International Journal of Solids and Structures 176-177 (2019) 1-18

Contents lists available at ScienceDirect SOLBS b
STRUCTURES

International Journal of Solids and Structures . Q

journal homepage: www.elsevier.com/locate/ijsolstr

Identification of second-gradient elastic materials from planar ’ A
hexagonal lattices. Part I: Analytical derivation of equivalent
constitutive tensors

Check for
updates

G. Rizzi, F. Dal Corso, D. Veber, D. Bigoni*

DICAM, University of Trento, via Mesiano 77, Trento, 1-38123, Italy

ARTICLE INFO

ABSTRACT

Article history:

Received 25 March 2019
Revised 8 July 2019
Accepted 8 July 2019
Available online 9 July 2019

Keywords:

Strain gradient elasticity
Non-local material
Non-centrosymmetric material
Internal length
Homogenization

A second-gradient elastic (SGE) material is identified as the homogeneous solid equivalent to a periodic
planar lattice characterized by a hexagonal unit cell, which is made up of three different linear elastic
bars ordered in a way that the hexagonal symmetry is preserved and hinged at each node, so that the
lattice bars are subject to pure axial strain while bending is excluded. Closed form-expressions for the
identified non-local constitutive parameters are obtained by imposing the elastic energy equivalence be-
tween the lattice and the continuum solid, under remote displacement conditions having a dominant
quadratic component. In order to generate equilibrated stresses, in the absence of body forces, the ap-
plied remote displacement has to be constrained, thus leading to the identification in a ‘condensed’ form
of a higher-order solid, so that imposition of further constraints becomes necessary to fully quantify the
equivalent continuum. The identified SGE material reduces to an equivalent Cauchy material only in the
limit of vanishing side length of hexagonal unit cell. The analysis of positive definiteness and symmetry
of the equivalent constitutive tensors, the derivation of the second-gradient elastic properties from those
of the higher-order solid in the ‘condensed’ definition, and a numerical validation of the identification

scheme are deferred to Part II of this study.

© 2019 Published by Elsevier Ltd.

1. Introduction

Research on the equivalence between spring networks and con-
tinuous bodies was initiated by Cauchy (1828) and later continued
by Born and Huang (1954), with the purpose of determining the
overall elastic properties of crystalline materials subject to small
strain. Considering a linear interaction between atoms, a mate-
rial is modelled as a three-dimensional linear elastic lattice, with
elements only subject to axial deformation. This is the so-called
‘Cauchy-Born rule’, which yields the ‘rari-constant’ theory of elas-
ticity, relating the elastic property of a solid to the interactions be-
tween its atoms or molecules.

Over the years, the approach has been extended to evaluate
mechanical characteristics such as Young modulus, Poisson’s ra-
tio and normal modes of vibration for a number of geometri-
cally different networks (Genoese et al., 2018; Keating, 1966; Kirk-
wood, 1939; Latture et al., 2018; Neumann, 1975). With reference
to a hexagonal lattice, composed of linearly elastic bars pinned to
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each other (so that bending effects are excluded) and character-
ized by three different values of stiffness, as reported in Fig. 1,
Day et al. (1992) and Snyder et al. (1992) have shown that the
overall behaviour of this lattice may be modelled through an
equivalent isotropic Cauchy linear elastic solid defined by the elas-
tic bulk K and shear n moduli given by

k+k+k /27(1 11\,
K=———, =,/ == :+;+:) , 1
Vi2 " 6\ k Kk ()

where k, k and k are the three in-plane bars’ stiffnesses (so that
their dimension is a force per unit out-of-plane thickness divided
by a length) defining the hexagonal lattice.

The goal of the present research is to extend the theory de-
veloped by Day et al. (1992) and Snyder et al. (1992) towards a
higher-order approximation for the elastic material equivalent to
the hexagonal lattice, showing nonlocal effects related to the four
parameters defining the lattice properties at the micro-scale, the
hexagon side length ¢ and the stiffnesses k, k and k.

Phenomenological constitutive theories, used to model mate-
rials of engineering relevance, were traditionally assumed to be
local, or, in other words, did not comprise any internal charac-
teristic length. Recently, experimental observations at the micro-
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Fig. 1. (Left) A planar lattice obtained as the periodic repetition of a hexagonal unit cell (with side length ¢) made up of linear elastic bars, characterized by three stiffnesses
k (red bars), k (green bars), and k (blue bars). The bars are connected through hinge joints, so that only axial strain is present and bending is excluded. Reference systems
are also reported. (Right) Explosion of the hexagonal lattice displaying the cell and node nomenclature and highlighting how the perimeter nodes are shared among adjacent
cells. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and nano-scale have evidenced size-effects (Beveridge et al., 2013;
Buechner and Lakes, 2003; Lakes, 1986; Waseem et al., 2013),
which cannot be described with local constitutive models. There-
fore, an enhanced modelling has been introduced, which becomes
particularly useful when large strain gradient are involved, as in
contact mechanics (Gourgiotis et al.,, 2016; Zisis et al., 2015) inden-
tation processes (Begley and Hutchinson, 1998; Danas et al., 2012),
fracture (Gourgiotis and Piccolroaz, 2014; Piccolroaz et al., 2012),
and shear band formation (Dal Corso and Willis, 2011; Sluys et al.,
1993).

Several authors (Abdoul-Anziz and Seppecher, 2018; Askar and
Cakmak, 1968; Bacigalupo and Gambarotta, 2012; 2014; Le Dret
and Raoult, 2013; Ostoja-Starzewski, 2002; Shi, 1995; Spadoni
and Ruzzene, 2012; Warren and Byskov, 2002) have proposed
non-classical continuum models to treat lattice structures involv-
ing beam-type interactions. For these lattices, non-local effects
emerge as the response to non simple interactions between ma-
terial points, generated, for example, when rotational springs are
used (Suiker et al., 2001).

The primary goal of the present study is the determination
of the non-local response of lattices (having elements only sub-
ject to axial forces), which has been scarcely considered so far
(an example is the case of pantographic trusses (Seppecher et al.,
2011)). In particular, it will be shown that a hexagonal lattice struc-
ture with axially-deformable bars can be identified with a ‘form I’
Mindlin elastic material, a special type of second-gradient elastic
law (Mindlin, 1964).

The present article is organized as follows. After the kinemat-
ics and the equilibrium of the hexagonal lattice (Fig. 1) is intro-
duced (Section 2), the quadratic remote displacement conditions,
plus the additional terms needed to enforce equilibrium, are pre-
sented in Section 3. The homogeneous Second Gradient Elastic
(SGE) solid equivalent to lattice is identified in Section 4. In partic-
ular, by imposing an elastic energy matching, closed-form expres-
sions for the higher-order tensors are derived. As a consequence of
the fact that the energy matching is imposed under the condition
that the applied displacement field generates equilibrated stress
states, only a ‘condensed’ form of the constitutive equations is de-
termined for the SGE solid. As a conclusion, it is shown that the
elastic second-gradient solid equivalent to the lattice structure ex-
hibits non-locality, anisotropy, and non-centro-symmetry (despite
the fact that the equivalent Cauchy material, derived on linear dis-
placement fields, is local, isotropic, and centro-symmetric). Impor-
tant issues related to: the analysis of (i.) positive definiteness and
(ii.) symmetry of the equivalent material, (iii.) the derivation of the
full SGE solid from the properties of the ‘condensed’ one, and (iv.)

the validation of the derived second-gradient model are deferred
to Part II (Rizzi et al., 2019) of this study.

2. The hexagonal lattice
2.1. Preliminaries: the periodic structure and its elastic equilibrium

An infinite periodic lattice (Fig. 1, left), defined in the plane
containing the orthonormal basis e;-e,, is considered as the repe-
tition of a hexagonal unit cell, which will eventually be identified
with a representative volume element (RVE) of an equivalent con-
tinuum. The hexagonal cell is regular and has side of length ¢, it
is characterized by linear elastic bars with three different values
of axial stiffnesses, namely, k.k, and k, distributed according to the
scheme reported in Fig. 1, which preserves the hexagonal symme-
try. Therefore, a total of six bars (two groups of three bars having
the same stiffness) converge at each hinge node of the lattice.

Among the three tessellations equivalent for the realization of
the periodic lattice, the one is chosen for which the unit cell has
its center defined by the convergence of the bars of stiffness k and
k, while the other bars of stiffness k define the hexagon perimeter.
Each node of the cell is denoted by the index i = {0, 1, 2, 3,4, 5, 6}
and each cell is singled out by the integers {m, n} € Z, which de-
termine the cell position with reference respectively to the non-
orthogonal directions e; and e, ;3 = 1/2e; + V3/2e,, see Fig. 1. It
follows that the position x(™1) of the i-th node of the {m, n} cell
can be described with reference to the central node (i = 0) position
x(mnl0) through the following expression

xmal) _ x(mnl0) | o )

where g{) defines the direction spanning from the central node to
the i-th node,

gV =(1- 6io){—sin [”(i;l)}e] + cos [ﬂ(i;])}ez}, (3)

in which the index i is not summed and the Kronecker delta §;y
is defined to include the null index value, so that §y9 =1 while
8ip = 0 for every i#0. From the definition expressed by Eq. (3), it
follows that the vector g has unit modulus for every i= 0, while
it vanishes when i = 0 (central node),

g® =0, |g0 =1, for i=1,2,...,6. (4)

Furthermore, due to the RVE symmetry, the unit vectors g() satisfy
the following property

gl — _glit3) i=1,2.3, (5)
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and the following combination of the unit vectors g(1), g3, and
g® provides the unit vectors e; and e 3

g 4+ g® gl 4 g®
= —, e;3=—"-—7.
V3 i V3
Considering the definition of the unit vector g, Eq. (3), the
position x(™"0) of the central node of the cell {m, n} can be ex-

pressed with reference to the position x(®0l9) of the central node
of the cell {m,n} = {0, 0} as

