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a b s t r a c t 

With the subsequent goal of estimating effective properties of general n-phase composites, a recent 

(2016) paper from the author and a co-worker firstly addressed all “elementary” situations of one-level 

phase arrangements from “all to none phases being co-continuous” and proposed relevant property esti- 

mates within the mean field approximation homogenization framework. At the first time to the authors 

knowledge was proposed an estimate for the arrangements (that occur from 3 phases and are the main 

type above 3) when several but not all the assembled phases are co-continuous. Use was made of a “lami- 

nate system ( LS ) scheme” method inspired from a literature of the sixties on “fiber system schemes” likely 

to ensure phase co-continuity. Laminate systems were similarly figured as interpenetrated one-directional 

layered structures with layer normal oriented in various directions of space, a realizable representation of 

which can be multiple slip activity in crystals. The relevancy of using such a LS scheme to obtain stiffness 

property estimates that account for phase co-continuity in composites was then successfully exemplified 

for various, elastic-like or other (piece-wise) linear properties and the possible use of a dual scheme in 

terms of compliances was shown to likely correspond to a sort of phase “co-discontinuous” converse as- 

semblage. After a few recalls and a clarification of this co-continuity/co-discontinuity duality, we propose 

a description of a general phase arrangement from a specified “combination” of the elementary ones. 

Testing it on a two-phase disordered assemblage, a remarkable relation between elementary estimate 

types is established that comes in support to the relevancy of the proposed description and to the one 

of the dual LS schemes to accounting for multiple phase continuity. A short application on experimental 

literature data is also exemplified. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction and background 

.1. Introduction 

Disregarding multi-phase materials with possible multi-scale

multi-level) assemblages of constitutive phases, the present dis-

ussion and study starts from the following three observations: 

(i) For assembled two-phases A and B, there are from combina-

torial analysis and apart of full disorder, four “elementary”

one-level (homogeneous) arrangements: either phase A is

embedded in phase B or conversely phase B is embedded

in phase A, both phases A and B are co-continuous and the

dual case of the latter, to be a priori said “none of A and B

phases is continuous”, until clarifications given herein. Phase

continuity needs be taken in the connectedness topological

sense of a 3D through-sample spanning “infinite” cluster of
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that phase in the material, 1 and “infinite” being to be under-

stood as large enough compared to the characteristic dimen-

sion of the composite microstructure. It is worthy to remind

that if a phase is not continuous in that sense of a (simply or

multiply) connected medium it is discontinuous, say consti-

tuted with disconnected finite domains ( Serra, 1982; Coster

and Chermant, 1989; 2001 ); 

(ii) For more than two phases, new elementary arrangements

appear in addition to all, none or a single phase being con-

tinuous, which all associate several continuous phases with

at least one discontinuous (embedded) one, that is arrange-

ments in which several but not all phases are co-continuous,

to be called “multiply continuous” or “multi co-continuous”

arrangements for short; 

(iii) In contrast with the since long and widely studied (in the

so-called mean field approximation homogenization frame- 
1 In ( Torquato et al., 2003 ), A bi-continuous composite is “one in which both 

hases are connected across the sample”. 
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Fig. 1. The various elementary arrangements of n phases up to n = 5; no continu- 

ous phase (bottom white); all continuous phases (top brown); a single continuous 

phase (lower middle yellow); multi-continuous phase arrangements (upper middle 

orange). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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2 Cases with A embedded in B and B embedded in A are only dual ones for n = 2. 
work) inclusion-reinforced-matrix arrangements which are

cases with a single homogeneous continuous phase embed-

ding all other ones, it is only recently that the other three

arrangement types also have - in that same framework - a

relevant scheme for their effective property estimates. Mile-

stones of step-wise contributions from the author and co-

workers on that way will be referred to all along this work,

with a few pieces of figures borrowed to them. 

For two-phase bicontinuous structures, several (quite many)

models have been proposed out of that homogenization framework

(e.g. Peng et al., 2001; Roberts and Garboczi, 2002; Gong et al.,

2005 ) that we do not include in our present discussion for in gen-

eral they do not extend to more phases than two and not to the

multi-continuous arrangements here of main concern. 

After a few recalls of earlier results and an important clarifica-

tion concerning the dual situation to full phase co-continuity, the

main objective of this work is to propose, for effective properties of

general n-phase composites not reducible to a single one of its el-

ementary phase arrangements, a description from some combina-

tion or “mixture” of them. A formal application of a proposed such

a description to a two-phase disordered arrangement reveals that

it implies a remarkable relation between elementary property esti-

mates that gives it some support and particular interest. Also, ex-

perimental data from ( Torres et al., 2012 ) allowed to present some

validating comparisons. 

1.2. Background 

In the above specified understanding, continuity (connected-

ness) of a phase can be one-directional (as for infinite parallel

fibers), two-dimensional (as for infinite parallel layers or multi-

directional infinite fiber arrangement normal to one direction) or

three dimensional (as beam networks, sponge-like or foam-like

structures etc.). An infinite 3D continuous network “embedded” in

an infinite matrix ( Franciosi, 2018; Franciosi et al., 2019 ) is embed-

ded in a limit manner, and becomes co-continuous with the matrix

at this limit, as infinite parallel fibers (or layers) can be in the fiber

(or in-layer) direction(s). We will assume for sake of simplifying,

that morphologically anisotropic embedded infinite 3D networks

result from a stretch of an isotropic structure, what means that we

consider anisotropic composite structures of ellipsoidal symmetry

in the sense of ( Ponte-Castaneda and Willis, 1995; Bornert et al.,

1996 ). Properties possibly be given to the constitutive phases of the

structures in concern can be considered of the (piece-wise) linear

“generalized-elastic-like” type, at the example of Magneto-Electro-

Elastic (MEE) coupled properties, what includes most of elastic-like

and dielectric-like sub-cases of interest ( Kuoi and Huang, 1997; Lee

et al., 2005; Franciosi, 2013 ). 

In composites with more than two ( n say) phases, while the

number of arrangements with a single ( p = 1) continuous embed-

ding matrix increases linearly with n , there is always a single “fully

continuous” arrangement ( p = n ) and always a single dual “fully

discontinuous” one ( p = 0). The number of multi-continuous ar-

rangements (1 < p < n ), the rest of the total one-level arrange-

ment number A ( n ), rapidly increases as that total does. From sim-

ple combinatory analysis, A ( n ) reads: 

A (n ) n ≥2 = 

n ∑ 

p=0 

A 

(n ) 
p = 

n ∑ 

p=0 

n ! 

p!(n − p)! 

= ( 1 ) p=0 + ( n ) p=1 + 

n −1 ∑ 

p=2 

n ! 

p!(n − p)! 
+ ( 1 ) p= n , (1)

as was introduced in ( Franciosi and Charles, 2016 ), and the repar-

tition of these four different arrangement types in A ( n ) obeys the

histogram of Fig. 1 . 
Please cite this article as: P. Franciosi, Multiple continuity of phases in

system scheme, International Journal of Solids and Structures, https://d
Considering that the Hashin and Shtrikman ( HS ) effective prop-

rty estimates ( Hashin and Shtrikman, 1963; Hashin, 1979; 1983 )

re reasonably good first order ones in the n cases of multi-

einforced matrix structures ( p = 1), to be called type 1 phase ar-

angement, the number of other arrangements needing specific

stimate schemes is A ( n ) − n : the all co-continuous phase (single

 = n ) case, to be called type 2, the no continuous phase (sin-

le p = 0) case, to be called type 3 or the “multi-continuous” ar-

angements (all remaining A ( n ) − ( n + 2)) cases, to be called type

. A homogeneous medium ( n = p = 1) formally enters the type

 arrangement as a reinforced matrix at the zero reinforcement

imit. It also figures for completeness in the histogram of Fig. 1 ,

lthough Eq. (1) does not hold for it as written and should be

 (1) = (0) p = 0 + (1) p = 1 = n . However, the forthcoming discussion is

oncerned with n ≥ 2 values. 

Considering type 2 and type 3 phase arrangements, it is easier,

egardless of the value of n , to figure out how the co-continuity of

 phases may look like spatially than to figure out how their “co-

iscontinuity” does. Although an obvious duality of these two ar-

angements was shown in earlier papers ∀ n , 2 there is still a miss-

ng piece of formalization to properly define the arrangement type

hat was called “co-discontinuous” as introduced in ( Franciosi and

l Omri, 2011 ) as well as the appropriate understanding of this co-

iscontinuity nature. This is the first point to be addressed for a

larification that highlights the related estimate interpretation. 

Considering the number of type 4 arrangements of multiple

hase continuity which does not exist for n = 2, the Fig. 1 and

q. (1) show that it rapidly increases with n, from 3 assembled

hases with 3 over 8 arrangements, 10 over 16 arrangements for

 = 4, 25 over 32 for n = 5 and so on. 

Descriptions of bi-continuous two-phase structures in terms

f “Fiber Systems” or “Laminate Systems” were first proposed

nd examined in ( Christensen and Walls, 1972; Boucher, 1974;

hristensen, 1979a; b ): the “Fiber System” terminology names in-

erpenetrated one-directional bundles of infinite parallel fibers,

uch that both the matrix and the fiber phases could be considered

s continuous in all directions where fibers were oriented, as a

ulti-directional parallel assemblage of both phases. The effective
 composite materials: Overall property estimates from a laminate 
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Fig. 2. Examples of (left) hierarchical tri-laminate structure, (middle) isotropic Fiber-System ( Dendievel et al., 2002 ), (right) Laminate System as interpenetrated multiple slip 

in crystals. 
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tiffness properties of such a Fiber System were then estimated

rom the arithmetic average over all the directions ω on the unit

phere � of the 1D bundle effective stiffness C 

∗F ω 
(A,B ) 

= C 

∗F (θ,φ) 
(A,B ) 

(θ, φ)

efining the considered system as (when isotropic): 

 

∗IF S 
(A,B ) = ( 4 π) 

−1 

∫ ∫ 
θ,φ

C 

∗F (θ,φ) 

(A,B ) 
(θ, φ) sin θdθd φ= ( 4 π) 

−1 

∫ 
�

C 

∗F ω 
(A,B ) dω 

(2) 

Similar moduli for anisotropic structures of that sort result

rom appropriately weighting the C 

∗F ω 
(A,B ) 

directional contributions in

q. (2) , as will be seen in the following for any phase number n. 

Indeed, phase co-continuity is expected to improve the compos-

te stiffness in the direction(s) of co-continuity, as was for example

hown in ( Torquato et al., 2003 ) in a search for topological two-

hase arrangements that optimize pairs of property moduli such as

onductivity and compressibility. This reference geometrically ex-

mplifies such a bi-continuous phase arrangement by a Schwarz

wo-phase minimal surface of P type (see also Scriven, 1976; Zhou

nd Li, 2007 ), to be exemplified in the following as being also a

asis for building families of n-phase composites with any p co-

ontinuous ones. 

