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a b s t r a c t

This paper studies the vibration and stability of an elastica constrained by a pair of symmetrically placed
parallel plane walls. One end of the elastica is fully clamped, while the other end is allowed to slide
through a rigid channel under edge thrust. In order to take into account the variation of the contact points
between the elastica and the walls during vibration, an Eulerian version of the equations of motion is
adopted. It is found that the lowest few natural frequencies approach and remain degenerately zero when
point-contact deformations evolve to line-contact patterns. As a consequence, the stability of all line-con-
tact deformations before secondary buckling cannot be determined from the linear vibration analysis.
A load-controlled experiment was conducted to find that the elastica jumped from one-point to two-
point, and then to three-point contact with the walls without going through any line-contact deforma-
tions. These experimental observations are different from the results reported previously by others with
different set-ups, in which line-contact deformations did exist. Explanations based on experimental evi-
dences and theoretical analyses are provided to confirm the validity of these previous investigations and
clarify the cause of the difference.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The primary goal of the research in constrained elastica is to
understand the behavior of a thin elastic strip under edge thrust
when it is subject to lateral surface constraints. It finds applications
in a variety of practical problems, such as in compliant foil journal
bearings, corrugated fiberboard, deep drilling, structural core sand-
wich panels, sheet forming, non-woven fabrics manufacturing, and
stent deployment procedures. By assuming small deformation,
Feodosyev (1977) included the problem of a pinned–pinned buck-
led beam constrained by a pair of parallel walls as an exercise for a
university strength and material course. Adan et al. (1994) showed
that when a column with initial imperfection positioned at a dis-
tance from a plane wall is subject to compression, contact zones
may develop leading to buckling mode transition. Domokos et al.
(1997) and Chai (1998, 2002) investigated the planar buckling pat-
terns of an elastica constrained inside a pair of parallel plane walls.
It was observed that both point contact and line contact with the
constraint walls are possible. Roman and Pocheau (1999, 2002)
used an elastica model to investigate the response of a buckled thin
plate subject to prescribed height reduction. Kuru et al. (2000)
studied the buckling behavior of drilling pipes in directional wells.
Chen and Li (2007) and Lu and Chen (2008) studied the deforma-
tion of a planar elastica inside a circular channel with clearance.
ll rights reserved.
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The emphasis of these studies was placed on the static deforma-
tions of the constrained elastica. Very often, multiple equilibria un-
der a specified set of loading condition are possible. In order to
determine whether a calculated deformation exists in reality, a sta-
bility analysis is needed. There is, however, no theory available to
determine the stability of these equilibrium configurations. As a
consequence, experimental observation has been an important tool
to validate the existence of a calculated equilibrium in reality in
previous researches. The purpose of this paper is to present a the-
oretical approach which is capable of predicting the stability of a
constrained elastica deformation.

In constrained elastica the lateral constraint is unilateral, i.e., it
can exert compression but not tension onto the elastica. Mathe-
matically, this type of constraints can be represented by a set of
inequality equations. This poses challenges in determining the crit-
ical states of the loaded structure. Frequently, energy method
based on the extended principle of total potential is adopted
(Villaggio, 1979), assuming that the loaded system is conservative.
Klarbring (1988) demonstrated that non-smooth bifurcation
points, corner limit points, and end points may exist in unilaterally
constrained structures. Schulz and Pellegrino (2000) showed that
the equilibrium equations for a multi-body system subject to uni-
lateral constraints have the same form as the standard Kuhn–Tuck-
er conditions in optimization theory. Tschope et al. (2003) used a
direct computation technique to solve for the instability points of
a contact problem. Rumyantsev (2006) formulated a variational
principle for systems with unilateral constraints. Kanno and Ohsaki
(2009) proposed to solve a maximization problem of a convex
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function over a convex set to determine the stability of a given
equilibrium point of a unilaterally constrained structure. These pa-
pers dealt with the critical states of discrete systems under unilat-
eral constraints.

In the case of continuous systems such as a constrained elastica,
Domokos et al. (1997) gave an insightful discussion and concluded
that the standard tools, including the energy method, for stability
analysis are useless. One of the difficulties of the stability analysis
arises from the fact that while the problem is continuous, the rel-
evant functions are non-smooth due to the contact forces. In this
paper, we develop a vibration method to calculate the natural fre-
quencies and determine the stability of an elastica constrained by a
pair of plane walls. The vibration problem of an elastica without
lateral constraint is straightforward and has been well solved;
see Santillan et al. (2006) and Chen and Lin (2008). The key of solv-
ing the vibration problem in constrained elastica, on the other
hand, is to take into account the sliding between the elastica and
the space-fixed unilateral constraint during vibration.

In this paper, we first consider the deformation patterns of an
elastica constrained inside a pair of symmetrically placed plane
walls. We next focus on the formulation of the linearized equations
of motion and boundary conditions of the constrained elastica.
Natural frequencies and mode shapes of the constrained elastica
can then be calculated and the stability of the system may be
determined. In order to compare with theoretical predictions, a
load-controlled experiment is conducted. The experiment shows
that no line-contact deformations exist, a result different from
those reported previously by others with different set-ups. Finally,
explanations are provided to confirm the validity of these previous
investigations and explain the cause of the difference.
2. Problem description

Fig. 1 shows an inextensible elastic strip with the right end fully
clamped at point B. The flexural rigidity and the mass density per
unit length of the elastic strip are EI and l, respectively. On the left-
hand side there is a straight channel with an opening at point A.
The distance between points A and B is L. Part of the strip is al-
lowed to slide without friction and clearance inside the channel.
Edge thrust F�A is applied at the left end of the strip causing it to
buckle in the domain of interest between points A and B. The
boundary condition at point A may be called ‘‘partially clamped”,
by which we mean that the strip is allowed to slide freely through
the opening A, while the lateral displacement and slope at A are
fixed. An x*y*-coordinate system is fixed at point A. A set of parallel
plane walls at y* = ± h* prevents the elastica from deforming freely.
In Fig. 1 the elastica contacts the walls at two points W1 and W2 at
s� ¼ l�1 and l�2, where s* is the length of the elastica measured from
point A. The total length l* of the elastica between A and B varies as
the edge thrust increases. It is noted that in most of the previous
works on constrained elastica, the total length of the elastica is
fixed, except in Chen and Li (2007) and Lu and Chen (2008).
y* 

*
AF A 

W1

Fig. 1. An elastica constrained by a pair of plane walls. The elastica is fixed at point
3. Equilibrium configurations

Once the elastica is in contact with the walls, the analysis of the
shape of the elastica must be conducted in a piecewise manner.
Since the main purpose of this paper is to discuss the dynamic
characteristics of the constrained elastica, the detail of the static
analysis is omitted here. The interested readers can either follow
the shooting method described in Domokos et al. (1997) or the
procedure presented in Lu and Chen (2008). In the following, we
will discuss the various deformation patterns and the load–deflec-
tion relations obtained from static analysis.

