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Abstract 

We develop a new formulation for the form-finding of tensegrity structures in which the 

primary variables are the Cartesian components of element lengths. Both an analytical and a 

numerical implementation of the formulation are described; each require a description of the 

connectivity of the tensegrity, with the iterative numerical method also requiring a random 

starting vector of member force densities. The analytical and numerical form-finding of  

tensegrity structures is demonstrated through six examples, and the results obtained are 

compared and contrasted with those available in the literature to verify the accuracy and 

viability of the suggested methods. 

 

Keywords 

Tensegrity structures; Form-finding; Force density; Equilibrium equations; Geometrical 

compatibility equations 

 

* Corresponding author. Tel.: +98 411 3392391; fax: +98 411 3356024. 

  Email address:  ka_koohestani@tabrizu.ac.ir;  

                            kk484@eng.cam.ac.uk 

 

 
 



  

 2

1. Introduction 

In 1947, a young artist named Kenneth Snelson invented and built a novel framework that 

he called floating compression. Later, Fuller (1962) called Snelson's structure a tensegrity, 

and since then, this nomenclature has been dominant in the scientific community. Tensegrity 

structures are pin-jointed, reticulated and self-equilibrated frameworks. A tensegrity is 

composed of a set of discontinuous compressive elements (called struts) floating within a net 

of continuous tensile elements (called cables). The rigidity of a tensegrity is the result of a 

self-stressed equilibrium between cables and struts. Tensegrities should be pre-stressed and 

usually need to have special geometries to provide self-equilibrated structural systems. The 

form-finding process determines a possible pre-stress distribution and geometry for a 

tensegrity. Early studies of the form-finding of tensegrities were performed by Fuller (1962) 

and Snelson (1965).  

The form-finding of tensegrity structures has been widely studied through various 

analytical and numerical methods, where, typically, analytical methods are useful for studying 

tensegrities with small numbers of nodes and elements and tensegrities with high orders of 

symmetry. Previous analytical studies include: Connelly and Terrell (1995), who studied the 

analytical form-finding of rotationally symmetric tensegrities using the force density concept; 

Zhang et al. (2009a, b), who analytically studied the self-equilibrated states and stability of 

prismatic tensegrity structures; and Zhang et al. (2012, 2013) and Zhang and Ohsaki (2012), 

who developed unified analytical solutions for the self-equilibrium and super-stability of 

truncated regular polyhedral tensegrity structures. Static and dynamic characterisations of 

regular truncated icosahedral and dodecahedral tensegrities were also presented by Murakami 

and Nishimura (2001).  

Numerical form-finding of tensegrity structures has been studied extensively using 

different methods, and some examples are given here, most of which ultimately employ the 

force density formulation first introduced by Schek (1974).  Motro (1984) employed the 
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dynamic relaxation method for the form-finding of tensegrity structures. Pellegrino (1986) 

proposed a nonlinear programming approach to the form-finding problem. The reduced 

coordinate method for the form-finding of tensegrity structures was introduced by Sultan et al. 

(1999) (see also Sultan, 1999). Masic et al. (2005) proposed an algebraic method, based on 

invariant tensegrity transformations, to solve the form-finding problem. Finite-element-based 

form-finding was developed by Pagitz and Mirats Tur (2009). Zhang et al. (2006) proposed an 

iterative method for the form-finding of tensegrity structures with geometrical and force 

constraints. Estrada et al. (2006) and Tran and Lee (2010 a, b) proposed numerical methods 

for the form-finding of tensegrity structures which employ iterative eigenvalue and singular 

value decompositions of the force density and equilibrium matrices, with clear parallels with 

the numerical form-finding approach presented in Section 5. The adaptive force density 

method introduced by Zhang and Ohsaki (2006) also utilised spectral decomposition of force 

density matrix as a core part of the form-finding process. As a stochastic approach, Li et al. 

(2010) used Monte Carlo methods to find equilibrium configurations of large-scale regular 

and irregular tensegrity structures. Rieffel et al. (2009) introduced a special evolutionary 

form-finding method, Koohestani (2012), Paul et al. (2005) and Xu and Luo (2010) used 

genetic algorithms and Chen et al. (2012) used ant colony systems for the form-finding of 

tensegrities. Mathematical programming has also been used in the form-finding and 

optimisation of tensegrity structures under different constraints, including discontinuity of 

struts, compliance, stress and self-weight loads. In this category, we may refer to the mixed 

integer programming approach of Ehara and Kanno (2010) and Kanno (2011, 2012). Recent 

reviews of the form-finding and analysis of tensegrities may be found in Hernàndez Juan and 

Mirats Tur (2008), Mirats Tur and Hernàndez Juan (2009), Sultan (2009) and Tibert and 

Pellegrino (2003).  

In this paper, we introduce a combined form of the equilibrium and geometrical 

compatibility equations for tensegrity structures. By considering the connectivity of a 
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tensegrity as a directed graph, geometrical compatibility equations are effectively generated 

by its cycle basis. The interrelation between the current formulation and the force density 

formulation is established, and analytical and numerical form-finding methods are proposed. 

Six examples are studied using our analytical and numerical methods, and the results obtained 

are compared with those documented in the literature.  

 

Fig. 1. Typical nodes ( ji, ) and element ( k ) of a tensegrity with external forces at node i  

 
2. Equilibrium equations 

In this section we present the equilibrium equations for a 3-dimensional tensegrity 

structure (the restriction to 2-dimensions is straightforward). We will first describe a 

conventional formulation where the geometry is fixed and the primary variables are force 

density in the members, briefly mention the force density formulation where the force density 

is fixed and the positions of nodes are the primary variables, and then we will present a novel 

formulation where the primary variables are Cartesian components of element lengths. 

Consider a typical node shown in Fig. 1. The equilibrium (for instance in the x- direction) 

can be written as 
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Here, I  is a set that contains labels of all nodes adjacent (connected) to node i , irf  and 

irL are the internal force and length of an element with i and r as its start and end nodes, 

respectively. Also, x
ip  is the external force at node i and in the x- direction. If we label each 

element ij  with a single number k  (between 1 and m ) then we can write x
irf  based on 

element's force density as follows: 
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where kkijijk LfLfq // == is the force density of element k . A similar equation can simply 

be written for the other end (node j ) as given in Eq. (3). 

