables with-

out a subscript are meant to be evaluated at time t n +1 . Thus,

Eqs. (26) and (29) are integrated as 

ε 

p = ε 

p 
n + γ ∂ σχ

α = αn + γ ∂ βχ

}
and 

ε 

p = ε 

p 
n + γ ∂ σ


α = αn + γ ∂ β


}
(31)

with γ = �tλ denoting the plastic increment. With (31) , it follows

from (3) , and the consistency condition χ = 0 , that the related sys-

tem of equations can be grouped into a residual vector R 

R R as 

 

 R = 

[ 

R 

R R σ

R β

R χ

] 

= 

[ 

σ − ∂ ( ε −ε p ) �
β + ∂ α�

χ

] 

= 0 . (32)

For a general non-linear case, (32) needs to be approached us-

ing an iterative technique such as Newton-Raphson method, see

also Ma et al. (2018) . If the unknowns are stored in a vector

 

 P = { σ, β, γ } , then the linearization of R 

R R around the point P 

P P 

i ,

and the update algorithm is given by 

Lin 

[
R 

R R 

]
= R 

R R + [ ∂ P 

P P 

R 

R R ] 
P 

P P 

i 
· [ P 

P P 

i +1 − P 

P P 

i ] = 0 

�⇒ P 

P P 

i +1 = P 

P P 

i −
[
∂ P 

P P 

R 

R R 

]−1 
R 

R R , (33)

where i denotes the local iteration index. In (33) , the explicit form

of the necessary iteration tangent ∂ P 

P P 

R 

R R is given by 

∂ P 

P P 

R 

R R = 

⎡ 

⎣ 

I + γE : ∂ 2 σσχ γE : ∂ 2 σβχ E : ∂ σχ

γ H∂ 2 βσχ 1 + γ H∂ 2 ββχ H∂ βχ

∂ σχ ∂ βχ ∂ γ χ

⎤ 

⎦ , (34)

for the associative flow response and 

∂ P 

P P 

R 

R R = 

⎡ 

⎣ 

I + γE : ∂ 2 σσ
 γE : ∂ 2 σβ
 E : ∂ σ


γ H∂ 2 βσ
 1 + γ H∂ 2 ββ
 H∂ β


∂ σχ ∂ βχ ∂ γ χ

⎤ 

⎦ , (35)

for the non-associative flow response, along with the definitions

I = δik δ jl , E = ∂ 2 ( ε −ε p )( ε −ε p ) � and H = ∂ 2 αα�. (36)

The converged solution of the Newton’s method (33) yields the

consistent update of the vector P 

P P = { σ, β, γ } , which, upon inser-

tion into (31) , yields the consistent update of the set { ε p , α} of

internal variables. The only quantity to be determined is the algo-

rithmic elastic-plastic tangent modulus consistent with Newton’s
ethod. This can be obtained by taking the variation of the resid-

al equations with respect to the strain. A direct calculation from

33) shows that 

 

σ i +1 − σ i 

β i +1 − β i 

γ i +1 − γ i 

] 

= −
[ 

A 

A A σσ A 

A A σβ A 

A A σχ

A 

A A βσ A 

A A ββ A 

A A βχ

A 

A A χσ A 

A A χβ A 

A A χχ

] [ 

R 

R R σ

R β

R χ

] 

, (37)

where A 

A A σσ , A 

A A σβ , A 

A A σχ , · · · , are the sub-matrices of A 

A A =
∂ P 

P P 

R 

R R 

]−1 
. The desired consistent tangent operator is obtained by

 straightforward derivation of the first row of (37) with respect to

 , taking into account (32) , as 

 

ep := ∂ ε σ = ∂ ε ( σ
i +1 − σ i ) = A 

A A σσ : E . (38)

It is noted from Eqs. (31) –(38) that, owing to the constitutive as-

umptions, the consistent elastic-plastic tangent modulus E 

ep is

 fourth-order tensor that is symmetric for the associative and

on-symmetric for the non-associative flow response, respectively

 Miehe, 1998 ). 

Based on (11), (20) / (24) and (30) , constitutive models are im-

lemented as user subroutines (UMAT) in ( Abaqus, 2013 ) in three

ifferent versions for Model-I and Model-II, respectively, as 

• Model-I-a/-II-a: pressure-independent model ( (11) and

[ (20) / (24) ] | η
1 
=0 ). 

