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A fast method for solving the volume integral equation is developed for scattering analysis of elastic wave
propagation in a half space. The proposed method applies the fast generalized Fourier transform and
inverse transform formulated in the present study to the Krylov subspace method. The amount of calcu-
lations required for the proposed method is O(NlogN), where N is the number of grid points used to model
the elastic half space. Furthermore, the MPI parallel algorithm for the generalized Fourier transform is
presented for further reduction of the CPU time. Numerical calculations are performed in order to exam-
ine the effects of the number of sampling grid points as well as their intervals on the solutions of the vol-
ume integral equation and the CPU time required for the analysis. In addition, comparisons of the
proposed method with the previous method based on the trapezoidal approach (Touhei, 2009) are also
performed in order to discuss the properties of the solution of the present method.
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1. Introduction

The application of integral equation methods to engineering
problems has become widespread. Since the 1980s, there have
been a number of analyses of scattered waves by means of integral
equation methods. For example, Colton and Kress (1998) reported
a survey of a vast number of articles on forward and inverse scat-
tering analyses. They reported methods for acoustic and electro-
magnetic wave propagation based on the theory of operators
(Colton and Kress, 1983, 1998). Guzina et al. (2003) considered
the problem of mapping underground cavities from surface seismic
measurements based on a regularized boundary integral equation.
The present author introduced a complete eigenfunction expansion
form of the Green'’s function for an elastic layered half space that is
applicable to the boundary integral equation method (Touhei,
2003). Manolis et al. (2004) considered elastic wave scattering
due to cracks in inhomogeneous geological continua by introduc-
ing the boundary integral equation. Not only boundary integral
equation methods, but also a type of volume integral equation
known as the Lippmann-Schwinger equation (Ikebe, 1960) has
been applied to elastic or electromagnetic scattering problems.
For example, Hudson and Heritage (1981) applied the Born approx-
imation of the solution of the volume integral equation to seismic
scattering problems. Yang et al. (2008) proposed a conjugate
gradient fast Fourier transform (CG-FFT) approach to solve elastic
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scattering problems. De Zaeytijd et al. (2008) proposed the fast
Fourier transform and the high-frequency multilevel fast multipole
algorithm (MLFMA-FFT) for analyzing electromagnetic waves.

The present author has previously presented a volume integral
equation method based on the wavenumber domain formulation
for an elastic scattering problem (Touhei, 2009 and Touhei et al.,
2009). The previous method uses the Fourier transform to con-
struct the Krylov subspace according to the mathematical form
of the volume integral equation in the wavenumber domain. As a
result, it was not necessary to calculate a coefficient matrix for
the volume integral equation. Furthermore, the development of a
fast method for an elastic full space by means of the ordinary fast
Fourier transform was simple (Touhei et al., 2009). On the other
hand, a fast method for an elastic half space has not yet been estab-
lished (Touhei, 2009) because the kernel of the generalized Fourier
transform that is required in order to formulate a fast algorithm is
very complicated.

Under these circumstances, the motivation for the present
study is to establish a fast method for solving the volume integral
equation for an elastic half space. The essential consideration of the
proposed formulation is to decompose the complicated kernel of
the generalized Fourier transform into the ordinary Fourier trans-
form and the Laplace transform to which the fast algorithm can
be applied. In the following, the discussion begins with the theo-
retical formulation, in which the role of the generalized Fourier
transform and the kernel of the generalized Fourier transform are
clarified. Then, a fast algorithm for the generalized Fourier trans-
form is presented. The amount of computation for the proposed
method is O(NlogN), where N is the number of grid points used
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for modeling the elastic half space. Based on the fast algorithm, a
method for message-passing interface (MPI) parallel computation
(Pacheco, 1997) is also presented. Several numerical examples
are presented in order to examine the effects of the number of
sampling grid points and their intervals on numerical solutions
as well as the CPU time required for the calculations. Verification
of the amount of computation O(NlogN) is also carried out based
on the numerical results. Comparisons of the present solutions
with solutions obtained by the previous method based on the trap-
ezoidal approach (Touhei, 2009) are performed in order to investi-
gate the properties of the present method.

2. Theoretical formulation
2.1. Volume integral equation for a scattering problem

Fig. 1 shows the concept of the problem defined in the present
article. A point source is applied to a 3-D elastic half space. Scat-
tered waves are generated by the interaction between the waves
from the point source and the presence of the fluctuations. A Carte-
sian coordinate system is used to describe the wave field, in which
the spatial point is expressed as:

X=(X1,%,%3) ER* x R, = R3, (1)

where the subscript index indicates the component of the Cartesian
coordinate system. In the following, the summation convention is
applied to the subscript indices describing the Cartesian coordinate
system. The free boundary of the half space is denoted by x5 = 0. The
fluctuation of the wave field is expressed by the Lamé constants and
the mass density such that:

2(X) = 29 + A(X),
H(X) = Mo + f(x), (2)
) p(x),

px) =

where o, 1o, and po are the background Lamé constants and the
mass density, and 4, it, and p, respectively, are their fluctuations.
The P and S wave velocities for the background structure are
denoted by c; and cy, which are obtained from:

=1/ (%o +2Mlg)/Po, €1 =\/Ho/Po- 3)

Let the time factor of the wave field be exp(iwt), where w is the
circular frequency and t is the time. The governing equations, as
well as the boundary conditions for the present problem, are given
as:

(Li,-(éh , 09, 63) + 6,-jpoa)z)u,—(x) = Nl-j(éh , 09, 63,x)uj(x)
— G0 (X — X)), (4)
ij(a1,62,63,x)uj(x) = 0., (at X3 = 0), (5)

where u; is the total displacement field, 6; is the Kronecker delta,
() is the Dirac delta function, x() is the spatial point to which
the point force is applied, g; is the amplitude of the point source,
and Ly, Ny, and Py are the differential operators constructed by the

X1

>

Pant source

Fluctuation of the medium

Fig. 1. Concept of the analyzed model.

background structure of the wave field and their fluctuations,
respectively. The explicit forms of the operators L, Nj; and Py are
expressed as:

Lj(01,02,03) = (do + Ho)0idj + Ho 00k, (6)

Ny(@1,82,85,) = = (700 + (X)) id; — 0y (x)d — 4203,

— G0k fU(X)0k — QjUX)D; — Fp(X)ew?, (7)
L(X)0s 0 U(x)0
[P (91,02,85,%)] = 0 ux)os HU(X)3, . (8)
Ax)01 A(x)02  (A(X) +2u(x))0;

Assume that the right-hand side of Eq. (4) is the inhomogeneous
term of the equation. Then, the solution of Eq. (4), together with
the boundary condition shown in Eq. (5), is expressed by the fol-
lowing volume integral equation:

) =l X0) ~ [ Gyl yIN(0r.22,02. Y ue(y)dy. ©)
JR3

where f; is the incident wave field and Gj is the Green’s function,
which satisfies the following equations:

(LU(a1 ) a2-, 63) + 5Upoa)2)cjk(X,Y) = _5ik6(x —y)7 (10)
PEP(@],@Z,@g)ij(X,y) =0, (atx3=0).
Note that the components of P{ in Eq. (10) are as follows:
M35 0 Mo
{P,@}@(a],az,ag] =| 0 s HoO2 . (11)
7001 002 (o +2Uy)ds

By means of the Green’s function, the incident wave field is ex-
pressed as:

filxx5)) = Gy(*,%()4;, (12)

It is convenient to express the volume integral equation in terms of
the scattered wave field:

vi(x) = wi(x) — fi%, Xs)), (13)

which becomes as follows:

vi(x) = —/3 Gij(%, Y)Nji(01,02, 03, Y)fe (¥, X(s))dy
R+
= [ GuteyN(@r. 22,05, ). (14)
R+

In the derivation of the volume integral equation shown in Eq.
(9) based on Egs. (4) and (5), the radiation condition of the wave
field was assumed. However, like the Sommerfeld radiation condi-
tion (Sommerfeld, 1949), the explicit form of the radiation condi-
tion of the elastic wave field for the half space is very difficult to
obtain. This is due to the presence of the Rayleigh wave and the
body waves in an elastic half space. Therefore, instead of present-
ing the explicit form of the radiation condition for an elastic half
space, we use the following formula:

lim | (Gi(x,)Ty) ~ Ty(x.y)u(y)dSy =0 x € R,y € Sp, (15)

R—oo Sk

as the radiation condition, where Si is the surface of the semi-
sphere defined by

SR:{xeRi\x$+x§+x§:R2}, (16)

7; is the traction vector, and Tj is the double layer kernel of the
Green’s function.
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2.2. Generalized Fourier transform for the volume integral equation

The generalized Fourier transform and inverse transform for
elastic wave propagation in a half space (Touhei, 2009) have an
important role in solving Eq. (14). These transforms are given as
follows (Touhei, 2009):

(Ui (¢) = / A& X5 (x)dx, (17)

0= [, e

eayp

s

for uj € L(R?) and i € L»(0,) ® Ly(0.), where ¢ = (¢, &,
the point in the wavenumber space:

L=1\/8+8. (19)

In addition, A;; is the kernel of the generalized Fourier transform
obtained from the following eigenvalue problem:

Lij(01,02,83) (&, %) = — oG An(&, ),
P (81,87, 03) Aj(£,X) =0, (at x3 =0),

&)dédé,

(&, x)1(£)dEsdE de,, (18)

ég) S Ri is

(20)

where the superscript * for A;; denotes the complex conjugate and
op and o, are the subsets of the wavenumber space used to express
the Rayleigh wave and the body waves, respectively, which are
given as:

O'pf{ff (&, €2753)€R3|F &, é3) = }
oc={¢=(&.5,8) e R|& > &)

Note that F(¢,, &) in Eq. (21) is the Rayleigh function (Aki and
Richards, 1980) expressed as:

F(é &) = (28 - &) — 48w, (22)
where v and y in Eq. (22) are denoted by
V=& -&ler/a)’. (23)

The kernel of the generalized Fourier transform has the following
orthogonality relation:

(21)

22 £2
=& —¢3,

[, A€ 0 A 00k = 3 3( — 6)0(6 - &), (24)
R+
when ¢, ¢ € 6, and

AxW&MM@ww:%Ma—mM@—@M@—@, (25)

» is defined as:

&3.83

when ¢, & € g, where §;

(when & = &),

1
o 26
&3,8 { 0 (WhEH 537'55,3)7 ( )

The generalized Fourier transform and the inverse Fourier
transform have the following structures, which clarify the algo-
rithm for their transforms:

(&) = Us)(€) = (Fiy) Ty F05) (@), 27)
ui() = Uy )0 = (FO Tiw 7o i) ), (28)

where F® and ™" are the ordinary Fourier integral transforms
with respect to the horizontal coordinates defined by

(FMu) (&, 85, X3) =5 / X) exp(—i& X1 — i&;x%;)dx;dx,

<f(h)7lu>(X1,X27X3) 2—/ U(&y, &, X3) eXP(i&ix1 + i&;Xy)dEdE,.
T Jr2

(29)
In addition, Tj; is the unitary matrix, the components of which are:
0 ig/é i&/G
Tyl= |0 i&/& —i&i/& |, (30)
1 0 0

1 . .
and F{;) and 72} are the transforms with respect to the vertical
coordinate defined by

(Fm)@ = [ om0, 61)

71
<JT§:1) ) &1,82,%3) =

Zl//lm C X3 um

éeap

/ Vi &% )lm(£)ds.

(32)

Note that the overbar of u indicates that u is a function having (&4,
&, X3) as arguments.

The kernel of the transform with respect to the vertical coordi-
nate system (&, x3) is the solution of the equation of the eigen-
value problem:

L&) = po&3 (&%), (33)
with the free boundary condition:

PPy (.%3) =0,
where L; and P; are the operators obtained from:

= —Tpilmi(i&y,i&;,03) Ty,
=T, PO (i&1,i85,03)Ty,

mi* mk

(at x3 = 0), (34)

25
@
N4

the components of which are:

—(Jo + 2M0)05 + & (4o + Ho)Er3 0
Li=| —(o+up)ads — —pe®+ (o +25)& 0 :
0 0 —1o03 + Hot}
(36)
(Ao +2Uy)0s —A& O
PO =|  me& ks 0| (37)
0 0 ﬂoa3.

The explicit forms of 1;; are summarized in the next section. These
explicit forms are important in order to formulate and clarify the
fast method for the volume integral equation.

The Green’s function for an elastic half space can be expressed
by the kernel of the generalized Fourier transform. Application of
the generalized Fourier transform to Eq. (10) yields the following
equation:

(#Oég _pO )ij(67y) jl{(g7y)7 (38)

where akj is the generalized Fourier transform of the Green’s func-
tion. Based on Eq. (38), the Green’s function can be expressed in the
following form:

X y / Ak C, ]k(‘)‘f y)
l

i ®? icg, oS5 — po? + i€
zk é X Aj*k éy)

/Rz /r Ho&3 — poe? + i€

dédé,

d&;dédes, (39)
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where € is an infinitesimally small positive number and the right-
hand side is the limit as € approaches zero. The term € indicates
how to avoid a singular point in the integrand (Aki and Richards,
1980). In the numerical calculation stage, a small positive finite real
number must be imposed on € in order to stabilize the numerical
solutions.