X110 _ %000 1 ¢ [im (g +g®) +n (gD +g©)], 7
so that the position x(™"l) of each node i of every {m, n} cell, ex-
pressed by Eq. (2), can be finally reduced to

Xl — x(©00) 4 ¢[g0 1 m (g5 1+ g®) 4 n (gD +g®)]. (8)

All the perimeter nodes (i ={1,2,...,6}) join three adjacent
hexagonal cells, Fig. 1 (right), so that the following identities
hold

xmnl) — x(nnt1]3) _ y(m-1.n+1]5)

€

(6)

xMnl2) — x(m-1.n+114) _ y(m-1.n[6)

xmni3) — x(m=1.n5) _ x(mn-1[1)

x(mnl4) _ x(mn-1l6) _ y(m+1.n-1[2).

xMmnl5) — x(m+1n=1]1) _ y(m+1.n[3)

x(m.nl6) _ y(m+1.n2) _ y(m.n+1]4) 9)
Introducing u(™") as the (small) displacement of the i-th node be-
longing to the cell {m, n}, which according to Eq. (9) satisfies
umn) — qMmntll3) _ ym-1.n+115)

u(mnl2) — gm-1.n+114) _ (m-1.nl6)

umn3) — gm-1.n5) _ ymn-1[1)

umnld) — ymn-116) _ yom+1n-112),

umnls) _ yme1n-101) _ y(m+1.ni3),

u(mnle) — ym+1.n2) _ gy(m.n+1id) (10)
the elongation E(™nli) of the bar connecting the nodes i and j (with
i#j) is given by

Emrlid) — (o) _gml) . (g0 _gt)) ] (11)

which is insensitive to a permutation of the node indexes i and j,

Emanlig) _ pmalji) (12)

Considering that the bars have a linear elastic response, the force
Fmnli) (positive if tensile and negative if compressive) acting on
the i-th node of the cell {m, n} and generated by the elongation
Emnlij) of the bar with stiffness k(W) is given by

Fmnlid) — (i) pmali) (g _ (), (13)
which, according to the second Newton'’s law, is also the opposite

of that acting at the j-th node and due to the elongation E(™niJ) of
the same bar

Fmnlid) — _g(mnlij) (14)

Independently of the cell indexes {m, n}, the stiffness k(i) re-
lated to the bar connecting the nodes i and j is defined as (Fig. 1,
left)

k, i#£0andj#0,

kD) = I:< i=0and jeven or ievenandj=0, (15)
k, i=0and jodd or ioddandj=0.

The sum of all the forces Fmnli) acting on the node i (be-
longing to the cell {m, n}) and generated by the elongation of all
the bars jointed at that node, provides the resultant R(™"l) Fig. 2

(left). Considering the properties expressed by Eq. (10), the resul-
tant forces at all of the lattice nodes are given through the three
primary resultants R(mnl0) R(m.nl1) R(mni2) 34

R(mnl0) _ XG:F(mVNIOJ),
j=1
R(m,nll) — F(m,n\],O) + F(m.n|1,2) + F(m,n\l.G) + F(m,n+1\3,0)
4 Fm=1n4115.6) | g(m-1,n+1]5.0)
R(m,n|2) — F(m,n\Z.O) + F(m<n|2,1) + F(m,n\2<3) + F(m—].an,O)
4 Fm-1.n+1143) 4 p(n-1.n+1]4.0) (16)

Assuming quasi-static conditions, from property (10) the equi-
librium of the whole lattice is attained when the three primary
resultants R(™n0) R(mnl1) and RMnI2) vanish for every cell {m, n}
RO — RimAl) — R(mI2) — @, V{m, n}. (17)
The elastic energy Ul(:;’") stored within the cell {m, n} (instrumen-

tal to later identify the energetically equivalent microstructured
solid) is provided by

6 6
(mny _ 1 (i,0) [ p(m,n|i,0)]2 1 (i,i+1-68;5) [ (m,nli,i+1-68;5) ]2
u(m _Egk [E ] +Z§k o)[E o2,

(18)

where only one half of the energy stored within the bars along the
hexagon perimeter has been considered, so that the total energy of
the infinite lattice is obtained by summing the energy of each cell

U= D U™, (19)

m,nez

2.2. Definition of an average operator for the displacement gradient
in the lattice structure

With reference to a generic field f(x;,x;) over a domain 2 of
a continuous body, its gradient and the related average are respec-
tively given by

9fj(x1,%2)

fikx1,%2) = %

1
, k)= = d€2, 20
<f]‘k> ||Q|| ./S;f],k ( )
where ||2]| is the measure of 2. By means of the divergence the-
orem, the gradient average can be rewritten as

1
(14 = Ty /8 s, 21)

where only the evaluation of the field f(x;,x;) along the cell
perimeter is needed. In order to compute the displacement gra-
dient average, the displacement field along the cell perimeter can
be linearly interpolated as

u(s;m,n, i) = D 4 (g(nalis1-65) _u(m,nli))% i=1.....6.
(22)

where s is the curvilinear coordinate along the bar of the cell {m,
n} connecting the node i to node i+ 1 - 66;s and measuring the
distance from the former (i=1,..,6). Considering this interpolating
field u(s; m, n, i) and identifying 2 with the hexagonal domain,
the average of the displacement gradient for the lattice structure
(identified with the subscript ‘lat’ to highlight its relation with the
lattice, and not with the continuum) can be obtained by substitut-
ing Eq. (22) into Eq. (21) as

(m,n) _

6
1 i i+1-65; i
(Ujk) o > (u(.’"'”“)+u(m»nlr+ xs))nl(('), (23)

BENET A J
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Fig. 2. Resultant forces R (left) and additional displacements Au™n"l) (right) associated with the node i (i=0,..., 6) belonging to the cell {m, n} within the lattice

drawn in its undeformed configuration.

which, when the normal vectors "1(:) are expressed with respect to
the unit vectors g(i), reduces to

6
1
() I(:t‘tn) 972< um n\1)+u(m ni+1— 66,6))(gl(<1)+g’(<1+1 68,6)).
(24)

More specifically, the four components of <“j,k)|(:t1 ™ can be ex-

pressed in the reference system e;-e, as

which, considering the piecewise description of displacement (26),
Eq. (28) can be rewritten as
(m.n, j) (m.n.j)
Al Atz

(Vu) ™ = ¢

(29)

m»

(m,n, j) (m,n. j)
A21 Azz

and that, recalling Eq. (27
by Eq. (24).

), reduces to the same expression given

_ugm,n|2) _ u%m,n|3) + u§m4n|5) + ugm,n|6) 2u§m,n|1) + ugm,n|2) _ u%m,n|3) _ 2u§m.n\4) _ ugm,n\S) + ugm,n|6)
(Vu(o), % (m.nl2) (mn|2?>«/§ mals) , | (m.al6) malty , a2 maf3) ° mald) _ mals) . male) (25)
—Uy T =y T Uy Y Uy 2uy T AUy T =y =20 — Uy Y Uy
2V3 6

An alternative but equivalent way for deriving the average of
the displacement gradient, Eq. (25), can be obtained with reference
to the piecewise description of the displacement field along each
one of the six equilateral triangles, subdomains of the hexagonal
cells and enclosed by the three different bars. Such a piecewise de-
scription of the field u(™)(x) follows from the linear interpolation
of the displacements of the central node and the two consecutive
perimeter nodes j and j+1—668;6 (with j=1,..., 6), correspond-
ing to the three vertices of the j-th triangle composing the {m, n}
hexagonal cell, as

u™nh)(x) = AmmIx 4 ¢mr) with
j=1,...,6 mneZz (26)

where matrix A(mn) and the vector c¢(mnJ) are

3. Second-order displacement boundary condition

The key for the identification procedure performed in the next
Section is the imposition to the infinite lattice of a linear and a
quadratic nodal displacement fields (as in Bacca et al., 2013a; Bacca
et al., 2013b; Bacigalupo et al., 2018; Bigoni and Drugan, 2007),
together with an ‘additional field” Au™")  namely,

_ asr)ém,nli) +135trxs(m,n|i)x[(m.n\i) +Au£m,n|i), with
r,s,t=1,2 (30)

where ag and B are tensors defining the displacement am-
plitudes and satisfying the symmetry properties os = o5 and

uﬁm,nli)

j (m,n|j) (m,n|0) 7(j-1) (m,n|0) (mnlj+1)
Amniy _ 208 (5) @™ — ™) + 2 cos (T ) (™" — u )
; NET ’
J (m, Tl|]) (m n|0) 7 (j-1) (m, n\O) (m,n\j+1)
Amng) _ 2cos (T) (uy ) + 2 cos () (uf ul )
* NEY; '
s (7] (mnlj) _ (m,n|0) - (i-1) (m.n|0) (mnlj+1)
Amng) _ 2sin (T)(u uy ) +2sin (T)(LH — uj )
" V3¢ :
s (7 (mnlj) _ ,(m.nj0) - (=1) (m.n|0) (mnlj+1)
Amnd) _ 2sin (T)(u u, )+ 2sin (22 (uy —ul )
” NET :
Cgm,n.j) _ ugm.n\o)’
M. 1[0
) =yt @

The average of the displacement gradient within the unit cell {m,
n} follows from Eq. (20) as

6
(Vu() I = Z /Q Vumnd (x)de. (28)

