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We present a rigorous verification study and an extension to an existing semi-analytical finite element
formulation for analysis of end and transition effects in prismatic cylinders. End and transition effects
in stressed cylinders are phenomena associated with the difference between results that are predicted
by the Saint-Venant solutions and the actual point-wise conditions. These differences manifest them-
selves as self-equilibrated stress states. Notwithstanding certain well-known exceptions (e.g., restrained
torsion of open thin-walled sections), such effects in isotropic cylinders are usually confined to a very
small neighborhood of a terminal boundary or transition zone, and are typically neglected. For anisot-
ropy, as in the case of most smart/active and composite material systems, they can persist much further
into the interior of the structure, and need to be quantified to design geometry transition zones and to
fully understand the delamination effects. In the semi-analytical approach, we first discretize the govern-
ing equations within the cross-sectional plane of the cylinder. The end-solution fields satisfy the homo-
geneous form of the resulting semi-analytical system of ordinary differential equations. This leads to an
algebraic eigenvalue problem, and an eigenfunction expansion of the stress and displacement fields due
to end effects. Unique to the present study, we formulate a procedure to quantify the transitional effects
for end-to-end connected cylinders for which the displacement and stress continuity along the transition
interface need to be enforced. The semi-analytical approach has several distinct advantages: (i) It is com-
putationally efficient, as only the cross-sectional geometry is discretized; (ii) it can be applied to arbitrary
cross-sectional geometries and the most general form of anisotropy; and (iii) it yields direct measures for
the decay lengths (or decay rates) of any end-or transition-solution field. Analytical solutions to end-
effect problems are scarce. Those that exist are for simple geometry and material constitution. We use
these analytical solutions, as well as solutions obtained using three-dimensional finite element models,
to verify our approach and to assess its efficiency.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

cross-sectional geometries and general material properties, a
semi-analytical finite element (SAFE) method is adopted wherein

When two (or possibly more) beams are joined at an interface
where forces and moments are transmitted, transitional effects oc-
cur. These effects are confined to the neighborhood of the interface.
With distance away from this region, the stress states return to dis-
tributions given by Saint-Venant (SV) extension, bending, torsion
and flexure solutions. But in the vicinity of the interface, the behav-
ior is highly complex and not according to aforementioned SV solu-
tions. As illustrated in Fig. 1, a part of the behavior is self-
equilibrated, representing the difference between SV data and ac-
tual end condition. This part decays with distance from an end,
i.e., Saint-Venant’s principle.

Herein, we are occupied with quantifying such effects in pris-
matic beams, whose cross-sections may be anisotropic as well as
inhomogeneous. To accommodate prismatic beams with arbitrary
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the cross-section undergoes discretization. The kinematic behavior
is represented by polynomial interpolations in the elements com-
prising the cross-sectional model with the axial dependence left
undetermined at the outset. The governing equations are of the
form

KiU,, + KU, ~K;U=0 (1)

where the array U = U(z) contains the nodal displacements and
K;, K, and K3 are system stiffness matrices. Formulation of these
matrices for numerical results herein can be found in Taweel
et al. (2000). The complete solution to Eq. (1) consists of three parts,
ie.,

U(z) = Usy + Uena + U 2)

where Usy denotes a Saint-Venant solution for a stress state corre-
sponding to applied end forces and moments, Ueyg concerns self-
equilibrated effects that quantifies how Saint-Venant's principle
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Fig. 1. Saint-Venant and self-equilibrated parts of a stress field near the ends.

works, and Uy, contains the components of rigid body motion
needed to meet the prescribed kinematic constraints.

For the Saint-Venant solution, we follow the method by Dong
et al. (2001) and Kosmatka et al. (2001). But we note that others
have similar or alternative solution methods for this problem,
viz., Giavotto et al. (1983), Ladevéze and Simmonds (1998), Pope-
scu and Hodges (2000), El Fatmi and Zenzri (2002), El Fatmi
(2007a,b), Herrmann (1965), Mason and Herrmann (1968).

To determine the end solution, take Uena(z) = Uoe 7%, where 7y
denotes an inverse decay length and U, is a displacement vector
of the self-equilibrated effects. Substitution of this solution form
into Eq. (1) yields a quadratic algebraic eigenproblem given as,