Next, let us apply the generalized Fourier transform to Eq. (14).
The volume integral equation is modified as follows:

vi(8) = —fl(ﬁ)uikajfj - H(é)uikajuﬂl (), (¢egpuo.CR), (40)

where A(¢) is the function defined by
- 1
h(¢) = —4———+.

[o&5 — Poe? + i€

Eq. (40) can be regarded as the Fredholm equation as expressed in
the following form:

(&) = bi(¢) — Ay (9),
where b; and A;; are defined by

(41)

(teopyua. CR?), (42)

bi(&) = —h(&)UuNuf;, (43)
and
Aj = h(& Nl (44)

Eq. (42) is discretized, and the Krylov subspace is constructed for
the operator to formulate a method for the volume integral equa-
tion. In this article, the Bi-CGSTAB method (Barrett et al., 1994) is
used for the Krylov subspace iteration method. The discretization
of the operator is not performed by deriving a coefficient matrix. In-
stead, the discretized generalized Fourier transform and the inverse
Fourier transform are directly used to express the effects of the
operator. As a result, a method for obtaining the volume integral
equation that does not require a coefficient matrix is realized.

At this point, the treatment of the derivatives using the general-
ized Fourier transform should be considered. Using Eq. (28), we
find:

-1, -
i(x) = FO (i) Tim iyl 1(8), (45)
when k=1, 2 and

-1 -1, .
Osui(x) = FO 7 Ty 0350 11(8), (46)

mj

where, according to Eq. (32):

oy i5(0) = Y Oabin(E0)in(@) + [ abin(E )it (@),

IS cr
(47)

Therefore, it is not necessary to carry out the numerical differenti-
ation in order to evaluate N,q-Z,{ﬁ1 71(¢) in Eq. (40). This also holds
for the case in which Eq. (40) is used in a discretized form.

The CPU time required for the proposed method strongly de-
pends on the algorithm for the generalized Fourier transform.
Previously, however, a large amount of CPU time was found to
be required for the generalized Fourier transform and the inverse
Fourier transform (Touhei, 2009). The reason for this is the use
of the trapezoidal approach for the integrals shown in Egs.
(31) and (32). Furthermore, the use of the trapezoidal approach
causes a difficulty in obtaining accurate solutions for the case in
which the parameter x3 becomes large in Eq. (32). The reason for
this is that A& for discretizing the integral of Eq. (32) must be
set sufficiently small for a large xs. This is clear from the explicit
forms of the eigenfunctions presented in the next section.

Therefore, unless we adjust the interval of grid points in the
wavenumber domain according to the quantity of xs, there is a
limitation in the trapezoidal approach. A method by which to re-
solve the problems associated with the development of a fast
and accurate algorithm for the generalized Fourier transform is
discussed in the next section.

2.3. Fast method for solving the volume integral equation

Instead of the trapezoidal formula for Egs. (31) and (32), we
must seek an alternative method. This requires investigation of
the explicit forms of y;; as solutions of Egs. (33) and (34).

2.3.1. Explicit forms of the solution to the eigenvalue problem (33) and
(34)

The explicit forms of the solutions of Eqs. (33) and (34) are pre-
sented here for each case of ¢ € 0, and ¢ € g, which are defined by
Eq. (21). For the sake of convenience in presenting the solutions, o,
is divided into two subsets:

Oc =0 U0, (48>
where:

O = {f =(¢1,8,8) € IR3+|§’, <& < (CL/CT)fr}.,
O = {f =(61,6,8) € Ri'(CL/CT)ér < 53}.

The following coefficients A;, (j=1, ---, 8) attached to the solutions
Yy are used to satisfy the free boundary conditions as well as the
normalization conditions. Note that, with the exception of the
explicit forms listed below, y;; are assumed to be zero. For the case
in which ¢ € g}, the explicit forms of ;; are expressed as:

(49)

ar(E,X3) = =) eXp(—)X3)Aq + & exp(—VX3)A,,

50
¥21(&,X3) = & eXp(—7X3) A1 — &V exp(—VXs3)Az, (30)
where the coefficients A; and A, satisfy the following:

282y
Mty =, (51)
P2 4 & EE+v?
/ o A2 22MA, +%A§ - 1. (52)
For the case in which ¢ € 4, ;; are given by

Y11(E,X3) = =7 €XP (=)X3)As + & €0 (VX3)Aq + & sin (Vx3)s,
Y21 (&,X3) = & exXp (—yX3)As — &V Sin (VX3)Aq + £V COS (VX3)As,
¥33(&,X3) = &, COS (VX3)As,

(53)

where ¥ = /¢ — ¢ and the coefficients A;, (j = 3,. . .,6) must satisfy
the following:

Ay = a(8)As,
As = B(£)As,
2 1

N+A== : 54

R (54)
A= L)%

or VTV
In Eq. (54), « and g are defined by
2y L

a(é) = E) = L 55

O-5"5% KO-z (55)
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For the case in which ¢ € g, ¥y are given as

Y1 (E.x3) = [7€0s (7x3) + (&7 cos (Vx3)] Ay,
Y21 (&,%3) = (& sin (Px3) — Q(E)EV sin (VX3)]A,
Y12(& X3) = [=7sin (x3) + B(& f sin (Vx3)] As, (56)
V22 (&,X3) = [&r €O (7X3) + B(E) &V cOS (VX3)]Ag,
¥33(&,X3) = & €OS (VX3)As,
where 9 = \/(cr/c;)*é — ¢ and the coefficients A7 and Ag are:
A% T 1
2 5(+228)
(57)
A2 — T ;
P2a0+R8Y)
where
w9 =20, (58)
V2 ¢

2.3.2. Decomposition of the operator F¥

Based on the explicit forms of y;;, we modify Eqgs. (31) and (32).
The basic concept for this modification is the decomposition of an
equation into the ordinary Laplace and Fourier sine and cosine
transforms. In this situation, we must replace the parameters of
the integrals ¢; with 9, v, ¥, and ) for the inverse transform.
Furthermore, the modification of Eqs. (31) and (32) should also
be expressed in comprehensive form, even if explicit forms of i;
are complicated. Considering these facts, let the modification of
Egs. (31) and (32) be expressed as:

Fwy = AL ()] + AV L[] + AT F o (] + A% F o )]
+ Afc‘j]-'cv [ﬂj] + Aﬁw]:s‘” [uj} )

FO = [AL u,]+£* [Agf"%,-] (59)

+ »C; [A('. Vﬂj] +Fg [AZ f/ﬂj} L7 [Agsyﬂj]
!

where £, F;, and F, are the operators for the Laplace and Fourier
sine and cosine transforms, the subscripts 7, v, 9, and v of which de-
note the parameters for the transforms. In addition, the script * for
these operators indicates that the integrals are obtained by means
of the parameters described by the subscripts, and (p) denotes the
operator for the region of ¢ € o, Here, £, Ly, L, L5, L) Fsv,