For simplicity, the length, force, moment, time, and frequency
used in this paper are non-dimensionalized according to the fol-
lowing schemes:

ðs; l; x; yÞ ¼ 1
L

s�; l�; x�; y�ð Þ; FA ¼
L2

4p2EI
F�A; M ¼ L

4p2EI
M�

t ¼ 1
L2

ffiffiffiffiffi
EI
l

s
t�; x ¼ L2

ffiffiffiffiffi
l
EI

r
x� ð1Þ

All the variables with asterisks on the right-hand sides of these
equations are physical variables with dimensions. Their dimension-
less counterparts (without asterisks) are on the left-hand sides.
Therefore, s, FA, M, t, and x are the dimensionless length, force, mo-
ment, time, and frequency in the following discussion.

Fig. 2 shows the relation between the edge thrust FA and the
length Dl of the elastica being pushed in through the channel,
where Dl = l � 1. The separation distance 2h is set to be 0.2. Defor-
mation loci of different configurations are marked with numbers.
The bifurcation points are marked with black dots and lower-case
letters. The abrupt terminal point of a locus is marked with a cross
symbol, such as points j and q. In the range of Fig. 2, we record 19
different deformation patterns. Holmes et al. (1999) developed a
scheme of sheet to categorize the deformations of a constrained
elastica. Sheet 0 contains all solutions without contacting the
walls. Sheet Pn contains all solutions constrained by the walls at
n points. Sheet Ln contains all solutions constrained by the walls
in n line segments. According to this scheme, we categorize the
deformations in Fig. 2 as follows.

(1) Sheet 0 contains deformations 1, 2, 5, 6, and 8. These are the
Euler buckling modes. These loci end when contacts with the
walls occur and the deformations transform to other pat-
terns. For instance, locus 5 meets locus 9 at j and terminates
there. The phenomenon of locus termination is due to the
fact that the walls can provide compressive reaction but
not tensile.

(2) Sheet P1 contains deformations 3, 4, and 11. Sheet P2 con-
tains deformations 9, 10, 12, 13, 16, and 19. Sheet P3 con-
tains deformations 14, 17, and 18.

(3) Sheet L1 contains deformations 7. Sheet L2 contains defor-
mations 15.
h* 

L

x* B 

W2

B and fed into the domain of interest AB from opening A under edge thrust F�A .



1 32

4 65

7 98

10 11 12 

13 14 15 

16 17 18 

19 

Fig. 2. Load–deflection curves for a constrained elastica under load control with
h = 0.1. The solid, dashed, and dotted lines represent stable, unstable and neutral
solutions, respectively.
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Static analysis allows us to find all the possible equilibrium con-
figurations as shown in Fig. 2. However, not all these equilibrium
configurations are stable. In this paper, we develop a dynamic
method to calculate the natural frequencies of each equilibrium
state. If all the natural frequencies are real and greater than zero,
the equilibrium configuration is stable and the associated locus is
traced with solid line. If any one of the natural frequencies is imag-
inary, the equilibrium state is unstable and the associated locus is
traced with dashed line. If all the natural frequencies are real but at
least one of them is zero, the stability of the equilibrium state can-
not be determined from the linear vibration analysis. We refer this
type of solution as neutral, and the associated locus is traced with
dotted line. The stability properties of the constrained elastica are
dependent upon the loading mechanism at point A. The stability
properties presented in Fig. 2 are for a constrained elastica under
load control.

It is noted that the slopes of all the loci in sheet 0 are negative.
The corresponding deformations are all unstable. Take locus 1 as
an example. The elastic strip buckles at point a via a sub-critical
bifurcation. We expect that the elastic strip jumps from point a
to a point slightly above point f on locus 4 as the edge thrust in-
creases quasi-statically. It is noted that this type of sub-critical
bifurcation is due to the variable-length feature of the elastica,
see Wang et al. (1998) and Chen and Ro (2010). A column with
fixed length (Domokos et al., 1997; Chai, 1998) will buckle via a
super-critical bifurcation with the nontrivial equilibrium path ris-
ing as the load increases. There will be no jump in the fixed-length
problem.

Locus 7 (one-line contact) is composed of two parts; one with
dotted line (7-1 between g and h) and the other with dashed line
(7-2 beyond h). The length of line contact increases from point g
all the way to beyond h. At the bifurcation point h, the length of
the contact segment and the axial force happen to satisfy the con-
dition of Euler buckling. Another branch 9 of two-point contact
emerges from point h and terminates at j. The bifurcation at point
h is called secondary buckling by some researchers. It is tempting
to assume that the line-contact deformation is stable until the sec-
ondary buckling occurs. Although this is true for a pinned–pinned
elastica as discussed in Domokos et al. (1997), it is not necessarily
true for the clamped–clamped case. For the constrained elastica
discussed in this paper, buckling occurs earlier at point g instead
of point h. It is noted that Chai (1998) and Roman and Pocheau
(1999) conducted experiments on clamped–clamped elastica and
did observe line-contact deformations, which became unstable
via secondary buckling. However, in these experiments the plane
walls are on y = 0 and h, instead of y = ± h. The reason why the elas-
tica under different plane wall set-up behaves so differently will be
discussed in more detail in Section 7.

Locus 15 (two-line contact) is the extension of locus 10 (two-
point contact) and is composed of 15-1 (dotted, between k and
m) and 15-2 (dashed, between m and r). Point m is a limit point
(with a horizontal tangent) of locus 15. The length of contact seg-
ment increases from point k to a maximum and then decreases all
the way to point r. Beyond point r, the deformation evolves to an-
other two-point contact configuration 19. Another interesting phe-
nomenon worth mentioning is that each point on loci 15-1 and 15-
2 actually represents an infinite number of similar deformations.
The contact lengths on the upper and the lower walls are not nec-
essarily equal. All similar deformations with different contact
length combination would satisfy the same equilibrium equations
as long as the sum of the two contact lengths remains unchanged.
Similar feature was reported by Roman and Pocheau (1999) in a
different set-up. It is noted that this feature does not exist for the
one-line contact deformations 7-1 and 7-2.