KsU, — 7K,U, — 72K U, = 0 (3)

where 7 is eigenvalue parameter. This eigenproblem can be reduced
to first-order form, from which it is possible to see that both real
and complex eigendata are admissible - representing the possibility
of both exponential and sinusoidal decays. Numerical data by this
approach have been reported by Huang and Dong (1984), Dong
and Huang (1985), Goetschel and Hu (1985), Kazic and Dong
(1990) and Lin et al. (2001), for a variety of problems related to
orthotropic and anisotropic strips and circular cylinders as well as
for general cross-sections. Inverse decay lengths have also been
determined analytically from a transcendental equation of a bound-
ary-value problem - see, Johnson and Little (1965) and Little and
Childs (1967) for data on isotropic semi-infinite strips and circular
cylinders, respectively. Mathematical insight enabling the quantifi-
cation of Saint-Venant’s principle was due to Toupin (1965) and
Knowles (1966), whose strain energy inequality theorems bounded
the decay from an end to exponential form. It is of interest to note,
however, that Synge (1945) outlined the essence of the end solu-
tion; however, he did not offer any solutions. For a very comprehen-
sive review of the literature on this topic, see Horgan and Knowles
(1983) and Horgan (1989).

The purpose herein is to apply inverse decay data, extracted
from Eq. (3), to treat end effects and transitional states for various
arrangements where two beams are joined. In the next sections,
details of the Saint-Venant solution and algebraic eigenproblem
are reviewed. Then, results for isotropic strip and circular cylinder
based on Eq. (3) are compared with Johnson and Little (1965) and
Little and Childs (1967) to instill some confidence to the present
numerical approach to study end and transitional effects. The steps
in the analysis of end and transitional effects are set forth. Exam-
ples are then given on interlaminar stresses at the end of a lami-
nated beam, stress transmission in a beam with a hollow cross-
section reinforced by a plate, a beam with two angleply layers
loaded over a portion of the end cross-section, and decaying stres-
ses in the vicinity of two distinct beams connected end-to-end.
Only loads applied at the end(s) are considered in our examples.
Loading on the lateral surface of a beam - which belongs to Alman-
si-Michell class of problems - involves the nonhomogenoeus form

of Eq. (1); and the treatment of this problem may be found in Lin
and Dong (2006). We will not consider this type of loading, but
hasten to add that the analysis procedure described herein remains
valid except for the inclusion of a particular solution.

2. Synopsis of Saint-Venant solutions

Saint-Venant’s problem consists of determining the three-
dimensional stress and displacement fields in a prismatic beam
due to prescribed tractions at one end with full kinematic restraints
on the other. What are known as Saint-Venant solutions (1855,
1856) are displacement and stress fields, which agree only in terms
of the end resultants, i.e., (1) axial force (extension), (2) pure bending
moments, (3) torque, and (4) flexural forces. The point-wise fields
may not agree with the prescriptions at the two ends, but Saint-Ve-
nant’s principle assures the validity of these solutions in the interior,
i.e., away from the two ends of the beam.

In the method for Saint-Venant’s solutions by Dong et al.
(2001), a sequential integration procedure due to lesan (1986)
was used to define the kinematic fields. Beginning with rigid body
displacements, the first integral gave stress and strain fields uni-
form in z, or that appropriate for Saint-Venant extension-bend-
ing-torsion. The next integral gives fields that are at most linear
in z, i.e,, Saint-Venant flexure. In a Saint-Venant solution, three
parts are involved in each kinematic field: (1) primal field, (2)
cross-sectional warpage, and (3) rigid body motion. All of these
components are functions of unknown displacement coefficients.

The displacement field Usy for extension, bending, torsion and
flexure has the form

a; + Dpps
(4x1)  (3MxB)

an +
(4x1)

USV (Z) = ‘stz (Z) + ‘Psvz +Z \l’svl
(3Mx4) (3Mx4)  (3Mx4)

q)svl (Z) + \l’svl
(3Mx4) (3Mx4)

X arp
(6x1)

“4)
where (®g1, ®g12), (Wsv1, Psv2), and dgge are the primal fields and
warpages for extension-bending-torsion (sz1) and flexure (sv2)
problems, and the six rigid-body modes, respectively, with ampli-
tude coefficients a;, ay, and agg given by
ay = [ai3, Ay, Ayss, aIIG]T~,

. .GRBG]T. (5)

Warpages Ws1 and s, are independent of z. Details on their con-
struction are given in Dong et al. (2001). Once these matrices are
established, the Saint-Venant field is completely defined except
for the unknown amplitudes a;, ay and ags.

Stresses in an element are given by

o =Clz{h+ b1 ¥a1,} + {b2¥s1, + b1¥s, }an
+C{h +b; ¥, }ay, (6)

T
ay = [ap3, i, A5, Ags ] and agg

= [dgp1, Orp2, -
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where b; and b, are the linear differential operators that perform
the strain-displacement transformations; C is the linear elastic
material stiffness matrix (c.f.,, Dong et al., 2001), and h is

000

o © = O
o o< ©
X O O O

-y
0

O O O X O

00

Integrating the stresses over the cross-section IT yields the force
and moment resultants.