Fa» Fsp, and F, are the operators of the Laplace and Fourier sine

sV

transforms defined by
£rli) = [ (1, &) exp (-,
0

Lrplu] = /000 U(&y, &, &) exp (=Tx3)drl,
L) [0 = Z U(&, &, &) exp (—Ix3), (60)

teap

Fali = [ a6 &) sin (T s,
0
U] :/ (¢, &, &) sin (TX3)dT,
0
where index I takes the value of y or v. Here, 7, F};,, F¢,and Fe
are the operators of the Fourier cosine transforms. The explicit
forms of these operators are clear from Eq. (60). In addition, A,
e.g., A;"® and A; """, in Eq. (59) are functions of the wavenumber

that are clarlﬁed by the explicit forms of the eigenfunctions. For
example:

Afl}'(P) _ 7'))A17 Al]f]v(l’) — GEAZ (61)

Note that the coefficients A; and A, can be determined by giving
the wavenumber ¢ € g,,. All other functions in Eq. (59) are given
in the Appendix A.

2.3.3. Fast algorithm of the generalized Fourier transform

At this point, let us introduce the grid point model for an elastic
half space shown in Fig. 2. In the figure, the concept of the block
division for the grid point model is also added for the discussion
of the MPI parallel processing provided later herein. The number
of grid points of the model shown in Fig. 2 are N; x N, x N3, where
N; x Ny is the number of horizontal grid points and N3 is the num-
ber of vertical grid points. Define Dy and D= as the sets of grid
points for the space and wavenumber domains in the following
form:

= {(M1Ax, A%, n3Axs)|ny € Np, np € Np,n3 € N3)},
Dz = {(m A&, nAL, )Ny € Ny, ny € Ny, F(&, 1) = 0},
@ (nlAél,nzAfz, \/N3AV? + é?)\nl e Ny,ny; € Ny n3 € N3)}
(62)
where Ny, Ny, and N3 are the sets of integers given as:
N]Z{H|-N]/2 n<N1/2}
Ny = {n| — N,/2 <n < N,/2}, (63)
N3 = {n|0 < n < Ns3}.

Ax;, (j=1,2,3) are the intervals of the grid in the space domain. A¢,
(j=1,2) are the horizontal intervals of the grid in the wavenumber
domain, and AV is the interval for discretizing F3, and F;;, which
are included in the operator F!” u . Recall the structure of the gen-
eralized Fourier transform shown in Egs. (27) and (2

8). We use
these structures in the following discretized forms:
DT omF o) (©, (€€ Ds), o
(%) = (FG) TiomiF ) ), (x € Dy),

where the subscript (D) denotes that the operator is in discretized
form. For example, 7)) and (™" are expressed as:

n AX1 AX ) i

() (et = 55R5m ) exp (i a0,

keNj xN;
-1 AEA B ~
<_7:g1) [u]) (X(k,n)) _ ézlnfz U(X( )EXP( kn) x(lvn)),
leN{ xN;
(65)
where

k= (khkz) € Np x Ny, | = (117[2) € Ny x Ny, (66)
" = (k1Axq, kyAxy, NAX3), xn — (A&, LAG, nAxs), (1€ N3),
(67)

N1xN2 Horizontal Horizontal
grids ! plane plane
Block
N3 division
grids
‘ Vertical
direction

Vertical row0 rowl row2
direction

Fig. 2. Grid point model of the ground and the bock division of the model.
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and
Xm0 — e [ AX AE; + Kol AXa AE,. (68)

The discretized forms of 7 and #’"' are very complicated. How-
ever, it is possible to present the elements of these operators that

. -1 *
constitute ” and F|""'. For example, F (s, Fipy: Foyer» and
F (pyey ar€:
Ny—1
(f(D)sv[ﬂ]) <é(l.m)> = AX3 Z fl(x( )) sin <Xé )‘j(m)>7
n=0
Ny—1
(Pl 7) = 895 (&) sin (0 )
"o (69)
-
(Fpyer[t1)) (é“’"’)) =Ax3 Y u(x™) cos (xé ’\7“’”)
n=0
Ny—1
(Fioelil]) (x17) = v 3" () cos (™),
m=0
where
XV = nAxs, V™ = mAv, (70)
and

et = (g b /3 miae ). 1)

Likewise, the discretized forms of the Laplace transforms are:

(Lo [ul) <5“'m>) = Axs N:Z:O] u(x") exp (-“/(m>x(3")>7 (72)
(Conlal) (£4)) = ax, 0 n(x) exp (—v(4)x"), (73)
(i 1) (') = Avmfo (') exp (<), (74)

+m2AV?), (75)

= \/ff — (er/e)* (&
and M is the maximum value of m that satisfies:
& — (cr/c)* (& + m*AV?) > 0. (76)
The arguments v and ¢*%) in Eq. (73) are expressed by

2 2

vl =\ &2 2 ) — (LA hAE,, ), (77)

where &3 satisfies F(&,, &3)=0
The relationship of the interval of the grid points between the
space and wavenumber domains is as follows:

Mide =2 (i=1,2)
N (78)
AX3AV = N_3

As can be seen in Eq. (78), the interval of grid points in the space
and the wavenumber domain restrict each other according to the
structures of the Fourier transform and the Fourier sine and cosine
transforms. This point differs from the trapezoidal approach, the
numerical results of which will be presented later herein.

It is also necessary to obtain Ay in order to discretize the oper-
ators F, and F;,. In the present study, the parameter Ay is set to
be equal to Av. The use of the interval Ay, however, requires points
in the wavenumber domain that are not in Dz, even if AV = Ay. The
set of the grid points in the wavenumber domain required by the
use of A is:

Dz = {(m A&, mAE, 1p) Iy € N, np € Ny, F(&, 1) = 0}
® { (nlAcl A, (€ /er)[3age + éf)

|n1 e Ny,n; e Ny,n3 € Ng}. (79)

A linear interpolation scheme is introduced in the present study in
order to adjust the gap of the grid intervals caused by the presence
of Av and Ay. Namely, the results of the grid interval due to opera-
tors F¢; and F, are adjusted and embedded into D=.