First regardless of practical realization, a similar arithmetic av-

rage over a set of directions in space is mathematically possible,

umming over the effective stiffness properties of directional lay-

red (laminate) structures, which are planar (2D) assemblages of

wo phases, while the fiber bundles are (1D). Similarly to the fiber

ase, making use of the moduli tensors of the ω-oriented laminate

A,B) structure C 

∗Lω 
(A,B ) 

= C 

∗L (θ,φ) 
(A,B ) 

(θ, φ) , the moduli estimate reads

for isotropic structures): 

 

∗ILS 
(A,B ) = ( 4 π) 

−1 

∫ ∫ 
θ,φ

C 

∗L (θ,φ) 

(A,B ) 
(θ, φ) sin θdθd φ

= ( 4 π) 
−1 

∫ 
�

C 

∗Lω 
(A,B ) dω, (3) 

The obtained effective properties from “Laminate Systems” ( LSs )

efined in ( Christensen 1979a;b ) as “implying intersecting platelets

f some kind” and “suggestive of morphology known as interpen-

trating networks of (two) phases”, 3 were likely to account for

hase co-continuity in all the in-layer orientations of each di-

ectional laminate of the system, as discussed for n phases in

 Franciosi and El Omri, 2011 ). 

Laminate System ( LS ) and Fiber System ( FS ) schemes conversely

resent important differences: 
3 What Christensen inappropriately figured as an isotropic aggregate of ω- 

riented laminate domains. 
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− Laminated structures are very particular ones in the world of

composite materials, owing to several specific properties they

benefit from, which can be related to characteristics of their

representative Green operators ( Walpole, 1981 ); 

− while a n -phase ω-oriented fiber bundle has not uniquely de-

fined effective directional properties (they depend on which

phase(s) act(s) as the necessary fiber-embedding matrix, such

that there is an upper FS( + ) (resp. lower FS( −) ) estimate when

the stiffest (resp. the weakest) phase is chosen as the matrix),

all n phases play an equivalent role in an ω-oriented laminate

structure and the effective properties are uniquely and exactly

defined. This makes Laminate Systems more relevant than Fiber

Systems when none of the assembled phases is expected to

play a particular role; 

− Conceiving how laminate structures could be interpenetrated to

make a Laminate System - not to be confused with hierarchi-

cal laminates ( Quintanilla and Torquato, 1996; Milton, 2005 ),

which are multi-scale schemes for microstructure descriptions,

as exemplified in Fig. 2 left - is harder than conceiving how

fiber bundles can be, what was exemplified in ( Dendievel et al.,

2002 ) and is shown in Fig. 2 , middle . A helpful visualization

of interpenetrated laminate structures is provided by examin-

ing how multiple slip in crystals can be interpenetrated (shown

Fig. 2 , right ) and descriptions of slip activity in terms of Lami-

nate Systems were attempted in the context of polycrystal plas-

ticity modeling in ( Franciosi and Berbenni, 20 07; 20 08; Fran-

ciosi, 2012a ); 

− One key point when describing effective properties of a multi-

continuous composite from a linear combination of the prop-

erties of directional structures is that whether performed in

terms of stiffness moduli C or in terms of compliances S = C −1 ,

the two schemes and their results are not equivalent: an arith-

metic average over stiffness moduli corresponds to a harmonic

average over compliance moduli and conversely. Consequently,

property estimates from either a Fiber System or a Laminate

System scheme go by pairs, ( mFS/cFS) or ( mLS/cLS) say, whether

stiffness moduli (m) or compliances (c) are considered, with the

difference that while the Fiber System pairs are many and in

increasing number with n (at least equal to the phase number

n when only considering single phased matrices) and in ranges

{ mFS( −),mFS( + ) } and { cFS( −),cFS( + ) }, the Laminate System pair

( mLS,cLS ) is unique for each n values. This stiffness/compliance

duality was neither examined nor commented in the early

works on Fiber and Laminate systems for co-continuous phases.

It was mentioned in ( Franciosi et al., 2011 ) and studied first

time in ( Franciosi and El Omri, 2011 ). Several fundamental in-

equalities were established rigorously there, showing that for

any n-phase set, all property estimates from FS and LS schemes
 composite materials: Overall property estimates from a laminate 
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Fig. 3. (a) Minimal Schwarz P surface; (b) a cubic variant of case a; (c) a tricontinuous composite from thickening the case a surface; (d) 1/8th of the unit cubic cell of 

a tricontinuous composite made from thickening the case b surface; (e) a 3D checkerboard as minimally co-continuous two-phase composite; (f) a tri-phase minimally 

co-continuous composite (cases d and f borrowed to Franciosi and Charles, 2016 ). 
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of both dual (stiffness and compliance) types were - as required

- interior to the Hashin & Shtrikman bounds, both defining a

subdomain in the HS one, with also the ( mLS/cLS ) domain be-

ing always interior to the ( mFS( + )/cLS( −) ) one. 

Also, as far as these two dual (Stiffness versus Compliance) av-

eraging assumptions are expected to correspond to two dual sit-

uations of phase arrangements, if the stiffness arithmetic average

finds supports to stand for phase co-continuity, the arithmetic av-

erage of compliances must “somehow” correspond to a sort of

“phase co-discontinuity”. Hence, for all assembled phases being on

equal ground, the two Laminate System estimates determine a do-

main for phase co-continuity situations, from all to none being

co-continuous, “none” being thought to mean all co-discontinuous

then in the early proposed interpretation. Co-discontinuity of n

phases being questioning, this duality will be here clarified in

terms of maximal versus minimal phase co-continuity, with a

simple demonstration that the latter arrangement is the closest

one to full co-discontinuity in the sense of all co-disconnected

phases which is a topological impossibility according to the

definitions. 

The Fig. 3 a-d, present how one can build n-phase fully co-

continuous composites from a mathematical minimal Schwarz sur-

face ( Scriven, 1976; Torquato et al., 20 03; Zhou and Li, 20 07 ),

Fig. 3 a, of which the Fig. 3 b shows a cubic variant. Giving

some thickness to such surfaces which share space into two co-

continuous subspaces ( Fig. 3 c and d) yields a tri-continuous phase

arrangement ( Fig. 3 d represents one eighth of a unit cubic cell).

Duplicating this surface into n − 2 layers of different phases yields

a family of n co-continuous composites. Fig. 3 e exemplifies a so-

called “3D checkerboard”, as for example claimed in ( Torquato

et al., 2003 ) to correspond with some minimal situation of co-

continuous two-phases structures. The characteristic of the in-

terconnections between cubic domains of a same phase is to

have null areas (edge-connected phase homologous domains). The

Fig. 3 f, shows a 3-phase example of such minimal co-continuity,
Please cite this article as: P. Franciosi, Multiple continuity of phases in

system scheme, International Journal of Solids and Structures, https://d
he polyhedral domains of a same phase being point-connected,

he cube center being the common top of 3 pairs of same two op-

osite pyramids whose bases are the cube sides. Fig. 3 d and f are

rom ( Franciosi and Charles, 2016 ). 

Coming in addition to the A ( n ) elementary phase arrangement

ypes of the nomenclature which is presented in Fig. 1 , the dis-

rdered arrangement of n phases, is reasonably well described

n terms of effective property estimate from the use of a Self-

onsistent ( SC ) scheme ( Kröner, 1958; 1961 ). In contrast with the

S estimates that correspond to a same phase being the (con-

inuous) matrix regardless of its concentration in the composite,

isordered composite structures are materials with the phase ar-

angement being generally dependent on the relative phase con-

entrations: a dense phase becomes more likely a continuous

connected) one while dilute phases expectedly turn to embedded

disconnected) situations in it. In between, when several phases

re in comparable concentrations (provided them be in limited

umber), disorder can correspond to situations of multiple conti-

uity. For the two-phase case, the phase bi-continuity is a likely

rrangement for such a disordered mixture which is often seen

s a “percolation” (transition) concentration range separating two

omains where the dense (continuous) and dilute (discontinuous)

hases interchange their roles progressively with the concentration

arying. 

If on the contrary the phase number is large, the “co-

iscontinuous” (minimally co-continuous) arrangement becomes

n expectable one in the range of comparable concentrations. 

These preliminaries on how a disordered structure may be

hase-arranged point out that phase multiple continuity may be

volving with phase concentration changes and that any general

tructure may be a combination of various elementary arrange-

ents of its phases, with relative weights of these arrangements

eing phase volume fraction dependent. 

The possible description of a general composite as some “mix-

ure” (in a way to be specified) of its elementary phase arrange-

ents is the major point that we finally address in this work. 
 composite materials: Overall property estimates from a laminate 
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4 The phase spatial distribution is assumed of same ellipsoidal symmetry as the 

shape of all embedded domains when any, what allows this same ellipsoidal sym- 

metry to be globally assumed for the considered composite structures. 
5 The twice differentiated strain Green operator integral over the ellipsoidal do- 

main of shape VEll. 
6 Although not used, a “stress Eshelby” dual tensor can be defined in connection 

to the stress Green operator as the Eshelby tensor connects to the strain Green 

operator, using compliance moduli instead of stiffness ones. 
A comparison of property estimates from the Laminate Sys-

em ( LS ) schemes with those from the related SC estimate in the

wo-phase case ( Franciosi, 2012b ) has provided a first morpholog-

cal argument on how a LS estimate from a stiffness moduli av-

raging ( mLS ) can be seen to well corresponds to (maximally) co-

ontinuously assembled phases and conversely how a LS estimate

rom a compliance averaging ( cLS ) well corresponds to structures

ith all of the assembled phases being co-disconnected (minimally

o-connected) throughout the sample: the SC ( n ) property estimate

or a n -phase disordered composite corresponds with all n phases

eing embedded in a n + 1 th additional one of infinitesimal vol-

me fraction, the properties of which are those of the composite

tself. This ( n + 1)-phase equivalent description for n -phase struc-

ures with the n + 1 th one being a reference embedding (contin-

ous) matrix in infinitesimal concentration is always permitted,

hether the composite has a disordered structure or a more spe-

ific one: for the HS estimates, this n + 1 th infinitesimal phase is

rivially the continuous one itself. The three-phase scheme of the

wo-phase A, B composite when phase A (resp. phase B) is the ma-

rix, is then A and B phases embedded in an infinitesimal third

atrix made of phase A (resp. B). 

The determination of this n + 1 th matrix has been examined

in the cited earlier papers) for the estimates from the Laminate

ystem schemes, first for n = 2 and then for any n value. Then,

rom the LS estimates of n-phases, the reference matrix for the

ases mixing several continuous phases with at least one embed-

ed one has also been defined. This will be briefly recalled in

ection 2 . 