• Model-I-b/-II-b: associative pressure-dependent model ( (11)

and (20) / (24) ). 

• Model-I-c/-II-c: non-associative pressure-dependent model

( (11), (20) / (24) and (30) ). 

. Finite element modeling and parameter calibration 

The reliability of material models for a non-linear inelastic sim-

lation not only depends on the underlying physical assumptions

nd accuracy of the numerical solution, but also significantly de-

ends on the accurate deduction of the material parameters from

he experimental data. This scenario, referred to as the inverse

roblem of parameter identification , involves the search of optimal

arameters for a given material model, boundary conditions, the

esulting simulated material response and the available experimen-

al data. Mathematically, the parameter identification problem rep-

esents a non-linear optimization problem subject to inequality con-

traints, where the constraints are due to the physical restrictions

n the values that the material parameters may attain. The solu-

ion of this problem relies on methods of non-linear optimization

escribed in the literature ( Press et al., 1992; Yun and Shang, 2011;

i et al., 2016 ). 

In this section, aspects of finite element implementation and

he parameter calibration procedure for the homogenized mod-

ls developed in Section 2 , are described in detail. While the

lastic parameters are taken directly from Vogler and Kyri-

kides (1999) and Hsu et al. (1999) , the parameters describing the

lastic response, i.e. y 12 , y 23 , y 22 c , h and n in (11) and (20) / (24) ,

re calibrated by an optimization procedure. To this end, param-

ters y 12 , h and n are calibrated from the non-linear in-plane

hear stress-strain curve, y 23 is calibrated from the transverse

hear stress-strain curve and y 22 c is calibrated from the transverse

ompression data. The experimental data for the present study is

aken from Vogler and Kyriakides (1999) and Hsu et al. (1999) ,

hich provides the in-plane shear stress curve ( Fig. 3 (a) from

su et al. (1999) ) and the transverse compression curve ( Fig. 4 (b)

t ˙ ε 0 = 1 . 5 × 10 −4 from Hsu et al. (1999) ). Due to the lack of exper-

mental data for the transverse shear (23-) response, micromechan-

cal models are used to generate missing data from the procedure

escribed next. 
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Fig. 1. Finite element models. Geometrical setup of the unit cell (UCA). 
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Table 1 

Material parameters for the micromechanical models. 

No. Name Par. Value Unit 

DIG/UCA 

Fiber 

1. Longitudinal young’s modulus E 1 f 214,000 [MPa] 

2. Transverse young’s modulus E 2 f 26,000 [MPa] 

3. Longitudinal shear modulus G 12 f 112,000 [MPa] 

4. Transverse shear modulus G 23 f 8996.3 [MPa] 

5. Poisson’s ratio ν12 f 0.28 [-] 

Matrix 

6. Young’s modulus E m 4100 [MPa] 

7. Poisson’s ratio νm 0.356 [-] 

8. Initial yield stress A 13.05/12.99 [MPa] 

9. Hardening modulus B 187/220.05 [MPa] 

10. Hardening exponent n 0.269/0.228 [-] 
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.1. Finite element models 

For the parameter calibration and verification of the material

odels, finite element models are analyzed with ABAQUS. In ad-

ition to the homogenized models, two types of micromechanical

odels are used in the present study, a unit cell analysis (UCA)

ith hexagonal arrangement, see Fig. 1 (with hexagonal arrange-

ent being used rather than a square arrangement since it is a

etter representation of reality according to Hsu et al. (1999) ),

nd an incremental Mori-Tanaka approach using DIGIMAT (DIG)

 DIGIMAT, 2018 ). For a detailed discussion on the incremental

ori-Tanaka approach cf. to Pettermann et al. (1993) , Doghri and

uaar (2003) , Doghri et al. (2010) . For both micromechanical

odels, fibers are assumed to be linear elastic and transversely

sotropic with a fiber volume fraction of 60%. The matrix is

ssumed to be an isotropic elastic-plastic solid with rate and

ressure-independent plasticity using power law hardening. Due to

vailability in the software packages, slightly different formulations

re used; a standard J 2 -plasticity in the case of the DIGIMAT model

 DIGIMAT, 2018 ) and the Johnson-Cook material model provided by

BAQUS for the UCA ( Abaqus, 2013 ). Johnson-Cook hardening is a

articular type of isotropic hardening where the yield stress σ y is

f the form 

y = A + B ( ̄ε pl ) n (39)

here ε̄ pl is the equivalent plastic strain, and A, B and n are the

lastic material parameters. The elastic properties of fibers and

he matrix are given in ( Hsu et al., 1999 ) and stated in Table 1 ,

hereas the plastic parameters are calibrated from the experimen-

al data based on the τ12 − γ12 curve using the calibration proce-

ure defined below. 