Bstr = Prsr» SO that they have in general three and six indepen-
dent components, respectively. The additional field reduces to the
fluctuating term (with null stress and strain averages) usual in
the homogenization of periodic composites in the particular case
Bstr = 0, more in general, the term Au{™"? is necessary, as shown
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further on, for attaining the quasi-static equilibrium for every o,
and Bsy as defined by Eq. (17). The displacement field expressed
through Eq. (30) can equivalently be written as

umnl) — gy m.nli) + (x(m.nli) ) x(m,nli)) :}g + Au(m,nli)’ (31)
where the second-order tensor « and the third-order tensor 8 have
components g = ()s and PBgr = (B)ser. In Eq. (31), the dyadic
product ® and double scalar product: are introduced, respectively
defined as (a®b)y; =asb; and (A:B), = AxBsr. Considering the
displacement field (31), the elongation of the bars can be com-
puted from Eq. (11) as

EMli) = ofo(g® - g) +2[xm1I0) g (g — g)]: 8
+ (g7 +g9) & (8 —g9)]: 8} - (2 — 8
+ AEMD (32)

so that the corresponding force at the i-th node can be evaluated
from Eq. (13) as

Fmril) = g G {a(g® — g0) + 2[xmI0) @ (g — g)]: B
+ (g +87) ® (82 —g)]: 8}

+ AFMAliD g (33)
where
AEMnlij) — (Au(m,nli) _ Au(m~"|j)) . (g(i) _ g(j))’
i#j (34)
ARMalii) — _(i.D) AEmlid) (g — g(h),
and
G = (g7 —g0) & (g —g). (35)

In combination with Eqgs. (33) and (34),, the three primary resul-
tants R(™AI0) R(mnll) R(mnI2) Eqs. (16), reduce to

R(m.ni0) _ (ﬁ_ﬁ)@ 3 (8- ag®)g®

i=1,3,5
+ (§+§)gz Y [" 0g?):8-g7]g?
i=1,3,5
+ Z(E— ’,})g [(x<m,n|0) ® gm) :ﬂ,gm]g(z‘)
i=1,3,5
n 26:k<0.j>c<o,1>(Au<m.n\0> — Aum i), (36)
j=1
Rl _ (E—Qz 3 (g7 ag®)g?
i=1,3,5
+ (EJFQZZ 3 [(e”eg?):8-g]g?
i=1,3,5
+ 2@_@)@ 3 [(x<m.n\0>®g<i>):ﬂ,g<f>]g(i>
i=1,3,5
+ 2(},@(2 3 [ og?):8-g7]g?
i=1,3,5

+ E[G(l-o)(Au(m-”“) _ Au(m.n\O))

+ GO0 (AumnD _ Ag(m-1n+110)

+ G(B.O)(Au(m.n\l) _ Au(m.n+l|0))]

- E[G@m(A“(m.nm — Au(mni2))

+ G(SVO)(Au(mwnH) _ Au(mwn\G))

+ G(l.O)(Au(m.nH) _ Au(m~"+1|2))], (37)

R™ — (k—k)e O

i=1,3,5

(g(i) . “g(i))g(i)

+ (EJFE)gz Y [(" 0g?):8-g7]g?

i=1,3,5

£2(f-Re Y [(x

i=1,3,5
+2(k-0)2 Y [(8? 0g®):8-80]g?

+ %[G(Z,O)(A;(lr;l?z;s\z) _ Au(m,nlo))

+ GO (Au(mn2) _ Ay(m-1n+110))

+ GOO (Aumni) _ Au(m-1n0))]

— R[GH4O (Aum i) _ A(mals)

+ G(S,O)(Au(m,n\Z) _ Au(m,n\l))

+ G(Z'O)(Au(’“'“‘z) - Au(m’1’”|1))]. (38)

(m,n|0) ® g(i)) :ﬂ . g(i)]g(i)

It follows from the above that all of the resultant forces R(™n)
may be annihilated only when the additional field Au(nl) as-
sumes a linear expression which, under the constraint given by
Egs. (10), is provided in the following general form (Fig. 2, right)

Aa(m,n\O) — Zx(m.n\l)) +z,

Aumnl) = § Apmald — yxmal) 4y, i odd, (39)

Acmnl) = Wxmnal) 4wy, i# 0 and even,

which implies that the average of the displacement gradient
(24) in the lattice is

(V) = o + ¢ - [f(2m+n) }+V+W.

_ (40)

lat

Considering the additional field, Eq. (39), the three primary re-
sultants R(mnl0) R(mnll) RMnI2) Eqs. (36)-(38), reduce to

R(m.nl0) _ (E _ E) Y (87 agh)g®
+ (k+ T 1;2352 [(g” ©g?):B-g"]g?
+2(k- E)ZIES [(xm10 o g®): B.g0]g
+ (g(")lz;(s”) [k(evg® + (V- Z)x™110 4y — 7)
1/21(1 ,3,5Wg(") + (W=Z)x™0 4w —z)], (41)

Rl — (E_az Z

i=1,3,5
+ (k+k)2 Y
i=1,3,5

+2 k—kz
i=1,3,5

> [(
207 Y (67 o8"):
)

(g<i) . ag(i))g(i)
x(m n0) g g(')) B g(l)]g(l)

g(i)]g(i)
i=1,3,5

+ Z (gm@g(z) [A( Vg 4 (Z — v)x(mnlo)
i=1,3,5

+Z(gV -g") +z-v)
+ k(—evg® + (W - V)xmmi0) 4 oW(gh +gM)
+ w-v)], (42)

i=1,3,5

(g(i) . “g(i))g(i)
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+ (k+k)e2 Y [(g”2g?):B-87]g?
i=1,3,5

+2(—k
i=1,3,5

>
+ Z(E—E £ [(e® og?):8
“)

x(m.nl0) o g(l)) B- g(l)]g(l)

g0 ]g® +
i=1,3,5

¥ @es

i=1,3,5
+ Z(g" +g@) +z-w)
+ k(—ewg® + (V — w)xmm0
— V(g -g?) +v-w)]. (43)

[ (—eWg®@ + (Z — w)xmni0)

The annihilation of the three resultant forces R0 R(m.nl1)
and RM™2) for every unit cell {m, n} is equivalent to a system of
30 linear equations in the 18 unknown components of the vectors
v, w, and z, and of the matrices V, W, and Z (Egs. (39)). Solving
this system leads to two results, namely, (i.) the determination of
12 out of the 18 additional field components, which depend on the
components of z and Z assumed as free parameters as

VAV AY
1 @ 2
V=K an =0 [+ 7 27 |t
2 2
K13l Bin + P12z Kcls] Bao1 — P12 24z
{ Bazz + Bon + B2 — Bon +
Zp+Z
o o 12 _ 12
w=K an =0 | +| 7z 27 | (¢
2 2
K14l Bm + Bizz K16l Bazn — P12 24z
* { B2z + Ban + Bz — Ban +
Bz + B Pz + Pont
Vv = k! L+1Z,
Bm — B2z Bant — Bazz
Biiz + Boi Bizz + Box
w = k2! (+Z, (44)
Bin — Bz Boi — P2

and (ii.) two linear equations for the six components of f.

It follows from these two equations that tensor § is constrained
to have only four independent components and will be henceforth
referred as ﬂ'at, a symbol defining the set of generic quadratic am-
plitude tensors B, for which the lattice structure is in equilibrium
in the absence of external nodal forces. Considering B111, B221,
B112, Baxp as the four independent components, tensor ﬁ'at is de-

fined by the six components By11, B221. B112. B222. BYY;. and BI,,
where the last two are

i Ol \|B Ol | B
a1 | =1+ [ 222 | _ n2 | 45
[ 2 } ( 21[1]’[2])[ﬂm 2yl | B (45)

In Egs. (44) and (45), the coefficients Ij;; (j = 1,2, 3) are the three
invariants of the diagonal matrix K

k 9 0

K=|0 k 0 |, (46)
0 0 &k

so that

Iy = tK=k+k+k Iy = %[(trl()z —trk?] = kk + kk + kk,

Ij3) = det(K) = kkk, (47)

while the coefficients kU1 (j =1, ..., 6) are given by

i _ K=k +kk—T) oy _ kT + ke~ k)

Ii2) I;z) ’
is1 _ 3k(k &) + dk(k + 2k)
4l :
4l 3k(k + k) + 4k(k + Zk) Kcls! Ij2) + 3kk
]C[G] _ I[z] + 3](’( (48)

4l

Imposing that the additional field Au(™") does not affect the
mean value of the displacement gradient (Vu)l(:; ) , Eq. (40), leads
to the condition

V+W=0, (49)

which, considering Eq. (44), implies the following expression for Z

_ K+ KPT By, + ,3211 {aztz + Ban

= ¢, (50)
2 /3111 - ﬂ]zz 2]] ,3222

while the vector z appearing in Eqs. (44) remains indeterminate
because it only produces a rigid-body translation.
It is worth noting that:

- in the case of bars with same stiffness (E:E:ﬁ), enforcing
Eq. (45) automatically provides the equilibrium Eqs. (41)-(43)
for the generic purely quadratic displacement field augmented
by a rigid translation z,

V=w=2z
- {VZW:ZZO, 51)

so that the additional field reduces to a rigid-body translation,
Au=z;
+ in the case when B =0, it follows that V=W =Z=0 but
the additional field is in general non-null when two over the
three stiffnesses are different from each other. Indeed, the addi-
tional field is annihilated only when g1 . ag(" =g .ag® =
g5 .ag® (or equivalently, ay; = o, and ay, =0), except in
the particular case of bars having same stiffness (k =k = k), in
which case the additional field is always null;
the second-order tensors V, W, and Z of the additional field dis-
play the following permutation properties

V(k1, k2, k3) = V(K1,K3,K2), W(k1, k2, k3) = W(Kkq, K3, K2),
Z(ky, k2, k3) = —Z(K1, K3, K2). (52)

In the case B =0, the above equations are also complemented
by following properties for the vectors v, w of the additional
field

V(K], Ky, K3) = V(Kg, Ky, K]),
W(K],Kz,l(?,) :W(Kz,K],IQ), Whenﬂ:O. (53)

At this stage, the additional field Au(™n) Eq. (39), results
completely defined through Eqgs. (44), (45), and (50). With the pur-
pose of highlighting the contribution of the additional field Au
to the considered second-order displacement, Eq. (30), three de-
formed configurations of the lattice are shown in Fig. 3.