)( ijk
x
ji xxqf −=            (3) 

A compact matrix form of Eq. (2) and Eq. (3) is 
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where ij
x
k xxd −= . In fact, by considering element k  as a vector directed from node i  to j  

with length kL , x
kd  is the Cartesian component (projection) of the length of this vector in the 

x- direction. It is straightforward to write similar equations for all other elements and in the y- 

and z- directions.  

If we wish to consider force densities as primary variables, we can use the above equations 

to write the equilibrium equations for every node and every direction (for a 3-dimensional 

tensegrity with n  nodes and m  elements) as the matrix equation, 
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where t
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In Eq. (6), tx
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From a graph-theoretical point of view, B is the node-element incidence matrix for a directed 

graph where each element is directed from node i to j (i < j). In addition, the rank of B is 

1−n (Kaveh, 2004), which means that its rows are linearly dependent. 

Matrix A is defined by Pellegrino and Calladine (1986) as the equilibrium matrix, although 

that term is also commonly used for the equivalent matrix in which each column is divided by 

the length of the corresponding member (see e.g. Pellegrino, 1993).  

If we wish to consider the nodal positions as primary variables, we can use the force 

density formulation (Schek, 1974). In general, the equilibrium equations for a structure can be 

written as 

extint PF =               (8) 

where intF  and extP  are internal and external nodal forces matrices in the global coordinates 

system. For a 3-dimensional tensegrity with n  nodes and m elements, we define 
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By substituting Eq. (1), and similar equations for y- and z-directions, into Eq. (9), we can 

write the equilibrium equations as  

extPSN =          (11)   

where ],,[ zyxN = is the matrix of nodal coordinates ( t
nxxx ]...,,,[ 21=x , t

nyyy ]...,,,[ 21=y  

and t
nzzz ]...,,,[ 21=z ), and S  is the force density matrix, also sometimes called the stress 

matrix (see e.g., Connelly and Terrell, 1995 and Guest, 2006).  

In this paper, however, we choose not to use nodal positions as primary variables, but 

Cartesian components of element lengths. By considering Eqs. (1), (4) and combining them 

for all elements and in all directions, equilibrium equations are obtained for entire structure as  

extPBQD =                      (12) 

where )(qQ diag= is the diagonal matrix of force densities, and 3×∈ mRD  is the matrix of 

Cartesian components of element lengths,  

][ zyx d,d,dD =                      (13) 

Eq. (12) described the equilibrium equations for a 3-dimensional tensegrity structure to which 

external forces have been applied. However, we are interested here in the case the structure 

has a state of self-stress with no external loads applied, i.e., 

0]00dddBQBQD ,,[],,[ == zyx          (14) 

Similarly, the right hand side of Eq. (5) will also be zero, i.e. 0ppp === zyx  and so 

0Aq = .  

If the structure is 3-dimensional, yx dd , and zd must be three independent vectors (see e.g. 

Connelly, 1982), and hence the null-space of BQ  must be at least 3-dimensional. However, 



  

 8

this is not a sufficient condition, as we do not have a free choice for yx dd , and zd  — these 

vectors must also be geometrically feasible. The next section will consider the geometrical 

compatibility. 

 

Fig. 2. a) Graph model of a simple pin-jointed structure; b) first cycle (elements 1 and 5 are 

positively directed and element 4 is negatively directed in this cycle); c) second cycle 

(elements 2 and 3 are positively directed and element 5 is negatively directed in this cycle); d) 

third cycle (elements 1, 2 and 3 are positively directed and element 4 is negatively directed in 

this cycle) 

 
3. Geometrical compatibility equations 

This section will consider the geometrical compatibility relationships for tensegrity 

structures. Consider as an example a simple 2-dimensional pin-jointed structure (see Fig. 

2(a)), with all its nodes and elements labelled. We consider each element as a directed edge 

from a connectivity point of view, and as a vector from a geometrical point of view. The 

connectivity model for the structure is a simple directed graph in which each edge is directed 

from node i  to j ( ji < ). In a consistent geometry, the following equations must be valid for 

the structure in Fig. 2 irrespective of the numerical values of nodal coordinates.  

0vvv =−+ 451                   

0vvv =−+ 532                     

0vvvv =−++ 4321     
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Here, kv  is a vector associated with element k (with i and j as start and end nodes), and it is 

defined as t
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dependent and each one can be obtained by a linear combination of the others. We select the 

first two equations and write these equations as 
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The coefficient matrix in Eq. (15) has a special pattern from the labelling of its elements. 

The matrix is called a cycle-member incidence (cycle basis) matrix because each row 

corresponds to a cycle in the underlying graph. The first and second rows correspond to 

cycles }5,4,1{1 =c  and }5,3,2{2 =c , respectively (see Fig. 2(b, c)).  

For a simple directed graph, the cycle-member incidence matrix is usually denoted by 

mijc ×= β][C  and is defined as follows: 
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For a connected graph with m members and n nodes, 1+−= nmβ  is the dimension of the 

cycle space (the maximum number of independent cycles) and is often referred to as the graph 

cyclomatic number, nullity or first Betti number (see, e.g., Berge, 2001). The reader may refer 

to Micheletti (2008) for a recent application of the cycle basis for generating reciprocal 

diagrams for self-stressed frameworks. The cycle-member incidence matrix is related to the 

node-member incidence matrix by the orthogonality relationship, 

β×= n
t 0BC , n

t
×= β0CB            (17) 
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We use this feature of a cycle-member incidence matrix to establish an interrelation 

between the current formulation and the force density formulation. Considering the above 

definitions, it is possible to define the geometrical compatibility equations of a tensegrity 

structure in terms of Cartesian components of element lengths as given in Eq. (18) 

],,[],,[ 000CDdddC ==zyx          (18) 

 

3.1. Automated generation of geometrical compatibility equations 

According to Eq. (18), we only need to find the cycle basis of a graph (the graph of a 

tensegrity) to write the geometrical compatibility equations. The cycle basis of a graph is a 

very well-covered subject in the field of combinatorial mathematics, and various methods to 

form this basis have been proposed. All types of cycle bases are valid for use within our 

formulation.  However, the minimal cycle basis is advantageous, as it enables us to reduce the 

computational effort, and to find simpler relationships between force densities during 

analytical form-finding. In fact, a minimal cycle basis leads to a cycle-member incidence 

matrix with a very sparse form. Analytical form-finding presented later requires a sparse cycle 

basis matrix to provide a significant reduction in the total number of symbolic operations and 

fill-ins, which leads to simpler entries in the final factorised matrix. Note that for simple 

graphs it is straightforward to generate a minimal cycle basis simply by examining all the 

cycles, however, the reader may refer to De Pina (1995), Horton (1987), Kavitha et al. (2008) 

and Mehlhorn and Michail (2009), among others, for some efficient algorithms for the 

generation of the minimal cycle basis. 

