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Abstract

The influence of a viscous liquid on acoustic waves propagating in elastic or piezoelectric materials is of particular sig-
nificance for development of liquid sensors. Bleustein–Gulyaev wave is a shear-type surface acoustic wave and has the
advantage of not radiating energy into the adjacent liquid. These features make the B–G wave sensitive to changes in both
mechanical and electrical properties of the surrounding environment. The Bleustein–Gulyaev wave has been reported to be
a good candidate for liquid sensing application. In this paper, we investigate the potential application of B–G wave in
6 mm crystals for liquid sensing. The explicit dispersion relations for both open circuit and metalized surface boundary
conditions are given. A numerical example of PZT-5H piezoelectric ceramic in contact with viscous liquid is calculated
and discussed. Numerical results of attenuation and phase velocity versus viscosity, density of the liquid and wave fre-
quency are presented. The paper is intended to provide essential data for liquid senor design and development.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Surface waves have been applied successfully in many technological fields, such as NDE of materials, res-
onators, filters, sensors, etc. (Hoummady et al., 1997; McMullan et al., 2000; Vellekoop, 1998). The develop-
ment of mico-acoustic wave sensor in biosensing created the need for further investigations of the surface
wave propagation in a viscous liquid loaded layered medium (Wu and Wu, 2000). A number of acoustic wave
modes have been utilized for various sensor applications. The influence of a viscous liquid on acoustic waves
propagating in elastic or piezoelectric materials has been studied by several researchers, which is of particular
interest for development of liquid viscosity sensors (Wu and Wu, 2000; Zaitsev et al., 2001; Lee and Kuo,
2006).

Zhang et al. (2001) proposed that B–G wave is a promising candidate for liquid sensing applications.
The B–G wave does not radiate energy into the contacting liquid and is sensitive to the changes of
0020-7683/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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the liquid density and viscosity. However, Zhang et al. (2001) did not give a detailed quantitative
investigation of characteristics of B–G wave propagating in piezoelectric materials loaded with viscous
liquid.

Kielczyński et al. (2004) presented a method for measuring the rheological properties of viscoelastic liquids
using the Bleustein–Gulyaev wave. They applied the perturbation theory to obtain the relations between the
change in the complex propagation constant of the B–G wave and the shear acoustic impedance of the liquid.
Nevertheless, as Zaitsev et al. (2001) pointed out, the perturbation analysis may not be valid if the propagating
acoustic wave has high electromechanical coupling, which is the case for acoustic waves in strong piezoelectric
materials.

In this paper, we conducted a rigorous investigation on the propagation of B–G wave in 6 mm crystals
in contact with viscous liquid by employing the exact theory of continuum mechanics. The explicit dis-
persion relations for both open circuit and metalized surface boundary conditions are given. A numerical
example of PZT-5H piezoelectric ceramic in contact with viscous liquid is calculated and discussed.
Numerical results of attenuation and phase velocity versus viscosity, density of the liquid and wave fre-
quency are presented. The paper is intended to provide essential data for liquid senor design and
development.

2. Bleustein–Gulyaev wave

The Bleustein–Gulyaev wave may exist in piezoelectric materials with higher symmetry. It is an electro-
mechanical coupled shear type surface wave, in which the direction of material particle motion is perpendic-
ular to the propagating direction and parallel to the surface of half-space. If there is no piezoelectric effect,
B–G wave degenerates to the shear bulk wave. It is a peculiar surface wave existing in piezoelectric media with
6 mm or mm2 symmetry and it has no elastic counterpart (Dieulesaint and Royer, 1980, p. 282; Zhang et al.,
2001).

The equation of motion and Gauss equation of piezoelectric materials without body force and free charge
are rij;j ¼ qp

o2ui
ot2 ði; j ¼ 1; 2; 3Þ and Di,i = 0 (i = 1,2,3), respectively. In these two equations, rij, ui and Di are

stress, mechanical displacement and electric displacement components, respectively, and qp is the mass density.
The indices preceded by a comma denote space-coordinate differentiation. Also, a repeated index in the sub-
script implies summation with respect to that index. The constitutive relations of piezoelectric materials can be
expressed as
rij ¼ Cijklskl � ekijEk

Di ¼ eiklskl þ �ikEk

�
ði; j; k ¼ 1; 2; 3Þ; ð1Þ
where sij ¼ 1
2
ðui;j þ uj;iÞ are the components of the infinitesimal strain, Cijkl, ekij and �ik are the elastic constants,

piezoelectric and dielectric constants, respectively; the electric field is related to the electric potential by
Ei =� /i, (i = 1,2,3).