All the finite element models use periodic boundary condi-

ions and are discretized using hexahedral 3D continuum elements

C3D8) with linear interpolation. For the UCA, the unit cell is dis-

retized into 122 C3D8 elements. A convergence study of UCA

howed no change of the overall stress-strain response with higher

esh refinement. For the simulations of the DIG and the homoge-

ized models, a single C3D8 element is used. 

.2. Calibration procedure 

The plastic parameters of all models are obtained with the

ame general procedure, where parameters are calculated by a
east squares minimization of the function 

f ( x ) = 

1 

k 

n ∑ 

k =1 

∥∥∥δ̄k − δk ( x ) 

∥∥∥ → min . (40)

ere, δ̄k and δk ( x ) represent target and computed values respec-

ively and k = 1 , · · ·, n are the identification points at which target

nd computed values are to be compared. x is an array of fitting

arameters, i.e. x = { A, B, n } for micromechanical models calibra-

ion, x = { y 12 , h, n } and x = { y 23 } for Model-I-a/-II-a calibration and

 = { y 22 c } for Model-I-b/-II-b as well as Model-I-c/-II-c calibration.

 simplex Nelder–Mead algorithm ( Press et al., 1992; Mahnken

t al., 2009 ) is used for the minimization of Eq. (40) . 

For the micromechanical models, only the in-plane shear curve

s needed to calibrate the parameters for matrix plasticity A, B

nd n (since pressure dependency is not considered in these mod-

ls). With the calibrated micromechanical models, σ22 − ε 22 and

23 − γ23 responses can be computed. It should be noted, that

n the micro level under 23-shear loading, only phase averaged

tresses show zero hydrostatic pressure. Due to stress concentra-

ions in the matrix, the UCA model locally shows a hydrostatic

omponent which may affect the overall plasticity response. It

as been found that this effect is rather low compared to varia-

ions caused by e.g. fiber arrangement and is therefore neglected.

he transverse compression curve, which also does not include

ressure sensitivity of the matrix is not used for calibration but

nstead is used as an additional verification of the meso-scopic

ressure-independent models, Model-I-a and Model-II-a. By con-

idering pressure-independent models under transverse compres-

ion it is possible to distinguish between effects of anisotropic-

ty (due to the micro structure) and pressure dependency of the

atrix - a distinction that can not be inferred from experimental

ata. Similarly, to calibrate the plastic parameters of the homoge-

ized models, the calibration procedure is first used to obtain y 12 ,

 and n of Model-I-a/-II-a by fitting to the experimental data of

he in-plane shear response. Keeping these parameters fixed, y 23 

alues for Model-I-a and Model-II-a are obtained from the curves

f the calibrated micromechanical models. Finally, y 22 c values for

he pressure-dependent models Model-I-b/-II-b and Model-I-c/-II-

 are obtained from the experimental σ22 − ε 22 curve. The cali-

rated plastic parameters for all the models are summarized in

ables 1 and 2 . 

.3. Calibration results 

Results of the calibration comparing the experimental data and

arious models for the three calibration load cases are shown in

ig. 2 . It is evident that all the constitutive models can be fit-
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Table 2 

Material parameters for the homogenized models. 