Looking to the upper row of the figure, the first image on the
left shows the displacement produced by a purely linear (f = 0)
didplacement, while the second image depicts the corresponding
additional field only. Finally the image on the right is the com-
position of the two. The lower row shows respectively a purely
quadratic (o = 0) displacement, its additional field Au(™nl)  and
the composition of the two. In the figure, the following stiffnesses
of the lattice have been considered: k =k = 10k.
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Quadratic displacement

Additional displacement field
for the linear displacement

NAA I ONANANY

Additional displacement field

First-order displacement

Second-order displacement

for the quadratic displacement

Fig. 3. (Upper part) Deformed configurations for a lattice with bars of stiffness k=k=10k subject to (left) a purely linear displacement condition with {a11, a2, @12} =
{0,0,1/5}, (center) its additional field, and (right) the sum of these two. (Lower part) As in the upper part, but for a purely quadratic displacement condition with

{Bu1. Baa1. Puiz. Boza. B Biah) = {—1.1,1,-1,1,1}1/(80¢).

4. Identification of the higher-order solid equivalent to the
lattice structure

Considering the second-order displacement field Eq. (30) de-
fined by the tensors & and ﬁ'atEq. (45) and by the ‘additional field’
Aumnd Eqs. (44) and (50), the elastic energy stored within the
lattice cell {m, n} is computed. This elastic energy is shown to dis-
play the same mathematical structure of the elastic energy stored
within a unit cell made up of a homogeneous elastic second-
gradient solid (SGE) when subject to a quadratic disglacement
field, defined by the tensors & and B°°F (note that B°°F defines
the coefficients of all quadratic fields which generate equilibrated
stresses in a second-gradient elastic material without body forces).
Therefore, imposing the elastic energy matching between the lat-
tice and the SGE solid allows for the identification of the constitu-
tive parameters of the latter and shows that the self-equilibrium
condition provides the same constrained boundary condition for
the two materials, so that g = B°F.

It is instrumental to represent the components of the tensors o
and ,B(') (where the superscript (-) denotes either (lat) or (SGE))
using a vectorial notation through the vectors a and b as

Bin

oy Boxn
S 9

201 2Bn

2812

and to collect the four components of ﬂ(') not constrained by the
equilibrium Eq. (45) in the vector b*

Bm
Ba2i

b* = s 55
Bz (55)
Baz

so that vector b¢") can be obtained as

b®) = TOp* (56)

where the matrix T®) is the transformation matrix enforcing the
equilibrium conditions in the lattice (in which case it will be de-
noted as T'!) or in the second-gradient elastic solid (in which case
it will be denoted as TSCE),

4.1. Energy stored within the lattice structure

Considering the second-order displacement field Eq. (30) de-
fined by the tensors « and ﬂ'at under the equilibrium con-
straint Egs. (45) and with the additional displacement given by

Egs. (44) and (50), the elastic strain energy Ul(a”t"”) (oz, ﬂ'at>, stored
within the lattice unit cell {m, n} can be written in terms of vectors
a and b, as

U(m’")(a, blat) _ Ul(aT’n) (a, Tlatb*), (57)

lat

so that bt = T!tb* with the definition

1 0 0 0
0 1 0 0
0 0 1 0
T = 0 0 0 1 (58)
9y Oy
91[(]) 81[ ] Injhz Iz
3 3
Tl T Il 0 0

Therefore, from Eq. (18), the elastic energy of the lattice can be
expressed as UI(QT’”) (a, b*) and therefore can be represented as the
following quadratic form in a and b*

U™ (a,b%) = ¢2fa- (k. k. k) a + 2¢a- [mHP] (k. k. k)

lat

—_ o~ ~

+ nHPl (k. k. k) + H4 (k. k. k) Jb*
+ 2 [m2H (R, K) +n2Hio (R, & R)
+ mnH7) (&, ) + mH®) (k. &, &)
+ (R & R) + MO (& &, K) Jb7), (59)
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where the matrices H'l (r = 1,..., 10) depend on the values of the
three stiffnesses k, k, and k. These matrices have different dimen-
sions (3x3 for r=1, 3x4 for r=2,3,4, and 4 x4 in the other
cases) and their components Hl[;] are reported in Appendix A. From
Eq. (59) it is evident that the strain energy depends on the cell po-
sition whenever b* # 0, so that it becomes independent of indexes
m and n only when b* =0, a condition corresponding to b =0
and also implying 8 = 0.

4.2. Energy stored within a second-gradient elastic solid

With reference to the ‘form I' elastic material introduced
by Mindlin (1964), a second-gradient elastic (SGE) solid has a
quadratic strain energy density Usgr function of the strain € and
the curvature y, which can be derived from the displacement field
u as

Xijk = Uk,ijs (60)
displaying the symmetry properties €;; = €;; and x;jx = Xjik- 1he
quadratic strain energy density Usgg can be decomposed as

Usge (€, X) = Uc(€) + Un (€, X) +Ur(X). (61)

where Uc(€) is a ‘purely local’ (Cauchy) energy term and U (X) a
‘completely non-local’ energy term, while the mutual energy term
Ui (€, x) expresses the coupling between strain and curvature,

1
Uc(€) = i(cijklfijekls Unt (€, X) = Mijrim Xijk€im>

1
UA(X) = injklmnXiijlmnv (62)

being C, M, and A the fourth-, fifth-, and sixth-order constitutive
tensors, respectively, possessing the following symmetries
Cijii = Cjin = Cijie = Cuaij, Mijkim = Mijemi = Mjikim,
Ajjkimn = Ajikimn = Ajjkmin = Atmnijk- (63)
The tensors work-conjugate to the fundamental kinematic fields
€ and x are respectively the stress o and double stress 7, defined
as

0ij = Cijim€im + Mijimn Ximn> Tiji = Akjitmn Ximn + Mimkji€im,
(64)

which are restricted to satisfy the equilibrium equations, that in

the absence of body-forces are expressed by

0ijj — Tkjijk = 0. (65)

The vectorial representations for the strain € and the curvature x
are introduced through the strain p and curvature q vectors as

X111
€n X221
p=| €2 |, q= ))82 , (66)
261 2 X211
2 X122

so that the elastic energy densities (62) can be rewritten as

Uc(€) =Uc(p), Un(€ X) =Um(p,a), Us(X)=Ua(a), (67)

where
1
Uc(p) = icijPins Um(p, a) = Mjkpja,
1 ..
Ua(a) = 5Auaar, 1j=1.23 kl=1...86 (68)

with the matrices C;;, My, and Ay respectively representing the
constitutive tensors C, M, and A in the Voigt notation. Note that

matrices C;; and Aj, are square and symmetric (the former of or-
der 3 and the latter of order 6), while Mj, is a rectangular (3
x 6) matrix. Considering this notation, the strain energy density
Usce(p, q) can be introduced as

Usce(p, q) = Uc(p) +Um(p. q) +Ua(a), (69)

representing the strain energy density Usgr (€, x) in the Voigt no-
tation, so that

Usck (€, X) = Usce(p(€).a(X))- (70)

It is assumed now that the second-gradient elastic mate-
rial is subject to remote quadratic displacement boundary condi-
tions provided by the second-order displacement field, Eq. (30),

in the absence of the additional field (Au(™nl) = 0, see also
Section 4.3),
uX) =ox+ (X®X):p. (71)

The quadratic displacement field (71) is restricted, at first order, by
equilibrium,
Cijkn Bjkn =0, (72)

an equation which introduces two relationships between the six
coefficients By, so that two of them are dependent on the re-
maining four. Therefore, the coefficients By are re-assembled in

the vector ﬂSGE, so that

u(x) = ax + (x®X) : B>, (73)

where

,3151G‘1E = ,3111, ,stzclE = ,3221, ,315162E = ,3112»

B3 = BinD1 + B221D2 + P12 D3 + PazaDa,

B35 = Ba

Bisy = Bi11Ds + 221 Ds + B112D7 + B222Ds. (74)
in which
o 2C%, — C11(C12 + C33)
‘1 = k]
(C12 +C33)2 —4C3Cy3
D, = 2C13Cy3 — C33(Cy2 + C33)
(C12 + C33)2 —4C13Cy3 '
Dy — C13(C33 — Cq2)
(Ci2 + C33)? —4Cy3Cp3”
Dy = 2C13Cp — Co3(C2 + C33)
(Ci2 + C33)2 —4Cy3Cy3
De — 2C11 C23 — C13 (ClZ + C33)
> (Ci2 +C33)? —4C3Cp3
D = C23(Ci2 — C33)
4C13Co3 — (Crz 4 C33)?°
D, — C33(Ci2 + C33) — 2C13Cy3

4C13C3 — (Ci2 + C33)?