For the load-control problem in Fig. 2, some rules may be sum-
marized as follows. For those loci with negative slopes the defor-
mations are always unstable. This is equivalent to a spring with
negative stiffness or a gas with negative compressibility. On the
other hand, a positive slope does not necessarily mean a stable
equilibrium. These simple rules may help discriminate quickly
some of the unstable branches. However, these rules do not apply
to displacement-control procedure as described in Section 5.

4. Vibration and stability analysis

As mentioned above, the deformation patterns discussed in Sec-
tion 3 may not be stable. If the deformation is unstable, then it will
not exist in reality. It is noted that the elastica may be in point or in
line contact with the walls, sometimes at multiple locations. In this
paper, we assume that all the contacts are frictionless. In the
following, we introduce a vibration method which is capable of
determining the natural frequencies and mode shapes of the
constrained elastica.

4.1. Two-point contact on different walls

We first consider the case when the equilibrium configuration
involves two-point contact on different walls, such as the one cor-
responding to locus 10 in Fig. 2. The deformation pattern is also
shown in Fig. 1. The two contact points W1 and W2 are at s = l1
and l2, respectively. This analysis can be readily extended to other
contact situations.

4.1.1. Lagrangian and Eulerian descriptions
For a small element ds near the contact point W1 we can write

the geometrical relations, balance of moment and forces, and
moment–curvature relation, in their dimensionless forms, as
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oxðs; tÞ
os

¼ cos hðs; tÞ ð2Þ

oyðs; tÞ
os

¼ sin hðs; tÞ ð3Þ

oMðs; tÞ
os

¼ Fxðs; tÞ sin hðs; tÞ � Fyðs; tÞ cos hðs; tÞ ð4Þ

oFxðs; tÞ
os

¼ 1
4p2

o2xðs; tÞ
ot2 ð5Þ

oFyðs; tÞ
os

� Ry1ðtÞd s� l1 � g1ðtÞð Þ ¼ 1
4p2

o2yðs; tÞ
ot2 ð6Þ

ohðs; tÞ
os

¼ 4p2Mðs; tÞ ð7Þ

Fx(s, t) and Fy(s, t) are the internal forces in the x and y directions. h is
the rotation angle of the strip. Ry1(t) is the normal force exerted by
the wall on the elastica at the contact point. d(�) is the dimension-
less Dirac delta function. Eq. (6) is valid for the elastica between
points A and W2, i.e., for 0 < s < l2. These six equations can be called
the Lagrangian version of the governing equations. s may be called
the Lagrangian coordinate of a point on the elastica.

It is noted that s = l1 represents the material point of the contact
point W1 when the elastica is in equilibrium. During vibration, the
elastica may slide on the wall. As a consequence, the contact point
on the elastica may change from s = l1 to s = l1 + g1, where g1(t) is a
small number. This change of contact point is reflected in Eq. (6).

We denote the static solutions of Eqs. (2)–(7) xe(s), ye(s), he(s),
Me(s), Fxe(s), Fye(s), and constant Ry1e. Fye(s) can be written as

FyeðsÞ ¼ FyeðsÞ
��
s¼0 þ Ry1eHðs� l1Þ ð8Þ

H is the Heaviside step function. During vibration, the function
Fy(s, t) may be regarded as the superposition of Fye(s) and a small
harmonic perturbation, expressed mathematically as

Fyðs; tÞ ¼ FyeðsÞ þ Ry1eðHðs� l1 � g1Þ � Hðs� l1ÞÞ
� �

þ bF ydðs� g1Þ þ Ry1dHðs� l1 � g1Þ
h i

sinxt ð9Þ

x is a natural frequency of the constrained elastica. A variable with
subscript ‘‘d” represents a small perturbation of its static counter-
part with subscript ‘‘e”. The first bracket on the right-hand side of
Eq. (9) represents the shift of the contact point from s = l1 to
s = l1 + g1. After using Eq. (8), Eq. (9) can be rewritten as

Fyðs; tÞ ¼ Fyeðs� g1Þ

þ bF ydðs� g1Þ þ Ry1dHðs� l1 � g1Þ
h i

sinxt ð10Þ

After defining a new variable e1 as

e1 ¼ s� g1 ð11Þ

Eq. (10) can be rewritten as

bF yðe1; tÞ ¼ Fyeðe1Þ þ bF ydðe1Þ þ Ry1dHðe1 � l1Þ
h i

sinxt ð12Þ

where bF yðe1; tÞ ¼ Fyðe1 þ g1; tÞ. bF y and Fy are two different func-
tions. It is noted that Fye(e1) is the static solution as obtained
from static analysis, except that the independent variable s is
replaced by e1. Similarly, the other perturbed functions may be
written asbF xðe1; tÞ ¼ Fxeðe1Þ þ bF xdðe1Þ sin xt ð13Þ
x̂ðe1; tÞ ¼ xeðe1Þ þ x̂dðe1Þ sinxt ð14Þ
ŷðe1; tÞ ¼ yeðe1Þ þ ŷdðe1Þ sinxt ð15Þ
ĥðe1; tÞ ¼ heðe1Þ þ ĥdðe1Þ sin xt ð16ÞbMðe1; tÞ ¼ Meðe1Þ þ bMdðe1Þ sinxt ð17Þ

e1 defined in Eq. (11) may be called the Eulerian coordinate of a
point of the elastica. e1 = l1 represents the point of the elastica graz-
ing through the wall at W1 during vibration. It can be different
material point at different instant.

By noting that oe1
os ¼ 1, the Lagrangian version of the governing

equations (2)–(7) can now be transformed into the Eulerian ver-
sion as

ox̂ðe1; tÞ
oe1

¼ cos ĥðe1; tÞ ð18Þ

oŷðe1; tÞ
oe1

¼ sin ĥðe1; tÞ ð19Þ

o bMðe1; tÞ
oe1

¼ bF xðe1; tÞ sin ĥðe1; tÞ � bF yðe1; tÞ cos ĥðe1; tÞ ð20Þ

obF xðe1; tÞ
oe1

¼ 1
4p2

o2x̂ðe1; tÞ
ot2 ð21Þ

obF yðe1; tÞ
oe1

� Ry1ðtÞd e1 � l1ð Þ ¼ 1
4p2

o2ŷðe1; tÞ
ot2 ð22Þ

oĥðe1; tÞ
oe1

¼ 4p2 bMðe1; tÞ ð23Þ

By substituting Eqs. (12)–(17), together with the relations

Ry1ðtÞ ¼ Ry1e þ Ry1d sin xt ð24Þ
g1ðtÞ ¼ g1d sin xt ð25Þ

into Eqs. (18)–(23) and ignoring the higher-order terms, we arrive
at the following linear equations for the six functions
x̂dðe1Þ; ŷdðe1Þ; ĥdðe1Þ; bMdðe1Þ; bF xdðe1Þ; and bF ydðe1Þ:

dx̂dðe1Þ
de1

¼ �ĥdðe1Þ sin heðe1Þ ð26Þ

dŷdðe1Þ
de1

¼ ĥdðe1Þ cos heðe1Þ ð27Þ

dĥdðe1Þ
de1

¼ 4p2 bMdðe1Þ ð28Þ

d bMdðe1Þ
de1

¼ Fxeðe1Þĥdðe1Þ � bF ydðe1Þ � Ry1dH e1 � l1ð Þ
h i

cos he

þ Fyeðe1Þĥdðe1Þ þ bF xdðe1Þ
h i

sin he ð29Þ

dbF xdðe1Þ
de1

¼ 1
4p2 x2 cos heðe1Þg1d � x̂dðe1Þ½ � ð30Þ

dbF ydðe1Þ
de1

¼ 1
4p2 x2 sin heðe1Þg1d � ŷdðe1Þ½ � ð31Þ

Eqs. (26)–(31) are valid in the range 0 < e1 < l2.
The above formulation can be repeated for the elastica between

points W1 and B by replacing all the subscript ‘‘1” by ‘‘2”, and a sin-
gle over-hat (such as x̂d) by a double over-hat ^̂xd

� �
. As a conse-

quence we have another set of equations similar to Eqs. (26)–
(31) after introducing another Eulerian coordinate e2 as

e2 ¼ s� g2 ð32Þ

where l1 < e2 < l.g2 represents the sliding movement at contact point
W2. The functions x̂dðe1Þ; ŷdðe1Þ; ĥdðe1Þ; bMdðe1Þ; bF xdðe1Þ; and bF ydðe1Þ
in Eqs. (26)–(31) are replaced by a different set of functions
^̂xdðe2Þ; ^̂ydðe2Þ; ^̂hdðe2Þ;

cbM dðe2Þ;
bbF xdðe2Þ; and bbF ydðe2Þ.

4.1.2. Boundary conditions
In load control, the elastica is allowed to retreat into and pro-

trude out of the opening A during vibration. This small length of
movement is denoted g0(t) and can be expressed as

g0ðtÞ ¼ g0d sin xt ð33Þ

The exact geometrical boundary conditions at opening A require
that
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hðs; tÞjs¼g0
¼ ĥðe1; tÞ

���
e1¼g0�g1

¼ 0 ð34Þ

xðs; tÞjs¼g0
¼ x̂ðe1; tÞje1¼g0�g1

¼ 0 ð35Þ
yðs; tÞjs¼g0

¼ ŷðe1; tÞje1¼g0�g1
¼ 0 ð36Þ

These geometrical boundary conditions can be linearized to the
forms

ĥdðe1Þ
���
e1¼0
¼ 4p2Meðe1Þ

��
e1¼0ðg1d � g0dÞ ð37Þ

x̂dðe1Þje1¼0 ¼ g1d � g0d ð38Þ
ŷdðe1Þje1¼0 ¼ 0 ð39Þ

The dynamic boundary condition FA = constant yields

bF xdðe1Þ
���
e1¼0
¼ 0 ð40Þ

Similarly, the boundary conditions at the fixed end B can be linear-
ized to the forms

^̂hdðe2Þ
���
e2¼l
¼ 4p2Meðe2Þ

��
e2¼lg2d ð41Þ

^̂xdðe2Þ
���
e2¼l
¼ g2d ð42Þ

^̂ydðe2Þ
���
e2¼l
¼ 0 ð43Þ
4.1.3. Contact conditions
During vibration, the elastica is always in contact with and is al-

lowed to slide on the wall without friction. The exact contact con-
dition at W1 can be written as

hðs; tÞjs¼l1þg1
¼ ĥðe1Þ

���
e1¼l1

¼ 0 ð44Þ

yðs; tÞjs¼l1þg1
¼ ŷðe1Þje1¼l1

¼ h ð45Þ

These two conditions at W1 can be rewritten as (without
linearization)

ĥdðe1Þ
���
e1¼l1

¼ 0 ð46Þ

ŷdðe1Þje1¼l1
¼ 0 ð47Þ

Similarly, the contact conditions at W2 are
^̂hdðe2Þ

���
e2¼l2

¼ 0 ð48Þ

^̂ydðe2Þ
���
e2¼l2

¼ 0 ð49Þ
4.1.4. Transition from e1 to e2

It is noted that we have defined two Eulerian coordinates e1 and
e2. The location of a material point on the elastica can be expressed
in terms of either e1 or e2. For instance, the contact point W2 can be
defined either as e2 = l2 or e1 = l2 + g2 � g1. As a consequence, a
function can be written in terms of either e1 or e2. For example,
the rotation angle at W2 can be written as

hðs; tÞjs¼l2þg2
¼ ^̂hðe2; tÞ

���
e2¼l2

¼ ĥðe1; tÞ
���
e1¼l2þg2�g1

ð50Þ

After superposing a small harmonic perturbation on the static equi-
librium, Eq. (50) can be written as

heðe2Þje2¼l2
þ ^̂hdðe2Þ

���
e2¼l2

sin xt ¼ heðe1Þje1¼l2þg2�g1

þ ĥdðe1Þ
���
e1¼l2þg2�g1

sin xt ð51Þ

After expanding the two functions he(e1) and ĥdðe1Þ on the right-
hand side with respect to e1 = l2, Eq. (51) can be linearized to the
form
^̂hdðe2Þ
���
e2¼l2

¼ ĥdðe1Þ
���
e1¼l2
þ ohe

oe1

����
e1¼l2

g2d � g1dð Þ ð52Þ

Similar equations for ^̂xd;
^̂yd;

cbM d;
bbF xd; and bbF yd can be obtained in

the same manner.

4.1.5. Solution method
In summary, we have two sets of six linearized differential

equations, like the ones in (26)–(31). These differential equations,
together with the boundary conditions and contact conditions,
admit nontrivial solutions only when x is equal to the eigenvalue
of the system of equations. The unknowns to be found are: the two

sets of six functions x̂d; ŷd; ĥd; bMd; bF xd; bF yd, and ^̂xd;
^̂yd;

^̂hd;
cbM d;bbF xd;

bbF yd, the amplitudes of sliding g0d, g1d, g2d, the dynamic shear

force bF ydðe1Þ
���
e1¼0

and bending moment bMdðe1Þ
���
e1¼0

at point A, and

the two dynamic normal reactions Ry1d and Ry2d at the contact
points. It is noted that x in Eqs. (30) and (31) only appears in
the form of x2. Therefore, if the characteristic value x2 is positive,
the corresponding mode is stable with natural frequency x. On the
other hand, the equilibrium configuration is unstable if x2 is
negative.