Fig. 2. Calibration results. Comparison of experimental, micromechanical and homogenized models responses for (a) in-plane shear, (b) transverse shear and (c) transverse 

compression load. 
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ted to the experimental shear ( τ12 − γ12 ) curve very well using

the power law. Further, the numerical results in Fig. 2 (a) and (b)

show that the transverse shear response is stiffer than the in-

plane shear response for UCA, whereas the transverse shear re-

sponse is softer than the in-plane shear response for DIG. The

main reason for the difference between the two predictions is
the fact that mean field methods such as the incremental Mori- r  
anaka approach used by DIG are based on analytical solution of

hase averaged stresses that do not take stress concentrations and

etails of the fiber arrangement into account. As a result, such

ncremental Mori-Tanaka schemes are less accurate than discrete

nit-cell predictions. As mentioned in Section 2.3.1 and given by

q. (A.9) of Appendix A , this readily implies that the convexity

equirement for Model-I is not fulfilled for calibration to UCA.
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ence, Model-I is calibrated to DIG and Model-II is calibrated

o UCA. Note that calibrating y 23 for Model-II to DIG would be

dmissible as well, however this comparison does not yield any

dditional qualitative insights and is therefore not discussed fur-

her in this work. 

Fig. 2 (c) shows the comparison of micromechanical and ho-

ogenized models to the experimental response for a transverse

ompression load. It can be seen that the compressive response of

odel-I-a fits the DIG model very well whereas Model-II-a is sig-

ificantly less stiff than UCA in the non-linear compression regime.

s stated and computationally verified in ( Hsu et al., 1999 ), this

ehavior can be corrected by taking into account the influence of

ydrostatic pressure in the formulation of plastic response func-

ions. Therefore, Model-I-b/-II-b and Model-I-c/-II-c are used to

apture the experimental transverse compression ( σ22 − ε 22 ) data

y calibrating y 22 c . The resulting good agreement between the ex-

erimental data and Model-I-c is shown in Fig. 2 (c). Analogously,

odel-I-b/-II-b and Model-II-c can be calibrated for y 22 c to give

asically the same compressive response as Model-I-c. It should

e noted, however, that in order to fit the compression test curve,

odel-II requires more pressure sensitivity than Model-I. Further-

ore, y 22 c values also differ slightly between associative (b) and

on-associative (c) models. 

. Models evaluation 

The constitutive homogenized models defined and calibrated

n Sections 2 –4 are first verified for the correctness of the im-

lementation. Next, the predictions of the calibrated homoge-

ized models are compared to those of the micromechanical mod-

ls and experiments for a range of bi-axial load cases given in
ig. 3. Effect of pressure dependency . Stress-strain curves of a single element test for

odel-I and Model-II, respectively. 
 Vogler and Kyriakides, 1999 ). The material parameters used for

he simulations are given in Tables 1 and 2 . 

.1. Effect of pressure dependency 

To demonstrate the effect of hydrostatic pressure, the six con-

titutive models summarized in Section 3 are subjected to two test

ases. Note that for comparison purposes, in this section, the same

ransverse compressive yield stresses are used for associative and

on-associative pressure-dependent models, i.e. y 22 c = 50 . 32 MPa

or Model-I-b/-I-c and y 22 c = 27 . 97 MPa for Model-II-b/-II-c, such

hat differences in the predicted response can be purely attributed

o differences in the model formulations. 

The first test case is a uni-axial transverse tension and com- 

ression test up to a strain magnitude of ε 22 = ±4% , the results of

hich are shown in Fig. 3 (a) for Model-I and Fig. 3 (c) for Model-

I. As expected, the pressure-independent model behaves symmet-

ically in the tension and compression regime. In contrast, the

wo pressure-dependent models exhibit the well-known tension-

ompression asymmetry where the difference between the yield

imits in the tension and the compression load is observed. Also,

he tensile response is softer than the compressive response. 

As a second example, a combined compression-shear test

s analyzed where a full shear loading cycle is superimposed

y additional transverse strain such that pressure dependency

eads to a distinction between the different model versions. To

his end, a compressive strain of magnitude ε 22 = −1 . 5% is first

pplied. While ε22 is kept fixed, the specimen is sheared up to

 shear strain of γ12 = +4% , then unloaded and reloaded in the

pposite direction up to γ12 = −4% , and finally again reloaded to

12 = +4% . The computed results for one shear cycle are shown
 (a), (c) transverse load and (b), (d) in-plane shear with pre-compression load of 
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Table 3 

Summary of the radial load paths. 