/ O-zdedy:Pz(z)§ / O-zzdedy:Mx(Z)
I big (8)
[ (@ oayixdy =M@ [ cuxdedy = -M(2).
n n

These resultants can be recast in compact form using h of Eq. (7) as

/ W edxdy — F(z), 9)
JIT

where F(z) for all six force and moment resultants at an end is given
by

P,(2) p, 0
My (2) M, P,
F(z) = - F(z) = F F,.
D7) M@ () my (T p( O TR
M, (z) M, 0

(10)
In this expression, Py and P, are transverse shear resultants defined
by
P, :/ Ox.dxdy, and P, :/ 0y, dxdy. (11)

ol n

Substituting Eqs. (6) and (7) into Eq. (8) and integrating over a gen-
eric cross-section give
[zKr + Ky)an + xjay = Fo + zF;, (12)
where

[Ki33 Kpa Kps Kpse
Kps Kus Kus Kue
K = //hTaodxdy = , (13)
(4x4) K35 Kuas  Kiss  Kise
LKBe Kue Kise Kiee
(K33 Kma Kiss  Kise

Kiza Kpaa Kipas  Kiae
K| ://hTG'1 dxdy: . (14)
(4x4) Kizs Kpas  Kpss  Kise

LKme Kiuae Kise Kiies

Differentiating equation (12) yields the governing equations for the
flexure forces, P, and Py. To wit,

xiag = Fy. (15)

Once ay is determined, Eq. (12) may be re-applied with z = 0 to give
the solution for a; in terms of the axial force, bending moments and
torque (P,, My, M,,M,) at the end of the beam, as in

x1a; = Fo — xay. (16)

Lastly, the coefficients argg of the rigid body displacements can be
determined from the restraint conditions at the other end (i.e., at
z =L) of the beam.

3. Self-equilibrated solutions

Self-equilibrated effects are represented by the solution Ugyq to
Eq. (3). Using an exponential solution form for it - i.e,
Uena(2) = Uoe?? - and reducing Eq. (3) to first-order form yield

0 K3](Up K; O U
[1(3 KZ}{UI}_/{O KJ{U1} or AQ,=7BQ,  (17)

where U; =)yU,. The combined column Q, represents a right-
handed system of generalized coordinates. Note that K; and K;
are symmetric, while K, is antisymmetric. Hence, the algebraic
eigensystem in Eq. (17) contains both real and complex conjugate
pairs of eigendata and well as zero values. Zero values indicate
no decay with distance along z and these modes are the Saint-
Venant solutions of extension, bending, torsion and flexure. Non-
zero roots represent attenuation rates of self-equilibrated effects
into the interior of the cylinder. The real and complex roots cor-
respond to monotonic and sinusoidal decays, respectively. Posi-
tive real roots and complex roots with positive real parts
represent decay into the region z > 0, which applies to tip-end
conditions. The other subset of negative real roots and complex
roots with negative real parts are for root-end conditions. The
eigenvalue with the smallest magnitude real part is prominent;
it defines the inverse decay length with the furthest penetration
into the interior.

The eigensolution to Eq. (17) may be stated as a transformation
to a right-handed system of normal coordinates X as

Q, =X, (18)

where ® is the right modal matrix, which can be partitioned into
upper and lower parts leading to

o[- (2 (23

where T is a diagonal matrix of eigenvalues. Stress eigenvectors
may be computed using the upper half of the displacement eigen-
vectors ®, and Eq. (6).

Associated with Eq. (17) is the adjoint problem given by

E i e M

where Q, are left-handed generalized coordinates. The eigensolu-
tion to Eq. (20) yields the same eigenvalues as Eq. (17), but the
modal matrix ¥ contain left-handed eigenvectors.

The right and left-handed eigenvectors satisfy the bi-orthogo-
nality relations

¥Y'B® = diag(By,Bs,...,By) =

T . (21)
Y A® = diag(y,B1,y,B2,. .., VxBn),
which may be stated in terms of the upper forms as
YK Dy + 7,7, VoK1 @y = SmnBy 22)

(ym + ’yn)‘]‘;rll(3([)u + men\l’z;l(zq)u = (SmﬂynBﬂv

where §; is the Kronecker delta. These bi-orthogonality relations
enable expansion of any arbitrary vector F in terms of the right-
handed eigenvectors. This expansion has the form

F=®u (23)

with « denoting an array of amplitudes. Applying bi-orthogonality
relations, Eq. (23) yields the amplitudes as

a = YKz + 2P K, F. (24)



Fig. 2. Geometry and the finite element models of (a) the semi-infinite elastic strip and (b) the circular wedge.
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Table 2
Subsets of eigenvalues.