It is evident that fast algorithms are applicable to all of the oper-
ators for the Fourier transforms. The fast algorithm is also applica-
ble to the Laplace transform. In the present study, the fast
algorithm for the Laplace transform developed by Strain (1992) is
used. The algorithm for the discrete generalized Fourier transforms
is shown in Fig. 3. The algorithm described in Fig. 3 is based on the
structure of the transform shown in Eq. (64). For Fig. 3, the function
ui(ip,kk) defined at the grid points in the space domain is trans-
formed into the functions u®(ip) and ﬂ;’g) (ip, kk) defined at the
grid points in the wavenumber domain, where ip, (ip = 1,...,NiN>)
is the parameter defining the horizontal components of the grid
points, kk, (kk=1,...,N3) is the parameter defining the vertical
components of the grid points, &® (ip) is the function for the Ray-
leigh wave, and 1;(ip, kk) is the function for the body wave compo-
nents. According to Eq. (64), the first task of the generalized Fourier
transform is the application of }‘EZ)) and the second task is the mul-
tiplication of T{, ... The application of }‘ h , which is expressed as
FFT2D in Fig. 3 must be repeated N3 tlmes and that of Ty, must
be repeated N; x N, x N3 times. The final task for the transform

U ), which is expressed as FFTV1D in Fig. 3, must be repeated
N; x N, times. The amount of computation for FFT2D is O(N;N,log
(N1N>)) and that of FFT1DV is O(NslogN3) due to the 1D fast Fourier
transform. Note that the amount of computation for the fast
Laplace transform included in FFT1DV is O(N3), which is smaller
than that of the fast Fourier transform. As a result, the amount of
computation of the generalized Fourier transform is found to be
O (NlogN), where N = N;N>N3, which is the number of grid points
for the elastic half space. The amount of computation for the fast
generalized Fourier transform will be verified later through numer-
ical examples.

do kk=1,--- N3

do ip=1,--- Ny %Ny
w;(ip) — u;(ip, kk),  (j=1,2,3)
end do
apply FFT2D to w; — y;, (j =1,2,3)
do ip=1,--- Ny %Ny
w;(ip, kk) — Thy;(ip), (i,5=1,2,3)
end do
end do
do ip=1,--- Ny %Ny

do kk=1,--- N3
w; (k) — i, (ip. k),
end do
apply FET1DV to w; — 2zMand zjw). (1=1,2,3)

PACOREN ﬂ(m(ip)

(1=1,2,3)

do kk =1,- N3
B (k) — @l (ip, kk),  (j =1,2,3)
ond do

end do

Fig. 3. Fast algorithm of the discretized form of the generalized Fourier transform.
Note that Wy, ym, 1;, 2, and z are the temporary work areas.
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do kk=1,--- N3
do ip =ista,--- ,iend
wj(ip) — u;(ip, kk),
end do
apply mpi allgatherv to w;, (j =1,2,3)
apply FFT2D to w; — y;, (j =1,2,3)

do ip =ista,--- ,iend

(1=1,2,3)

a;(ip, kk) — Ty, (5 =1,2,3)
end do
end do
do ip =ista,--- ,iend

do kk=1,--- /N3
wj(kk) — u;(ip, kk), (j=1,2,3)
end do
apply FFT1DV to w; — zWand ZJ(B)A
2B zl(m(ip)
do kk=1,--- /N3
AP (kk) -l (ip,kk), (7 =1,2,3)
end do
end do

(i=1,2,3)

Fig. 4. Parallel algorithm of the discretized form of the generalized Fourier
transform. Note that Wy, ym, ij, 2F, and Z}B) are the temporary work areas.

Table 1
Properties of the material used for the background structure.

A reduction in CPU time is expected by the introduction of the
MPI parallel algorithm (Pacheco, 1997). According to Fig. 3, the
longest loop is that for the parameter ip, which is related to the
number of horizontal grid points. Let us apply the block division
to the ip loop. The concept of this block division for the grid points
model is exemplified in Fig. 2, in which three rows are used for the
division. As shown in Fig. 2, the grid points model is divided in the
vertical direction. The physical quantities defined at the grid points
are stored separately in a memory of each row by means of dy-
namic allocation. The algorithms using block division are shown
in Fig. 4, where the ip loop is from (ista) to (iend) instead of from
1 to NyxN,. Since the block division is in the vertical direction,
MPI communication is required before calling FFT2D. Except for
the MPI communication before FFT2D, the calculation of the gener-
alized Fourier transforms can be carried out separately in each row.
The efficiency of the parallel algorithms is discussed in the next
section.

At the end of the formulation of the proposed method, the
advantages and disadvantages of the present method, as compared
with the boundary integral equation method, should be mentioned
here. The advantage of the present method is that it is possible to
treat a fluctuating inhomogeneous wave field, to which the bound-
ary integral equation method is not easily applicable. Furthermore,
the fluctuation is not necessarily smooth or closed. In a previous
study (Touhei et al., 2009), two types of fluctuation models were
used for numerical calculations. One model was bounded but dis-
continuous, and the other model was expressed in the form of the
rapid decrease function (Reed and Simon, 1980). Despite these
advantages, the uniform interval of the grid points required in
the proposed method may restrict the accurate modeling of the
geometry of the scattering object. This requirement is a disadvan-

o0 (GPa) 1o (GPa) 00 (g/cm?)
4.0 20 70
0.06 . ‘
fast method ——
Hankel transform ——
g 0.04 |
&
2 0.02
9]
£
0]
O
G 0
—
o
n
-
A -0.02
-0.04 w ‘ ‘
~10 - 0 5 10

(a) Comparison of the fast generalized Fourier transform with the Hankel transform

0.06

.04

[cm]
o

Displacement

trapezoidal approach ——
Hankel transform ——

X, / Ag
(b) Comparison of the trapezoidal approach with the Hankel transform

Fig. 5. Comparison of the Green’s function at the free surface.
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tage of the proposed method. In contrast, the boundary integral
equation method does not suffer from this problem.

3. Numerical examples
3.1. Green’s function composed by the generalized Fourier transform

First, for numerical examples, let us check the accuracy of the
fast generalized Fourier transform by composing the Green's
function. For the numerical calculations, the background Lamé
constants and mass density of an elastic half space are summarized
in Table 1, from which the P and S wave velocities are found to be 2
and 1 km/s, respectively, and that of the Rayleigh wave becomes
approximately 0.93 km/s. In order to synthesize the Green’s
function, the direction of the excitation force is set in the vertical
direction. The amplitude and excitation frequency of the force
are 1 x 107 kN and 1.0 Hz, respectively. In addition, the location
of the point force is at a depth of 1 km from the surface of the
origin of the horizontal coordinate. For the fast generalized trans-
form, Dy and D= shown in Eq. (62) are set such that N;=
N, =256, N3=128, and Ax;=Axy=Ax3=0.25km. As a result,
Aé&q, A&y, and AV become:

27

. _ -1 .
MG = g = 009817km (= 1.2) (80)
- Y o _1
AV = NoAx; — 0.09817 km™". (81)

The results of the Green’s function composed by the trapezoidal ap-
proach are also examined here. For the trapezoidal approach,
N; =256, Ax; = 0.25 km, and A¢; =0.09817 km™, (j = 1,2,3) are used.
In addition, € for l:l(tf) shown in Eq. (41) is set at 0.60 for both the
fast method and the trapezoidal approach. The background con-
stants for the wave field, the number of grid points defined above,
the amplitude and the direction of the point source, and the excita-
tion frequency will also be used in the numerical examples pre-
sented hereinafter.