Fig. 4. Quantitative evaluation. Comparison of (a), (b) DIG and Model-I-a; (c), (d) experimental and Model-I-b and (e), (f) experimental and Model-I-c responses for various 

proportionality factors of the radial load case. 
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n Fig. 3 (b) for Model-I and Fig. 3 (d) for Model-II. The figures

icely show the effect of the isotropic hardening formulation.

urthermore, it can be observed that the pressure-independent

odels show the highest amount of plasticity leading to a slightly

ower tangent stiffness during plastic deformation than the other

odels. During unloading, the elastic stiffness is recovered until

he yielding is again reached, followed by further plastic deforma-

ion with the same tangent stiffness at the beginning. Since the

ardening parameters are identical for the pressure-independent

nd the pressure-dependent models, it is expected that the pre-

icted response of the non-associative pressure-dependent model

s bounded by the pressure-independent model and the associative

ressure-dependent model. The numerical results in Fig. 3 (a)–(d)

F  

ig. 5. Quantitative evaluation. Comparison of (a), (b) UCA and Model-II-a; (c), (d) ex

arious proportionality factors of the radial load case. 
re in agreement with this prediction. These results are similar to

he observations of Mosler and Bruhns (2009) in their work on

nite strain plasticity. 

.2. Quantitative evaluation of plasticity models. 

The predictions of Model-I and Model-II are now compared to

hose of DIG and UCA as well as experimental results from the lit-

rature ( Vogler and Kyriakides, 1999 ) for a set of load paths with

roportional increase of compressive and shear stresses. Four dif-

erent proportionality factors, λ = −σ f 
22 

/τ f 
12 

, given in ( Vogler and

yriakides, 1999 ), are considered which are summarized in Table 3 .

or the numerical investigations, simulations are loaded up to fi-
perimental and Model-II-b and (e), (f) experimental and Model-II-c responses for 
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nal stress values from the experiments (also listed in Table 3 ).

Plots depicting Model-I and Model-II predictions are shown in

Figs. 4 and 5 , respectively. Figs. 4 (a) & (b) and 5 (a) & (b) compare

micromechanical and pressure-independent homogenized models,

i.e. DIG vs. Model-I-a and UCA vs. Model-II-a (see in this con-

text Section 4.3 ). The response predicted by Model-I-a is in very

good agreement with that of DIG, whereas Model-II-a shows a

softer response than UCA for higher proportionality factors λ, sim-

ilar to what is observed in calibration (see Fig. 2 ). Figs. 4 (c)–(f)

and 5 (c)–(f) show the comparison of pressure-dependent models

to the experimental response from Vogler and Kyriakides (1999) ,

Hsu et al. (1999) . The assessment of pressure dependency can

best be observed in Figs. 4 (c) & (e) and 5 (c) & (e). In con-

trast to pressure-independent models ( Figs. 4 (a) and 5 (a)), where

curves shift down with increasing λ, the experimental results

show that the stress-strain response first shifts up (from to 13 ©)

before shifting down again. This general behavior is captured

by Model-I-b/-II-b and Model-I-c/-II-c, which shows that pres-

sure dependency is needed in order to recover the behavior ob-

served experimentally. The shear response of the load path 10 ©
is captured quite well by all models. Predictions for the load

path 13 © shows that there is slightly too much pressure sensi-

tivity in all models with best fit for Model-I-b and worst fit

Model-II-c. 

It is interesting to note that the micro-model proposed by

Hsu et al. (1999) captures this influence of additional transverse

compression on the in-plane shear response (i.e. the upward shift-

ing from curve to 13 ©) without the need of pressure dependency

(see Fig. 9 in ( Hsu et al., 1999 )). This is also the reason why adding

pressure sensitivity in the Hsu-model leads to an overly stiff shear

response for biaxial load cases (i.e. curves 10 © – 13 ©, see Fig. 12 in

( Hsu et al., 1999 )), while in our models, adding pressure depen-

dency improves correlation for both in-plane shear and transverse

compressive behavior under biaxial loads. 

The assessment of plastic flow direction is apparent in strain

plots γ 12 vs. - ε22 of Figs. 4 and 5 . Model-I-a agrees fairly well

with DIG, whereas with Model-II-a, almost a linear relation be-

tween the shear and compressive behavior is seen. Furthermore,

the associative pressure-dependent model seems to work better

than the non-associative counterpart. An argument in ( Hsu et al.,

1999 ) suggests that the non-associative model is better than the

associative model because of change in the curvature for non-

radial loads, a behavior also observed in our case but only for

a very low amount of preload. The direction of plastic flow

is generally captured better by the micro-models proposed by

Hsu et al. (1999) (especially Model I). In our meso-models, this

depends on the slope of pressure dependency, which should be

rather low based on the experimental shear response of the load

paths and 13 ©, wherefore, the associative pressure-dependent model

reproduces the experimentally observed behavior more accurately

for the test data considered. Plastic dilation can be observed in

polymers due to crazing ( Chen et al., 2016; Zaïri et al., 2008 ), how-

ever, it is unknown if crazing was observed in the tests considered

here. 