Present method Johnson and Little (1965)

Mode

Present method

Little and Childs (1967)

Modes Re|otn| Im|oty| Re|y,| Im|y,|

1-4 +3.74884 +i1.38435 1.38434 +i3.74884

5-8 +6.95013 +i1.67603 1.67611 +i6.94998

9-12 +10.12033 +i1.85742 1.85838 +i10.11926
13-16 +13.28161 +i1.98637 1.99157 +i13.27727
17-20 +16.44313 +i2.07731 2.09663 +i16.42987
21-24 +19.61327 +i2.12607 2.18340 +i19.57941
25-28 +22.80485 +i2.10934 2.25732 +i22.72704
29-32 +26.04899 +i1.96465 2.32171 +i25.87339
33-36 +29.36078 +i2.45709 2.37876 +i29.01883
37-40 +32.56340 +i2.87380 2.42996 +i32.16362

4. Verification problems: the semi-infinite strip and circular
cylinder

In order to verify such eigendata extracted with our computer
code, we compared results with those obtained analytically by
Johnson and Little (1965) and Little and Childs (1967) for a semi-
infinite rectangular strip and a solid circular cylinder, respectively.
The geometry and the finite element models of these two problems
are schematically shown in Fig. 2. For semi-infinite strip, a 0.05 x 2
region was meshed with 40 quadrilateral finite elements and
appropriate symmetry boundary conditions were applied. For the
semi-infinite circular cylinder, a 10-degree wedge was meshed
with 35 quadrilateral finite elements (only a coarser mesh is
shown in figure). Displacements were constrained in the direction
normal to the wedge boundaries.

A subset of the fundamental eigenvalues by the present (SAFE)
method is presented in Table 1 along with analytical data of Johnson
and Little (1965); and there is a very good agreement between the
two sets of results. The transposition of real and imaginary parts in
the two sets of data is due to different definitions of the eigenvalues.
We also note that the SAFE method yields both positive and negative
real parts of the eigenvalues for decay in both axial directions, where
the analytical results were quoted in Johnson and Little (1965) for
decay in one direction only. That the agreement is better for the low-
est modes — with larger deviations observed in the ascending modes
- is consistent with finite element modeling realities for data involv-
ing higher spatial variations.

For the circular cylinder, the analytical solution by Little and
Childs (1967) provides only axisymmetric data, which are com-
pared with the SAFE method’s results in Table 2 for two different
values of the Poisson’s ratio. As seen in this table, the agreement
is also very good, and the patterns by which the accuracy dimin-
ishes with higher modes is the same as seen in the rectangular
strip problem.

Case 1 (E=1.0,v=0.0)
1-4

+2.55678 +i1.38897

2.55677 +11.38897

5-8 +6.00607 +i1.63864 6.00586 +1i1.63870

9-12 +9.23447 +i1.82863 9.23317 +£11.82906

13-16 +12.42245 +£i1.96625 12.41789 +i1.96788
17-20 +15.59555 +i2.06945  15.58596 +i2.07680
21-24 +18.76768 +i2.12565  18.74560 +i2.16636
25-28 +£22.00042 +£i2.12493  21.90036 +i2.24238
29-32 +25.30433 +£i2.16664  25.05201 +i2.30840

Case 2 (E=1.0,v=0.3)
1-4

+2.77219 £i1.36219

2.72218 +£11.36210

5-8 +6.06039 +i1.63733 6.06008 +i1.63762

9-12 +9.26858 +11.82621 9.26684 +11.82826

13-16 +12.44788 +i1.95882  12.44253 +i1.96724
17-20 +15.61297 +i2.04381  15.60544 +i2.07628
21-24 +18.78131 +i2.02946  18.76174 +i2.16593
25-28 +22.07817 £i1.85840  21.91414 +i2.24202
29-32 +25.54335 +£i1.62361  25.06403 +i2.30810

Using the axisymmetric data, we also considered the decay of a
self-equilibrated stress state given by o,=1-2r> and
O, = 2.4r —2.6r* +0.2r° in the radial (r) direction. Without any
loss of generality, Poisson’s ratio was set at v = 0.3. It is self-evi-
dent that the radial shear stress distribution leads to no resultant
force. Integration of the axial stress distribution of the cross-sec-
tion also shows a null resultant axial force, i.e.,
[ ourdras=o. (25)

I
Using the Saint-Venant solution data and the stress eigenvectors,
plots of four stress components in the radial direction at various
distances along the axis of the cylinder are shown in Fig. 3. The
quantitative manner in which the decay occurs can be seen. We
note that the SAFE results are in very good agreement with those
predicted analytically by Little and Childs (1967).

5. Analysis of end and transitional effects
5.1. End effects in a beam

Prior to getting into a discussion on transitional effects when
there is a discontinuity in cross-sectional geometry, or material
constitution, or both, we review the analysis of end effects in a can-
tilevered beam below. This analysis was set forth by Lin et al.
(2001).