A shooting method is used to solve for the characteristic value

x2. We first set bMdðe1Þ
���
e1¼0
¼ 1. After guessing seven variables

bF ydðe1Þ
���
e1¼0

; Ryd1; Ryd2; g0d; g1d; g2d; and x2, we can integrate Eqs.

(26)–(31) like an initial value problem all the way from e1 = 0 to
e1 = l2. The four boundary conditions (37)–(40) at point A provide
the needed initial conditions. At e1 = l2 the six values of

x̂dðe1Þje1¼l2
; ŷdðe1Þje1¼l2

; ĥdðe1Þ
���
e1¼l2

; bMdðe1Þ
���
e1¼l2

; bF xdðe1Þ
���
e1¼l2

; and

bF ydðe1Þ
���
e1¼l2

can be used to calculate ^̂xdðe2Þ
���
e2¼l2

; ^̂ydðe2Þ
���
e2¼l2

;

^̂hdðe2Þ
���
e2¼l2

;
cbM dðe2Þ

����
e2¼l2

;
bbF xdðe2Þ

����
e2¼l2

; and bbF ydðe2Þ
����
e2¼l2

according

to the transition equations similar to Eq. (52). From here on e2

becomes the independent variable and the integration continues
until e2 = l. The three boundary conditions (41)–(43) at e2 = l, two
contact equations (46) and (47) at e1 = l1, and two contact condi-
tions (48) and (49) at e2 = l2 are used to check the accuracy of the
seven guesses. If the guesses are not satisfactory, a new set of
guesses is adopted.

4.2. Other contact situations

The above analysis can be readily extended to other point-con-
tact cases. For instance, for one-point contact, only one Eulerian
coordinate e1 is needed. For three-point contact, three Eulerian
coordinates e1, e2, and e3 are needed.

The vibration analysis of one-line contact is similar to the one in
the two-point contact situation discussed in Section 4.1. In the
analysis, the two ends of the contact segment are treated as the
two points W1 and W2 in Section 4.1. The main difference is that
in the line-contact case the calculated mode shape must be
checked whether it violates the wall constraint. If a mode shape
penetrates the wall during vibration, the mode is invalid and must
be discarded. The analysis of two-line contact is similar, although
more complicated. Four Eulerian coordinates e1, e2, e3, and e4 must
be defined in the case of two-line contact.

4.3. Numerical results and discussions

4.3.1. Transition from one-point to one-line contact
Fig. 3 shows the x2 as functions of the edge thrust FA (starting

from 0.964) for deformations along loci 4, 7-1, and 7-2 (passing



Fig. 3. x2 as functions of the edge thrust FA for deformations along loci 4, 7-1, and
7-2 in Fig. 2. Dashed lines represent invalid modes which will penetrate the wall
during vibration. The mode shapes of those modes marked with black dots are
shown in Figs. 4–6.
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points f, g, and h) in Fig. 2. It is noted that all x2 decrease as FA in-
creases from point f to g. The first two x2 approach zero together
as FA approaches point g. Because all the x2 between points f and g
are positive, we conclude that the one-point contact deformation 4
is stable. Fig. 4 shows the first four mode shapes when (FA,Dl) =
(2.404,0.0262). The square of the natural frequencies x2 are
1023.66, 2689.66, 20427.6, and 27160.0, respectively. The solid
and dashed lines in Fig. 4 represent the equilibrium configurations
and the vibrating mode shapes, respectively. The same format ap-
plies to all the mode shapes presented in this paper. These mode
shapes are not strictly symmetric or anti-symmetric because the
two ends A and B are not exactly identical. However, we can still
observe that the first and the second modes are roughly anti-sym-
metric and symmetric, respectively. The sliding of the elastica on
the constraint wall during vibration is obvious in the first mode.

The lowest two x2 merge at point g and remain zero from this
point on through point h and beyond. In the range between points
(a) =2
1ω 1023.66 

(b) =2
2ω 2689.66 

(c) =2
3ω 20427.6 

(d) =2
4ω 27160.0 

Fig. 4. The first four mode shapes of the one-point contact deformation on locus 4
when (FA,Dl) = (2.404,0.0262). The solid and the dashed lines represent equilib-
rium configurations and vibrating mode shapes, respectively.
g and h, which corresponds to deformation 7-1, the lowest two x2

are zero. Therefore, we have no conclusion regarding the stability
of the deformation in this range. Fig. 5 shows the first four mode
shapes when (FA,Dl) = (7,0.0422). The corresponding x2 are 0, 0,
21053.3, and 24988.8, respectively. In the first mode shape the
only non-zero eigenfunctions are x̂dðe1Þ and g1d. On the other hand,
^̂xdðe2Þ and g2d are the only non-zero eigenfunctions in the second
mode. It is noted that the zero natural frequencies and the corre-
sponding mode shapes described above can be analytically proved
to satisfy Eqs. (26)–(31) and the associated boundary conditions.
Therefore, the lowest two natural frequencies are ‘‘exactly” zero
but not just small numerically. The fourth mode shows that the
line-contact part will leave the wall during half of the period of
the vibration. This mode is invalid because it will penetrate the
wall during the other half of the period. The x2-curve correspond-
ing to this mode is traced with dashed line. We keep the dashed
curve in the figure solely to demonstrate that invalid mode may
appear from our analysis.

For the range beyond point h, there is always one mode whose
x2 is negative. For instance, there are five modes in the range of
Fig. 4 when (FA,Dl) = (10,0.0520), whose x2 are �13644.3, 0, 0,
9078.91, and 24735.84, respectively. The mode corresponding to
the negative x2 is similar to the fourth mode in Fig. 5. While this
mode shape is an invalid vibration mode in the range between
points g and h, it is a valid buckling mode because it complies with
the wall constraint as the elastica buckles away from the wall and
never comes back. Therefore, we trace this negative x2 locus with
solid line. The second and the third modes have zero x2 and the
corresponding mode shapes are similar to the ones in Fig. 5(a)
and (b). The fourth mode at x2 = 9078.91 is shown in Fig. 6. This
mode is invalid because it does not comply with the wall con-
straint at any time.