By inserting the constitutive relations into the equation of motion and Gaussian equation, one
arrives at
Cijkluk;il þ ekij/;ki ¼ qp
o2uj

ot2

eikluk;il � �ik/;ki ¼ 0

(
ði; j; k; l ¼ 1; 2; 3Þ: ð2Þ
The elastic constants Cijkl can be written into contracted form Cab by the following rule
a ¼ 9� i� j; b ¼ 9� k � l if i 6¼ j; k 6¼ l

a ¼ i ¼ j; b ¼ k ¼ l if i ¼ j; k ¼ l:
ð3Þ
Similarly, the piezoelectric constants eijk can also be put into contracted form eia with the index a observing the
same rule as above.

For 6 mm piezoelectric materials with x3 direction being the 6-fold symmetry axis, Eq. (2) takes the follow-
ing form
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Now consider a harmonic wave propagating in x1 direction, thus all physical quantities only depend on in-
plane variables (x1,x2), and are independent of x3. This case is termed as generalized plane strain problem.
In this situation, Eq. (4) is simplified into
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Obviously, it can be seen that (u1,u2) is decoupled with (u3,/). The first two equations of Eq. (5) show that
(u1,u2) may constitute purely elastic Rayleigh wave whereas the last two equations indicate that (u3,/) could
comprise the Bleustein–Gulyaev wave.

3. Dispersion relations

3.1. Description of the problem

The problem in question is shown in Fig. 1. The piezoelectric material occupies the half-space x2 < 0 and
the liquid covers the half-space x2 > 0. x3 axis is parallel to the axis of symmetry.
Fig. 1. Schematic illustration of the problem and the coordinate system.
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The liquid is assumed to be viscous and nonconductive. Suppose the motion of liquid is induced only by
wave propagation in the piezoelectric material and also propagates in the form of harmonic wave. For this
problem, the embroil inertial term in the Navier–Stokes equation can be omitted. Moreover, the pressure gra-
dient also can be ignored since only shear deformation occurs during wave propagation (McMullan et al.,
2000). Therefore, the governing equation for liquid is simplified to
ov3

ot
� ll

ql
r2v3 ¼ 0; ð6Þ
where ql is the mass density of liquid, ll the dynamic viscous coefficient of the liquid and v3 is the liquid par-
ticle velocity in the x3 direction.

Due to the effect of viscosity, the B–G wave propagating in the piezoelectric material in contact with viscous
liquid is attenuated. Other effects such as polarization relaxation, acoustoelectric effect and viscoelasticity may
also cause energy dissipation. However, the influences of these effects on wave propagation make no difference
when the viscous liquid is present or absent. Thus, their influences can be readily taken into account and
deducted. Therefore, in this paper, these effects are not considered.

Interfacial mechanical conditions are continuity of particle velocity and stress components at the interface.
Assume that the liquid is electrically insulated and its permittivity is much less than that of the piezoelectric
material. The electrical conditions at the interface can be classified into two categories, i.e., (1) open circuit:
electric displacement D2jx2¼0 ¼ 0, (2) metalized surface: electric potential /jx2¼0 ¼ 0.

3.2. Derivation of dispersion relations

For a harmonic plane progressive wave traveling in x1 direction, the displacement component u3 and elec-
tric potential / can be assumed to be in the following form
u3 ¼ W ðx2Þeikðx1�vtÞ ¼ W ðx2Þeiðkx1�xtÞ; / ¼ Uðx2Þeikðx1�vtÞ ¼ Uðx2Þeiðkx1�xtÞ; ð7Þ

where k is wave number, v phase velocity of the wave and x angular frequency, i is the imaginary unit, and
W(x2) and U(x2) are functions to be determined.

Substituting Eq. (7) into the last two equations of Eq. (5) yields
C44W 00 þ e15U
00 þ k2ðqpv2 � C44ÞW � k2e15U ¼ 0

e15W 00 � �11U
00 � k2e15W þ k2�11U ¼ 0;

ð8Þ
where the double prime indicates the second derivative with respect to x2.
Eliminating U in Eq. (8) leads to
ðC44�11 þ e2
15ÞW 00 þ k2½�11ðqpv2 � C44Þ � e2

15�W ¼ 0: ð9Þ
Then, solving this equation gives W ðx2Þ ¼ C2ek2kx2 , where k2
2 ¼

e2
15
��11ðqpv2�C44Þ
C44�11þe2

15

, Re(k2) > 0 and C2 is a
constant.