202, —Cp(Cp + C
Py = 2533 zzg 12+ C33) . (75)
(C12 + C33)? —4Cq3Cy3
From now on the constrained tensor B, due to Eq. (74), will be
denoted by ﬂSGE, so that the strain p and the curvature q vectors
can be rewritten as

pSGE — p(a, TSGEb*), qSGE — 2TSGEb*, (76)
where
1 0 0 0
0 1 0 0
0 0 1 0
SGE __
™=l0o o o 1/ (77)

2Ds  2Ds 2D; 2Dg
2Dy 2D, 2D3 2Dy,
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and p°C©E can also be expressed as

pSGE (a7 b*) —a+ 2(P[1]x§m,n) 4 P[Z]Xgm,n))b* (78)
with
1 0 0 0
pil _ | D1 D2 Ds Da
“|\ps Ds D;+1 Dg |’
Ds Deg D; Dy
2|0 0 0 1
Pl = D4 Dy +1 D3 Dy (79)

From Eq. (74), the energy densities, Eq. (68), become
uc(pSGE) _ ;CUPISGEP?GE’ Un (pSGE’ 2TSGEb*) Mjk SGqu’
1 i,j=1,2,3
SGEp*) _ ) )9,
L{A(ZT b*) 2Aqukql, k1=1.2.3.4, (80)
where q* = 2b* and
M* = MTSGE, AF = (TSGE)TATSGE. (81)

Matrices M* and A* have reduced dimensions, so that the for-
mer is a rectangular 3 x 4 matrix and the latter a symmetric
square matrix of order 4. They define the condensed representation
for the constitutive matrices M and A, so that the strain energy
density of the second-gradient elastic material can be seen as a
function of a and b*, namely, Usce (a, b*).

The elastic energy stored in a hexagonal domain (™" made
up of a second-gradient elastic continuum (with the same shape
and location of the lattice’s unit cell {m, n}) is obtained through
volume integration of the strain energy density

UggEm(a, b*) = /;2( )L{SGE(a,b*)dQ, (82)

which is evaluated as
Uget (a.b%)
= ¢*{a-Gl'(C;j)a+ 2¢a- [mG?(Cyj) + nGB(Cy) + GH( M) Jb*
+ 020" - [m*GB(Cyj) + n?6l%( ) + mnGl’(C;j) + mG¥(my)
+nGBP(Mmy) + 61 cyy, A b7} (83)

where the coefficients of the matrices GI"l (r=1,...,10) are re-

ported in Appendix A.

4.3. Identification of the ‘condensed’ second-gradient material
equivalent to the lattice structure

By imposing the elastic energy matching between the lattice,
Eq. (59), and for the moment unknown effective second-gradient
material in the ‘condensed form’, Eq. (83), to hold for every unit
cell {m, n} and every pair of vectors a and b*

U™ (a,b*) = UMM (a,b%), ¥V m,n,a, b, (84)
the following identities are obtained
Gl =nll  Vvrel[1,10] (85)

It is highlighted that imposing the energy equivalence, Eq. (84),
at first-order (8 = 0 and therefore b* = 0) implies

Gl = niY, (86)
providing all the coefficients of the matrix C as
22y + O3 2l)l2) — Olj3)

Cpp = Cyy = ZRITIE) o
ne 431, ? 431,

Cin—Cy2 _ 93
2 431y’

which coincide with the corresponding constants obtained in
Day et al. (1992) through a different identification technique. From
the first-order result, Eq. (87), it follows that the two transforma-
tion matrices are the same for both the lattice and the equivalent
material, namely,

Tlat TSGE (88)

Ci3 = Cp3 =0, (87)

C33 =

50 that b = bSSE and therefore 8 (b*) = B°°F(b*), meaning that
the linear and quadratic components of the displacement field im-
posed to both the solid and the lattice coincide.

The non-local properties can now be identified from Eq. (85) for
r=2,...,10. In particular, the ten components of the matrix A*
are identified as

A3 =0, A =0, Ap=0A;=0
. V3l 5T TN AT T2
b= e | 50K (R+ 1 K (k+K)

(12l
x (100k? + 350kk + 100k2) — K (k+ k)
x (50k* + 419k°k + 339k2k? + 419kk® + 50k*)
+ 2K R (24K + 459K + 1853k2K2 + 459KK° + 24k
+ k2K (k + k) (219K + 1283kk + 219k2)
+ 121K (k + k)2
V3lj3162
641[21]If‘2]
+1 (k+F) (10%*
+ 2K R (6K* — 9%k + 641K2R2 — 9RR® + 6k)+
—kk?k? (& + k) (33K + kk + 33k2) - 35K (k + k)],
V336
642 I,
x (208 — 137Kk + 20k2) — K’ (k + k)
x (10K* — 53k%k + 219k?k? — 53kk® + 10k*)
+ 2K Rk (12k* — 45K%K + 349K2%2 — 45K1 + 12k*
+ kKK (K + k) (51K — 197Kk + 51k%) + 17k

V3¢

19272 If,
+1 (k+T)2(16k4
+k° (k4T (8K® — 110Kk + 301k°K? + 667k°K? + 30112k
— T10RKS + 8K) + 2k Rk (4R° + 27k%k — 101k"%2

AL, = [1OE5(E+E)3 + 5E4(E+E)2(4E2 + 5Kk + 4K?)

~ 71k — 303k%k? — 71kK° + 10k*)

* p—
AZZ -

[ 108" (k+7)* - K'(R+ )2

Y
k+k)?],

A3y = [Zk (k+k)* (4k? — 7kk + 4k%)

— 132k + 181K%K? — 132kK® + 16k*)

— 587K — 101R2K* + 27Kk + 4k°) — K k22 (k + &)
x (6k* — 121K°k — 349K%K> — 121kK° + 6k*) — kiCK?
x (k4 k)2 (4k? + 43kk + 4k%) + 2k*k* (k + k)*]

NETZ
641 I,
x (16k + 4%°k — 6312K2 + 4kK® + 16F*) — k" (k + k)
x (8K° + 6k°k — 267k*k? — 173K°K* — 267K°k* + 6kK®

A, = [ 2k° (R + )3 (4R2 + 3Kk + 4R2) — & (k + k)2
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x, /0
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= 253 =
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Fig. 4. (Left) Rectangular domain (having sides 25v3¢ x 37¢) occupied in one case by the lattice (625 hexagonal unit cells) and in the other case by the equivalent
continuum (only its boundary is reported). (Right) Undeformed and deformed configurations for initially straight lines of the equivalent continuum, when subject to a linear
and quadratic displacement field. The same displacement, plus the additional field Au™"} are applied to the lattice, of which the nodal positions are reported as spots.
The additional field Au!™"} is observed to play only a marginal role in the overall deformation of the lattice.

+8R6) — 2k kk(4k° — 15Kk + 115k°R2 + 461k°K?
+115K2R4 — 15KKS + 4R°) + K R2R2 (& + &)

+ (6k* + 71Kk + 43k%K? + 71kK + 6k*)

+ K (k + k)2 (4k2 + 35Kk + 4k?) — 2Kk (k + k)],

. V32 [ o B P
Ay = m[zk (k+70)3 (1202 — Rk + 12R2) + & (k+k)?

x (484 + 2601k + 103R2K2 + 260kK? + 48K*) + &'
x (k+ k) (24k5 + 286K°k + 583k*K? — 255k°k® + 583k%K*
+286kK® + 24K6) + 2k Rk(12R° — 3Kk — 735k
— 1753130 — 735k2K4 — 3RS + 12KF) — K k2R2 (R + K)
x (18K* + 309Kk + 937k%K? + 309kk® + 18Kk*) — kK>
x (k+Kk)?(12K + 17k + 12k) + 6k*K* (k + k)°].  (89)
while the twelve components of the matrix M* as
M = Mj; = M3 = M3, = M3 = M5, = M35 = M3, =0,
(k=) (Iylio) = 3y (kk — 2k (k+k))

Mis = M2s = 8v3In 3, b
o e 30k =) (fh + 30s)) (k- 2K(k + &)
My = Moy = — 8«/§I[1]I[22] ¢ (90)

It is worth to note that the result provided by Eqs. (87)-(90) shows
that the constitutive matrices are invariant with respect the follow-
ing permutations of {k, k, k}:
C(k1, K2, k3) = C(K1, k3, K2) = C(K2, K1, k3) = C(K2, K3, K1)
= C(Kk3, k1, K2) = C(K3, K2, K1)
A* (K1, k2, K3) = A* (K1, K3, K2),
M* (K1, K2, k3) = —M" (K1, K3, K2). (91)

It can be therefore concluded that

the effective response approaches that of a Cauchy elastic material
only in the limit of vanishing length of the lattice’s bars, ¢ — 0,
a condition for which M;‘j = A;Fj =0.

Finally, from Egs. (87)-(90) it is evident that the stiffness ratio
between the bars may have a dramatic effect on the equivalent
solid response, as further discussed in second part of this article
(Rizzi et al., 2019).

4.4. Influence of the additional field Autmnly

It is remarked that, although ﬁSGEzﬂ'at, the displacement
fields imposed to the lattice differs from that imposed to the
equivalent solid due to the presence of the additional field
Au(mn) in the former. From the practical point of view, however,
the amplitude of such an additional field does not play an impor-
tant role when compared to the amplitude of the quadratic part,
so that the deformed configuration of the solid very well repre-
sents that of the lattice, even if in the latter the additional field is
present.

To analyze the influence of the additional field on the kinemat-
ics of the lattice and of the equivalent solid, a rectangular domain
(having sides 25+/3¢ x 37¢) is considered, occupied in one case
by the lattice, which is shown on the left in Fig. 4, (625 hexag-
onal unit cells, namely, 25 along each axis of the rectangle) and
in the other case by the equivalent continuum with its bound-
ary reported on the left in Fig. 4. The solid is subject to a dis-
placement field characterized by tensors & and gSGE, while the
lattice is subject to the same e and to B = ﬂSG plus the addi-
tional field Au{™"%}, In particular, the following values have been
selected to produce the figure ay; = 0.018, @y = 0.02, oty = 0.02
and BiSF = B = 0.0029, B35F = B3, =0.00286, By =By =
0.003, B55F = B, = 0.004. Moreover, having selected k/k =2 and
F/E = 3 as bars’ stiffness ratios, the remaining two components of
B°CF result from Egs. (45) and (74) as BSSE = Bt = —0.007 and
BSF = B, = —0.0052. The additional field Aut™nl applied to
the lattice has been calculated with the given values of o and ,B'at
through Egs. (44) and (50).