The geometrical compatibility equations can also be generated simply and numerically. To 

do so, we need to obtain a null-space basis of B (the columns of tC  form a basis for the null 

space of B ). Both a triangular basis, usually formed by the Gauss-Jordan elimination method, 

and an orthonormal basis, usually formed by singular value decomposition (SVD), are 
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acceptable. Note that an orthonormal basis is completely dense (all its entries are nonzero) 

while a triangular basis can be moderately sparse. The sparsity of a triangular basis can be 

improved by performing a special type of Gauss elimination method; see Soyer and Topçu 

(2001) for more detail.   

 

4. Combined form of equations and self-stressed states 

In the preceding sections, we have presented the equilibrium equations (Eq. (14)) and 

geometrical compatibility equations (Eq. (18)). The primary variables for both sets of 

equations are the same; hence, the two sets of equations can be combined to obtain a new set 

of equations, as follows: 

],,[ 000D
BQ
C

HD =⎥
⎦

⎤
⎢
⎣

⎡
=          (19) 

Here, mm ×+∈ 1RH  (total number of rows is 1+=+ mnβ ). It is clear that a non-trivial solution 

of Eq. (19) satisfies both equations of equilibrium and of geometrical compatibility 

simultaneously. To form a 3-dimensional tensegrity, the rank of H  must be at most 3−m , 

because of the necessity of finding three independent null vectors.  

It is interesting to compare the formulation given in Eq. (19) with the conventional force 

density formulation (Eq. (11)). Clearly, Eq. (19) can be transformed to Eq. (11) by noting that  

DNB =t            (20) 

and 0CB =t , showing that tBQBS = . Thus, essentially our formulation is an expanded form 

of the force density formulation. In three dimensions, the force density method works with n3  

nodal coordinates, while our formulation works with m3 components of member lengths 

(where, typically, nm > ). We lose the square and symmetric nature of the matrix, but gain 

from the potential for the sparse nature of H , particularly for analytical form-findings.  
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The difference between our formulation and the force density formulation is very similar to 

the difference between the force and displacement methods for structural analysis. In the 

displacement method, the equilibrium equations are written based on the stiffness matrix and 

the nodal displacements, which automatically satisfy compatibility conditions. In the standard 

force method, both the equilibrium and the compatibility conditions are written individually, 

based on elements' independent forces, and should be satisfied simultaneously. In fact, our 

formulation is analogous to the integrated force method (IFM) that was developed by Patnaik 

(1986). The reader can recognize the difference between the compatibility of displacements 

(used in the standard and integrated force methods) and the geometrical compatibility 

conditions described here.    

 

5. Form-finding 

The requirements of our formulation can be considered as twofold: we require the force 

densities to form a state of self-stress, i.e. satisfy 0Aq = , and we require there to be, for a 3-

dimensional tensegrity, three independent solutions to 0HD =  (or two independent solutions 

in 2-dimensions). In fact, as the matrix H  combines equilibrium and compatibility conditions, 

the latter requirement completely implies the former; however, in practice it can be helpful to 

separately and explicitly consider the equilibrium condition. 

 

5.1. Analytical method 

In order to give an analytical formulation, in this paper we use Gaussian elimination with a 

pivoting strategy to analytically convert H to an upper triangular matrix. By ensuring that the 

final rows of this upper triangular matrix are all zero, the relationships required between the 

force densities in different members for them to form a state of self-stress can be obtained. 

However, to carry out these calculations, a computing platform with symbolic computation 

capabilities, such as Maple or Matlab, is advantageous. In order to reduce the total number of 
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symbolic operations and to keep the final matrix as simple as possible, two points should be 

taken into consideration. First, the pivot entries should be kept as simple as possible by 

performing suitable row permutations. Second, in choosing between rows with simple and 

suitable pivot entries, those with the least nonzero entries (sparser rows) are more appropriate 

for use as a pivot row. Note that performing simultaneous row and column permutations can 

further improve the above process, however for the examples presented in Section 6, we only 

performed row permutations. For the analytical formulation we do not separately consider the 

equilibrium matrix A. 

 

5.2. Numerical method 

We also consider a numerical and iterative form-finding method based on our formulation.  

The method requires the following data for initialisation: 

a) Connectivity data. The matrices B and C can be generated using connectivity data and the 

definitions and procedures described so far. 

b) A random vector of force densities, denoted by 0q . Note that a suitable sign should be 

assigned to each entry according to the type of the corresponding element (positive for tensile 

members and negative for compressive elements).  

After the above initialisation steps, we calculate an orthonormal basis for the null space of 

C , denoted by 1−×∈ nm
c RN , as a general solution for compatibility equations. As a result, 

every geometrically compatible solution, including a solution (if one exists) that satisfies 

equilibrium can be formed by linear combination of columns of cN . Therefore, D  is 

considered as 

TND c=            (21) 

where 31×−∈ nRT is a rectangular matrix that contains coefficients of the linear combination of 
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columns. As a particular solution, D  should also satisfy equilibrium equations (Eq. (14)), and 

we obtain  

],,[ 000GT =            (22) 

where 1−×∈ nnRG  and cBQNG = . 