The displacement and corresponding stress fields may be writ-
ten as
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Fig. 3. Validation for stress boundary problem of a solid cylinder: The results are the distributions of non-zero stress components (g, Gy, 6,, and a,;) over the thickness at
different cross-sections (z/r = 0(v);0.3(0); 0.6(x)). The symbols and the (dashed, dotted, etc.) lines denote the present solutions and the analytical solutions provided by

(Little and Childs, 1967), respectively.

U(z2) = Usy(2) + ®rps(2)ars + Uena(2)
= Usy(2) + Oras(2)ars + Odiag(e”)a, (26)
S(z) = Ssv(2) + Sena(z) = Ssv(2) + Sengdiag (e "%)a,

where diag(e~"#) is a diagonal matrix of exponential decays and a
contains the undetermined amplitudes of the decaying modes.
Notation S denotes stress components, (0, 0y;,0x;), evaluated at
the Gaussian quadrature points in all the elements comprising the
cross-section. These stresses are evaluated through the constitutive
law at the element level. In general, the rigid body displacements
are known from the Saint-Venant solution. Based on end solutions
with decay in both positive and negative z-direction, we can divide
the end solution into two parts, i.e., from the tip end and the root
end of the cantilevered beam of length L. To wit,

U(Z) = Usv(Z) + (DRBG(Z)aRB + Qﬁpdiag(e”fl)aﬁp
+ Oropcdiag(e 1), (27)
S(z) = Ssv(2) + Supdiag(e ™)y + Sroordiag(e ") ay0r.

In the most general case, effects at the root (tip) end will be felt at
the tip (root) end, so that both parts of the end solution need to be
considered. But for a sufficiently long beam, the effects on one end
can be considered to be completely uncoupled from the other end.
This can easily by assessed by examining the lowest eigenvalue, the
effects of which persist the furthest into the interior. We will pro-
ceed under the assumption that the beam is sufficiently long, so
that only one part of the end solution needs to be considered at
the root and the tip ends.

Assuming that the boundary condition at the root-end, z = L, is
full fixity, we have

U(L) = USV(Z) + (DRBG(Z)aRB + (Drootdiag(eimlﬁz))aroot‘zzl_

(28)
= Usy(L) + ®ras(L)ars + Proordroor = 0

as diag(e™%1=?) =1 for z = L. Rearranging this equation gives

Dot Argor = Uy — Usy(L) — Drpg(L)ags, (29)
(3Mxn) (nx1)

where 3M denotes the total number of kinematic degrees of free-
dom and n is the number of eigenmodes adopted for the analysis.
Because not all of the eigenmodes are used (i.e., 3M >> n), algebraic
system given in Eq. (29) is over-determined. The solution for the
unknown amplitudes (areot) can be sought by least squares, i.e.,

a0 = @ Droor] ' @f} (U — Usy(L) — Dreg (L)), (30)
where @ is the Hermitian (i.e., conjugate transpose) of ®,p.

We let the applied tractions be denoted by S at the tip end
(z = 0). Supposing that this distribution, in general is not according
to that of the Saint-Venant solution. Thus, we can represent the
difference between S and that of the Saint-Venant solution -
which is a self-equilibrated state - through the expression

S(2) = Sev(2) + Supdiag (e %)y, (31)

Using Sy denote the prescribed stress components at the Q Gaussian
quadrature points of the total discretized model of the cross section,
we have

SZ)- = [szl 5 O-yzl yOzz15 -+ O-sz; O-yzQ7 GzzQ”z:(y (32)
Similarly, extracting the same components from ¢sy and oy, denot-
ing them as Ssy and S, and by invoking diag(e~’*) =1 in Eq. (31),
the traction boundary conditions can be written as

So =Ssv(0) + Stipasip — Sip  Aip = So — Ssv(0). (33)

(3Mxn) (nx1)

Again, this algebraic system is over-determined as 3M > n. The
least-squares solution of Eq. (33) for a,, yields
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ap = [St},Sup] 'S}y [So — Ssv(0))], (34)

where S, denotes the prescribed traction conditions at the tip.
5.2. Analysis of transitional effects for connected cylinders

Here, we consider two dissimilar beams, A and B, as illustrated
in Fig. 4 where beam B is fully bonded to A at interface I';. We
adopt the origins of the coordinate systems of the two beams as
shown in this figure. In general, an axial load, bending moment
and torque are applied at the free-end of beam B. Additionally,
on the surface I', of beam A, there is the possibility of applied trac-
tions g whose resultant may be an axial force, bending moment
and torque. We wish to determine the complete displacement
and stress fields in the vicinity of the interface of these the two
beams. To simplify the analysis somewhat, we will assume both
beams are sufficiently long, so that their conditions at the extreme
ends are not coupled with those at the interface. Only functions
with decay from the interface are considered. Then, the displace-
ment fields for the two beams are

U(z1) = U, (21) + dfa" + Oy(z1)af,

(35)
U (z) = Ugy(22) + fa® + ®f(z2)af,.