4.3.2. Transition from two-point to two-line contact
We now examine the dynamic characteristics of the equilib-

rium configurations on loci 10, 15-1, 15-2, and 19 (passing points
(a) =2
1ω 0 

(b) =2
2ω 0 

(c) =2
3ω 21053.3 

(d) =2
4ω 24988.8 

Fig. 5. The first four mode shapes of the one-line contact deformation on locus 7-1
when (FA,Dl) = (7,0.0422). The fourth mode (d) is invalid because it violates the
wall constraint during half of the period of vibration.



=2
4ω 9078.91 

Fig. 6. The fourth mode shape of the one-line contact deformation on locus 7-2
when (FA,Dl) = (10,0.0520). This is an invalid mode.

(a) =2
1ω − 1143.34 

(b) =2
2ω 0 

(c) =2
3ω 0 

(d) =2
4ω 0 

Fig. 8. The first four mode shapes of the two-line contact deformation on locus 15-2
when (FA,Dl) = (6.865,0.2). The solid and the dashed lines represent equilibrium
configurations and vibrating mode shapes, respectively.
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i, k, m, and r). Fig. 7 shows the first four x2 as functions of the
length increment Dl starting from 0.1005 (point i). We choose Dl
as an independent parameter in Fig. 7 instead of FA because x2 is
a single-valued function of Dl in this range, but not FA. In the range
from point i to k, all the x2 are positive. Therefore, all the two-
point contact deformations corresponding to locus 10 in Fig. 2
are stable. It is noted that the first three x2 approach zero together
at point k, and remain zero until point r.

In the range between points k and m, the lowest three x2 are
zero. As a consequence, the stability is inconclusive for locus 15-
1. In the range between points m and r, the lowest x2 is negative.
Therefore, the two-line contact deformation corresponding to lo-
cus 15-2 is unstable. Fig. 8 shows the first four mode shapes when
(FA,Dl) = (6.865,0.2). The three mode shapes corresponding to the
degenerate natural frequencies of zero are shown in Fig. 8(b)–(d).
In each of these modes, only one of the three non-contact segments
moves during vibration.

As Dl increases beyond point r, the deformation evolves back to
two-point contact (locus 19) and the three degenerate natural fre-
quencies of zero break up. The first four x2 when (FA,Dl) =
(2.300,0.3) are �2359.74, 36.93, 1910.64, and 1958.08. Since the
lowest x2 is negative, this two-point contact deformation is
unstable.

5. Some remarks on displacement control

In the case when the elastica is under displacement control, the
analysis requires some modifications, and the stability of the con-
strained elastica may be changed. In this section, we describe the
results briefly.

The main difference between the displacement-control and
load-control procedures is the boundary conditions at point A.
For displacement control, the sliding movement at opening A dur-
ing vibration is not allowed. As a result, the sliding parameter g0

does not exist. The three geometric boundary conditions (37)–
(39) for load control are modified by removing g0 from these equa-
tions. Furthermore, the boundary condition on the edge thrust, Eq.
(40), is no longer needed.
Fig. 7. x2 as functions of length increment Dl for deformations along loci 10, 15-1,
15-2, and 19. The mode shapes of those modes marked with black dots are shown in
Fig. 8.
Fig. 9 shows the stability of the constrained elastica under dis-
placement control for h = 0.1. By comparing with its load-control
counterpart in Fig. 2, we can observe some differences in stability
between the two procedures. (1) The deformations 3, 9, 12, and 17
are unstable in load control. However, in displacement control part
of each of these loci is unstable and the other part is stable, sepa-
rated by a limit point (with a vertical tangent). The limit points on
loci 3 and 9 are very close to the bifurcation points g and h, respec-
tively. Therefore, they are not obvious. However, the limit points
on loci 12 and 17 are obvious. Take locus 12 as an example. The
limit point is at (FA,Dl) = (5.189,0.1349). The upper branch above
this limit point is unstable, while the lower branch is stable. (2)
While the non-contact deformation 1 is unstable in load control,
Fig. 9. Load–deflection curves for a constrained elastica under displacement control
with h = 0.1. The solid, dashed, and dotted lines represent stable, unstable and
neutral solutions, respectively.



Fig. 11. Experimental results of the load–deflection relations. Black dots � and cross
marks � are for loading and unloading processes, respectively.
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it is stable in displacement control. (3) While the two-point contact
deformation 19 with the reversed ‘‘S” shape in the middle is unsta-
ble under load control, it is stable in displacement control. (4)
While the lowest x2 is negative in deformation 15-2 under load
control, the three lowest x2 remain zero in displacement control.
Therefore, the dashed curve of locus 15-2 in Fig. 2 is replaced by
a dotted line. In spite of these differences, one important result is
not changed by displacement control, i.e., the natural frequencies
of deformations 7-1 and 15-1 remain degenerately zero, like the
case in load control.

6. Load-control experiment

The foregoing vibration analysis indicates that the stability of
line-contact deformations 7-1 and 15-1 is inconclusive, both in
load and displacement controls. In order to observe what would
happen in reality we designed an experimental set-up for load
control, whose top view is shown in Fig. 10. The elastica is made
of carbon steel (type SK5) with Young’s modulus 205 GPa and mass
density 7830 kg/m3. The cross section of the elastica is
46 mm � 0.1 mm. The right end of the strip is fully clamped in
an aluminum block, which corresponds to point B in Fig. 1. To sim-
ulate the partial clamp on the left end of the domain of interest we
installed two pairs of rollers in another aluminum block. This de-
sign ensures that the strip in the partial clamp remains straight be-
fore it is fed through point A. The rollers are to minimize the
friction between the strip and the feeding channel. The distance
between points A and B is 30 cm. The left end of the strip is fully
clamped in a slider, which is allowed to slide along a set of guiding
rods. Two strings are attached to this slider, one on the top and the
other on the bottom. The strings pass through two pulleys, with
the other end attached to a hanging bag. Steel screws, each weighs
11.4 g, are added to the bag to simulate the thrust on the left end of
the strip. The wall constraint is made of a pair of aluminum plates.
The distance between the two plane walls is 6 cm.