For a set of force densities that form a state of self-stress, T can simply be calculated as 

null-space basis of G . However, if we only have an approximate set of force densities, 

denoted by iQ  in iteration i , we can calculate an approximation of iT  by minimising the 2-

norm of the residual force matrix as follows: 

T
Minimise

2

iiTG            (23) 

 In order to determine a iT that satisfies Eq. (23), we use the SVD of c
ii NBQG =   

iti )( GGG WVUG =           (24) 

Based on this decomposition, the best approximation of iT is obtained using the vectors of 

i)( GW  associated with the three smallest singular values of iG  (the last three diagonal entries 

of i)( GV ), leading to better approximations of the element projection lengths, 1+iD . The new 

values of 11, ++ i
y

i
x dd and 1+i

zd  are then employed in Eq. (6) to calculate the coefficient matrix of 

equilibrium equations ( 1+iA ). In a self-stress state, A has at least one zero singular value, and 

by using a similar approach to the one described above, we can find a new approximation of 

force densities that form a state of self-stress 1+iq . We need to find a new set of force 

densities in a way that satisfies the minimisation problem 

q
Minimise

2

11 ++ ii qA           (25) 

)sgn()sgn(: 01 qq =+itoSubject  

where 'sgn' denotes sign function. In order to solve the above minimisation problem, the SVD 

of 1+iA  is calculated as 1
AAA

1 )( ++ = iti WVUA , and the last column of 1
A )( +iW  corresponding 
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to the smallest singular value is selected as the new vector of force densities. Element types 

are imposed a priori, meaning that the sign of the force density vector obtained from the SVD 

of 1+iA should be the same as 0q in all iterations (see the constraint defined in Eq. (25)). 

Although note that the overall sign is not important at this stage, and is indeed arbitrary in the 

SVD. However, to ensure that the sign of an iterative set of force densities conforms to 0q , we 

adopt Estrada et al.’s (2006) approach, which employs linear combinations of the other 

columns of AW  within a least square approximation to find a vector whose sign matches with 

the initial set of force densities. 

The above steps can be employed iteratively to minimise the residual forces as much as is 

required. Iterations cease when the stopping criterion, as defined in Eq. (26), is satisfied. 

ε≤= ),(max 21 ttt           (26) 

Here, 1t  is the maximum value of the three smallest singular values of iG  and 2t  is the 

smallest singular value of 1+iA . The user sets ε as a very small number according to the 

desired level of accuracy.  

After convergence, the nodal coordinates of tensegrity should be calculated using Eq. (20). 

Different methods can be used to solve Eq. (20); we offer a solution based on the Moore-

Penrose pseudo-inverse (see Golub and Van Loan, 1996 for more detail) of tB  as follows: 

DBzyxN +== )(],,[ t          (27) 

Here, the superscript + on tB  refers to the Moore-Penrose pseudo-inverse operator. This 

method promises to find a solution of Eq. (20) in such a way that the norms of vectors 

yx, and z are smaller than the norms of any other possible solution.  

Note that, as the SVD is employed throughout of the iterations, we always obtain an 

orthogonal matrix of Cartesian components of element lengths as follows: 
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Considering the trace of the above matrix, this orthogonality leads to a special constraint on 

the final geometry of a 3-dimensional tensegrity, concerning the length of elements, as 

follows: 

∑
=

=
m

i
iL

1

2 3            (29) 

The above features lead to a tensegrity structure geometry without any dilation, shear or 

translation. In the following, the process of our numerical form-finding method is presented in 

a step-by-step algorithmic form. 

Algorithm 

Step 1. Define connectivity data and a random set of force densities ( 0q ). 

Step 2. Form B and C  and calculate cN  (Also E , see 5.3). Set 0=i . 

Step 3. Calculate the SVD of c
ii NBQG =  and select iT . 

Step 4. Calculate i
c

i TND =+1 . 

Step 5. Calculate the SVD of 1+iA  (or 1+i
EA ) and select 1+iq  (see 5.3 for more details). 

Step 6. If ε≤t  stop; else 1+= ii  and continue from step 3. 

 

5.3. Symmetry and grouping of elements 

It may be required that the found form for a tensegrity has certain symmetry. According to 

the required symmetry, elements can be grouped, and one force density associated with all 

elements of each group. As a result, grouping reduces the total number of variables in the 

analytical form-finding— note that grouping can be considered independent of the symmetry 

of a tensegrity. The reader may refer to Murakami and Nishimura (2001), Sultan et al. (2001), 
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Tibert and Pellegrino, (2003), Zhang et al. (2009a, b) and Zhang et al. (2010), for some 

examples of exploiting symmetry and grouping in the analytical form-finding and 

characterisation of tensegrity structures. In numerical form-finding, grouping can also be 

considered for symmetric tensegrities. A problem in numerical form-finding methods relating 

to grouping arises from the different approximations used to iteratively calculate the vector of 

force densities. In our method, step 5 is sensitive to grouping. An approximated vector of 

force densities (the last column of 1
A )( +iW ) does not necessarily follow the initial grouping 

scheme. An efficient approach is proposed here to address this problem. The method is 

completely general and can be used as part of any numerical form-finding method that uses 

similar approximation steps.  

Let all elements of a tensegrity be packed into k groups, denoted by kggg ,...,, 21 , where 

each group is a set that contains labels of all elements with the same force density. For a 

typical group jg , 1−jg  independent equations ( . means cardinality of a set) can be 

associated based on equality relationships between the force densities of elements. For 

example, let l and p  be in a group. The equality pl qq =  leads to the equation 

0)( =− qee t
p

t
l where le and pe  are m-dimensional base vectors. Considering all groups, 

kg
k

j
j −∑

=

)(
1

independent equations can be generated in matrix form as follows: 

0Eq =            (30) 

Eq. (30) can be combined by the equilibrium equations, 0Aq = , leading to an augmented 

form of the equilibrium equations as given in Eq. (31). 

0q
E
A

qA =⎥
⎦

⎤
⎢
⎣

⎡
=E              (31) 

For symmetric tensegrities including an initial grouping, the SVD of EA should be 

calculated instead of that of A . In the early stages of the form-finding process, the 
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approximate solution of Eq. (31) again leads to 0Eq ≈ , but with less diversity. We require a 

final step to completely remove any inconsistency in the force density vector. To do so, 1+iq  

is created such that the mean force density of all elements in each group is selected as the 

force density associated with the elements of that group. After the final adjustment, it is clear 

that the vector of force densities follows the initial grouping scheme.  

 

5.4. Convergence  

In numerical analysis, an iterative method is called globally convergent if the successive 

approximations generated by the method converge to a feasible solution (or the same solution 

for the problems with a unique solution) starting from arbitrary initial approximations. 