Owing to these results, the important request for estimating

roperties of a general n -phase composite case appears also be to

pecifying the properties of its specific infinitesimal reference ma-

rix n + 1 th phase. We propose a possible description of that type

or any general one-level n -phase composite, based on the deter-

ination of a reference n + 1 th phase for it, which is assumed to

e a disordered mixture of the reference matrices of its A ( n ) el-

mentary arrangements. The proposed description is first tested

or the case of a disordered two-phase arrangement which is sup-

osed to have effective properties given by the SC estimate. In so

oing, a remarkable relation is established from this description,

etween the property estimates for the two-phase elementary ar-

angements. This relation provides support both to the relevancy of

he proposed description itself and to the relevancy of the two LS

chemes to estimate effective properties for all assemblages with

ultiple phase continuity. An application on literature data is fi-

ally reported. 

.3. Paper organization 

Section 2 briefly recalls the definitions of the various schemes

 HS(n), SC(n), mLS(n), cLS(n), mLS(p,n) ) of property estimates that

ill be here of concern, for n = 2 first and for n > 2 then. It also

riefly recalls insights from the earlier published works about

S schemes which will be useful. In Section 3 , the mLS(n) and

LS(n) estimates are reintroduced such as to establish the du-

lity of these LS estimates in terms of maximal versus mini-

al phase co-continuity. Section 4 examines the description of a

eneral n -phase composite in terms of the A(n) elementary ar-

angements of its phases and proposes, based on determining the

 + 1 th reference infinitesimal matrix, a relevant effective prop-

rty estimate form. In Section 5 , the proposed “reference ma-

rix mixture” description is first shown to fulfill a remarkable re-

ation in one-modulus isotropic symmetries. It then reports the

erformed multi-moduli application on literature data. Section 6

oncludes. 
Please cite this article as: P. Franciosi, Multiple continuity of phases in
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. The laminate system schemes for phase multiple continuity 

n composites 

The discussion is held in the so-called mean field approxima-

ion framework for the effective properties of a composite mate-

ial (m 

∗) constituted with a “reference matrix” (m 

o ) of moduli ten-

or C o and with assembled n phases (of moduli tensors C i , i = 1,

 ). Those are made of non overlapping congruent domains of el-

ipsoidal shape in homothetic 4 ellipsoidal spatial distribution rep-

esented by the same strain “Green operator” (for short 5 ) t Vell 
C o 

or

shelby tensor E 

Vell 
C o 

. We here consider that this reference matrix

s a n + 1 th continuous phase of volume fraction f m 

◦ ≈ 0 , supposed

o embed all other ones. This includes the possibilities that the in-

nitesimal matrix identifies with one of the n constitutive phases

nd that one or more of the embedded phases are co-continuous

ith it. The phase domains are assumed to be shape-distributed

own to infinitesimal in order to allow total space filling. For this

ackground, one can refer to the two-point distribution modeling

roposed by ( Ponte-Castaneda and Willis, 1995 ) (PCW) of which

t is the simple case that also matches with the classical ( Hashin-

htrikman, 1963 ) ( HS ) frame and can be found in a huge fraction

f the later literature concerned with homogenization methods,

ith also connections to new developments (e.g. Hu and Weng,

0 0 0; Buryachenko, 2007 ). Dielectric-like properties are a sub-case

f elastic-like ones and various coupling types of such properties,

s the magneto-electro-elastic (MEE) type, can also be formalized

rom the elastic type, using the extended notation of ( Barnett and

othe, 1975; Alshits et al., 1992 ). We therefore develop our discus-

ions using the formalism of effective elastic properties, in which

ase, the “moduli” strictly speaking refer to stiffness moduli. But

oduli of other (linear) properties are similarly represented which

ay be also called “generalized” stiffness moduli by extension.

he same holds for the “inverse moduli” S o = (C o ) −1 = C o , which

trictly speaking stand for compliances in elasticity but inverse

oduli of other properties may also be seen as “generalized” com-

liances. 

Accordingly, generalized stiffness (resp. compliance) tensors 

ink a generalized stress (resp. strain) tensor to a generalized strain

resp. stress) tensor. The Eshelby tensor (Eshelby, 1957) and the

train Green operator for a given ellipsoidal shape (or symmetry)

 in the infinite medium (m 

o ) are linked by the relation t Vell 
C o 

=
 

Vell 
C o 

: S o = S o : E 

tVell 
C o 

= t tVell 
C o 

, where the upper-script “t” stands for

transpose of”. In particular, this “strain” Green operator has a dual

stress” one t ′ Vell 
S o : 

 

′ Vell 
S o = C o − C o : t Vell 

C o : C o ; t Vell 
C o = S o − S o : t ′ Vell 

S o : S o , (4) 

 Zeller and Dederich, 1973 ; Walpole, 1981 ). When elastic-like (say

ank four), both Green operators are ij/kl (super) symmetric while

he Eshelby tensor is not. 6 Both Green operators furthermore are

ositive definite, what the Eshelby tensor is not either. Under the

pecified conditions in this so-called “dilute approximation frame-

ork” for the representative volume element (RVE) is an isolated

nclusion (or finite pattern) in an infinite medium ( Berveiller et al.,

987; Hashin and Shtrikman, 1963; Ponte Castaneda and Willis,

995; Cherkaev, 20 0 0; Buryachenko, 2001 ) the effective “stiffness

oduli” of any anisotropic n -phase composite as described can be
 composite materials: Overall property estimates from a laminate 
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written: 

 

eff( m ∗) 
( i, j,...,n ) ⊂m 

o = C o −

⎛ 

⎝ 

( 

n ∑ 

i =1 

f i 
(
( C o − C i ) 

−1 − t Vell 
C o 

)−1 

) −1 

+ t Vell 
C o 

⎞ 

⎠ 

−1 

;

n ∑ 

i =1 

f i = 1 − f m 

◦ = 1 . (5)

In Eq. (5) , the estimate can be obtained for specified phase

properties and concentrations provided the properties C o of

the reference n + 1 th matrix of infinitesimal volume fraction be

identified. 7 The (uniform) Green operator of ellipsoids can be

put, thanks to the Radon transform and its inversion formula

( Franciosi and Lormand, 2004 ), under the double integral form

 

Vell 
C o 

= 

∫ ∫ 
� t 

L (θ,φ) 
C o 

ψ Vel l 1 (θ, φ) sin θd θd φ = 

∫ 
� t L (ω) 

C o 
ψ Vell 1 (ω ) dω . It is

a weighted ω integral over the unit sphere � of the Green oper-

ators t L (ω) 
C o 

for ω-oriented platelets or laminates, defined with re-

gard to the reference medium (m 

o ). With the phase domains Vell

being ellipsoidal, the weight (or shape) function writes ψ Vell (ω) =
( 3 

4 π ) 2 ( v 
3 D V (ω) 3 

) , where D V ( ω) is the half breadth of Vell in the ω

direction and v its volume. 8 In Eq. (5) , the first occurrence of t Vell 
C o 

in the innermost brackets stand for the common shape of all do-

mains and the second occurrence for their spatial distribution. This

operator identity is the simplest assumption consistent with to-

tal space filling by the inclusions. Non ellipsoidal or multimodal

spatial distributions of inclusions or of inclusion patterns ( Bornert

et al., 1996; Franciosi and Lebail, 2004; Franciosi et al., 2019 ) are

here disregarded. 

As already pointed, Eq. (5) provides the well known Hashin-

Shtrikman ( HS ) estimates for any choice among the n possibilities

of selecting a C o = C i n + 1 th reference matrix from the constitutive

phases of the composite. 9 Since f m 

o = 0 , Eq. (5) further provides

the implicit SC estimate when choosing C o = C m ∗
(i, j,...,n ) ⊂m ∗, the ref-

erence infinitesimal matrix (m 

o ) being the effective medium (m 

∗)

itself then. Any other property estimate for the same n assembled

phases is expected to correspond to another arrangement type and

thus to another specific n + 1 th reference medium (m 

o ). The esti-

mates resulting from Laminate System schemes do are character-

ized by a reference matrix as established in cited previous works

and recalled in the following. 

2.1. Laminate system schemes and estimates for the two-phase cases 

For sake of simplification, omitting (m 

o ) or (m 

∗) and denoting

for room saving T instead of T −1 the inverse of some tensor forms

T , we specialize for n = 2 to write, for f A + f B = 1, Eq. (5) as: 

 

∗
[ A,B ] = C o −

((
f A 
(
(C o − C A ) 

−1 − t Vell 
C o 

)−1 

+ f B 
(
(C o − C B ) 

−1 − t Vell 
C o 

)−1 
)−1 

+ t Vell 
C o 

)−1 

, (6a)

with the compliance inverse equivalent counterpart, also using the

stress Green operator t ′ Vell 
S o : 

S ∗[ A,B ] = S o −
((

f A 

(
( S o − S A ) 

−1 − t ′ Vell 
S o 

)−1 
7 If C o identifies to one of the C i phase tensors, the term with C o − C i vanishes 

from the sum. 
8 For spherical inclusions and more generally for isotropic symmetry, 

ψ Sph ( ω) = ψ Iso ( ω) = 1/4 π ∀ ω = ( θ , φ). The integral over � is analytic only in 

particular (the simplest) property symmetries of the reference matrix C o . 
9 It also yields the so-called HS lower and upper stiffness bounds when 

C o = min ( C i ) or C o = max ( C i ), corresponding to the upper and lower compliance 

bounds. 

S

 

 

a  

t  

o  

w  
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+ f B 

(
( S o − S B ) 

−1 − t ′ Vell 
S o 

)−1 
)−1 

+ t ′ Vell 
S o 

) −1 

= C ∗
[ A,B ] 

. (6b)

The HS estimates, that correspond to either phase B embedded

n phase A or the converse, result from taking C o = C A or C o = C B in

q. (6a) , identical to taking S o = S A or S o = S B in Eq. (6b) . 

When assuming C o = C ∗SC 
[ A,B ] 

(or equivalently S o = S ∗SC 
[ A,B ] 

= C ∗SC 
[ A,B ] 

)

or the SC estimate, the Eq. (6a) takes the implicit form

f A ( ( C 
∗SC 
[ A,B ] 

− C A ) − t Vell 
C ∗SC 

[ A,B ] 

) + f B ( ( C 
∗SC 
[ A,B ] 

− C B ) − t Vel l l 
C ∗SC 

[ A,B ] 

) = 0 and con-

ersely Eq. (6b) with regard to the compliance form. After some

anipulations and using 〈 C 〉 = 〈 C 〉 [ A,B ] = f A C A + f B C B the material’s

oigt upper bound (arithmetic average) for stiffness, C ∗SC 
[ A,B ] 

can be

lso written ( Franciosi et al., 2011 ): 

 

∗SC 
[ A,B ] = 〈 C 〉 + (C ∗SC 

[ A,B ] − C A ) : t 
Vell 
C ∗SC 

[ A,B ] 

: (C ∗SC 
[ A,B ] − C B ) = S ∗SC 

[ A,B ] 
. (7)

This identity between Eqs. (6a) and (7) for C ∗SC 
[ A,B ] 

in terms

f phase moduli can conversely be established in terms of

ompliances to similarly yield S ∗SC 
[ A,B ] 

= C ∗SC 
[ A,B ] 

, also using the

tress Green operator t ′ Vell 
C ∗SC 

[ A,B ] 

= C ∗SC 
[ A,B ] 

− C ∗SC 
[ A,B ] 

: t Vell 
C ∗SC 

[ A,B ] 

: C ∗SC 
[ A,B ] 

and

 S 〉 = 〈 S 〉 [ A,B ] = f A S A + f B S B . 