The measured relations between FA and Dl are plotted with
black dots � (loading) and cross marks � (unloading) in Fig. 11.
The solid curves (stable equilibrium) in Fig. 2 are retained for com-
parison. For convenient reference, we add the physical parameters
with units of FA and Dl on the right and top sides of the diagram. At
the last point before jump occurs, the black dot and cross mark are
circled. Before the loading process, special care has to be taken to
ensure that the metallic strip is well aligned between the two
clamps, as shown in Fig. 12(a). In the loading process, there are
three jumps as FA increases from 0. The first jump occurs at
(FA,Dl) = (1.431,0.0003) when the strip buckles and contacts the
wall at one point, as shown in Fig. 12(b). The second jump occurs
at (FA,Dl) = (3.702,0.0344) when the strip contacts the walls at
two points, as shown in Fig. 12(c). The third jump occurs at
(FA,Dl) = (6.622,0.1348) when the strip contacts the walls at three
points, as shown in Fig. 12(d). It is noted that the last two jumps
are very close to the theoretical values at points g and k with dis-
crepancy in FA between theory and experiment being 0.2% and 5%,
respectively.
slider 

plane wall 

feeding 

channel 

roller 

A 

Fig. 10. Top view of the e
After the third jump the strip deforms in a three-point con-
tact pattern. The loading process stops at FA = 8.893, and from
then on the unloading process begins. The strip deformation
jumps from three-point to two-point contact when (FA,Dl) =
(3.053,0.2087), and jumps from two-point to one-point contact
when (FA,Dl) = (2.080,0.0935), and finally jumps back to non-
contact pattern when (FA,Dl) = (1.431,0.0161). These three
jumping loads are very close to the theoretical values at points
l, i, and f, respectively. These observations from both the loading
and unloading processes strongly suggest that the line-contact
deformations 7-1 and 15-1 do not exist in the current experi-
mental set-up.

The natural frequencies of the constrained elastica can be mea-
sured by using a photonic sensor (MTI-2000). The non-contact
photonic probe shines a beam of light perpendicularly onto the
surface of the strip at some point. The strip is hit by a small object
simulating an impact. From the power spectrum of the response,
which is collected and calculated with a spectrum analyzer, we
can identify some of the lowest natural frequencies. The cross
marks in Fig. 13 represent the first two measured natural frequen-
cies of the one-point contact deformation (locus 4 in Fig. 2) in the
loading process. Although the experimental results of the second
natural frequency can go as much as 30% higher than the theoret-
ical one, the trend that the two natural frequencies decrease to-
ward zero as load increases is obvious.

The most difficult problem we faced in experimental observa-
tion is the friction in all the movable parts. For instance, the friction
in the roller bearing simulating the feeding channel, the pulleys,
and the sticky action between the metallic strip and the plane
walls all contribute to the inaccuracy of the frequency measure-
ment. In particular, it is assumed that sliding between the plane
walls and the elastica must occur in the theory because friction
is neglected. However, in reality, the sticky action due to the
pulley string 

dead load guiding rod 

elastica 

fixed clamp 

B 

xperimental set-up.



Fig. 12. Photographs of (a) straight configuration before Euler buckling, (b) one-point contact, (c) two-point contact, and (d) three-point contact deformations. The contact
points are marked with white dots.

Fig. 13. The first two natural frequencies x as functions of the edge thrust FA for
one-point contact deformation (locus 4 in Fig. 2). The cross marks � represent the
experimental measurements.
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friction between the walls and the elastica may prevent this type of
sliding to occur. The situation deteriorates especially when the
pushing force is large.
7. Comparison with previous works of others

One of the unique results reported in this paper is that none of
the line-contact deformations exist in the experiment. The elastica
is found to buckle far before reaching the secondary buckling load.
However, several previous works on constrained elastica did ob-
serve line-contact deformations. One is the clamped–clamped elas-
tica investigated by Chai (1998) and Roman and Pocheau (1999),
and the other is the pinned–pinned elastica discussed by Domokos
et al. (1997). It is noted that the elastica is of fixed length in these
two cases. In this section, we confirm the validity of these previous
investigations, both theoretically and experimentally, and propose
explanations which may help us understand why the elasticas be-
have differently in different set-ups.

7.1. A clamped–clamped elastica

Chai (1998) and Roman and Pocheau (1999) conducted experi-
ments on a clamped–clamped elastica and reported that line-con-
tact deformations did exist and become unstable via secondary
buckling. It is noted that the plane walls in these experiments
are not symmetric with respect to the elastic strip. Instead, the
walls are on y = 0 and h. We rearranged the experimental set-up
in Fig. 10 by moving the plate on y = �h to 0, a set-up similar to
the experiments in Chai (1998) and Roman and Pocheau (1999).
The measured load–deflection relations (FA–Dl) are recorded in
Fig. 14(a) with cross marks �. The theoretical predictions are also
drawn in Fig. 14(a) for comparison. The solid, dashed, and dotted
lines represent stable, unstable, and neutral solutions from the
vibration analysis.

We first compare the theoretical predictions on the load–deflec-
tion curves between Figs. 2 and 14(a). The one-point contact defor-
mations 4 in Figs. 2 and 14(a) are the same. At point g deformation
4 evolves to line-contact deformation 7-1. In Fig. 2 a point on locus
7 (including 7-1 and 7-2) represents a single deformation. How-
ever, in Fig. 14(a) a point on locus 7 actually represents an infinite
number of ‘‘similar” deformations. The line contact can occur on
the upper wall, the base wall, or combined, as long as the sum of
the lengths of the line-contact segments d1 + d2 + d3 remains the
same. This situation occurs in deformation 15 of Fig. 2 as well.



Fig. 14. (a) Experimental and theoretical results of the load–deflection relation when the plane walls are on y = 0 and h. (b) Photograph of the line-contact deformation.
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The one-line contact deformation on locus 7 in Fig. 2 is a special
case with d1 = d3 = 0. Furthermore, deformations 3 and 11 in
Fig. 2 are prevented by the base plane wall and are absent in
Fig. 14(a). As a result, there is no other ‘‘non-similar” deformation
bifurcating away at point g. At point h locus 7-1 in Fig. 14(a) may
bifurcate to locus 9. A point on locus 9 actually represents two dif-
ferent deformations 9a and 9b. In Fig. 2, on the other hand, only
deformation 9a is possible. Locus 18* is a three-point contact defor-
mation, which cannot be found in Fig. 2. Vibration analysis shows
that the lowest two natural frequencies of any deformation on lo-
cus 7-1 in Fig. 14(a) are zero, the same result as in Fig. 2. Therefore,
the stability of deformations on locus 7-1 remains inconclusive.