The first step in the analysis is the determination of the Saint-Ve-
nant extension-bending-torsion solutions for each beam. In the
Saint-Venant solution for beam A, global equilibrium must be ob-
served to relate the resultant force and moments in member A to
that of member B and the contributions of g on surface I';. For beam
A, it is also possible to determine the rigid body displacements from
the conditions at z; = L,. However, it is not possible to determine
rigid body displacement ®5;(z,)aZ; at this time.

Continuity conditions for the two beams involve displacements
and stresses of the both beams at the interface. Expressions for dis-
placement and stress fields in beam A at the interface are

UA|z1:0 =U§,(0) + @la! + Dpyafy: SA|z1:0 = S’;‘V(O) +S(®))of
(36)

which can be organized further into terms on surfaces I'y and I'; as
in

A

Ul?_l _ USV' 1 q)?l

A - A + (DA
Uy, Usv,-2 €2

A

S?H SSVF 1 Sl?l

A (" VA Tl .
Srz Ssvr2 So

These expressions in beam B at the interface, which occur only on
Iy, are

(37)

_—— Fixed end

Fig. 4. The geometry of a generic end-to-end connected beam problem.

UB|r1 = Ug(Lp) + Dfof + @Fy(Lp)agy,

(38)
S°I;, = Sov(Ls) + S*(@)ar.
To summarize, the unknowns in Eqs. (37) and (38) are coefficients
o and of of the decay functions and amplitude a2, of the rigid body
displacement in beam B.

The interface (continuity) conditions are

Uy, =0 (8480, =0 S, =g (39)
Enforcing these conditions gives
Ugvrl + O o + Dpgag; = Ugv(LB) + ®fa} + Dpy(Ls)agy, (40)
Sev,, + St +Ssy(Ls) + S/} =0, (41)
Ssv,, + 5o =& (42)
Recasting these equations in matrix form yields

o —0F —0h(Ly)] (o Usy(Lp) — Ugy, — Dyagy

s, 80 A b= Shls) -,

s. 0 0 ) |g-si,

(43)

or
Ax =Db. (44)

This over-determined problem can be solved to obtain the unknown
amplitudes («) using a least-squares approach as in

A"Ax = A"b = « = [A"A]'A"D. (45)

6. Application problems

6.1. Interlaminar stresses decaying from the tip-end of a laminated
beam

Here, we consider a square-shaped cantilevered sandwich
beam, with isotropic top and bottom layers and an orthotropic
core, as illustrated in Fig. 5. Material properties of the orthotropic
core are typical of a graphite-epoxy composite, i.e.,

E Gir Grr _

- = 107 - 047 E—Tf

E; Er = 037 ViT = 037

v =025, (46)
where subscripts L and T denote longitudinal and transverse direc-
tions, respectively. Young’s modulus and Poisson’s ratio for the iso-
tropic layers are E and v = 0.3. In this example, we assume that
E =Er.

We consider three sets of applied tractions at the tip end of the
beam whose resultants are an axial force, a bending moment, and a
torque. The manner in which they are applied is shown in Fig. 5.
We wish to determine how these applied tractions evolve into
Saint-Venant distributions of extension, bending and torsion, or
alternatively how the self-equilibrated fields attenuate into the
interior of this beam. The relevant stress components at the point
marked as A in Fig. 5 on the interface between the layers are mon-
itored along the beam’s axial direction.

Plots in Fig. 6 show the decay of various stress components
along the longitudinal axis passing through the interface be-
tween the top layer and the core for three different orientations
of the natural elastic axes of the orthotropic core with respect to
the coordinate directions, viz., 0°, 45°, and 90°. Also in this fig-
ure, SAFE results are compared with three-dimensional finite ele-
ment method results obtained using (ANSYS, 1998); and, again,
there is a very good agreement between the two sets of results.
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Fig. 5. The geometry and loading conditions of the sandwich beam validation problem. The top and bottom layers are made of the same isotropic material with an orthotropic

core.
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Fig. 6. Comparison of stresses decaying from the free end of a sandwich beam. Symbols (0,(V); 6y,(0); 0,2(x); 0x,(<)) and the (dashed, dotted, etc.) lines denote the SAFE
solutions and 3-D finite element solutions, respectively. The stress axis is normalized with respect to the maximum absolute value of the corresponding stress component.
The longitudinal axis (along the axial dimension) is normalized with respect to the length of a side of the square cross-section. The columns starting with (a), (b), (c) are the
cases of extension, bending and torsion, respectively. The rows starting with (a), (d), (g) are for the three different orientation of the orthotropic material at the core of the

cross-section, namely 0°, 45°, 90°, respectively.