However, in practice, most iterative methods are locally convergent and should be provided 

with reasonably good initial approximations to converge to a solution. Our study shows that 

the numerical form-finding method proposed in this paper has been found to converge to a 

solution for all sets of random force densities tried, although some solutions may not be 

feasible. From this numerical experiment point of view, our method is locally convergent. The 

unfeasible solutions typically arise, for instance, if an initial random set of force densities, 0q , 

leads to a geometry including one or more elements with zero (or very small) lengths or force 

densities. We can identify this condition by using minmax / LL  as an indicator, where maxL and 

minL  are the maximum and minimum lengths of elements, respectively. Note that the length of 

each element can be calculated in Step 4 of the algorithm after the calculation of 1+iD  by 

using 222
jjjj dzdydxL ++=  , mj ,...,2,1= . A very large value for the above fraction (e.g. 

20 or more) may be a good indicator of an improper 0q . The same restriction may also be 

applied to qq min/max . Overall, our study reveals that, although the convergence (and its 

rate) of the proposed method is generally dependent on two different variables (i.e. the 
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topology of tensegrity and the initial random set of force densities), it still converges 

satisfactorily in practice for a wide variety of random initialisations. 

 

6. Examples 

In this section, five examples of well-known tensegrities and an example of a new 

tensegrity are provided. Their self-stress states and found forms are studied through our 

analytical and numerical approaches. The first two examples use the analytical approach and 

include details about cycle bases and their connections to our formulation. The third example 

is studied both numerically and analytically. For the sake of brevity, details about cycle bases 

are not provided for the last four examples. In all examples, we assume that the symmetry 

properties of a tensegrity (in a geometrical manner) cannot be exploited or unknown. 

However, element grouping is available throughout. In all numerical procedures, the 

convergence criterionε  is set to 15101 −× . 

  

Fig. 3. Graph model of a 2-dimensional tensegrity  

 

6.1. Example 1 

In this example, the self-equilibrium state of a 2-dimensional tensegrity is studied using the 

analytical method proposed (restriction of the formulations to 2-dimensional tensegrities is 

straightforward). Fig. 3 shows a graph model of the tensegrity with its elements labelled. This 

graph has 6=n  nodes and 9=m  elements. We consider four groups of elements, two sets of 
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cables }6,4,3,1{1 =g , }5,2{2 =g  and two sets of struts }8,7{3 =g  and }9{4 =g . 

Furthermore, 321 ,, qqq  and 4q are associated with these groups as their respective force 

densities. The cyclomatic number of this graph is 4. Therefore, four independent cycles, 

}7,6,1{1
+−+=c , }9,3,2,1{2

−+++=c , }8,4,3{3
−++=c and }9,6,5,4{4

+−++=c  form its 

cycle basis. The set of cycles is minimal as it is not possible to find another set of cycles with 

a smaller number of elements. In addition, the sign attached to each number refers to the right 

sign of the corresponding nonzero entry in the cycle-member incidence matrix C . We 

generate the combined form of the equilibrium and geometrical compatibility equations ( H ) 

and apply the analytic procedure described in section 5.1 to create an upper triangular matrix, 

denoted by H' , as follows:  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
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⎣

⎡

−

−−

−
−

−−
−

=
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200000000
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0000000
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001100001

2

411

312
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γβ

α q
qqq

qqq
H'  

Here, )2( 321 qqq ++−=α , 
α

β
2

)22)(2( 32131

−
+++

=
qqqqq

 and 

2

424121

2
22

q
qqqqqq ++

−=γ . 

Matrix H'has 9 columns and 10 rows, and hence for any set of parameters, all entries of the 

last row of H' must be zero. To give two independent solutions for xd and yd (as we are 

considering a 2-dimensional tensegrity) the rank of H should be 729 =− . This rank can be 

achieved if both β and γ  are zero. From 0=γ  we obtain )2/(2 21214 qqqqq +−= , while for 
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0=β  there are two possible cases: 2/13 qq −=  or 2/)2( 213 qqq +−= . The first case 

corresponds to a super-stable configuration (see Connelly and Terrell, 1995 and Zhang and 

Ohsaki, 2007 for more detail about super-stability conditions) while the second one does not. 

In fact the second case is neither super-stable nor stable because its linear elastic stiffness 

matrix is not positive definite (excluding rigid body motions). Note that, tensegrities without 

super stability may still be stable — for these cases, however, the stability can be investigated 

based on prestress/stiffness ratio of elements and spectral characteristics of the tangent 

stiffness matrix (sum of the linear elastic stiffness and geometrical stiffness matrices). The 

reader may refer to Ohsaki and Zhang (2006) for the necessary and sufficient conditions for 

the stability of pin-jointed structures including tensegrities.    

 

Fig. 4. Self-equilibrated configurations of a 2-dimensional tensegrity; a) super-stable, b) 

unstable 

 

The second equation for 3q  sets four diagonal entries of the force density matrix equal to 

2q− , a negative value, and annihilates the positive semi-definiteness of the force density 
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matrix. To verify the formulation and the results, eigenvalues of the force density matrix are 

calculated symbolically using the above relationships between the force densities. For the first 

case, three zero-valued eigenvalues are obtained. The other three eigenvalues are 13q , 22q  

and )2/()443( 21
2
221

2
1 qqqqqq +++ , all of which are strictly positive ( 1q  and 2q  are the force 

densities of cables and are therefore positive). Hence, the force density matrix is semi-positive 

definite and the corresponding configuration is super-stable. For the second case, we also 

obtain three zero-valued eigenvalues. However, the first eigenvalue is 22q− , which is clearly 

negative and leads to a configuration without super-stability. The other two eigenvalues are 

the same as those in the first case and are positive. As a result, our approach leads to results 

that are in complete agreement with those of the classic force density method.  

At this stage, we select 21 =q , 12 =q  and 143 −== qq  as the first typical case and 21 =q , 

12 =q , 23 −=q  and 14 −=q  as the second typical case (both satisfying self-stress conditions) 

and calculate the nodal coordinates of tensegrity via Eq. (27). The configurations are shown in 

Fig. 4, where compressive elements are depicted in thick lines. Both configurations are 

symmetric without any dilation, shear or translation and all elements in each group have the 

same length.  