We next examine the experimental observation. It is clear that
the elastica buckles at point h when FA reaches the secondary buck-
ling load. The line contact on the upper wall is clearly present, as
shown in Fig. 14(b). It is baffling why the line-contact deformation
on locus 7-1 of Fig. 14(a) can be observed, but the one in Fig. 2 can-
not, in spite of the fact that the lowest two natural frequencies are
degenerately zero in both cases. Several additional tests were con-
ducted to find the cause of this difference. We first produced the
line-contact deformation 7-1 in Fig. 14(b) and removed the base
wall carefully. It was found that the strip snapped away immedi-
ately. Apparently, the base wall did do something in the line-con-
tact deformation. Close inspection revealed that the strip actually
touched the base wall symmetrically with very small segments.
In other words, d1 and d3 are very small but not zero. We next used
a digital video camera to record the dynamic buckling processes in
both experiments. It was found that in Fig. 14(a) the elastica buck-
led at point h symmetrically via deformation 9(a). On the other
hand, in Fig. 2 the elastica buckled at point g asymmetrically via
deformation 3. Apparently, when and in what form the elastica
buckles depend strongly on whether the load–deflection locus
experiences a bifurcation. Based on these observations, we conjec-
ture that for a constrained clamped–clamped elastica buckling may
occur whenever a bifurcation is experienced in the process when it
evolves from point- to line-contact deformations, such as points g
and k in Fig. 2 and point h in Fig. 14(a).
7.2. A pinned–pinned elastica

Domokos et al. (1997) considered a pinned–pinned elastica con-
strained in the middle of a pair of plane walls, a symmetric set-up
similar to the one discussed in this paper. One end of the elastica is
under edge thrust FA and is pushed in a distance. They observed
that line-contact deformations did exist and become unstable via
secondary buckling. The vibration analysis discussed in this paper
can be applied to this case by properly modifying the boundary
conditions. We assume that the pinned–pinned elastica is in
two-point contact with the walls as shown in Fig. 15(a), a situation
similar to the one in Fig. 1. During vibration the left end is moving
back and forth with a small movement g0(t) in the form of Eq. (33).
The exact boundary conditions at end A require that

Mðs; tÞjs¼0 ¼ bMðe1; tÞ
���
e1¼�g1

¼ 0 ð53Þ

xðs; tÞjs¼0 ¼ x̂ðe1; tÞje1¼�g1
¼ g0 ð54Þ

yðs; tÞjs¼0 ¼ ŷðe1; tÞje1¼�g1
¼ 0 ð55Þ

These boundary conditions can be linearized to the forms

bMdðe1Þ
���
e1¼0
¼ Fxeðe1Þje1¼0sinheðe1Þje1¼0�Fyeðe1Þ

��
e1¼0cosheðe1Þje1¼0

h i
g1d

ð56Þ

x̂dðe1Þje1¼0 ¼ g0d þ g1dcos heðe1Þje1¼0 ð57Þ

ŷdðe1Þje1¼0 ¼ g1dsin heðe1Þje1¼0 ð58Þ

Similarly, the boundary conditions at end B can be linearized to the
forms

cbM dðe2Þ
����
e1¼0
¼ Fxeðe2Þje2¼1sinheðe2Þje2¼1�Fyeðe2Þ

��
e2¼1cosheðe2Þje2¼1

h i
g2d

ð59Þ

^̂xdðe2Þ
���
e2¼1
¼ g2dcos heðe2Þje2¼1 ð60Þ



h FA BA

W1

W2

a

b

Fig. 15. (a) A pinned–pinned elastica constrained by a pair of plane walls. (b) x2 as
functions of the edge thrust FA when the pinned–pinned elastica (h = 0.05) evolves
from one-point (f–g) to one-line (g–h) contact deformation. The line-contact
deformation becomes unstable via secondary buckling at point h.
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^̂ydðe2Þ
���
e2¼1
¼ g2dsin heðe2Þje2¼1 ð61Þ

The dynamic boundary condition FA = constant yields Eq. (40), and
the contact conditions at the contact points W1 and W2 remain
the same as in Eqs. (44)–(49).

Fig. 15(b) shows the x2 as functions of FA when the pinned–pin-
ned elastica evolves from one-point to one-line contact. The gap 2h
is set at 0.1, the same as in Domokos et al. (1997). Point f repre-
sents the start of one-point contact deformation. The deformation
evolves from point contact to line contact at point g (FA = 3.984),
and becomes unstable via secondary buckling at point h
(FA = 15.874). The natural frequency loci near point g are magnified
and shown in the two insets. It is noted that, unlike the clamped–
clamped case discussed in this paper, there are no degenerately
zero natural frequencies in line-contact deformations. This vibra-
tion analysis confirms that the line-contact deformation before
secondary buckling is stable in the pinned–pinned elastica investi-
gated by Domokos et al. (1997).

8. Conclusions

This paper studies the behavior of an elastica constrained by a
pair of plane walls. One end of the elastica is fully clamped, while
the other end is allowed to slide without friction and clearance in-
side a rigid channel. The elastica is compressed by a longitudinal
force, causing it to buckle in the domain of interest between the
full clamp and the opening of the feeding channel. As a conse-
quence, the total length of the elastica between the two ends varies
as the edge thrust increases. Both load-control and displacement-
control procedures are discussed. Some of the conclusions can be
summarized as follows.

(1) Static analysis allows us to find all the possible equilibrium
configurations, including non-contact, point-contact, and
line-contact deformations. In order to predict how the elas-
tica behaves in reality, the stability of these equilibrium con-
figurations needs to be determined. In this paper, a vibration
method is adopted to calculate the natural frequencies and
determine the stability of the constrained elastica.

(2) In order to take into account the sliding between the elastica
and the plane constraints during vibration, Eulerian coordi-
nates are defined to specify the positions of the material
points on the elastica. After transforming the governing
equations and the boundary conditions from the Lagrangian
description to the Eulerian one, the natural frequencies and
the mode shapes of the constrained elastica can be calcu-
lated. In line-contact deformations, the calculated mode
shapes have to be discarded if they do not comply with
the plane constraints.

(3) It is found that the lowest few natural frequencies approach
and remain degenerately zero when point-contact deforma-
tions evolve to line-contact patterns. As a consequence, the
stability of all line-contact deformations before secondary
buckling cannot be determined from the linear vibration
analysis.

(4) In order to observe what would happen in reality, a load-
control experiment is conducted. It is found that the elastica
jumps from one-point to two-point, and then to three-point
contact with the walls without going through any line-con-
tact deformations. These experimental observations are dif-
ferent from the results reported previously by others with
different set-ups, in which line-contact deformations did
exist. Explanations based on experimental evidences and
theoretical analyses are provided to confirm the validity of
these previous investigations and clarify the cause of the dif-
ference. It is conjectured that for a constrained clamped–
clamped elastica buckling may occur whenever a bifurcation
is experienced in the process when it evolves from point- to
line-contact deformations.
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