Comparisons were made with ANSYS because an analytical
solution of this problem does not exist to the best of our
knowledge.

Table 3 provides the normalized (with respect to the depth A of
the cross-section) characteristic decay lengths of the relevant
interlaminar stresses for the extension-bending-torsion problem
for different orientations of the orthotropic core. Following Miller
and Horgan (1995), we define the characteristic decay length L*
as the length over which the stresses decay to 1% of their values

Table 3
Normalized characteristic decay lengths of interlaminar stresses (given as percent of
cross-sectional dimension) for different material orientations of the orthotropic core.

Extension Bending Torsion

Oyy Oyz Oyy Oyz Oyy Oyz
0° 5.17 67.2 5.17 483 20.7 483
45° 13.8 62.1 6.90 224 31.7 344
90° 6.90 51.7 4.60 20.7 19.5 344
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Fig. 7. The geometry and loading conditions of a girder retrofitted by a thin plate. The beam is cantilevered and loaded at the tip-end.

atz=0.Thus, L =In100/2", where /” is the real part of the lowest
eigenvalue in Eq. (27) viz. Eq. (3).

We note here that the SAFE analysis is significantly less compu-
tationally intensive than the ANSYS analysis, as two-dimensional
rather than three-dimensional finite element modeling is em-
ployed. From an examination of the eigendata, one can immedi-
ately estimate the 3D element length required in the axial
distance in ANSYS to capture the behavior. It is easily seen that a
relatively fine discretization is needed to determine the behavior
of the decay accurately (to obtain the results shown a very fine
graded 3D mesh containing approximately 1500 linear brick ele-
ments was used for ANSYS, whereas SAFE results were obtained
using a 2D mesh comprising 81 quadrilateral elements). Moreover,
once a set of two-dimensional eigendata is established, it is possi-
ble to use it for any distribution of end effects.

6.2. Transition effects in a plate-reinforced box girder

Here, we consider a hollow beam reinforced with a plate over a
partial distance as illustrated in Fig. 7. We assume that the end of
the plate is sufficiently remote from the end of the beam so that
end effects there do not interfere with the analysis in the transition
zone. Then, we can use the procedure set forth in Section 5.2.

We set the material properties for the hollow beam and plate as
E, =210GPa, v, =0.3, and E,=300GPa, v,=0.3; and the
dimensions shown in Fig. 7 as h=80cm, t =4 cm, t, = 0.4 cm.
We consider all three loading cases (extension, bending, and tor-
sion) and investigate the interlaminar (or delamination) stresses
decaying along the length of the plate, and compare SAFE results
with those determine through (ANSYS, 1998). We also note that
the agreement between the SAFE and ANSYS results are again very
good. But, as pointed out in the previous example, the SAFE meth-
od is far more efficient computationally than ANSYS. ANSYS results
are merely included to show the validity of the SAFE approach in
this example, where the cross-sectional geometry of the beam
has a discontinuity.

The interlaminar stresses decaying from the interface are
shown in Fig. 8 for the three loading cases considered. In this nor-
malized stress plot, we can see that the decay lengths of the inter-
facial stresses are not highly sensitive to the loading type. We also
observe that at a distance of around 0.15 h from the cross-sectional
discontinuity, the interfacial normal stress decays to an insignifi-
cant level, but the interfacial shear stress g, persists into the inte-
rior nearly four times that distance.

6.3. Laminated beams: a parametric study on the effect of material
properties

Another problem we examine with the SAFE method is the
determination of interlaminar stresses near the tip-end of a com-
posite beam under a tensile patch load (cf., Fig. 9). The beam is
composed of two laminates, having the same material properties
(transverse isotropy), but different fiber orientations. We use five
different ply orientations in a parametric study - namely,
[0°, £30°, +£45°, +£60°, £90°]. Case 0° corresponds to a homoge-
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Fig. 8. Comparison of interlaminar stresses along the interface between the girder
and the plate for (a) extension (b) bending, (c) torsion. The symbols
(0yy(O); Gx (x); 0y, (v)) and the (dashed, dotted, etc.) lines denote the SAFE
and 3-D finite element solutions respectively.

neous, transversely isotropic beam with fibers oriented along the
z-axis, and 90° corresponds to again a homogeneous transversely
isotropic beam, however with fibers oriented along the x-axis.