Fig. 5 compares the Green’s functions at the free surface along
the x; axis calculated by the fast generalized Fourier transform,
the trapezoidal approach, and the Hankel transform. Note that
the x; axis in Fig. 5 is expressed dimensionless form as x;/47, where
Jris the wavelength of the S wave. The displacements in the verti-
cal direction are compared. These comparisons reveal that the re-
sults of these three methods agree well. The quantitative
discrepancy among these results, which is calculated as follows:

V2 1Xi =il (82)

€p=—F77————,

Y

reveals that €p = 0.13, where X; is the result of the trapezoidal ap-
proach and Y; is the result of the Hankel transform. In addition,
€p=0.10 is obtained, when X; is the result of the fast generalized
Fourier transform and Y; is the result of the Hankel transform. The
discrepancy of the results between the Hankel transform and the
fast generalized Fourier transform is smaller than that between
the trapezoidal approach and the Hankel transform. The treatment
of the Hankel transform is not complicated, as compared to the
treatment of the generalized Fourier transform. Therefore, the dis-
crepancy indicates that the results of the fast generalized Fourier
transform are more accurate than those of the trapezoidal
approach.

Fig. 6 shows the distribution of the displacement amplitudes of
the Green’s function in a vertical plane of x, = 0 km. These numer-
ical results are characterized by the Rayleigh wave propagation
along the free surface, the body wave propagation downward,
and the high-amplitude area caused by the singularity of the point

source. The results obtained by the Hankel transform and the fast
generalized Fourier transform are similar. On the other hand, the
results obtained by the trapezoidal approach reveal an unnatural
vertical band below the source point. Furthermore, several rays,
which cannot be observed in other cases, are caused by this unnat-
ural vertical band. The trapezoidal approach has difficulty in com-
posing the Green’s function in the region that x3 become large as
pointed out earlier.

3.2. Effects of the number of sampling grid points on the scattering
analysis

The following examples for the numerical calculations are used
to examine the effects of the sampling of grid points on the scatter-
ing analysis. For the analysis, the location of the source point xs) is
given by
X =(5,0,1) (km). (83)

In addition, the fluctuations of the wave field are set by

i = A exp (= fx = x?).
(84)
A(x) = Ay exp (‘77,4|X - Xc|2) )
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(a) Hankel transform
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(b) Fast generalized Fourier transform
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(¢) Trapezoidal approach

Fig. 6. Comparison of the Green’s function in a vertical plane.
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(a) Fluctuations of A and £ in the wave field
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(b) Incident wave field

Fig. 7. Fluctuations of the wave field and the incident wave field.

where x. is the center of the fluctuating region, which is:
X =(0,0,2) (km). (85)

The parameters A;, Ay, 1, and n, for Eq. (84) describe the ampli-
tudes and spreads of the fluctuations, which are given as:

A;=A,=02 (GPa),

86
n,=1n,=05 (km™). (86)

The fluctuation model, together with the incident wave field at the
X2 =0km plane, are shown in Fig. 7, which clarifies how the inci-
dent wave propagates toward the fluctuated area. Note that the
fluctuation model in Fig. 7 is described in terms of the dimension-
less Lamé constants //u and fi/ u.

For the analysis by the fast method, eight cases are considered,
whereas four cases are considered for the analysis by the trapezoi-
dal approach. The sampling of grid points and the interval of the
grid points in the space domain for each case are summarized in
Tables 2 and 3. For all of the cases, € for hi(¢) shown in Eq. (41) is
set at 1.0, which is larger than that used to calculate the Green’s
function in the previous section. The reason for this is that it is nec-
essary to eliminate numerical errors caused by the iterative pro-
cess. Due to the limitation of the available computer memory,
the maximum number of grid points for the trapezoidal approach
is 256 x 256 x 512, whereas that for the fast method is
512 x 512 x 256. The number of sampling grid points for the fast

Table 2
Case studies for comparison of the interval and the number of grid points for
scattering analysis by the fast method.

Case Nq N> N3 AXq A Xy AX3
case-F1 512 512 256 0.125 0.125 0.125
case-F2 512 512 256 0.25 0.25 0.25
case-F3 512 512 128 0.125 0.125 0.25
case-F4 256 256 128 0.125 0.125 0.125
case-F5 256 256 128 0.25 0.25 0.25
case-F6 256 256 64 0.25 0.25 0.25
case-F7 256 256 64 0.25 0.25 0.50
case-F8 128 128 64 0.25 0.25 0.25
Table 3

Case studies for comparison of the interval and the number of grid points for
scattering analysis by the trapezoidal approach.

Case Ny N, N3 AXq A X Ax3
case-T1 256 256 512 0.25 0.25 0.125
case-T2 256 256 512 0.25 0.25 0.25
case-T3 256 256 512 0.125 0.125 0.25
case-T4 256 256 256 0.25 0.25 0.25

method is twice that for the trapezoidal approach because parallel
computing by means of PC clusters is possible in the case of the fast
method.

Fig. 8 shows the results of the scattering analysis obtained by
means of the fast method from case-F1 to case-F8. Fig. 8(a) and
(b) show the results for case-F1 and case-F2, in which the number
of sampling grid pointsis 512 x 512 x 256. The difference between
case-F1 and case-F2 is the grid intervals in the space domain, which
are 0.125 and 0.25 km, respectively. According to the comparison of
case-F1 and case-F2, significant differences cannot be seen. Fig. 8(c)
shows the results of case-F3, the number of sampling grid points of
which is 512 x 512 x 128 and the intervals are Ax; = Ax, =0.125
and Axs; =0.25 km. Significant differences also cannot be seen in
the result of case-F3 as compared to case-F1 and case-F2.

On the other hand, the scattered wave shown in Fig. 8(d) for
case-F4 clearly differs from that in the previous three cases. Several
unnatural high-amplitude bands can be observed from the bottom
right to the top left of the figure. The sampling number and the
interval of grid points for this case are 256 x 256 x 128 and
0.125 km, respectively. Namely, the number of sampling grid points
for this case is half that for case-F1, whereas the interval of the grid
points is equal to case-F1. The problem observed in case-F4 is re-
solved in Fig. 8(e) for case-F5 by setting the interval of grid points
in a space domain that is twice that of case-F4. Note that the interval
of grid points in the wavenumber domain for case-F5 is equal to that
of case-F1. Therefore, the interval of grid points in the wavenumber
domain is more important than that in the space domain for the
purpose of obtaining accurate solutions.