Rewrite the second expression of Eq. (8) into
ð�11U� e15W Þ00 � k2ð�11U� e15W Þ ¼ 0: ð10Þ

Solving this equation, we get
�11Uðx2Þ � e15W ðx2Þ ¼ �kC3ekx2 : ð11Þ

Finally, we obtain the expression of function U(x2) as follows
Uðx2Þ ¼
C3

�11

ekx2 þ e15

�11

C2ek2kx2 ; ð12Þ
where Re(k) > 0 and C3 is a constant.
Similarly, for the motion of liquid, we assume
v3 ¼ V 3ðx2Þeikðx1�vtÞ; ð13Þ



F.L. Guo, R. Sun / International Journal of Solids and Structures 45 (2008) 3699–3710 3703
where v is the phase velocity and k the wave number.
Substitution of Eq. (13) into Eq. (6) gives
V 003ðx2Þ þ ikv
ql

ll

� k2

� �
V 3ðx2Þ ¼ 0: ð14Þ
From this equation, we obtain V 3ðx2Þ ¼ C1ek1x2 , where k2
1 ¼ k2 � ikv ql

ll
, Re(k1) < 0 and C1 is a constant.

In the piezoelectric material, the shear stress and electric displacement are represented by
s23 ¼ C44

ou3

ox2

þ e15

o/
ox2

¼ C2C44k2kek2kx2 þ e15 k
C3

�11
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ou3
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¼ �C3kekx2 eikðx1�vtÞ:
ð15Þ
Thus, the velocity of material particle in the piezoelectric material is given by _u3 ¼ �vkiC2ek2kx2 eikðx1�vtÞ.
In the liquid, the velocity of material particle and shear stress are equal to
v3 ¼ C1ek1x2 eikðx1�vtÞ

s23 ¼ ll
ov3

ox2

¼ C1llk1ek1x2 eikðx1�vtÞ ð16Þ
By imposing the continuity of stress and velocity at the interface between liquid and solid, we have
C1llk1 ¼ C2kk2 C44 þ
e2

15

�11

� �
þ C3k

e15

�11

� C2vki ¼ C1:

ð17Þ
From the open circuit condition, we infer C3 = 0. For the metalized surface condition, we deduce
C3 + C2e15 = 0.

From these relations, we obtain the dispersion relation for open circuit condition as
�vllk1i ¼ k2 C44 þ
e2

15

�11

� �
: ð18Þ
After some mathematical manipulations, this relation can be rewritten to
k2 ¼
x2ðqpnþ illqlxÞ
ðn2 þ l2

l x2Þ
; ð19Þ
where ll is the viscosity of the liquid, x is the angular frequency of wave and n ¼ ðC44�11 þ e2
15Þ=�11.

Similarly, the dispersion relation for metalized surface condition can be derived as
�illk1v ¼ k2 C44 þ
e2

15

�11

� �
þ e2

15

�11

: ð20Þ
The above expression can be put into the following form
ðillqlxþ qpnÞ
2x4 þ ½4ng2qp � 2ðn2 þ g2 þx2l2

l Þðixqlll þ qpnÞ�x2k2 þ ½ðn2 þ g2 þx2l2
l Þ

2 � 4n2g2�k4 ¼ 0;

ð21Þ

where g ¼ e2

15=�11.
Once the wave number is obtained, the phase velocity is calculated by v = x/Re(k). The imaginary part of

wave number k represents the attenuation per unit length in the propagation direction. When the piezoelectric
material is not in contact with liquid, from Eqs. (19) and (21) it is easily deduced that the phase velocity of

B–G wave in 6mm piezoelectric materials for open circuit condition is vo _¼
ffiffiffiffiffiffiffiffi
n=q

p
, and wave velocity for

metalized surface condition is vm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44

q ð1þ
g
nÞ

q
.



3704 F.L. Guo, R. Sun / International Journal of Solids and Structures 45 (2008) 3699–3710
4. Numerical results

We consider a PZT-5H piezoelectric ceramic half-space in contact with viscous liquid. Material properties
of PZT-5H are taken from Fang et al. (2000) and listed below
C44 ¼ 2:3� 1010 N=m2; q ¼ 7:5� 103 kg=m3

e15 ¼ 17:0 C=m2; �11 ¼ 227:0� 10�10 F=m:
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Fig. 2. The attenuation as a function of liquid viscosity for open circuit condition.
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Fig. 3. The attenuation as a function of the density ratio ql /qp for open circuit condition.
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From these data, it can be easily calculated that vo = 2111.34 m/s and vm = 2005.90 m/s. The electro-mechan-
ical coupling factor is defined as K2 = 2(vo � vm)/vo, which expresses the ability of material to transform an
electric signal into an elastic surface wave or vice versa. For PZT-5H piezoelectric ceramic, K = 0.316.