Fig. 10 shows how the interlaminar (delamination) stresses
(ayy,0y;, and o) for different fiber orientations change, as we
move away from the free-end. We observe from the figure that it
is not always the strongest orientation of the plies that causes
the smallest interlaminar stresses. Some of the mechanical proper-
ties of a composite (e.g., its strength or weight) may be sacrificed in
favor of decreasing the interlaminar stresses. As such, Fig. 10 may
be used in order to achieve an optimum design of such a structure
by obtaining the desired strength with limited interlaminar stres-
ses. A failure criterion (for example von Mises) may also be em-
ployed with the aid of Fig. 10 to decide which orientation of the
laminates is least susceptible to such a failure.

In our discussion of delamination, we need to distinguish be-
tween that from the lateral surface(s) of a beam and that from
its end. Interlaminar stresses from a lateral surface (which may
or may not be uniform over the length of the beam) require a rel-
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Fig. 9. Problem geometry: a two-layer laminated composite cantilever beam, under
a symmetric patch load.

atively fine finite element discretization of the cross-section to
properly define the decay phenomenon. This has been considered
by many authors (e.g., Pipes and Pagano, 1970; El Fatmi and Zenzri,
2004), but is not within the scope of the present study.

6.4. End-to-end connected beams: a parametric study on the effects of
the difference in material properties

The final problem we consider is a parametric study for investi-
gating how the differences in material properties affect the stress
transition in end-to-end connected beams. For this, we connect
two isotropic beams as shown in Fig. 11, with Young’s Moduli E;
and E,, and Poisson’s ratios v; and v,, and apply axial loading with
resultant P. There are no transition effects when E; =E, and
V1 = v,. However, stress concentrations and jumps in certain stress
components near the transition zone are naturally expected, as the
difference in material properties increases. We determine these
stress concentrations with respect to two parameters, namely the
ratio of the Young’s Moduli E;/E,, and of the Poisson’s ratios
V1 /v, for the two beams.

1 Z2 P

(£, v1) (£ v2)

Fig. 11. Two rectangular isotropic beams, connected end-to-end, with different
Young’s Moduli E and Poisson’s ratios v.

Fig. 12 shows how the difference between the maximum value
of the stress component in the transition zone, G4, and the far
field values (i.e., the Saint-Venant solution) o, of that stress com-
ponent, changes as the parameters are altered. For the stress com-
ponents plotted in Fig. 11, the Saint-Venant stresses are:
Oxx—sv = Oyy_sp = Oyz_sp = 0, and 0,5, = 1.0. It can be seen that
the stress components oy, and oy, reach significant values in the
transition zones, as the properties of the two materials become fur-
ther apart. The axial stress (o), which is the most significant
stress component for the extension problem, reaches values as
high as 5 times the far-field magnitude.

7. Conclusions

In this study, we extensively verified a semi-analytical finite
element (SAFE) method - put forth earlier by Dong and co-workers
(cf.,, Dong et al., 2001; Kosmatka et al., 2001; Lin et al., 2001) - for
analysis of end-effects in inhomogeneous, anisotropic cylinders. In
the SAFE approach an algebraic eigenvalue problem is introduced
using the semi-analytical governing equations. Then the solution
field is expressed through an expansion of decaying eigen-modes.
Our verification studies involving comparisons to both analytical
and fully-discrete methods have shown that the SAFE approach is
highly accurate - even when relatively simple/coarse meshes are
used to discretized the cross-sectional geometry.

We further extended/generalized the SAFE method to handle
transitional effects in connected beams where discontinues in
cross-sectional geometry and/or material constitution occur. Using
a similar eigenvalue expansion, we enforced the continuity of dis-
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Fig. 10. Interlaminar stresses for a two-layer laminated beam under extension, for different fiber orientation of the transversely isotropic layers.
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Fig. 12. Parametric plots showing the influence of difference in material properties of two beams on the transition effects. The E; /E; and v, /v, axes respectively denote the
ratios of Young's Moduli and Poisson’s ratios of the two isotropic beams, connected as shown in Fig. 11. The elevation axis is the difference between the maximum value of the
stress component near the transition zone and the Saint-Venant value (far-field) of that stress component, i.e. Gpox—0s,.

placement and stress fields in a least-squares sense. We examined
transitional effects and stress concentrations for a plate reinforced
beam to verify the formulation and to assess its performance com-
pared to the conventional three-dimensional finite element
method.

Finally, we conducted parametric studies in two simple prob-
lems with implications to engineering practice to demonstrate
the potential utility of the proposed method. Such parametric stud-
ies are prohibitive through three-dimensional finite element anal-
yses. Our experience in these problems indicated that the SAFE
method is extremely efficient compared to 3D FEM. It appears pos-
sible to utilize the method as the analysis engine in optimization
problems involving the design of composite beams and their tran-
sition zones whereby cross-sectional shapes, material layering, and
material properties are parametrically manipulated for improved
performance and function.
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