G. Rizzi, F. Dal Corso and D. Veber et al./International Journal of Solids and Structures 176-177 (2019) 1-18 1

Fig. 5. Nonlocal constitutive parameters M3, (left) and M3, (right) as functions of the bar stiffness ratios k/k and k/k. The red lines represent the stiffness ratios pairs for
which a centrosymmetric response is attained, while in all the other cases the solid equivalent to the hexagonal bars’ lattice displays a non-centrosymmetric mechanical
behaviour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The undeformed and deformed configurations (visible as lines
for the equivalent solid and as spots for the lattice) are reported in
Fig. 4. The positions of the undeformed lattice’s nodes were chosen
to lie on the undeformed lines of the continuum. The fact that, af-
ter deformation, the dots overlap the deformed lines demonstrates
that the additional field (needed to enforce equilibrium in the lat-
tice) affects only marginally the overall displacement of the lattice,
in which the linear and quadratic displacement fields prevail.

5. Discussion

An infinite hexagonal lattice of bars (only subject to axial forces
and characterized by three different elastic stiffnesses) has been
considered and solved, when loaded at infinity with a quadratic
displacement field, enhanced with an additional displacement to
comply with the periodicity constraint of the lattice. Its elastic
energy has been shown to match with that of a second-gradient
(‘form I' Mindlin) elastic material, subject to the same quadratic
field. In this way, a homogeneous continuum, enriched with an in-
ternal length, has been derived, which is equivalent to the discrete
lattice. However, this continuum was only identified in a ‘con-
densed’ form, so that not all constitutive parameters have been
identified. For those appearing in the condensed version, closed
form expressions have been given, showing the influence of the
lattice properties (the hexagon side length ¢ and the bars stiffness
k, k, k). As an example, the higher-order constitutive parameters
M3, and M3, ruling the non-centrosymmetric behaviour (and made
dimensionless through division by ke) are portrayed in Fig. 5 where
two stiffness ratios k/k and k/k are varied. The red lines highlight
the condition for which both parameters vanish, so that, corre-

spondingly, centrosymmetric response is retrieved, while in all the
other cases non-centrosymmetry characterizes the mechanical be-
haviour of the equivalent material.

The fact that the equivalent material is only defined in a ‘con-
densed’ form is a consequence of the fact that the elastic en-
ergy equivalence between the solid and the lattice has been so
far restricted to self-equilibrated displacement fields. This means,
in other words, that the mechanical tests applied both to the lat-
tice and to the continuum are not enough in number to completely
characterize the latter. Nevertheless, the presented results allow
already to conclude that even a simple hexagonal lattice, which
corresponds to an equivalent isotropic, local, and centrosymmetric
material at a first-order of approximation, at a higher approxima-
tion displays anisotropic, non-local, and non-centrosymmetric ef-
fects. Therefore, the presented results provide a tool for advanced
mechanical design of microstructured solids. The complete deriva-
tion of all material constants of the second-gradient equivalent
elastic solids is deferred to Part II of this study, together with
the analysis of positive definitess and symmetry of the equivalent
material and with an assessment of the validity of the second-
gradient model.
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Appendix A. Components of the matrices HI"l and GI]

The coefficients of the matrices H!"! (r =1, ..., 10) are
n_ 3 3] np_ 3 ) n_
Hy = 16(21[” + I[> Hiz = 16<21[11 - H ’ Hi3 =0,
m_ 3 A E] 1] () _ 27l
R = 2 (25, + 22! HI =0, HL = Al
22 16( m+ I )’ 23 ’ 33 161y (A1)
w2 _ 23 2y +905) oy 2733y Ol — 2hke) ey
1 16111, ’ 12 161113, ’ BT
W2 o nR_ ~ 8133l3 (21l + 31;3) hi2l _ _ 27V3lp3) (2112 + 93y
4 — 21 — ’ 22 — ’
! ! 16113, 161113,
21 _ 2] _ [2] _
Hy; =0, Hys =0, H3 =0,
2l _ o 2 _ 27313y (2Ij1)]12) — 9g3)) 2l _ 27313y (2I1)l12 + 9l3y) A2
2 =5 3 161,12 ’ M= 161,12 (A2)
(112 (112
H[3] _ 27\6[[3](21{1]1[2] + 91[3]) H[3] _ 27«/?1[3](91[3] - 21[111[2]) HB] _ _811[3](21[111[2] + 91[3])
1 3201}, ok 3201}, B 3201, ’
Bl _ 243113 (2Ij1)12) + 3lg3)) Bl 81313y (2Ij1)lp2 + 31j3)) B _ _27&1[3](21“]1[2] +913))
" 3201, b 3201, oz 3201}, ’
i3l _ 811131 (931 — 21z ) i3l _ 81131 (2Ll + 93)) i3l _ _8“[31(2’[111[21 +9113))
= 3201, oA 3201, B 321, ’
o _ 8 Cldia =9031) s 27V3ly (2l =) sy 273l (2Ll + 93) (A3)
32 — ’ 33 — ’ 34 — :
32013, 32113, 32112,
4] _ 4 _ 4] _ 3(’(—/()(1[111[2] —91[3])(k’(—2k(l<+k))
Hl] - O’ H12 _0’ H13 - ’
16112,
" 9(k — k) (Iylzy + 31i3y) (kk — 2k (k + k)) " ]
Hiy = — 2 . Hy =0, Hy =0,
161112,
A _ 3(k — k) (Ilizy — 9pay) (kk — 2k(k + k) LT _ 9(k — k) (Ilizy + 3lg3y) (kk — 2k(k + k) W4l _ o
23 — ’ 24 — ’ 31 —
16112, 161112,
4] _ [4] _ [4] _
Hyy =0, Hyy =0, Hyl =0 (A4)
2
Hisl _ 81131 (211)2) + 9p3)) (8 12y + 9;3)) Hisl _ 218713 (211 fz) + 3113)) 51— o
n - ’ 12 — ’ 13—
1612 I3, 1612 I3,
2
PG 7298 (2Ihz) + 913)) sl _ o
14 ? 22 161[2”1[32] ’ 23 4
81], (8”[23] 412 )
3] 2 M2l
1 T S ) 8“[3](21[111[2] - 91l3])2 5] _ 1[1]
#o T 0E 1617 12, Lo 1617, ’
sl _ 811[3](21[1]1[2] + 91[3])2 (A.5)
44 161212,
H[6] _ 81[[3](21[1]1[2] + 91[3])(71[111[2] + ]81[3]) H[G] _ 2431[3](—21[2”1[22] + 91[111[211[3] + 541[23])
n - 2 13 ’ 12— 2 13 ’
3212 3, 321213,
6l _ _81@1[3](21[1]1[2] +913)) 6l _ _243\@1[3](21[1]1[2] +3l3))
B 3201, oM 32013, ’
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2431[3](212 2, - 151[111[211[3] + 5412 ) 8]\/§I[3](2I[1]I[2] — 91[3])

Hisl _ (11121 EXLNC
22 — ’ 23 — ’
3212 3, 32113,
ol _ 81313y (211112 + 9lp3)) 6l _ 81113y (21213, + Ol iz 3 + 16213,))
24 — 7 ’ 33 = )
32113, 3212 B,
6l _ 813 (—21[2”1[22] + 81Ul ls) + 1621[23]) 6l _ 8113 (2I1)]2) + 93y) (1301112 + 181;3)) (A6)
34 — 2 13 ’ 44 — 2 13 N
321 B, 321213,
2
W — 81113 (21112 + 9y3y) (8lpayli2) + 9j31) W) — 21871, (20112 + 31j3)) W 81313 (2Ij1)l12) + 93)
2 13 ’ 2 13 ’ 2 ’
1612 13, 1612 13, 161112,
Wl — _243&1[3](21[1]1[2] +3l3)) W) — 7291[23](21[1]1[23] +913)) Wl = 81313y (2Ij1)l12) — 9l3y)
2 ’ 2 ’ 2 ’
16112, 161213, 16112,
81/
v ) 8113 — - 412,
a8 3113y (2l 112 + 9lp3)) Wizl _ 81113 (2112 — 93y) W7 1
24 = 161,12 BT 161213 T 1613 ’
112 [11'[2] [2]
71 _ 8103 (2lnh) + 9lp3))?
Hy, = TIE (A7)
(11'72]
H[8] —0 HIS] —0 H[g] B 27\/§I[3] ( k— k) (1[]]1[2] — 91[3]) ( kk — 2k( k + k))
1n =% 12— 13— 1612 I3 ’
(12l
s 813l (k= k) () + 313) (kk — 2k(k+k)) (g
M4 = 1612 2 + He =0,
(172l
gl _ 27\/§I[3] ( k — k) (1[111[2] - 91[3])(/(’( - 2k( k+ k)) Hi8l _ 81\61[3](/( - k) (][1]][2] + 31[3]) ( kk — Zk( k+ k))
23 T 2 13 ’ 24 — 2 13 ’
1612 13, 1612 I3,
HE —0, HBl=0 Hf=0 (A.8)
(o] _ 0 o] _ 0 o] _ 27\/§I[3] ( k— k) (1[]]1[2] — 91[3]) ( kk — 2k( k+ k))
H'l] - H12 - H13 - 3212 13 ’
(1'2]
o 81303y (k= k) () + 31i3) (kk — 2k(k+k))
My = 322 12 » 2 =0
(1'72]
H[9] _ 27«/§1[3] ( k — k) (1[111[2] — 91[3])(/(’( — 2k( k+ k)) H[9] _ 81\61[3](/( - k) (][111[2] + 31[3]) ( kk — Zk( k + k))
23 T 2 13 ’ 24 — 2 13 ’
3212 3, 3212 3,
H[9] _ 8]1[3](’(—]()(1[111[2] —91[3])(l<k—2k(k+l()) H[9] 811[3](1(—]()(1[111[2] +91[3])(kk—2k(k+k))
33 = 2 13 ’ 34 = 2 13 )
1612 3, 161213,
o 24303 (k — k) (Tyliz) + 313y) (Kkk — 2k(k + k) )
H44 = 53 (A.9)
1612 13,