 

Fig. 5. Graph model of a truncated tetrahedral tensegrity 
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6.2. Example 2 

In this example, the analytical form-finding of a truncated tetrahedral tensegrity is studied. 

Fig. 5 shows a graph model of the tensegrity with node and element labelling. This graph has 

12=n  nodes and 24=m  edges and its cyclomatic number is 13. The minimal cycle basis of 

this graph is formed using four 3-sided and nine 4-sided cycles, as summarised in Table 1. 

The proposed analytical process is applied to the combined form of the geometrical 

compatibility and equilibrium equations, leading to an upper triangular symbolic matrix ( H' ).  

 

Table 1 

Set of the minimal cycle basis for a truncated tetrahedral tensegrity 

Cycle 

name 
1c  2c  3c  4c  5c  6c  7c  8c  9c  10c  11c  12c  13c  

1+ 4+ 7+ 10+ 3+ 5+ 1+ 4+ 13+ 19+ 23+ 2+ 15+ 

2+ 5+ 8+ 11+ 17+ 18+ 22+ 14+ 21+ 18+ 14- 19+ 12+ 

3- 6- 9- 12- 9- 11- 10+ 7+ 15+ 20- 24+ 6- 20- 

Element 

number 

    23- 24- 16- 21- 22- 17- 16- 13- 8- 

 

It is possible to find three independent solutions for xd , yd and zd if the rank of H' is at 

most 21. Therefore, the 22nd –24th rows of H' should be zero. The simplified non-zero entries 

(numerators) found are 

)33432(2)22,22( 2
31321

2
32

2
21

3
21 qqqqqqqqqqq +++−−= ωH'  

)8441214339()23,22( 3
3
2

4
2

2
3213

2
21

3
213

2
132

2
1

2
2

2
1 qqqqqqqqqqqqqqqqqq ++−++−+= ωH'  

)46333()24,22( 4
2

3
21

2
3

2
132

2
1

2
2

2
1 qqqqqqqqqq +++−= ωH'  

)()23,23( 2qω=H'  

)2()24,23( 23 qq −= ωH'  
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ω=)24,24(H'  

where 2
323

2
2

2
31321

2
213

2
12

2
1 2226233 qqqqqqqqqqqqqqq ++++++=ω . All entries have a 

common sub-expression (ω ), and 0=ω  provides us with the rank deficiency required. The 

same equation has been provided in Zhang and Ohsaki (2012) for the self-stress state, 

verifying our results. The above equation can be simplified by setting 12 qq λ=  and 

13 qq σ= , as follows: 

0)23()3)3(2()1(2 2 =++++++= λλσλλσλω  

This gives another form of the self-stress condition for a truncated tetrahedral tensegrity, as 

described by Tibert and Pellegrino (2003). Note that, even though the force density matrix is 

symmetric and far smaller than our matrix, the analytical calculation of its eigenvalues 

(without exploiting symmetry) is impossible as a consequence of the Abel-Ruffini theorem 

(see Pesic, 2003) that there is no general algebraic solution to a polynomial equation of degree 

5 or higher, while its factorisation using a Gauss elimination method leads to a matrix with 

highly complicated entries.  

 

Fig. 6. Self-equilibrated configurations of a truncated tetrahedral tensegrity a) 

8/)4111(3 +−=q ;  b) 8/)4111(3 −−=q  

Using the equations provided, we consider two sets of typical force densities, 121 == qq , 

8/)4111(3 ±−=q , and calculate the corresponding nodal coordinates. In the self-stressed 
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state, all nodes of tensegrities are located on spheres (whose centres are the origin of the 

coordinate system) with radii of 0.2970 and 0.1998 for cases (a) and (b), respectively. Fig. 6 

illustrates the two configurations mentioned above, where the first case is super-stable. 

 

6.3. Example 3 

This example has been selected from Tran and Lee (2010a). The original problem is the 

form-finding of a cable-strut structure with some fixed nodes. Dummy members have been 

added to the structure to convert it to an equivalent model without fixed nodes (external 

continuous compressive elements in Fig. 7). We adopt the same labelling of elements, nodes 

and element groupings as in the above reference.  

 

Fig. 7. Top and perspective views of two self-equilibrated configurations for Example 3 a) 

super-stable b) not super-stable 

 

Note that all elements are grouped into four sets, including two groups of tensile elements 

(10 elements in each group) and two groups of compressive elements (5 elements in each 
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group). In addition, 1q and 2q  are considered the force densities of elements in the tensile 

groups (the first and second groups), while 3q and 4q are considered the force densities of 

elements in the compressive groups (the third and fourth groups). Force densities of typical 

elements are shown in Fig. 7, where different colours illustrate elements of different groups.  

Our numerical form-finding method successfully generates two different forms. Both 

configurations are illustrated in Fig. 7. For this example, the numerical procedure proposed by 

Tran and Lee (2010a) gave a self-stressed configuration without super-stability. Table 2 

provides more details about our form-finding procedure, where force densities are ordered 

from 1q to 4q . Both cases converged in just 2 iterations, demonstrating the efficiency of our 

proposed method (this rate is constant for every initial set of force densities). 

 

Table 2 

Detailed results of the numerical form-finding method for Example 3 

 
Initial random force 

densities 

Final normalised 

force densities 

Total number of 

iterations and t 

Case 1  

(super stable) 

6110.0  

0.7788 

-0.4235 

-0.0908 

0.2091 

0.2160 

-0.1045 

-0.0912 

2, 16103074.3 −×  

Case 2 

0.6619 

0.7703 

-0.3502 

-0.6620 

0.1793 

0.2243 

-0.0896 

-0.1644 

2, 16104619.3 −×  

 

We also analytically investigate the conditions for a valid form in this example using our 

formulation. The rank deficiency of the combined form of the equilibrium and geometrical 

compatibility conditions provides two different equations: 02 31 =+ qq  and 
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0551044 2
4

2
2

2
4214

2
21

2
4

2
142

2
1

2
2

2
1 =+++++ qqqqqqqqqqqqqqq . The second equation can be 

rewritten in a simpler form using new variables: 12 qq α=  (α is positive) and 14 qq β=  ( β  is 

negative). The equation is then rewritten as follows:  

0)54()5104( 2222 =+++++ βαββαββ  

This equation has two roots:  

2

2

10208
)55(4
ββ
ββα

++
±+−=  

Only positive roots are acceptable. Our numerical results are in complete agreement with the 

established analytical equations, verifying the accuracy of the results. 