The Eq. (6a) cannot be put under the form of Eq. (7) for

he effective properties C ∗
(a,b) 

of a general two-phase compos-

te with reference stiffness matrix C o . The only possible cases,

s proved in ( Franciosi, 2012b ), are for (i) the composite whose

tiffness reference matrix is C o = { C } = { C } [ A,B ] = f B C A + f A C B and

n dual manner (putting Eq. (6b) into the inverse form of

q. (7) ) for (ii) the composite whose compliance reference ma-

rix is S o == { S } = { S } [ A,B ] = f B S A + f A S B . { C } is the Voigt upper stiff-

ess bound for the two-phase [ B, A ] “harmonic material” (e.g.

he medium with interchanged phases or of same phases but

ith interchanged concentration proportions) that we denote

 A, B [ and { S } is its Voigt upper compliance bound, such that

 C } = { C } [ A,B ] = 〈 C 〉 ] A,B [ , { S } = { S } [ A,B ] = 〈 S 〉 ] A,B [ and { S } � = { C } −1 . 

These reference matrices are those characterizing the two-

hase composite effective properties from respectively the stiff-

ess and the compliance Laminate System Scheme ( Franciosi et al.,

011; Franciosi and El Omri, 2011; Franciosi, 2012b ), which can be

nally written: 

 

∗mLS 
[ A,B ] = 〈 C 〉 + ( { C } − C A ) : t 

Vell 
{ C } : ( { C } − C B ) , (8a)

 

∗cLS 
[ A,B ] = 〈 S 〉 + ( { S } − S A ) : t 

′ Vell 

{ S } : ( { S } − S B ) = 

(
C ∗cLS 

[ A,B ] 

)−1 
. (8b)

As was established in the cited earlier papers, Eq. (8) result

rom the more general Eq. (6) owing to fundamental properties

f the laminate Green operators, the exact effective properties of

hich obey both Eq. (8) equivalently, provided the Green operator

f use is the laminate strain (in Eq. (8a) ) or stress (in Eq. (8b) ) one,

ay: 

 

∗L (ω) 
[ A,B ] 

= 〈 C 〉 − f A f B ( C A − C B ) : t 
L (ω) 
{ C } : ( C A − C B ) 

= 〈 C 〉 + ( { C } − C A ) : t 
L (ω) 
{ C } : ( { C } − C B ) , (9a)

 

∗L (ω) 
[ A,B ] 

= 〈 S 〉 − f A f B ( S A − S B ) : t 
′ L (ω) 
{ S } : ( S A − S B ) 

= 〈 S 〉 + ( { S } − S A ) : t 
′ L (ω) 
{ S } : ( { S } − S B ) = C ∗L (ω) 

[ A,B ] 
. (9b)

Thus, by definition , the effective properties from the mLS

nd cLS schemes of a two-phase material whose overall struc-

ure symmetry is characterized by an ellipsoidal shape Vell are

btained by a weighted arithmetic averaging of the Eq. (9)

ith weight function ψ ( ω) of ellipsoidal (including isotropic
Vell 

 composite materials: Overall property estimates from a laminate 
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Fig. 4. Examples of third phase wrapping reference matrix for a two-phase fiber bundle with properties ensuring maximal co-continuity (left) and minimal one (middle), 

(from Franciosi, 2012b ) and a zoomed view on two adjacent fibers of the in and out structures of the wrapping layer (right). 
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i  
 Iso ( ω) = ψ Sph ( ω) = 1/4 π ) symmetry ( � ψ Vell (ω) dω = 1 ), either in

erms of stiffness moduli (for mLS ) or in terms of compliance ones

for cLS ). Thus, from Eq. (9), the effective mLS and cLS estimates for

wo-phase composites read in terms of stiffness moduli: 

 

∗mLS 
[ A,B ] = 

∫ 
�

ψ Vell (ω) C ∗L (ω) 
[ A,B ] 

dω;

C ∗cLS 
[ A,B ] = S ∗cLS 

[ A,B ] 
= 

(∫ 
�

ψ Vell (ω) S ∗L (ω) 
[ A,B ] 

dω 

)−1 

, (10) 

nd conversely in terms of compliances. Owing to the form of the

q. (10) for the as defined LS schemes, the Eq. (8) amount to av-

raging in Eq. (9) the laminate operators t L (ω) 
{ C} or t ′ L (ω) 

{ S} (not cor-

esponding to a same medium since { S } � = { C } −1 ), over all ω di-

ections around the unit sphere, according to the weight function

 Vell ( ω). This exactly corresponds with performing the calculation

f the strain (resp. stress) Green operator for the ellipsoidal shape

ell in term of its Radon polar decomposition in R 3 . The compari-

on with the two-phase related SC estimate, i-e the SC estimate for

he same ellipsoidal symmetry, allowed to establish, with respec-

ively setting C o = { C } and S o = { S }, the mLS and cLS estimates for

wo-phase composites as: 

 

∗mLS 
[ A,B ] = { C } −

((
f A 
(
( { C } − C A ) 

−1 − t Vell 
{ C } 
)−1 

+ f B 
(
( { C } − C B ) 

−1 − t Vell 
{ C } 
)−1 
)−1 

+ t Vell 
{ C } 

)−1 

, (11a) 

 

∗cLS 
[ A,B ] = { S } −

((
f A 

(
( { S } − S A ) 

−1 − t ′ V ell 
{ S} 
)−1 

+ f B 

(
( { S } − S B ) 

−1 − t ′ V ell l 
{ S } 
)−1 
)−1 

+ t ′ Vell l 

{ S } 

) −1 

, (11b) 

hich are the special (non equivalent) forms of Eq. (6) for the mLS

nd cLS two-phase estimates. 

The equivalency of Eq. (8) with Eq. (11) was a first help to fig-

ring the type of material architecture represented by the LS esti-

ates (in the two-phase case): they correspond with two embed-

ed phases in an infinitesimal matrix which is an inverse mixture

f these two phases in the bulk material, the dilute phase of the

ulk being the dense phase in the matrix layer and conversely the

ense phase of the bulk being in dilute concentration. With Voigt-

ike stiffness moduli { C } this “harmonic matrix” [ B, A ] ≡ ] A, B [ en-

ures at all concentrations for the mLS estimate the highest stiff-

ess for the two phases, what is likely corresponding to optimally

o-connected phases. With Voigt-like compliances { S } (Reuss-like

or stiffness) in the cLS Scheme, it conversely realizes the lowest

tiffness for the symmetric two-phase assemblage such as to cor-

espond to optimally co-disconnected phases. 
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From the effective property forms obtained for the reference

atrix phase, corresponding structures for isotropic co-continuous

nd “co-discontinuous” two-phase materials have been tentatively 

llustrated in ( Franciosi and El Omri, 2011 ) and in ( Franciosi 2012b,

013 ) for 3D and 2D cases respectively. Basically, an infinitesimal

ayer of matrix with { C } stiffness wrapping parallel fibers can be

een ( Fig. 4 left ) as a sort of 2D welded structure with long stripes

f A and B phases normal to the fiber direction, the largest ones

or the densest phase in the matrix to connect the more dilute

 distant - phase domains in the bulk. A similar 2D layer with

 S } −1 stiffness can be seen ( Fig. 4 middle ) as a double faced, gener-

lly irregular, checkerboard with antagonist squares of phase A and

hase B through the thickness, such as to prohibit extended inter-

onnections between bulk domains of same phase. The Fig. 4 right

llustrates an outer and an inner views of two such matrix wrap-

ing for adjacent fibers (the checkerboards can be similar at equal

wo fiber phase concentrations in the composite bulk).This for-

ally hold for any type of linear properties of general anisotropy.

he n-phase cases do not result straightforwardly. 

.2. The n-phase fully continuous and “fully discontinuous” cases 

The effective properties for directional n -phase laminates (in-

luding the two-phase case), C ∗L (ω) 
(n ) 

= ( S ∗L (ω) 
(n ) 

) −1 , can be exactly

btained from considering stress and strain jump conditions at

ach planar interface between layers of different phases, without

ny reference to Green operators ( Postma, 1955; Walpole, 1981; El

mri et al., 20 0 0 ). They read: 

 

∗L (ω) 
c ′ d ′ a ′ b ′ (n ) 

= 

〈
( C c ′ d ′ a ′ b ′ ) 

−1 
〉−1 
∣∣∣ω 
(n ) 

= 

〈
C c ′ d ′ a ′ b ′ 

〉ω 
(n ) 

; C ∗L (ω) 
abc ′ d ′ (n ) 

= C ∗L (ω) t 
c ′ d ′ ab (n ) 

= 

〈
C abp ′ q ′ C p ′ q ′ a ′ b ′ 

〉ω 
(n ) 

〈
C a ′ b ′ c ′ d ′ 

〉ω 
(n ) 

;C ∗L (ω) 
abcd (n ) 

= 

〈
C abcd − C abc ′ d ′ C c ′ d ′ a ′ b ′ C a ′ b ′ cd 

〉ω 
(n ) 

+ 

〈
C abc ′ d ′ C c ′ d ′ p ′ q ′ 

〉ω 
(n ) 

〈
C p ′ q ′ r ′ s ′ 

〉ω 
(n ) 

〈
C r ′ s ′ a ′ b ′ C a ′ b ′ cd 

〉ω 
(n ) 

. (12) 

Thanks to Eq. (12) there is an exactly known solution for

 

∗L (ω) 
(n ) 

= ( S ∗L (ω) 
(n ) 

) −1 and it is then always possible to obtain the

LS ( n ) and cLS ( n ) estimates for any n phases from the averaging

efinitions given in Eq. (10) for two phases, that now becomes for

 phases: 

 

∗mLS 
(n ) = 

∫ 
�

ψ Vell (ω) C ∗L (ω) 
(n ) 

dω ;

C ∗cLS 
(n ) = S ∗cLS 

(n ) 
= 

(∫ 
�

ψ Vell (ω) S ∗L (ω) 
(n ) 

dω 

)−1 

. (13) 

- Full n-continuity: Unfortunately but expectedly, the simpler

elations of Eq. (8) obtained for the two-phase cases do not extend

n some comparably simple manner for larger phase numbers, for
 composite materials: Overall property estimates from a laminate 
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b  

m  
the exact solution for n -phase laminates do not take a form gen-

eralizing the two-phase laminate case of Eq. (9). However, ∀ n the

solution of first (resp. second) of Eq. (13) is still expected to obey

the general form of Eq. (5) for some n + 1 th reference matrix of

infinitesimal concentration which has moduli C n 
o say (resp. com-

pliances S n 
o ) to be identified. This matrix is the solution of the in-

verse problem of solving Eq. (5) (resp. its inverse compliance form)

for C n 
o (resp. S n 

o ) when C 
e f f (m ∗) 
(i, j,...,n ) ⊂m 

o = C ∗mLS 
(n ) 

(resp. = C ∗cLS 
(n ) 

) from

Eq. (13) and using one of the Eq. (12) . This provides an implicit

equation that can be solved similarly to the SC implicit scheme

( Ricotti et al., 2006 ). Since the matrix concentration is infinitesi-

mal, appropriate iterative schemes need be set up to reach an ac-

curate solution for C n 
o (resp. S n 

o ), out of the present purpose. 