6. Conclusions 

This articles develops two new relatively general mesomodels

for the nonlinear, elastic-plastic response of polymer composites

reinforced by UD fibers. Two forms of plastic response functions

(Model-I and Model-II) formulated in terms of a plasticity inducing

stress tensor, are proposed. From a theoretical standpoint, Model-I

cannot be used in situations where the transverse shear response

is stiffer than the in-plane shear response, as per the convexity

requirement. This constraint is not applicable to Model-II. From a

computational standpoint, the use of plasticity inducing stress in
he formulation of plastic response functions results in the decou-

led representation of the shear terms thus simplifying the prob-

em of parameter identification. 

All the constitutive models are first calibrated to reproduce

he experimental pure shear response. The pressure-independent

odels capture the experimental shear response quite well, how-

ver, the compressive response predicted is observably less stiff.

he associative and the non-associative versions of the pressure-

ependent models calibrated in a similar manner are found to

vercome this deficiency, as suggested and computationally veri-

ed in ( Hsu et al., 1999 ). 

The calibrated homogenized models are evaluated in detail

y comparison to micromechanics simulations and experimental

ata for a range of bi-axial loads. Overall, the constitutive models

erform well in predicting the trends of the observed behavior.

hough the pressure-dependent models predict the compressive

esponse accurately, the shear response in presence of com-

ression is slightly overpredicted for some load paths, mostly

y the non-associative pressure-dependent models. Also, in the

on-associative case, there is an observable deviation between the

i-axial experimental response and the model predicitions. This

an purely be attributed to the respective models formulation,

here it has been assumed that the plastic flow is deviatoric and

tress free in the fiber direction. In view of these characteristics,

t is currently being investigated if dilatancy is observed during

he plastic deformation, i.e. the plastic flow potential is formu-

ated such that it is pressure dependent but stress free in the

ber direction. To the authors knowledge, this modification gives

etter results than the presented non-associative models. Further

ssues regarding the elastic-plastic behavior of composite materials

uch as the effect of fibers on plasticity for a combination of

hear/compressive load with tension/compression in the fiber

irection, kinematic hardening effects and rate-dependent plastic

ehavior are also being pursued. 
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ppendix A. Convexity of the yield surface: Model-I 

In this appendix, the proof of convexity of the yield surface for

odel-I is shown. For the particular model at hand, recall the yield

unction 

= η1 ̃
 J 1 + 

[ 
η2 ̃

 J 2 + η3 ̃
 J 3 

] 1 / 2 
−

(
1 − β

y 12 

)
≤ 0 . (A.1)

athematically, the convexity of the yield surface χ is demon-

trated if it can be shown that the Hessian matrix Z of this func-

ion is positive semi-definite, i.e. its eigenvalues are all positive or

ero, see Voyiadjis and Thiagarajan (1995) . The Hessian matrix for

he function (A.1) is defined as, 

 = ∂ 2 σσχ = 

η3 P + (η2 − η3 ) P a [ 
η2 ̃

 J 2 + η3 ̃
 J 3 

] 1 / 2 

−η2 
3 J + η3 (η2 − η3 ) { K + L } + (η2 − η3 ) 

2 M [ 
η2 ̃

 J 2 + η3 ̃
 J 3 

] 3 / 2 (A.2)
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long with the definitions 

P = I − 1 

3 

( 1 � 1 ) − 3 

2 

( m 

′ 
� m 

′ ) 
 a = m P + P m 

J = s � s 

K = s � { m s + s m } 
L = { m s + s m } � s 

M = { m s + s m } � { m s + s m } , (A.3) 

here s is the second-order plasticity inducing stress tensor de-

ned in (16) . Furthermore, the set of eigenvalues of (A.2) in terms

f the stress components are given by 

Z = 

{
0 , 0 , 0 , 

η2 √ 

2 
√ 

4 η2 (σ 2 
12 

+ σ 2 
13 

) + 4 η3 σ 2 
23 

+ η3 (σ22 − σ33 ) 2 
, 

4 η2 η3 (3 σ 2 
12 + 3 σ 2 

13 + σ 2 
23 ) + η3 (η2 + η3 )(σ22 − σ33 ) 