From the analysis in the last section, we know the velocity of liquid particle can be expressed as

v3 ¼ C1ek1x2 eiðkx1�xtÞ, in which k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ix ql

ll

q
. In the piezoelectric material, we have u3 ¼ C2ek2kx2 eiðkx1�xtÞ

for both open circuit and metalized surface conditions, where k2k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � qp

x2

n

q
. In the open circuit condition,

we get / ¼ e15

�11
C2ek2kx2 eiðkx1�xtÞ while the electric potential in the metalized surface condition has this form
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Fig. 4. The change of attenuation with liquid viscosity for metalized surface condition.
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/ ¼ e15

�11
C2ðek2kx2 � ekx2Þeiðkx1�xtÞ. The wave length equals to k ¼ v

f ¼ 2pv
x ¼ 2p

ReðkÞ, where f is circular frequency, x

angular frequency and v the phase velocity.
The numerical results of wave velocity and attenuation are shown in Figs. 2–10. Figs. 2 and 3 show change

of attenuation with liquid viscosity at different values of liquid density under the open circuit condition. Figs. 4
and 5 illustrate the attenuation as a function of liquid density at different values of liquid viscosity under the
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metalized surface condition. It is seen from these figures that the relationship of attenuation with viscosity or
density is approximately linear in the open circuit condition. The attenuation for metalized surface condition
is obviously larger than that for the open circuit condition. Besides, the relationship between the attenuation
and liquid viscosity or density ratio in the metalized surface condition is obviously nonlinear, which is different
from the approximately linear relationship for the open circuit condition. Figs. 6 and 7 demonstrate the effect
of viscosity and liquid density on the phase velocity in the metalized surface condition. We can see that in most
cases, the wave velocity decreases with the increase of viscosity or liquid density. Specifically, with increasing
viscosity, the wave velocity is found to decrease smoothly, reach a minimum, and then increase mildly with
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increasing viscosity (see Fig. 7). Similar results were also reported by Zaitsev et al. (2001). On the contrary to
the metalized surface condition, numerical results show that the change of wave velocity due to the presence of
liquid is negligible for the open circuit condition. The influence of wave frequency on the attenuation and
phase velocity are shown in Figs. 8–10. It can be seen that in general, the attenuation increases monotonically
with the increase of wave frequency, and phase velocity falls monotonically with the increase of wave
frequency.
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Fig. 11. Distribution of displacement and electric potential in PZT-5H under open circuit condition (f = 200 MHz,ll = 0.3 NS/m2,
ql/qp = 0.15).
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Figs. 11 and 13 show that the distribution of displacement component u3 and electric potential / along the
depth direction in the piezoelectric material. On examining these figures, we found that the penetration depth
for the open circuit condition is much larger than that for metalized surface condition. The penetration depth
for open circuit condition is up to 30 wave lengths while the penetration depth for metalized surface condition
is only about 3 wave lengths. These typical features of B–G wave account for the characteristics of attenuation
and wave speed of B–G wave propagating in piezoelectric materials loaded with viscous liquid.
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Fig. 13. Distribution of displacement and electric potential in PZT-5H under metalized surface condition (f = 200 MHz,ll =
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Fig. 12 illustrates that the distribution of particle velocity in the liquid. It is seen that the distribution of
particle velocity in the liquid are almost the same for both open circuit and metalized surface conditions.

5. Conclusions

In this paper, we studied propagation of B–G wave in a piezoelectric half-space of 6 mm symmetry in con-
tact with viscous liquid. The explicit dispersion relations for both open circuit and metalized surface boundary
conditions are derived. Numerical example of PZT-5H piezoelectric ceramic loaded with viscous liquid is cal-
culated. Numerical results show that the attenuation increases with the increase of liquid viscosity and density.
Furthermore, the attenuation in the metalized surface condition is much larger than that in the open circuit
condition. The variation of wave velocity for open circuit condition is negligible while in metalized surface
condition we see a noticeable change of wave velocity. This is coherent with the fact that in the open circuit
condition the penetration length is greater than that in the metalized surface condition. Therefore, in the met-
alized surface condition energy concentrates more on the region near the interface, thus the B–G wave in the
metalized condition is more sensitive to environmental disturbances. Compared with the case of metalized sur-
face condition, the B–G wave in the open circuit condition is less sensitive to surrounding changes.

One advantage of B–G wave for liquid sensing application is that B–G wave has no multiple modes. This
makes that inverse determination of liquid properties by utilizing B–G wave is easier than that by utilizing
other types of waves, such as Love wave, Lamb wave, etc. Moreover, it is worthwhile to note that the conclu-
sions drawn in this paper are expected to also hold true for B–G wave propagating in other piezoelectric mate-
rials of crystal class 6 mm in contact with viscous liquid. This paper provides useful data for the design and
development of liquid sensing devices.
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