Although no simple generalization of the two-phase case was

found, it was verified from analytically solving a few particular n-

phase cases ( Franciosi and Charles, 2016 ) that the properties of the

reference matrix still were those of a combination of the n assem-

bled phases and that they were varying oppositely to the corre-

sponding properties of the bulk of the composite. 

Fortunately, it is not necessary to have an explicit form of the

property tensor of this reference matrix in order to obtain the

 

∗mLS 
(n ) 

(or C ∗cLS 
(n ) 

) estimate when all n phases are co-continuous (or

co-discontinuous), since the use of Eq. (12) in Eq. (13) does not call

for these matrix properties. 

-Full n-discontinuity: The realization of “fully co-

discontinuous” structures corresponding to the cLS ( n ) estimate,

say assemblages of phases capable to prevent any of the phases,

even when in high concentration, from connecting into a through-

sample spanning cluster is more questioning for the interpretation

of phase co-discontinuity is still to be clarified. According to

( Scriven, 1976 ) for examples of such structures, “possibilities are

held to be blobs of one composition dispersed in another, or

tubules of one threading the other, or lamellae of one alternat-

ing with the other”. As for the two-phase composites ( Fig. 4

right), the proposed idea in ( Franciosi and El Omri, 2011 ) and in

( Franciosi, 2012b; 2013 ) for respectively isotropic and transversally

isotropic symmetry is in duality with the co-continuous case.

Wrap the phase grains into an infinitesimal coating matrix layer

with a phase arrangement such as to prohibit long distance chains

of connections between grains of a same phase. As for all co-

continuous phases, there is no extension of the reference matrix

definition from the two-phase discontinuous case to the one for

a general composite with all co-discontinuous n phases. But all

what was observed and obtained for the mLS ( n ) estimate holds in

dual manner for the cLS ( n ) estimate provided the appropriate sub-

stitutions of the involved quantities. The revisited interpretation of

this cLS ( n ) estimate to be discussed in Section 3 highlights how

the related structures look like. 

2.3. The p multi-continuous cases among n > p > 1 phases 

In the type 4 arrangement of n-phases (n > 2) the number p

of continuous ones ranges between 2 and n − 1 ≥ 2, say p ∈ (2,

n − 1 ≥ 2), the minimum value of q = n − p being now 1, for there

must be at least one discontinuous (embedded) phase. In order to

write a property estimate for this material in the form of Eq. (5) ,

the existence of an appropriate n + 1 th infinitesimal reference ma-

trix phase with properties C 
p o 

n say was questioned in ( Franciosi and

Charles, 2016 ). This matrix has to satisfy i) the co-continuity of the

p infinite phases and ii) the embedded nature of the n − p remain-

ing ones and this for any (and down to all zero) concentrations of

these embedded phases. 

The second condition is fulfilled if none of the q embedded

phases in the bulk belongs to the constitutive phases of the ref-

erence matrix, for no continuity of any of these q phases is then
Please cite this article as: P. Franciosi, Multiple continuity of phases in

system scheme, International Journal of Solids and Structures, https://d
ade possible (as is the case for a q -phase reinforced single-

hased matrix A, the reference matrix of which is the phase A it-

elf). For the first condition, the study of the fully co-continuous

rrangement type 2 has provided a characteristic matrix for n co-

ontinuous phases. Thus, one candidate for the reference matrix

efined by properties C 
p o 

n is the matrix with properties C o p , say the

ne for the fully continuous p -composite in same p -phase relative

roportions as in the n -phase composite, into which q discontinu-

us phases are additionally embedded. 

Thus, the matrix that characterizes the mLS ( p ) estimate fulfills

he requests for multi-continuity of p phases among n . It is note-

orthy that this same C o p matrix for a fixed p -continuous phase

ssemblage then holds for any q embedded phase number addi-

ional to p and in any relative concentrations in addition to those

f the p phases. This means C 
p o 

n = C o p ∀ n ≥ p , including the limit of

ll null concentrations of the included q phases at which n = p and

 

p o 

n = C 
p o 

p = C o p . This conversely implies that any q number of phases

dded to a fully continuous p -set without contributing to the refer-

nce matrix will be necessarily an embedded q -set of phases. Since

he C o p matrix is characteristic of the mLS ( p ) scheme with effective

roperties written as C ∗mLS 
(p) 

, we denote C ∗mLS 
(p,n ) 

the effective proper-

ies for that multi-continuous ( p, n ) phase arrangement type, ∀ n ≥
 . This property estimate reads according to Eq. (5) : 

 

∗mLS 
( p,n ) = C p 

o −

⎛ 

⎝ 

( 

n ∑ 

i =1 

f i 

((
C p 

o − C i 
)−1 − t Vell 

C p 
o 

)−1 

) −1 

+ t Vell 
C p 

o 

⎞ 

⎠ 

−1 

;

n ∑ 

i =1 

f i = 1 − f m p 
o ≈ 1 , (14a)

ith Eq. (5) also fixing C p 
o from inversely solving, using C ∗L (ω) 

(i, j,...,p) 

rom Eq. (12) in Eq. (13) : 

 

∗mLS 
( p ) = 

∫ 
�

ψ Vell ( ω ) C 
∗L ( ω ) 
( i, j,...,p ) 

dω 

= C p 
o −

⎛ 

⎝ 

( 

p ∑ 

i =1 

F i 

((
C p 

o −C i 
)−1 − t Vell 

C p 
o 

)−1 

) −1 

+t Vell 
C p 

o 

⎞ 

⎠ 

−1 

;

n ∑ 

i =1 

F i ≈ 1 . (14b)

In the simplest case of two co-continuous phases A, B with

 ( = n − 2) embedded ones D 

i down to zero concentration of all

f them, in both A and B ( D 

i can possibly be found either fully

n phase A or in phase B and partly in both when along the

/B interface), the infinitesimal reference matrix has properties

 2 
o = { C } A,B . Note that if one of the D 

i phases becomes continu-

us together with phases A and B, the reference matrix will be

odified from C 2 
o = { C } A,B to C 3 

o . If all the ( n − 2) included phases

ecome co-continuous with A and B, the reference matrix will

hange to C n 
o and conversely. Consistently, if one of the two co-

ontinuous phases (B say) totally vanishes too (in addition to all

he D 

i phases), the reference infinitesimal matrix becomes C 1 
o = C A ,

hat is a layer of the homogeneous phase A wrapping grains of

hase A and grains of the phases D 

i . This corresponds to the sin-

le continuous phase A embedding all other ones with properties

beying a HS estimate. Incidentally, this means that for p = 1 one

an write C ∗mLS 
(1= A,n ) 

= C ∗HSA 
(n ) 

, with the matrix phase A ∈ (1, n ), so

aking a formal place for the HS estimates in the C ∗mLS 
(p,n ) 

series. 

In summary, ∀ n , for p = 2, a C ∗mLS 
(2 ,n ) 

stiffness tensor estimate can

e explicitly obtained from Eq. (5) with using as n + 1 th reference

atrix the medium with stiffness properties C 2 
o = { C } A,B , while
 composite materials: Overall property estimates from a laminate 
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Fig. 5. (a) Two embedded phases in one continuous matrix; (b) 1/8th of cubic cell for a 3-phase composite structures with one embedded phase in two co-continuous ones 

from Fig. 3 d ( Franciosi and Charles, 2016 ); (c) a still tricontinuous composite with holes in the interfacial phase. 

Fig. 6. The 8 estimates for the elementary arrangements of 3 isotropic and incompressible elastic phases at 25% (left) and 65% (right) of the stiffest phase 1 (modified from 

Franciosi and Charles, 2016 ) showing 4 transition examples in between pairs. 
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or p > 2 one must first solving Eq. (14b) for C p 
o prior to solve

q. (14a) for C ∗mLS 
(p,n ) 

, this inverse problem for obtaining C p 
o need-

ng to first solve for C ∗mLS 
(p) 

in using Eq. (13) left. Some particu-

ar (isotropic dielectric-like or elastic-like) cases have been shown

 Franciosi and Charles, 2016 ) to have an explicit C p 
o solution up to

 = 5, ∀ n , what represents a substantial quantity of situations. 

.4. Continuous versus discontinuous phase status changes and 

ercolation-like transitions 

As a new complement to what mainly is up to that point a

ummary of earlier results, it is noteworthy in the proposed for-

ula for the C ∗mLS 
(p,n ) 

estimate (for any values of p and n > p ) that

ny time one (or several) of the assembled phases change(s) from

iscontinuous to continuous or conversely, at fixed n value and

ithout changes in the phase concentrations, there is an expected

harp discontinuity in the corresponding effective properties which

jump” or “drop” from one phase arrangement description and es-

imate to another in the A ( n ) set. When the change is smooth

ith phase concentration changes, it is a percolation-like process,

ith a gradual transition over some concentration range simi-

ar to the documented ones for two-phase structures. We exem-

lify this in making use of the three-phase situation examined in

 Franciosi and Charles, 2016 ) for which the four estimate types

esult in 8 estimate “branches” according to Fig. 1 and Eq. (1) .

he two cases of tri-continuous (type 2) and “tri-discontinuous”

type 3) assemblages correspond to the cubic cells exemplified in
Please cite this article as: P. Franciosi, Multiple continuity of phases in

system scheme, International Journal of Solids and Structures, https://d
ig. 3 d and f respectively. The corresponding cells for the type

 and type 4 assemblages are reported on Fig. 5 , which shows

5a) one continuous phase separating disconnected cubes of the

wo other phases, the classical inclusion-reinforced matrix struc-

ure, and (5b) a bicontinuous arrangement of two phases (obtained

rom the tri-continuous structure of Fig. 3 d) embedding a third

ne (which occupies the cube centre and corners on the Figure)

s finite domains located either along their interface or in their

ulks. 

The Fig. 5 c recalls that holes in a continuous layer are not

nough to make it disconnected (the two different phases occu-

ying each subspace are at direct contact in the interface holes).

his structure changes from tri-continuous to 3-phase bicontinu-

us when the interface becomes made of disconnected pieces. A

egrading joint or weld between two materials may correspond

o such a tri-continuous to bi-continuous arrangement change (re-

ardless of additional voids or cracks). 