2 + 8 η2 
3 σ

2 
23 − � 

2 
√ 

2 

(√ 

4 η2 (σ 2 
12 

+ σ 2 
13 

) + 4 η3 σ 2 
23 

+ η3 (σ22 − σ33 ) 2 
)3 

, 

4 η2 η3 (3 σ 2 
12 + 3 σ 2 

13 + σ 2 
23 ) + η3 (η2 + η3 )(σ22 − σ33 ) 

2 + 8 η2 
3 σ

2 
23 + � 

2 
√ 

2 

(√ 

4 η2 (σ 2 
12 

+ σ 2 
13 

) + 4 η3 σ 2 
23 

+ η3 (σ22 − σ33 ) 2 
)3 

} , 

(A.4) 

ith 

 = 

{ [
4 η2 η3 (σ

2 
12 + σ 2 

13 − σ 2 
23 ) 

+ η3 (η2 − η3 ) (σ22 − σ33 ) 
2 + 8 η2 

3 σ
2 
23 

]2 

+ 16 η2 
3 σ

2 
23 (σ22 − σ33 ) 

2 
[
2 η2 

3 − 3 η2 η3 + η2 
2 

]} 

1 / 2 . (A.5) 

he only condition that is mathematically imposed on η2 and η3 

s that they both must be greater than zero, since they are magni-

udes of yield strengths. This condition is also physically satisfied

n their computation, as seen in (21) . Therefore, without any re-

trictions, it can be assumed that η2,3 > 0. From (A.4) it is directly

een that λZ (1) , λZ (2) , λZ (3) and λZ (4) are all ≥ 0. For λZ (5) to

e ≥ 0, the following condition should be true 

4 η2 η3 (3 σ 2 
12 + 3 σ 2 

13 + σ 2 
23 ) + η3 (η2 + η3 )(σ22 − σ33 ) 

2 + 8 η2 
3 σ

2 
23 

2 
√ 

2 

(√ 

4 η2 (σ 2 
12 

+ σ 2 
13 

) + 4 η3 σ 2 
23 

+ η3 (σ22 − σ33 ) 2 
)3 

≥

� 

2 
√ 

2 

(√ 

4 η2 (σ 2 
12 

+ σ 2 
13 

) + 4 η3 σ 2 
23 

+ η3 (σ22 − σ33 ) 2 
)3 

. (A.6) 

earranging the expression by squaring both sides yields 

4 η2 η3 (3 σ 2 
12 + 3 σ 2 

13 + σ 2 
23 ) + η3 (η2 + η3 )(σ22 − σ33 ) 

2 + 8 η2 
3 σ

2 
23 

]2 ≥
4 η2 η3 (σ

2 
12 + σ 2 

13 − σ 2 
23 ) + η3 (η2 − η3 )(σ22 − σ33 ) 

2 + 8 η2 
3 σ

2 
23 

]2 

+16 η2 
3 σ

2 
23 (σ22 − σ33 ) 

2 
[
2 η2 

3 − 3 η2 η3 + η2 
2 

]
. 

(A.7) 

fter expanding (A.7) and canceling out similar terms, it is ob-

erved that the quantity on the LHS is positive where as that on

he RHS is negative, implying λZ (5) is ≥ 0. For λZ (6) to be ≥ 0, it

eeds to be shown that 

� 

2 

√ 

2 

(√ 

4 η2 (σ 2 
12 

+ σ 2 
13 

) + 4 η3 σ 2 
23 

+ η3 (σ22 − σ33 ) 2 
)3 

≥ 0 

(A.8) 

hich is a priori true for 

6 η2 
3 σ

2 
23 (σ22 − σ33 ) 

2 
[
2 η2 

3 − 3 η2 η3 + η2 
2 

]
≥ 0 

⇒ η3 ≥ η2 ⇒ y 12 ≥ y 23 . (A.9) 

he above inequality is the necessary condition for the yield sur-

ace to be convex in the stress space. 
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