 

6.4. Example 4 

In this example, the numerical form-finding of a well-known tensegrity, based on a  

truncated icosahedron, is studied using the proposed method. This tensegrity has 60=n  

nodes and 120=m elements. The reader may refer to Murakami and Nishimura (2001) for 

more detail on the connectivity and symmetry properties of this tensegrity. The cyclomatic 

number for a graph of this tensegrity is 61, meaning that 61 geometrical compatibility 

equations (or independent cycles) should be generated for this model. For this example, we 

numerically generate the coefficient matrix of the geometrical compatibility equations (C ) by 

calculating a triangular null-space basis of the node-member incidence matrix. Three cases are 

studied using our numerical method; the first case converges to a super-stable configuration, 

while the others only satisfy the self-equilibrium condition. The detailed results of the 

numerical procedure are summarised in Table 3.  

We confirm all our results with the analytical self-stress conditions recently derived by 

Zhang et al. (2012) for truncated icosahedral tensegrities, as follows:  

0)(
2

53
5

)55(3)(
5

55 2222 =+−+−++−++ bsbsbsbsbs qqqqqqqqqq  
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0)(
2

53
5

)55(3)(
5

55 2222 =+++++++++ bsbsbsbsbs qqqqqqqqqq  

Note that sq and bq are force densities of cables and struts that have been normalised based 

on the force density of cables on truncated edges, i.e., 12 / qqq s =  and 13 / qqqb = . The force 

densities obtained for the first case (super-stable) are in complete agreement with the first 

equation above (see also Koohestani, 2012; Murakami and Nishimura, 2001 and Zhang et al., 

2013), while the other two cases exactly satisfy the second equation. This verifies the 

accuracy of our method. 

 

Table 3 

Detailed results of the numerical form-finding method for Example 4 

 
Initial random force 

densities 

Final normalised 

force densities 

Total number of 

iterations and t 

Case 1  

(super stable) 

0.8055 

0.5767 

-0.1829 

0.1137 

0.0780 

-0.0375 

67, 16102985.6 −×  

Case 2 

0.7127 

0.5005 

-0.4711 

0.1077 

0.0826 

-0.0575 

9, 16104048.9 −×  

Case 3 

0.0714 

0.5216 

-0.0967 

0.0245 

0.1766 

-0.0307 

7, 16103331.5 −×   

 

Fig. 8 illustrates the final geometries of the tensegrity in the three cases examined. All 

nodes of the tensegrity are located on spheres with centres at the origin of the coordinate 

system and radii of 0.2190, 0.1286 and 0.1107 for cases 1, 2 and 3, respectively. Our method 

directly generates geometries without any dilation, shear or translation, and where all 

elements in each group have the same length. Furthermore, the performance of the present 
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method in terms of convergence is studied in this example. To do so, we perform 20 runs of 

our numerical form-finding method for both cases (with and without super-stability) with 

different random sets of force densities.  

 

Fig. 8. Self-equilibrated configurations of a truncated icosahedral tensegrity a) case 1, super-

stable; b) case 2, not super-stable; c) case 3, not super-stable 

 

Fig. 9.  Comparison of the convergence history of the our numerical method with those of the 

other methods for truncated icosahedral tensegrity 
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Fig. 9 illustrates a comparison of the convergence history of the proposed method (average 

of 20 runs) and those of Tran and Lee (2010 b) and Estrada et al. (2006). The comparison 

clearly verifies the efficiency of the proposed method. 

 

6.5. Example 5 

The numerical form-finding of the "expanded octahedron" tensegrity is studied in this 

example. This tensegrity has 12=n  nodes and 30=m elements. The coefficient matrix of the 

geometrical compatibility equations is calculated numerically. We choose only two variables 

by considering the force density of all the cables ( 1q ) as one variable and that of all the struts 

( 2q ) as the other. For this initialisation, our method generates a super-stable configuration 

(see Fig. 10 (a)) with a constant 21 / qq  ratio of -2/3. The results given for this structure are in 

a complete agreement with those of Tibert and Pellegrino (2003). The convergence history of 

our numerical method is provided in Fig. 11. 

 

 

Fig. 10.  A super-stable a) expanded and b) modified "expanded octahedron" tensegrities 
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Fig. 11.  Comparison of the convergence history of the our numerical method with those of 

the other methods for the "expanded octahedron" tensegrity 

 

We slightly change this example in order to demonstrate the capability of our built-in 

grouping and numerical approach to deal with tensegrities having multiple states of self-

stress. To do so, 6 members (connecting end of parallel compressive elements) have been 

added to the original model of the "expanded octahedron". This tensegrity has been studied by 

Tran and Lee (2011) for a case of multiple states of self-stress (the structure has six states of 

self stress). We study this example through our numerical approach and also note that, we 

adopt the same labelling of nodes and elements as the above reference. Two cases have been 

considered based on two different groupings of elements. In the first case, all elements are 

grouped into three sets, including two groups of cables { }24...,,2,11 =g  and 

{ }30...,,26,252 =g  and, a group of struts { }36...,,32,313 =g  as in Tran and Lee (2011).  

Furthermore, in order to show the viability of our method, we consider a more complex 

grouping of elements. In this case, all elements are packed into seven groups with the 

corresponding force densities 71 qq − . These groups are { }20,18,15,13,8,7,2,11 =g , 

{ }24,23,22,21,6,5,4,32 =g , { }19,17,16,14,12,11,10,93 =g  and { }30,29,28,27,26,254 =g  

for cables and { }32,315 =g , { }36,336 =g  and { }35,347 =g  for struts. Our numerical form-

finding method with its built-in grouping scheme directly generates feasible sets of force 
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densities for both cases (both are super-stable) in just 2 iterations.  This can be compared with 

the 18 iterations required by the  two-stage algorithm of Tran and Lee (2011) for the first 

case. Table 4 provides more details about the form-finding process. The equilibrium 

configuration of the first case is also illustrated in Fig. 10 (b).   