Jumps, drops and smooth, percolation-like, transitions in terms

f property estimate changes are exemplified in Fig. 6 which show

he 8 estimate “branches” taken from ( Franciosi and Charles, 2016 )

or the unique effective shear modulus for 3 isotropic and in-

ompressible (I-I) elastic phases, at two fixed values of the me-

ian phase concentration of 25% (left) and 65% (right). High “stiff-

ess” contrasts (μ1 = 100 > μ2 = 10 > μ3 = 1) are considered. On the

orrowed plots have been drawn four same examples of sharp

vertical) and smooth (wavy oblique) transition paths between

hear estimate pairs: 
 composite materials: Overall property estimates from a laminate 
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(1) the upward property transition from the mLS (3) - tri-

continuous - estimate to the HS ( + ) upper bound (continu-

ous stiffest phase 1) would result from (gradual) continuity

loss of both phases 2 and 3. In order to cross and pass above

the mLS (μ1,μ2) - bi-continuous - estimate, phase 2 must be-

come discontinuous together with phase 3 while only phase

3 needs be discontinuous otherwise; 

(2) the upward “jump” from the HS ( −) lower bound (softest

phase 3) to the mLS (μ2,μ3) estimate would result from a

sharp discontinuous to continuous transition of the median

phase 2 in addition to the soft phase 3, what increases the

effective property; 

(3) the downward transition from the median HS (μ2) estimate

to the cLS (3) “tri-discontinuous” estimate by gradual conti-

nuity loss of the median phase 2 what decreases the effec-

tive property; 

(4) the downward “drop” from the mLS (μ1,μ3) estimate to the

mLS (μ1,μ2) one by (dis)continuity interchange of phases 2

(median) and 3 (softest) at constant stiffest phase 1 vol frac-

tion. In this not obvious transition, the effective property is

decreased when the median phase 2 (in low concentration)

becomes continuous at the place of the softest one 3 (in

high concentration). At low volume fraction of the soft phase

3 (left hand sides of both figures), the drop becomes a jump.

Another particular example mentioned in ( Franciosi, 2012b ) is

worthy to be recalled: if under some loading, a sample spanning

continuous 3D network of fractures appears in a (homogenous or

not) undamaged material, the mLS estimate predicts a finite drop

of the effective stiffness from infinitesimal crack opening or void

fraction. 

All such transitions (by changes of phase “connectedness” sta-

tus) occur in various physical, metallurgical, mechanical processes,

as during metal solidification/fusion ( Limodin et al., 2007; Liang

et al., 2008; Pavot et al., 2015 ), phase precipitation/dissolution

in alloys (Mac Cue et al., 2015) or transition in polymers

( Veenstra et al., 20 0 0 ) according to various extrinsic condition

changes. They also occur during metallic powder compaction pro-

cess ( Poquillon et al., 2002; Martin and Bouvard, 2006; Mazaheri

et al., 2009 ) or metal fragmentation under (blowing or pressure)

load. Reciprocal events correspond with the converse continuous

to discontinuous transitions. All are examples of application fields

for the knowledge of effective properties corresponding to all ele-

mentary phase arrangements in n between which transitions can

occur. The case of a porous material with a varying porosity status

will be examined in section 5. 

A formally important last case is the transition from one to zero

matrix phase for which the clarification given in next Section 3 on

the understanding of “co-discontinuity” will come in support to

the qualitative analysis here performed. Two distinct possibili-

ties correspond to this transition from a HS ( n ) estimate ( p = 1,

∀ n ≥ 2). The first one corresponds to a continuity loss of the

matrix phase (A say) which remains present in the assemblage

( p = 1 → p − 1 = 0 at n ≥ 2), and the second possibility corresponds

with the limit of the matrix decreasing concentration down to

zero, the composite structure changing then from n phases to n − 1

ones ( p = 1 → p − 1 = 0 and n ≥ 2 → n − 1 ≥ 1). In both possibil-

ities, excepted if n − 1 = 1 in the second one (a two-phase B ⊂A

composite that becomes single - homogeneously, say continuously

- phased B), such a transition would yield a n-phase composite

with none of the phases being continuous, if none of the dis-

continuous phase takes over to become continuous in turn. This

corresponds to the so far called “fully co-discontinuous” situation

associated with the cLS ( n ) estimate type. But this also amounts

to giving to phase co-discontinuity the meaning of simultaneous
Please cite this article as: P. Franciosi, Multiple continuity of phases in

system scheme, International Journal of Solids and Structures, https://d
isconnectedness for all the assembled phases, what is impossi-

le in strict topological sense. Among the q = n − 1 phases which

ere discontinuous when embedded within the continuous A one,

ll cannot remain discontinuous if A ceases be continuous or van-

shes. A t least one of these q phases is expected to now take the

tatus of being continuous to fill the new open gaps between the

isconnected (or vanished) elements of phase A. It is also note-

orthy that these transitions from one to zero continuous phase

ould amount to writing for p = 0, ∀ n ≥ 2 C ∗mLS 
(0 ,n ) 

= C ∗cLS 
(n ) 

such that,

ith C ∗mLS 
(n ) 

= C ∗mLS 
(p= n,n ) 

and since for p = 1, ∀ n ≥ 2 we arrived at

 

∗mLS 
(1= A,n ) 

= C ∗HSA 
(n ) 

, the four arrangement types would have found a

lace in the same type 4 series. But from the topological argu-

ents, the identity C ∗mLS 
(0 ,n ) 

= C ∗cLS 
(n ) 

is clearly not correct. Hence, the

LS ( n ) estimate type does not correspond to full co-discontinuity

n the full co-disconnectedness sense and the mLS/cLS duality is

till to be clarified. In relation to what precedes, even if a multi

ontinuous ( p, n ) composite structure of p co-continuous phases

mong n , with q = n − p , is also a multi discontinuous ( q, n ) one,

his does not correspond to an identified duality of the C ∗mLS 
(p,n ) 

esti-

ate with some C ∗cLS 
(q,n ) 

= ( S ∗cLS 
(q,n ) 

) −1 one in the sense of the mLS/cLS

uality. An obvious dual of a multi-continuous ( p, n ) structure is

 multi-continuous ( q, n ) structure, with p and q permuted phase

ypes with effective properties C ∗mLS 
(q,n ) 

, of the same type as C ∗mLS 
(p,n ) 

,

sing in Eq. (12) the matrix C q 
o for the q continuous phases in ap-

ropriate concentrations. A dual estimate to C ∗mLS 
(p,n ) 

taking the form

 

∗cLS 
(q,n ) 

= ( S ∗cLS 
(q,n ) 

) −1 has no interpretation so far of the structure type

t may represent, if any. 

The next section introduces the mLS ( n ) and cLS ( n ) estimates

n a clarifying way regarding the interpretation of the underlying

hase arrangements. It incidentally points a possible understand-

ng for the C ∗cLS 
(q,n ) 

= ( S ∗cLS 
(q,n ) 

) −1 estimate type, to be let in purpose of

urther developments. 

. Maximal and minimal p-phase co-continuity in composites 

We here first propose a proof that composites having all their

hases being fully co-continuous as defined, must have effective

roperties taking the form of the stiffness moduli Laminate Sys-

em ( mLS ) scheme recalled in Section 2 , Eq. (10) left for n = 2 and

q. (13) left for n > 2. The proof is first given for n = 2, and is next

eneralized to p -phase co-continuous materials, without or with q

mbedded phases. From this first insight, it can then be proven

hat both linear averaging of p-laminate stiffness moduli and lin-

ar averaging of p-laminate compliance moduli correspond to co-

ontinuity of the p phases, the difference being that stiffness lin-

ar averaging corresponds to maximal (strong) co-continuity while

ompliance linear averaging corresponds to minimal (weak) co-

ontinuity. Minimal co-continuity of p phases is finally shown to

e the best representative of their topologically impossible full co-

isconnectedness. 

.1. Multiple continuity of phases implies laminate green operators 

The main property between laminate operators can be written

or any two (A,B) media: 

 

L (ω) 
A 

− t L (ω) 
B 

= t L (ω) 
A 

: ( C B − C A ) : t 
L (ω) 
B 

⇔ t ′ L (ω) 
A − t ′ L (ω) 

B = t ′ L (ω) 
A : ( S B − S A ) : t 

′ L (ω) 
B . (15)

Within the here used homogenization framework from which

ffective properties of n -phase materials can be characterized by

q. (5) , the specific effective (stiffness-like or compliance-like)

roperties of n -phase laminates can be expressed equivalently
 composite materials: Overall property estimates from a laminate 
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i  
rom any choice of one of the n constitutive phases (moduli

 i = S i 
−1 ) as reference matrix in finite concentration 1 > f i ≥ 0,

ay: 

 

∗L (ω) 
(n ) 

= C r −

⎛ 

⎜ ⎝ 

⎛ 

⎝ 

∑ n { 
i = 1 

i � = r 

f i 
(
( C r − C i ) 

−1 − t L (ω) 
C r 

)−1 

⎞ 

⎠ 

−1 

+ t L (ω) 
C r 

⎞ 

⎟ ⎠ 

−1 

, 

∀ r ∈ { 1 , n } , (16a) 

 

∗L (ω) 
(n ) 

= S r −

⎛ 

⎜ ⎝ 

⎛ 

⎝ 

∑ n { 
i = 1 

i � = r 

f i 

(
( S r − S i ) 

−1 − t ′ L (ω) 
S r 

)−1 

⎞ 

⎠ 

−1 

+ t ′ L (ω) 
S r 

⎞ 

⎟ ⎠ 

−1 

, 

∀ r ∈ { 1 , n } . (16b)

Eq. (16) hold - in addition to Eq. (12) - thanks to the lami-

ate property of Eq. (15) which is the sufficient condition. We here

emonstrate (with details in Appendix A ) this sufficient condition

o also be the necessary one. That is if a n -phase medium has ef-

ective properties identically estimated by Eq. (5) for several ( p say)

hoices of the matrix phase among the n ones, then all involved

perators must fulfill the laminate operator property between all

hase pairs among p . 

Considering first two-phase [ A, B ] bi-continuous composites

 p = n = 2), the possibility of choosing either phase A or phase B

s the matrix, yields to assuming the equality: 

 

∗
A ⊂B = C B − f A 

(
( C B − C A ) 

−1 − f B t 
V 
B 

)−1 

= C ∗B ⊂A = C A − f B 
(
( C A − C B ) 

−1 − f A t 
V 
A 

)−1 
. (17) 

q. (17) is shown ( Appendix A ) to assign Eq. (15) left and thus t V 
A 

=
 

L (ω) 
A 

(resp. B), ∀ ω ∈ �. 

Lets consider next 3-phase [A,B,D] composites with phases A

nd B being co-continuous while phase D is either co-continuous

 well or discontinuous, that is embedded. 