(10] _ yl1o] _ yl10] _ (,[10] _
His' =Hy =Hy =Hy =0

9 Ss oo o . - e
i = L[ (<50(k+ KK — (R + 7 (1008 + 350Kk + 100R)K" + — (T + k) (S01* + 419K° + 330K°F° + 419K°K -+ 50K4)K
6412 1%,
+ 2RK(24K" + 450K + 183K + 459k + 24K + 12 (R + ) (219K + 1283k + 21907+ 12100 (R + 1) ) 2|
+ (4581 (211121 + 3y (Sl + Olps) |/ (6487 1y ).
9] ~ a5 ~ o~ ~~ o~ d s~ ~ ~a~ ~, 3
(0] _ E] 3 2(472 2 4 i3 2752 3 4
HI) — 641[2”1[42][(10(k+k) K+ 5(k+R)2 (42 + 5kk + 4R2)k + (ke + &) (10K — 71kk* — 303k2K2 — 71k + 10k*) R

+ 2RE(BK* — ORI + 641RR? — K%K+ 6K + —7R? (e + ) (33%° + Rk + 338 ) — 3502 (R +1)? ) 2

2 12 2 2 13
+ [ (4513y (=214 + 270 iy sy + 8114)) /(6412 12,
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ol — [(—10(E+ R)*K — (k+K)2(20K2 — 137Kk + 20k2)k" + —(k+ k) (10k* — 53Kk° + 219k2K2 — 53%°k + 10k4)

2 4
641[”1[2]

+ 2REK(128 — 45KR° + 349K°K° — 45K°K + 120K + R (R-+ R) (S1R — 197Kk + 5102 e+ 17002 (R + )2 )

+ [4503) (21213, — Ol lizy]i3) + 811%) ]/ (6412, 12,)).

3 - ~ —~ e ~ — ~ ~— ~
WP = o | (2R 1) (4R = TRk + 4R + (R-+ R)? (16K — 13200° + 181282 — 132K°K + 161K

(112
+ (k+K) (8K — 110kK® + 301k2K* + 667Kk + 301%*R2 — 110k°k + 8RE)K
+ 2RR(4K5 + 27RKS — 10102R" — 587K — 101R4R2 + 27Kk + 4kE)k + —k2R2 (& + k)

x (BR* - 12100 — 340K°R — 12110k + GRE + R (e + k)2 (4R2 + 430k + 4Rk + 20R* (e + ) ) 2

+ [4503) (21213, — Ol Izl + 811%) ]/ (6412, 12,)).

9 - o . R
HED = — S [(2(k+ )2 (4R + 3Kk + 4K + (R-+ R)? (16K + 4R — 63K°%2 + 4% + 16K K+
+(k+ ) (8K® + 6kk® — 267k2k" — 173%°% — 267RR? + 6Kk + 8ROk

+ 2R (4R5 — 15Kk° + 115K2K* + 4611°R° + 115KR2 — 15Kk + 4K9)k” + —R2R2 (k + k)

x (BR* + 71K + 4317 + 71k + 6R)R + T (-+ R)? (42 + 35Kk + 47 e+ 20K (R-+ B ) 2

+ [451[3] (721[21]1[22] + 27yl + 811[3])] /(641[2111[2]),

9 -~ o~ ~—~ —6 ~ ~ ~, ~~ ~ =5
[10] 3(19k2 2 4 3 272 3 4
- s [(2(%+R)? (128 — R+ 12R2)K" + (e + )2 (48K + 260KK* + 103K°K -+ 2600k + 487

+ (K + k) (24R° -+ 286KKk° + 583K2K* — 255K°K + 583K7R2 + 286K + 24k°)"
+ 2Rk (12R° — 3Kk — 735K2%k* — 17531k — 735KR2 — 3Kk + 12K9)k” + —&2k2 (k+K)

x (18R + 309K + 937K7K + 3001k + 18K)K + 1088 (R-+ R (1202 + 17Kk + 120 -+ 6K (R + ) ) 2]

+[451[3] (2[[111[2] + 91[3]) (51[111[2] + 91[3])]/(641[2”1[32])

The coefficients of the matrices GI'l (r=1, ..., 10) are

Gl = fc,]

9 9 9
G[ﬁ] = E(C” + C12D1 + C13Ds), G[122] = *(CuDz + C13Ds). G[123] = j(C12D3 +Ci3D7 + Ci3),
2 _ 9 2l _ 2 _9
Gy = E(C1zp4 +C13Dg), G; *(CIZ +C2D1 + C23Ds5), Gy = *(szDz + C23Ds),
9
G[223,] =5 (C22D3 + C3D7 + Cp3), G[24 = (C22174 + C23Ds), [2] (C13 + C3D1 + C33Ds),

9
Gy = §(C23D2 +Cx3Dp), G = §(C23D3 +C33D7 +C3), Gl = *(C23D4 + C33Dg).

Gl — %(«fcnvs +Ci1 +Cp2Dy + Ci3(V3D; +D5)), Gy = %(ﬁcnm +C12D; + C13(V3D2 + Ds +V3)),

Gl = 2 (V3CuDy + CiaDs + C13 (v3Ds + 7 +1)), G = 2 (V3CHDs + Co(Ds +V3) + Cas(v3D3 + D)),

Gl = %(«/? C12Ds + Cia + Co2D1 + Co3(V3D1 +Ds)). Gy = %(«/?CHDG +C22D; + Co3(V3D; + D + v3)),

Gl — %(ﬁcum +C22D3 + Co3(V3D3 + D7 + 1)), Gy = g(f3c12738 + Ca2(Ds + v3) + Co3(v3D4 + Ds)).

Gl = %(ﬁcBDS +C13 + Co3Dy + C33(V3Dy +Ds)). Gy = («/§C13D6 +Co3D; + C33(V3D, + Ds + V3)),

G — %(fcwm +Ca3D3 + C33(V3D3 + Dy + 1)), Gy = (ﬁclwg + Co3(Da + /3) + Ca3(V3D4 + Ds)).
4 _ 3 Aue

(A.10)

(A11)

(A12)

(A13)

(A14)
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6% = 9v3(Cyy +2C2Dy +2D5 (Ci3 + Co3Dy) + Co D} + C33D3),

G[152] = 9v3(D(C12 + C22D1 + C23Ds5) + Dg(Ci3 + Co3D1 + C33Ds)),

Gl = 9V3(D3(Ciz + CoaD1) + Ci3(D7 + 1) + Co3 (D1 D7 + D1 + D3Ds) + Cx3Ds (D7 + 1)),

G = 9V3(D4(Cra + C22D1 + C23Ds) + Dg(Cr3 + Co3D + C33D5)), Gy = 9*/§(C221)§ + Ds(2C23D7 + C33DG)),

G[253] = 9v3(CDyD3 + Co3(Dy D7 + Dy + D3Dg) + Ca3Ds(Dy + 1)),

GP) = 9v/3(CyuDy Dy + Co3DyDs + Co3DaDs + C33DsDg), Gy = 9*/§(D3 (C22D3 +2Ca3(D7 + 1)) + Ca3(D7 + 1)%),

G2} = 9/3(CpuD3Dy + Co3(D3Ds + DaD7 + Da) + C33(D7 + 1)Dg), Gl = 9\/§(C22D421 + D5 (2C23D4 + C33Dg)). (A15)