Fig. 8(f) and (g) show the results for case-F6 and case-F7, in
which the number of sampling grid points is 256 x 256 x 64, and
the horizontal interval of grid points is 0.25 km. The difference be-
tween the models for these two cases is the vertical grid intervals,
which are 0.25 and 0.5 km, respectively. Comparison of case-F6
and case-F7 revealed no significant differences other than that in
the spread of the scattered waves around the fluctuated area.
Due to the coarse vertical interval of grid points in the space do-
main for case-F7, the spread of the scattered waves is not clearer
for case-F7, as compared to case-F6.

Fig. 8(h) shows the results for case-F8, in which several unnat-
ural high-amplitude bands can be seen from the bottom right to
the top left of the figure, as shown in Fig. 8(d). The sampling num-
ber and the interval of grid points for this case are 128 x 128 x 64
and 0.25 km, respectively. Due to the reduction in the number of
sampling grid points for case-F8 from case-F7, the interval of grid
points in the wavenumber domain has increased. As a result, the
problem of unnatural results occurred again.

Although the above case studies are limited, the problem of
numerical calculation is found to be caused by the large interval
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Fig. 8. Displacement amplitudes of the scattered waves obtained by the fast method.

of grid points in the wavenumber domain. The numerical calcula-
tions are always successful for the case in which:

JrA¢ < 0.09817, (87)

where A¢ represents the interval of grid points in the wavenumber
domain. In this sense, the number of sampling grid points, i.e.,
256 x 256 x 128, is sufficient to obtain the converged solution for

the case in which the spatial interval of grid points, Ax;=0.25 km,
is used in the analysis.

As mentioned earlier in the formulation of the present meth-
od, the volume integral equation in the wavenumber domain is
solved by the Bi-CGSTAB method. The results obtained here are
obtained through only two iterations of the Bi-CGSTAB method

based on the convergence properties of the solutions of the
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volume integral equation. The convergence properties of the
solutions with respect to the number of iterations will be dis-
cussed in the next section. The discussion at this stage considers
the relationship between the number of sampling grid points
and the CPU time required for the scattering analysis due to
two iterations in the fast method.

Fig. 9 shows this relationship. The horizontal axis of Fig. 9
shows Nlog(N), where N=N; x N, x N3. The CPU time obtained
here is based on two-core parallel processing and two iterations.
In Fig. 9, the observed CPU times are plotted, and the fitting line
is applied to these plots. It is clear that the CPU times are approx-
imately proportional to Nlog(N). Therefore, based on the numerical
calculations, the amount of calculation proportional to Nlog(N) for
the fast method is verified.

Fig. 10 shows the results of the scattering analysis obtained by the
trapezoidal approach. The number of sampling grid points for case-
T1 through case-T3 are 256 x 256 x 512, and that for case-T4 is

3500
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Fig. 9. Comparison of the CPU time with the number of grid points.
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256 x 256 x 256. The grid interval of the wavenumber space for
the trapezoidal approach is determined by the following formula:

27 .
Aéj::‘44477 U ::172%
N;Ax; (88)

1
A& = 5 AG.

The Bi-CGSTAB method is used to obtain the solutions presented in
the following. Two iterations were sufficient to converge the solu-
tions, with the exception of case-T4.

Comparison of the results for case-T1 and case-T2 reveals no
significant differences. The difference in the analyzed models for
these two cases are in the grid interval in the x3; direction.
Therefore, the difference in the grid interval in the x5 direction
did not affect the numerical results for these cases. There are,
however, significant differences between the results obtained
by the fast method and those obtained by the trapezoidal ap-
proach, which are particularly noticeable deep underground.
These differences are due to the problem associated with the
trapezoidal approach, in which it becomes difficult to obtain
accurate solutions for a large xs.

Fig. 10(c) shows the results for case-T3. For this case, the hori-
zontal grid interval of Ax; = Ax, =0.125 km, which is half that for
case-T1 and case-T2. In this figure, unnatural high amplitude areas
can be observed deep underground. One reason for the unnatural
areas is related to the limitation of the trapezoidal approach. How-
ever, the fine horizontal grid interval in the space domain is also a
cause of the problem, as can be seen in Fig. 8(d) and (f).

Fig. 10(d) shows the results for case-T4. For this case, the num-
ber of sampling grid points for the vertical direction is N3 = 256,
which is the smallest case for the trapezoidal approach. The results
are very different from those for other cases and failed to converge.
This indicates that the number of sampling grid points for N3 was
insufficient for the analysis. The results of the scattering analysis
obtained using the trapezoidal approach indicate that the
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Fig. 10. Displacement amplitudes of the scattered waves due to the trapezoidal approach.
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performance of this method in obtaining the wave field deep
underground is poor. Furthermore, there was a case in which the
solution failed to converge. On the other hand, the solution ob-
tained by the fast method is found to be stable and solves the prob-
lem of the trapezoidal approach.

3.3. Convergence properties of the volume integral equation

Next, let us investigate the convergence properties of the vol-
ume integral equation. The relative error during the iterative pro-
cess is defined by
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Fig. 11. Convergence of the solution by the Bi-CGSTAB method.

3205
o -8
=7 N (89)
b;
according to Eq. (42), where || - || is the norm of the function in the
wavenumber domain defined by
@I =3 [HEP + B+ P (90)

¢eDz

Fig. 11 shows the relationship between the relative error and the
number of iterations, in which there is a rapid decrease in the rela-
tive error. The results shown in Fig. 8 were obtained after two iter-
ations, where the relative error was found to be less than
1.0 x 1072,

Fig. 12 shows the effects of the number of iterations on the solu-
tions of the volume integral equation. In Fig. 12, the solution is pre-
sented along the x; axis at the free surface. The proposed solution
(results of two iterations) is compared with the solutions obtained
by various numbers of iterations. Fig. 12(a) compares proposed
solution and the Born approximation (no iterations). The differ-
ences in the displacement amplitude can be observed in the region
just above the fluctuated area, where the displacement amplitude
due to the Born approximation is larger than that due to the pro-
posed method. In the region of forward scattering, the methods
are in almost complete agreement. In the region of backward scat-
tering, however, the phase and amplitude differ, and even the dis-
placement amplitudes are very small. Fig. 12(b) shows a
comparison of the proposed solution and the solution for one iter-
ation. The figure reveals that the results are in almost complete
agreement, which coincides the convergence properties of the
solution shown in Fig. 11. The quantitative discrepancy of the Born

0.0015 : ' ' '
proposed method ——
Born approximation -
Z 0.001f |
)
£ 0.0005
[0}
£
@
® 0
—~
o
A
n -0.0005
-0.001 L . )
-15 -10 -5 < 0
X,/ A

(a) Comparison of the proposed

solution with the Born approximation

' pllfoposed'methodli
iteration =1 -
. 0.0005 ]
£
L
s
o
9}
5
3 [
© 0
—
o
n
-
[a)
-0.0005 . . .
e e e 5 10
X,/ -

(b) Comparison of the proposed solution with the solution obtained by one iteration

Fig. 12. Effect of the number of iterations of scattered waves along the x; axis.
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Fig. 13. Effect of the number of iterations on scattered waves at the free surface.

approximation from the proposed solution obtained from Eq. (82)
is ep = 0.172, where X; is the result of the Born approximation and
Y; is the proposed solution. In addition, the discrepancies from the
proposed solution are €p=6.00 x 1073 and €p=1.05 x 107>, for
one and three iterations, respectively.
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Fig. 14. Effect of the number of cores on parallel computation.