- If phase D is co-continuous with phases A and B, three con-

itions of co-continuity similar to Eq. (17) can be written. Assum-

ng them to be simultaneously fulfilled amounts to writing each

f them, for example between A and B phases (all involved op-

rators are assumed identical for the composite is taken to sat-

sfy a simple ellipsoidal spatial distribution symmetry of all 3

hases) as: 

C ∗
(A,D ) ⊂B 

= C B −
((

f A 
(
( C B − C A ) 

−1 − t V B 

)−1 + f D 
(
( C B − C D ) 

−1 − t V B 

)−1 
)−1 

+ t V B 

)−1 

= C ∗
(B,D ) ⊂A 

= C A −
((

f B 
(
( C A − C B ) 

−1 − t V A 

)−1 + f D 
(
( C A − C D ) 

−1 − t V A 

)−1 
)−1 

+ t V A 

)−1 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

, 

(18a) 

 

∗
(A,D ) ⊂B = C B −

(〈 T 〉 (A,D ) ⊂B + t V B 

)−1 = C ∗(B,D ) ⊂A = C A −
(〈 T 〉 (B,D ) ⊂A + t V A 

)−1 
} 
. (18b) 

q. (18) yield after some simple manipulations (Appendix A2) and

 I, D ) ⊂J written ( J ): 

 

V 
A − t V B − t V B : ( C B − C A ) : t 

V 
A 

= 〈 T 〉 (B ) : ( C B − C A ) : 〈 T 〉 (A ) + t V B : ( C B − C A ) : 〈 T 〉 (A ) 

+ 〈 T 〉 (B ) : ( C B − C A ) : t 
V 
A + 〈 T 〉 (B ) − 〈 T 〉 (A ) . (19) 

This being expected to hold down to a zero volume fraction of

he third phase D, it must be consistent with the two-phase co-

ontinuity of A and B and therefore the left hand side must be

ero, with the implied conditions from the two-phase case, that
Please cite this article as: P. Franciosi, Multiple continuity of phases in

system scheme, International Journal of Solids and Structures, https://d
nly laminate operators fulfil this relation type. We are thus left

ith the additional condition (proved in Appendix A ): 

〈 T 〉 (B ) : ( C B − C A ) : 〈 T 〉 (A ) 

+ t V B : ( C B − C A ) : 〈 T 〉 (A ) 

+ 〈 T 〉 (B ) : ( C B − C A ) : t 
V 
A + 〈 T 〉 (B ) − 〈 T 〉 (A ) = 0 , (20) 

nd the two complementary ones by circular A, B, D permutations

or full tri-continuity. 

Thus, when the three-phase (A,B,D) material is a laminate, that

s when the three Green operators are a same laminate one, this

et of equations is simultaneously fulfilled. Other possibilities are

nexpected as far as the Green operator pair relation of Eq. (17) is

nly fulfilled for laminates. 

- If phase D is an embedded one while phases A and B

re co-continuous, there are no complementary equations to

q. (20) which however assigns the operator pair t V 
A 
, t V B to be lam-

nate operators. There is no such assignment on the operator that

epresents the shape of the embedded phase D domains. Eq. (18

o 20 ) hold as well for D standing for several embedded phases D 

i ,

ll the terms possibly being included in the 〈 T 〉 (A, ( D i )) ⊂B notation

ype. 

It results that beyond purely directional laminate structures,

q. (17) (and the p -set ones similar to the Eq. (20) for n > p = 2)

an only hold for effective stiffness properties that take the form of

 linear combination (thus an arithmetic mean) of effective prop-

rties of directionally laminated structures, what correspond to

q. (13) left, exotic cases excepted if any. 

.2. Both linear combinations of strain or stress green operators hold 

s well 

For the dual situation a priori taken to correspond with all co-

iscontinuous (all co-disconnected) phases to be associated with

n arithmetic average of laminate compliance properties over di-

ections in space, there would not be any reasoning similar to

he performed one for the stiffness average, for as far as none

f the constitutive n phases can be taken as a continuous ma-

rix, there would be no initial relation similar to Eq. (17) to start

rom. However, the laminate property recalled in Eq. (15) holds

s well when it is inversely written in terms of the dual com-

liance moduli and consequently the compliance counterpart of

q. (17) also holds equivalently with regard to the stress Green op-

rator ( Eq. (15) right). It results of this stiffness/compliance equiv-

lency for directional laminates that all composites whose effec-

ive properties can be written as an arithmetic average of the

ompliances of directional laminates (according to Eq. (13) right)

lso obey the necessary condition for phase co-continuity. It cor-

esponds to an harmonic average of the stiffness moduli, say the

eakest average in contrast with the arithmetic average which is

he strongest one. As a consequence, the duality of the two (arith-

etic and harmonic) stiffness moduli averaging does not corre-

pond to fully continuous (all co-continuous) versus fully discon-

inuous (all co-discontinuous) n -phase structures but to maximally

tiff (strong) versus maximally compliant, minimally stiff, (weak)

ll n co-continuous phase structures. This is consistent with the

onclusions arrived at in Section 2.4 from considering the conse-

uences of a continuous to discontinuous transition of a single ma-

rix phase in a composite assemblage. Some additional support will

e given from the last section analyses. 

.3. Minimal phase co-continuity as the closest to impossible full 

o-disconnectedness 

From a minimal 3D continuity definition for one phase as be-

ng a sample spanning cluster made of point- (or line-) connected
 composite materials: Overall property estimates from a laminate 
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finite domains of that phase into a 3D network, 3D discontinuity

of one phase will correspond to 3D disconnections of this min-

imal network. Hence, full co-discontinuity of all phases in the co-

disconnectedness sense in an assemblage is impossible for one phase

at least needs be available to fill the gaps in between the discon-

nected ones. Full disconnectedness can only at the best be repre-

sented by the arrangement of minimal co-continuity, say all phases

being clusters of point-connected (or line-connected, say null area

connections) domains, that is all the phases in their weakest con-

tinuity state at once. Thus minimal co-continuity does not iden-

tify to full co-discontinuity but can be seen as the closest-to-it

phase arrangement. This refined understanding of the initially pro-

posed interpretation of the co-continuity versus co-discontinuity

duality corresponding to the mLS ( n ) and cLS ( n ) estimates facili-

tates how to figure out structures corresponding to minimal co-

continuity and to the cLS ( n ) estimate type. The example of “tri-

discontinuous structure” given in Fig. 3 f well corresponds to mini-

mally co-connected phases. 

4. General n-phase composites in terms of the A(n) elementary 

n-phase arrangements 

For a general n -phase composite whose (one-level) microstruc-

ture does not match well enough with any of the elementary ar-

rangements, some “mixture” of those is likely representative. Such

a mixture can also be useful in composites where the continu-

ous/discontinuous status of certain phases is not well known, as

for the porosity in the experimental example from ( Torres et al.,

2012 ) that will be examined next. We consider whether some

P ( N ) probability-weighted combination of the N = A ( n ) arrange-

ments can provide a microstructure description and a property es-

timate, still in the considered homogenization framework where

effective properties result from Eq. (5) or equivalent ones. Treating

this composite as being statistically homogeneous, each point r in

it may be given such a probability P ( J ) to match with the J elemen-

tary arrangements among the N = A ( n ) ones, whether most of them

be zero or not. Matching can a priori either be directly in terms of

their effective properties or more basically in terms of their “mi-

crostructural characteristics” that we here understand in the sense

of phase spatial arrangements as defined. With the needed key in-

formation being to determine an infinitesimal reference n + 1 th ma-

trix, the question turns into whether one can describe the compos-

ite, from its N = A ( n ) elementary arrangements, either in terms of

their effective properties or in terms of their reference matrices,

provided a set of P ( N ) probabilities. 

For such a general (one-level) n -phase composite of effective

properties C ∗ = ( S ∗) −1 and of n + 1 th reference matrix with prop-

erties C o = ( S o ) −1 , Eq. (5) can be rewritten equivalently as: (
( C o − C ∗) −1 − t V C o 

)−1 = 

n ∑ 

i =1 

f i 

((
C o − C i 

)−1 − t V C o 

)−1 

, (21a)

(
( S o − S ∗) −1 − t ′ V S o 

)−1 = 

n ∑ 

i =1 

f i 

((
S o − S i 

)−1 − t ′ V S o 

)−1 

. (21b)

The equivalency between Eqs. (21a) and (21b) is straightfor-

ward once having noticed that any difference of the form �C ∗ =
( C o − C ∗) −1 transforms into its dual form �S ∗ = ( S o − S ∗) −1 as any

strain Green operator t V 
C o 

transforms into its related stress one

 

′ V 
S o (see in Section 2 ) say �S ∗ = C o − C o : �C ∗ : C o or conversely

�C ∗ = S o − S o : �S ∗ : S o , such that: 

�S ∗ − t ′ V S o = C o − C o : �C ∗ : C o −
(
C o − C o : t V C o : C 

o 
)

= − C o : 
(
�C ∗ − t V C o 

)
: C o . 

When neither C ∗ = ( S ∗) −1 nor C o = ( S o ) −1 are known, the ad-

dressed question is essentially of formal interest as a method
Please cite this article as: P. Franciosi, Multiple continuity of phases in

system scheme, International Journal of Solids and Structures, https://d
ielding first a C o estimate and then a C ∗ one. It may also be

elpful when only the composite effective properties are known

ut not the reference matrix for estimating which reference matrix

haracterizes the composite structure. It can be of practical interest

o help determining missing connectedness characteristics of the

onstitutive phases. The here examined question is the relevancy

f either one of the two options below (only expressed in stiffness

orm for room saving, thanks to the equivalency for the compliant

orm). 

- The first option can be written, from the C ∗J properties for

ach J of the A ( n ) arrangements: (
C 

	 
o − C ∗

)−1 

− t V 
C 

	 
o 

)−1 

= 

N= A (n ) ∑ 

J=1 

P J 

((
C 

	 
o − C ∗J 

)−1 

− t V 
C 

	 
o 

)−1 

, (22a)

ith probabilities P J that fix the composite properties C ∗ provided

 reference matrix C 
	 

o = ( S 
	 

o ) −1 which is not necessarily identical

o C o ; 

- The second option reads similarly, with the C oJ being the

roperties of the reference matrices of the elementary arrange-

ents that are supposed to define the composite reference matrix

 

o for probabilities P J and provided a C oo = ( S oo ) −1 N + 1 th reference

super matrix”: 

( C oo − C o ) 
−1 − t V C oo 

)−1 = 

N= A (n ) ∑ 

J=1 

P J 

((
C oo − C oJ 

)−1 − t V C oo 

)−1 

. (22b)

Lets a priori consider that all the N elementary arrangements

ossibly contribute, that is P J ≥ 0, ∀ J ∈ (1, N ) in 

N= A (n ) ∑ 

J=1 

P J = 1 .

n both options, substituting the n -phase initial composite (of

 = A(n) > n arrangements) with an equivalent N -phase one for

hich the A ( N ) = A ( A ( n )) > A ( n ) arrangement number rapidly in-

reases appears as a wrong route unless some relevant assump-

ion allows overcoming the difficulty of specifying which arrange-

ent(s) needs be selected in A ( N ). 