Gyl = %((3\@@1 +6C13 + v3C33)DZ +2(3Cn1 + (3C12 + v3Ca3 +3C33) D1 + V3C13(3Ds + 1)) Ds
+v/3Cy + Dy (2v3C12 + 6Cr3 + (V3Ca2 + 6Ca3 + 3v3C33) Dy ),
Gl — %(«@cuDz +3Cy1Dg + C13(3D2(V3Ds + 1) + v3(3Dy + 1)Dg + 3D5(2D5 + V'3) + 3)
+D1(v3C22D; + 3C12D6 + 3C33(v3D; + Dg + /3) + Ca3 (6D, + v/3D5 + 3))
+D5(3C12D; + C33(3D; + v3Ds + 3) + v3(Ca3D; + 3C11 Dp))).
Gl — %(ﬁcnm +3C11D7 + Ds((3C12 + v3Ca3 + 3C33) D3 + v3(D7Ca3 + Ca3 + 3C11 D7) )
+C13(3Ds +V3(3D1D7 + D7 + 1) + 3(v3D5Ds3 + D3 + 2Ds5Dy))
+D1(V3C2Ds3 + 3C12D7 +3Ca3(v3D3 + D7 + 1) + Co3(6D3 + vV3(D7 + 1)),
Glel — %(szp] (V3D4 +3) + C12(3Ds Dy + v/3D4 + 3v/3Ds5 + 3D1Ds + 3) + 3Cy1 (v3D5Ds + Ds)
+ C33(3D4Ds + V3DgDs + 3Dy (vV3D4 + Ds)) + Ci3(v3(3Dy + 1)Ds + 3(v/3Ds5Dy + Dy + 2DsDs))
+Ca3((V3D4 + 3)Ds + D1 (6D4 + V3(Ds +3)))).
Gl = 2 (V3C2D} + 2055 (3D, + V3D + 3)Dy + 3D5(2C D + V3C D + 2C15(v3D; + Do +¥3))
+C33(3v/3D3 + 6(Dg + v3) Dy + Dg(v3Ds + 6) + 3v3)).
ol — %(ﬁczzpng +3(C12D2 + V3Ci3(D2 + 1)) D7 + 3D6 (V3D3Ci3 + 2D7Cy3 + Ci3 + C12D3 + v3C1y D7)
+ Ca3(D3(6D; + v/3Dg + 3) + V3D, (D7 + 1)) + C33(3D3 (V3D + D + v3) + (3D2 + V3D6 + 3) (D7 + 1)),
e — %(CZZDZ (v3D4 +3) +3v3C12D6 + 3(C12D2 + V3Ci3 (D3 + 1)) Ds
+3D6(C12D4 + v3C13D4 + v3C11 Ds + 2C13Ds5) + Ca3(3D4 (V3D2 + Ds + v/3) + (3D, + v/3Dg + 3) Ds)
+C23(V3D4Dg + 3(Ds + Ds + v3) + D2 (6D4 + V3(Ds + 3)))).
Gy = %(ﬁczng +2C3(3D3 + V3(D7 + 1)) D5 + C33(3v3D% + 6(D; + 1)Ds + V3(D7 + 1)?)
+3D7(2C12Ds + v3Cn D7 + 2C13(V3Ds + Dy + 1)),
Gy = %(czzm (V3D4 +3) + 3v3C12D; + 3D4((Cr2 + v3C13) D7 + C33(V3Ds + D7 + 1))
+(3(C12 + C33)Ds3 + 3Cy3(V3Ds3 + 2D;7 + 1) + V3(D7Ca3 + C33 + 3Cu D7) ) Ds
+Ca3((V3D4 +3) (D7 + 1) + D3(6D4 + vV3(Ds + 3)))).
Gy = %(3f3c33D3 +6(Cr2 ++/3Ci3 + C33) DsDs + (3v/3Cy1 + 6Cy3 + v3C33) D}
+C2(Da(V3D4 + 6) + 3v3) + 6v/3C12Ds + 2C3(3D5 + v3(Ds + 3)D4 + 3Ds)). (A.16)

G[ﬁ] = 9(D1 (2\/§C12 +3Ci3+ «/§C22D1 + 3C23D1) + Cqq (3D5 + \/§)
+ D5 (3D5C13 + 2«/§C13 +3C12Dq + 2\/§C23'D] +3C33Dq + \/§C33'D5)),
9
G[172] = E(2\@(:1292 +3C33D5 + 3C11Dg + Ds (3C1292 +2+/3C23D; + 3C33D; + 2‘/§C33D6)

+Ci3 (3D2 + 6Ds5Dg + 2\/§DG + 3) + D (2«/§C22'D2 +3(Ci2 + C33)Dg + Ca3 (61)2 + 2\/§D6 + 3))),
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9
= 5(2\/§C12'D3 +3C1D; + D4 (2\/§C22D3 +3C12D7 4+ 3C33 (D7 + 1))
+D5(3(Cz + C33)D3 + 2v/3C33(D7 + 1)) + 2Ca3(D3 (301 + v3Ds) + V3D1 (D7 + 1))
+C13(3D3 +2v3(D7 + 1) + D5(6D; + 3))),

9
= i (3C13D4 + 6C3D1 Dy + 2\/§C23D5'D4 + 3C33D5D4 + Co2D;q (2\/§D4 + 3)
+3Cy3D5 + (3C1] + 2«/§C13 + 2«/§C2391 + 3C33D1 + 6C13Ds5 + 2«/§C33'D5)'D3
+Cq2 (3'D5D4 + 2\/§D4 +3D1Dg + 3)),

= 9(\/§C22D§ + Cy3 (3D2 + 2\/?2)5 + 3)D2 + DG(\/§D6C33 +3C33+3(C12 + C33)Dy + 3C13D5)),
9

E(ZﬁC22D2D3 +3C12D6D3 + 3C13Dg + 3C12D2D7 + 6C13DgD7 + Co3 (Dg (6D2 + 2\/§'D6 + 3)
+2+3Dy(D7 + 1)) + C33(3(D2 + 1)(D7 + 1) + D6 (33 + 2V3(D; + 1))).

9
= 3 (szDz (2\/§D4 + 3) +3(C12 + C33)D4Ds + (3C]2D2 + 6C13Dg + Cs3 (3D2 + 2\/§D5 + 3))D8
+Cy3 (3D6 + Dy (6D2 + 2\/§D5 + 3) + 2\/§D2'D8)),

9(v3C22D3 + C33(3D3 + 2V3(D; + 1)) D3 + 3D7(D7C3 + Ca3 + C12D3)

+C33(D7 + 1)(3D3 + V3(D;7 + 1)),

9
=3 (C22D3 (2\/§D4 + 3) + 3D4(C33 + (C12 + C33)D7) + 3C13D3

+(3C12D3 + 6C13D7 + C33(3D3 + 2v/3(D7 + 1)) Ds

+C23(3D7 + 2D4(3D3 + V3(D7 + 1)) + 2/3D3D5 + 3)),

9(C22D4(v3D4 + 3) + Dg(3(Cra + C33) D4 + 3C13Ds + v/3C33Ds)

+C23(3D] + 2v/3DsDy + 3D5)). (A17)

18 * % * [8] 9 * * * * *
— (D1M3; + DsM3; + M3y), Gy = E(Dlez + DM3; + DsM3; + DgM3; + MT,),

9 9
= E(D] M35 4+ D3M3; + DsM3; + D7M3; + M3 + M3;), G[ﬁx] = ?(D] M34 + DaM3; + DsM3, + DgM3; + My,),
~ (DaMzy +DsM3y). - Gy = 4 (D2Mp3 + D3sMp; + DeMss + D7Ms; + M3,).

9 18
7 (DaM3, + DaM3, + DM, + DsM3,). Gl = — (D3Mss + DyM3; + M3s).

9 18
= (D3M3y + DaM35 + Dy M3y + DsMis + M3q).  Gif = — (DaMs, + DsM3y) (A18)

(D1 (M3 + V3M3,) + V/3DsMy + DsM3; + My ).

(D1 M3, + V3 (D1M5, + M3;) + Dz(Mg1 + «/§M§1) +v/3D5M7, + DsM3, + Dg(vV3M3y + M3, ) + M),

| |
N[O | ©

; (D1M35 + V3D M3; + D3M3, + v3D3M3, + v/3DsM3; + DsM3; + D7 (V3MY; + M3, ) + Mis + M3;),

o N

27(«@(1)1 M3, + DaM3;) + D1M3y + (Da + vV3)M3; + V3DsMj, + DsM3, + Dg (V3IMY, + M3 ) + M),

_ %(Dzl\/l;z +V3(Dy + )M, + De(ﬁM’{z n M§2)),

9
= ﬂ(DzM% + V3DaM3;3 + D3M3, + V/3D3M3, + D (vV3Mi; + M33) + D7 (V3M3, + M3, ) + M3, +V3M3;3),

= %(«/?(DZM’g4 +DgM3, + M3y) + DaM3y + (Ds + v3) M3, + D (V3M3, + M3,) + Ds(V3M3, + M3,)),
- %(Dg(Mz3 +V/3M3;3) + D7 (V3Mi5 + M) + M35),
= %(D3M§4 +v3D3M3, + (D4 + V3)Mj5 + V3D4M3; + D7 (V3M3, + M3,) + Dg(vV3Mi; + M33) + M3,).

= %((94 +V/3)M3, + V3DaM5, + Ds (VM + M3,)) (A19)
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Gl _ 3f

Glol _ 3J§
52

+C33(D1Dz + D1 + DsDs)),

G[]O] 33
52

+C23D1 + C23D3Ds5 + C33Ds),

Gl _ 33
52

+C23(D1Dg + D1 + D4Ds)),

1+ f 3(D2(Cu1 + C33) + Cun + 2C12Ds1 + 2Ds (D1 (Ciz + Ca3) + Ci3) + D7 (Ca2 + C33)),

2+ §\/§(DG(C11DS +D1(Ci3 4+ C23) + Ci3) + D2(Ci2 + Ds(Cy3 + C3) + C2D1) + C13Ds
5
13+ g‘/?(177 (Ds(C11 4+ C33) + D1(Ci3 + C23) 4+ Ci3) + C12D3 + C13D3 D5 + Ci3 + D1D3(Coz + C33)

5
Yo+ §\/§(D8 (C11Ds + C13D1 + Ci3 + C33D5) + C12(Da + Ds) + C13DaDs + D1D4(Caz + Cs3)

3v3 5

Ghyl = 7 At gﬁ(De(CnDs +2(D2(Ci3 + C23) + C13)) + C2D5 + Ca3((D2 + 1)* + D)),
33 5

Gl — = 33+ gﬁ(ClID6D7 + C13(D2D7 + D3Dg + D7) + C22D2 D3 + Ca3(D2 D7 + Dy + D3Ds)

+ C33(D;D3 + D3 4 DsD7 + Dg)),

clio _ 3V3
24 02

+Cy3(D;Dg + Dy 4+ D4Dg + 1)),

5
34+ g\/?(ps (Ds(C11 + C33) + C13(D2 + 1)) 4+ C12Dg + D4(C13Dg + C22D; + C33D2 + C33)

3v3 5

Ghy! = =5~ Aly + gV/3(CuDj + 2D5D7 (Cus + Ca3) + D3(CazDs + 2C3) + C3(D3 + (D7 +1)%)).
3v3 5

G“°1 > Al + §\/§('D3 (D7(C11 + C33) + C13D3 + C33) + C12D7 + C13D4D7 + D3D4(Coz + C33)+

+C23(D3Dg + D3 + D4D7 + Dy)),

Gl _ 33
52
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