Fig. 13(a) through (d) show the distributions of displacement
amplitudes at the free surface according to the number of itera-
tions. The plots can be characterized by high-displacement-ampli-
tude areas just above areas of fluctuation as well as a forward
region. Fig. 13(a) shows the results of the Born approximation.
The displacement amplitude of the region just above the area of
fluctuation for this case is higher than other cases. In addition,
the amplitude of the backward scattering can be also determined.
Fig. 13(b) through (d) show the results obtained by one to three
iterations, respectively. The patterns of the displacement ampli-
tude for these three cases are similar. The convergence of the solu-
tion is found to be almost achieved by one iteration.

3.4. CPU time required for scattering analysis

Based on the numerical examples, the CPU time required for
scattering analysis is discussed. The processor used for the compu-
tation was an AMD Opteron 2387 processor. For the parallel com-
putation, it is necessary to investigate the relationship between the
CPU time and the number of cores used for the computation.
Fig. 14 clarifies its relationship for the case in which the
256 x 256 x 128 grid point model was used. In Fig. 14, 'real’ de-
notes the elapsed time and 'user’ denotes the amount of CPU time
spent in user-mode code. Fig. 14 indicates that the elapsed time
decreases according to the increase in the number of cores. This de-
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crease, however, has its limitations, and the use of more than four
cores may not the best choice for the computation. On the other
hand, the decrease in CPU time (expressed as ‘user’) is approxi-
mately proportional to the number of cores used. In the future,
the possibility of reducing the gap between the ’'real’ time and
the 'user’ time must be examined.

As mentioned earlier, the solution of the volume integral equa-
tion obtained from the trapezoidal approach was not very accurate.
In this sense, a strict discussion of the CPU time reduction gener-
ated by the trapezoidal approach to the fast method may not be
meaningful. Even in this situation, the CPU time required by the
trapezoidal approach based on the 256 x 256 x 512 grid points
model was 14 h and 18 min. On the other hand, the CPU time
required by the proposed fast method was only 24 min for the case
in which the 256 x 256 x 128 grid point model was used for non-
parallel processing. The number of iterations required in order to
obtain the solution using the Bi-CGSTAB method was two for the
both present method and the trapezoidal approach.

4. Conclusions

In the present paper, a fast method for the volume integral
equation for elastic wave propagation in a half space was pre-
sented. The essential consideration in the formulation was related
to the application of the fast generalized Fourier transform to the
construction of the Krylov subspace. The fast transform was real-
ized by decomposing the kernel of the transform into the ordinary
Fourier and Laplace transforms. A method of MPI parallel compu-
tation for the proposed method was also presented.

Several numerical calculations were carried out in order to exam-
ine the effects of the interval and the number of sampling grid points
on the numerical solutions. The numerical results and the structure
of the generalized Fourier transform revealed that the amount of
computations was O(NlogN), where N is the number of grid points
for the ground model. In addition, the coarse interval of grid points
in the wavenumber domain was found to cause a problem in obtain-
ing accurate solutions of the volume integral equation.

For the purpose of comparison, the trapezoidal approach for
obtaining the volume integral equation was also examined. It
was not easy to obtain accurate results deep underground using
the trapezoidal approach. Furthermore, there was also a case in
which the solution failed to converge using the trapezoidal ap-
proach. The fast method proposed herein resolved the problems
associated with the trapezoidal approach. The fast method was
also found to significantly reduce the CPU time.

Appendix A. Decomposition of the operators ) and F*'

As demonstrated in the main text of the present paper, the gen-
eralized Fourier transform and the inverse Fourier transform for
elastic wave propagation in a half space with respect to the vertical
coordinate system are expressed as:

Fi'0 = A L[] + A L[] + AT Fo (W] + A Fg (1]
+AY Fo (] + AY Fo [ 1],
F = Ly (AT W] 4 £ (A7) 4 A )
+Fy [Afj*“?’ﬂj] +Fy [AF 7 uj} +Fy [Afj “’a]] + Ty [Ag‘“’aj] :
(A1)

where L], L[], 1), L[] Lil) Fovr Fivs Fooo oo Forr i,

Fey, and Fi; denote the operators for the Laplace transform and
the Fourier sine and cosine transforms given in the main text of
the article in Eq. (60). The functions of the wavenumber
AL A AT AT AR AP, AT, and AP are directly derived

ij o o

from the explicit forms of the eigenfunctions ; given in the main
text of the article. For the case in which ¢ € o), these functions are:

Lay( L«v(p Lay(
Auy = —VAy, An‘ = &N, A21'
Lav( Ly
Azl‘ = —§ VA, A]] = —VAlv An = Cr A27
A =&ML AT = =& VA,

- érAh

(A2)

Next, for the case in which ¢ € o, where &< &3 <(c¢/cr)é,, these
functions are given as:

A = EAy, AT =EAs, A =EAs,
Al =&V, A =&

Aﬁ’ly = _VA3=
A = ¢ VA, (A3)

In addition, for the case in which ¢ € o}, where (c;/cr)é- < &3, these
functions are:

AT =y0r, A =a(O)E2A, A =G4,

Ay = —a(OEVA, Ay = —)As, Ay = BO)E s,
A =&, AR = BE)ETAs, A = EAs. (A4)
The functions for the wavenumber A.7 AT, AL*, AL, and Af™
are also obtained as follows for (¢, < &3 < &(ci/cr)):

2 'VZCZ F*cv \_)52 Fsp ‘—}52
AT =L LA, AR A, AR = A

11 536% 3 11 & 4 11 & 59

&0 P V3¢ re EV?
AP =LAy AR = _ETA, AR =S A A5

ST & & A3
For the region of (c;/cr)é, < &3t

.o PEC2 ey VAE? gy PECE
AFC,:/ LA. Ach: TA AFs,: rLA

11 536% 75 1 & 75 21 5362 75

oy =
ALY =— ! ért% Ay, AL = EBCL As, Ay = vi ﬁA&
. 72
Agzc' cf ych As, Agzw = 'Béjv A (A.6)
C3Cr

A;;”’ has the following form for the region ¢ € o.:

oV
ALS = =5 A (A7)

c3
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