 

Table 4 

 Detailed results of the numerical form-finding method for Example 5 

 
Initial random force 

densities 

Final normalised 

force densities 

Total number of 

iterations and t 

Case 1  

(super stable) 

0.2208 

0.4536 

-0.4653 

0.1129 

0.2748 

-0.2004 

2, 16100361.4 −×  

Case 2 

(super stable) 

0.4061 

0.6580 

0.5752 

0.9760 

-0.4416 

-0.7778 

-0.5695 

0.1030 

0.1723 

0.1404 

0.1777 

-0.2147 

-0.2659 

-0.2200 

2, 16107118.3 −×   

 

 

Fig. 12.  Möbius-Kantor graph with labelling 
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6.6. Example 6 

All the examples presented so far are known tensegrities that have been studied in the 

literature. In this example we try to demonstrate the capacity of the proposed methods for 

form-finding and exploring new tensegrities. Fig. 12 shows a well-known graph (called the 

generalised Peterson graph )3,8(G or Möbius-Kantor graph (Coxeter ,1950), with 16=n  

nodes, 24=m  edges and 9=β independent cycles. We select this graph as the topology of a 

tensegrity and consider two cases based on different groupings of edges. In the first case, we 

consider five groups of elements, one set of struts { }7,5,3,11 =g  and four sets of cables 

}8,6,4,2{2 =g , { }15,13,11,93 =g , { }16,14,12,104 =g  and { }24...,,18,175 =g .  In the second 

case, three groups of elements, one set of struts { }7,5,3,11 =g  and two sets of cables 

{ }15,13,11,9,8,6,4,22 =g  and { }24...,,17,16,14,12,103 =g  are considered. Furthermore, iq  is 

associated with ig  as its respective force density. Note that, this type of grouping leaves eight 

nodes of the tensegrity without any compressive element which makes it rather different from 

classical tensegrities. We found two super-stable configurations for both cases, as shown in 

Fig. 13.  

 

Fig. 13.  Two new super-stable tensegrities a) case 1, b) case 2 

Table 5 also provides the detailed results of the form-finding for both cases, each for two 

random sets of force densities. Furthermore, by examining the numerical results, we found 
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that in the second case, three force densities are related to each other through very simple 

relationships 3/31 qq −= and 2/32 qq = . These relationships have also been verified through 

the analytical approach presented.  

 

Table 5 

Detailed results of the numerical form-finding method for Example 6 

 
Initial random force 

densities 

Final normalised 

force densities 

Total number of 

iterations and t 

Case 1  

(super stable) 

-0.0900 

0.1117 

0.6787 

0.1363 

0.4952 

-0.0449 

0.0089 

0.3300 

0.0686 

0.2591 

65, 16107232.7 −×  

Case 2 

(super stable) 

-0.2967 

0.3188 

0.4242 

-0.0877 

0.1316 

0.2631 

151, 16105503.8 −×  

 

7. Discussions and conclusions 

In this section, we discuss the advantages and disadvantages of our method in comparison 

with other available methods and formulations. We have introduced a combined formulation 

of the equilibrium and geometrical compatibility equations, which offers a new insight into 

the form-finding of tensegrity structures. The proposed formulation is, in fact, the natural 

counterpart of the force density method, but with different structure and variables. Our 

analytical results are in complete agreement with those of Tibert and Pellegrino (2003), Zhang 

et al. (2012) and Zhang and Ohsaki (2012). Clearly, the new structure of the combined 

formulation enables us to find reasonable analytical solutions for moderately large and 

irregular models. This advantage, for instance, is shown in examples 6.2 and 6.3 where fairly 

simple analytical relationships have been obtained for the tensegrities. For these examples, 
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analytical computation using the force density matrix is far more difficult. Our numerical 

approach iteratively employs the SVD of two different forms of equilibrium equations to find 

a state of self-stress. This part of our numerical method is related to the methods developed by 

Estrada et al. (2006) and Tran and Lee (2010a, b), but it is different from the adaptive force 

density method of Zhang and Ohsaki (2006). In general, the numerical approach presented in 

this paper has several distinct advantages in comparison with those studies mentioned above 

including: 

a) It starts from a random set of force densities (instead of using a constant prototype vector 

containing only +1 and -1). This enables us to form and explore a wide variety of tensegrities 

with or without super-stability and with different levels of energies. This feature may also be 

very important for the design and optimisation of tensegrities with different constraints.  

b) Our experiments show that the method presented is accurate, and it has good convergence 

performance (i.e., it converges faster than similar methods such as Estrada et al., 2006, Tran 

and Lee, 2010b and Tran and Lee, 2011)  

c) The combined form of the equilibrium and compatibility equations with Cartesian 

components of element lengths as primary variables enable us to directly form a symmetric 

geometry for a symmetric tensegrity. All the numerical methods mentioned above usually 

require secondary computations to form a symmetric tensegrity even from a symmetric set of 

force densities. 

d) The method is enriched with a special grouping scheme, which allows us to directly apply 

the symmetry properties of tensegrities to the form-finding process. Therefore, as 

demonstrated in example 5, our method can effectively and efficiently generate a single 

(integral) feasible set of force densities for different groupings.  

Our method has two weak points. First, the method does not have a built-in strategy to 

guide the solution towards super-stable (or at least stable) configurations (or tensegrities with 

different levels of energy). In other words, by starting from a random set of force densities, 
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the method converges to a super-stable or not super-stable form randomly. Second, the 

method may converge to a solution which is not feasible (the force density or the length of 

some of elements is zero). The conditions which lead to such a situation have been discussed 

in section 5.4. However, we believe that this weakness is not significant, and it can be easily 

resolved by setting a new starting point (new set of random force densities).    

In general, this study reveals that our formulation and its associated analytical and 

numerical methods provide an appealing platform for the study of tensegrity structures. 

However, investigating the super-stability conditions via the combined formulation, 

evaluating the performance of the numerical method for the form-finding of irregular 

tensegrities and the form-finding and optimisation of tensegrities under different constraints 

may be important enough to call for new studies. 
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Highlights 

 A new formulation for the form-finding of tensegrity structures is developed 

 The new formulation is the natural counterpart of the force density formulation 

 Both an analytical and a numerical implementation of the formulation are described 

 The numerical method needs a random set of force densities, and converges quickly 

 A symmetric geometry for a symmetric tensegrity can be obtained directly 

 

 