An assumption which can be used for both options regardless

f the number of non zero contribution among N is to consider

he only one-level arrangement not contained in the A ( N ) = A ( A ( n ))

et, that is a disordered arrangement of the N elementary ones.

f the SC estimate is assumed to hold in that case, it provides a

ull left hand side in both Eq. (22), as well as for the compliance

orresponding forms. This assumption yields to assuming that any

 -phase composite could be described, provided probabilities P ( N )

e specified, from a disordered “mixture” of its N -arrangements, in

erms of either the elementary effective properties (option 1) or

he elementary reference matrices (option 2). Note that the “mix-

ure” neither applies on stiffness tensors nor on compliance ones

ut on the “neutral” quantity defined in Eq. (21). 

Given this P ( N ) set, the SC solution for the “effective properties”

rst option, Eq. (22a) , corresponds to setting C 
	 

o = C ∗ (or S 
	 

o = S ∗ in

he equivalent compliance equation) in the right hand side. This

rovides a C ∗ effective stiffness tensor according to a direct SC

cheme without any new access to the related reference matrix C o 

han the already evoked inverse problem. 

For the second “reference matrices” option from Eq. (22b) , the

C solution corresponds to setting C oo = C o (or S oo = S o in the com-

liance equation) in the right hand side. This provides first (from a

irect SC scheme) a reference matrix C o for the composite of con-

ern, of which it is next possible to obtain (also in direct manner)

he composite C ∗ properties using Eq. (21). 

Alternative simple assumptions to this disorder one do not eas-

ly come out: in the first option, it could be assumed for exam-

le, without a priori referring to any particular ( SC or else) esti-

ate type for the combination of elementary effective properties,

hat the same reference matrix should hold for both the n -phase
 composite materials: Overall property estimates from a laminate 
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omposite and its N -arrangement representation, that is assuming

 

	 

o = C o in Eq. (22a) . It would then be possible to formally obtain

 solution for C o in equaling Eqs. (21a) to (22a) what is, as the SC

stimate, an inverse problem to solve which remains quite com-

licated in general and without an ensured solution existence, in

ontrast with a direct SC scheme to solve. There is no equivalent

o this assumption for the second option. 

No other simple enough assumptions have been found worthy

f being here examined. 

In order to check these two (indeed empirical) description pro-

osals (options 1 and 2), a validation test needs be applied to some

 -phase composite of well enough known microstructure in terms

f the probability set P ( N ) as well as of well enough known effec-

ive properties to perform comparisons. This is not easy to find out

rom literature data owing to the problem difficulties to solve even

or n = 2 and it is not easy to realize either, neither experimentally

or numerically. Prior to any experimental campaign and to com-

arison tries with numerically realized structures, both being quite

omplex to perform with the required accuracy in terms of struc-

ure control and property measurements, we report a check on a

urely theoretical case. This case has allowed to establish the re-

arkable relation that we found worthy to be presented. The two

roposed optional descriptions have been applied to a two-phase

omposite assumed to be disordered in the sense that its effec-

ive properties from Eq. (21) with n = 2 are also assumed given by

he SC estimate. This assumption amounts to assuming C o = C ∗ (or

 

o = S ∗) such that the left hand side of Eq. (21a) is zero together

ith the one of Eq. (22a) in option 1 or of Eq. (22b) in option 2.

oth description options (1,2) in terms of the A (2) = 4 phase ele-

entary arrangements then read: 

0 = 

n ∑ 

i =1 

f i 

((
C ∗ − C i 

)−1 − t V C ∗

)−1 

with 

0 = 

N= A (n ) ∑ 

J=1 

P J 

((
C ∗ − C ∗J 

)−1 − t V C ∗

)−1 

, (23a) 

0 = 

n ∑ 

i =1 

f i 

((
C ∗ − C i 

)−1 − t V C ∗

)−1 

with 

0 = 

N= A (n ) ∑ 

J=1 

P J 

((
C ∗ − C oJ 

)−1 − t V C ∗

)−1 

. (23b) 

From having examined both inverse problems of finding the

 (4) solution set, the first part of Section 5 reports (with help in

ppendix B ) the proof of the remarked relation that comes in sup-

ort to the “reference matrix mixture" option (2) as well as to the

alidity of the two dual Laminate System schemes for estimating

ffective properties of “multi-continuous” composites. 

This relation is that in the case of isotropic incompressible (I-

) two-phase elastic-like composites, or isotropic (I) dielectric-like

nes, the probability set P (4) which is solution of Eq. (23b) is in-

ependent of the phase (shear or conductivity) modulus contrast.

his contrast independency is achieved because the properties of

he reference matrices ( not the effective properties) for the four

lementary arrangements of two phases (A,B) fulfill a particular

atch in relation with those of the SC estimate. These four prop-

rty estimates from the elementary two-phase arrangements are

hose of the two HSA and HSB estimates (the reference matrices of

hich are the phases A and B themselves, with stiffness tensors

 A and C B ) plus the two mLS (2) and cLS (2) estimates from the dual

aminate System schemes (the reference matrices of which are the

atrices with stiffness tensors { C } = { C } [ A,B ] and { S } −1 = ({ S } [ A,B ] ) 
−1 

espectively). As far as the HSA = HS (2) B ⊂A and HSB = HS (2) A ⊂B esti-

ates well hold for the two arrangements of the reinforced-matrix
Please cite this article as: P. Franciosi, Multiple continuity of phases in

system scheme, International Journal of Solids and Structures, https://d
ype and that the SC = SC (2) A,B estimate well holds for a disor-

ered arrangement, this contrast independency property would not

old if the mLS = mLS (2) A,B and cLS = cLS (2) A,B estimate pair was

ot representing the two cases of phase bi-continuity (maximal co-

ontinuity) and “bi-discontinuity” (minimal co-continuity). 

This contrast independency is in particular checked to not being

ulfilled by the probability set P (4) found to fulfill Eq. (23a) for the

effective property” description option (1) . Such a contrast inde-

endency is unexpected in multiple moduli problems, a theoretical

roblem whose examination is beyond the present scope. Expect-

dly, the more a composite microstructure is characterized in the

etails, the more its effective properties have interdependencies.

his is why, if not impossible, the finding of “simple" (one-level)

-phase mixtures to simultaneously match a given set of prop-

rties, is unlikely. In Section 5 , one first establishes the contrast-

ndependent one-modulus relation. We next present a direct ap-

lication of the “matrix mixture method” on literature data for a

orous Ti composite structure characterized in ( Torres et al., 2012 ),

he porous phase of which is partly connected and partly discon-

ected. 

. The “matrix mixture method”: a formal problem and one 

pplication example 

The SC estimate C ∗SC 
[ AB ] 

for two-phase materials [ A, B ] of general

nisotropy is solution of: 

2 ∑ 

i =1 

f i 

((
C ∗SC 

[ AB ] − C i 
)−1 − t V 

C ∗SC 
[ AB ] 

)−1 

= f A 

((
C ∗SC 

[ AB ] − C A 
)−1 − t V 

C ∗SC 
[ AB ] 

)−1 

+ f B 

((
C ∗SC 

[ AB ] − C B 
)−1 − t V 

C ∗SC 
[ AB ] 

)−1 

= 0 , (24) 

s the particular case for n = 2 of Eq. (22) and (23) left. In order

o examines the two description options introduced in Section 4 ,

he corresponding SC formula for the A (2) = 4 elementary arrange-

ents of the 2 phases, with either 
	 

C J = C ∗J or 
	 

C J = C oJ for op-

ion 1 (Eq. 22 right) or option 2 (eq. 23 right), with notations
	 

 

X 
[ AB ] 

= ( ( C ∗SC 
[ AB ] 

−
	 

C X 
[ AB ] 

) −1 − t V 
C ∗SC 

[ AB ] 

) −1 and P CA = P DA = 1 − P CA for the

robability that phase A (resp. B) is continuous or discontinuous,

an be written: 

4 
 

J=1 

P J 

((
C ∗SC 

(4) −
	 

C J 
)

−1 − t V 
C ∗SC 

(4) 

)−1 

= 

 = P CACB 

	 

N 

mLS 
[ AB ] 

+ P DADB 

	 

N 

cLS 
[ AB ] 

+ P CADB 

	 

N 

HSA 
[ AB ] 

+ P DACB 

	 

N 

HSB 
[ AB ] 

, (25a) 

 = P CA P CB 

(
	 

N 

mLS 
[ AB ] 

−
	 

N 

HSA 
[ AB ] 

−
	 

N 

HSB 
[ AB ] 

+ 

	 

N 

cLS 
[ AB ] 

)
+ P CA 

(
	 

N 

HSA 
[ AB ] 

−
	 

N 

cLS 
[ AB ] 

)
+ P CB 

(
	 

N 

HSB 
[ AB ] 

−
	 

N 

cLS 
[ AB ] 

)
+ 

	 

N 

cLS 
[ AB ] 

. 

(25b) 

With unconditional probabilities P CACB = P CA P CB , P CADB = P CA (1

P CB ), P CBDA = P CB (1 − P CA ), P DADB = (1 − P CA )(1 − P CB ) and writ-

ng d 
	 

N 

X 
[ AB ] 

= 

	 

N 

X 
[ AB ] 

−
	 

N 

cLS 
[ AB ] 

, Eq. (25b) can be put under the form: 

 CA P CB 

(
d 

	 

N 

mLS 
[ AB ] 

− d 
	 

N 

HSA 
[ AB ] 

− d 
	 

N 

HSB 
[ AB ] 

)
+ P CA 

(
d 

	 

N 

HSA 
[ AB ] 

)
+ P CB 

(
d 

	 

N 

HSB 
[ AB ] 

)
= −

	 

N 

cLS 
[ AB ] 

. (26) 

We address the simple situations of a single modulus to fix in

nding the probability set P (4). 
 composite materials: Overall property estimates from a laminate 
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Fig. 7. The 4 (contrast independent) continuity and discontinuity probabilities of the two phases of a disordered two-phase I-I composite (left) and the related probabilities 

of each elementary reference matrix contributions in the composite reference matrix (right). 
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5.1. Single modulus (I-I) elastic or (I) dielectric problem(s) 

Material phases with isotropic elastic properties have at most

two independent (shear and compressibility “bulk”) moduli and a

single -shear - one when both phases are isotropic and incom-

pressible, the I-I case. There is also a single modulus for dielectric-

like isotropic properties. These moduli being tensor eigenvalues,

Eq. (26) takes a scalar form for each, with only the Green operator

term being different ( Appendix B ). 

For cases with a single modulus, the two probabilities P CA ,P CB 

can be connected from assuming symmetry in an A 

→ 

← 

B phase inter-

change such that P CA ( f A = f ) = P CB ( f B = f ) = P CB ( f A = 1 − f ). Thus, also

considering the dual (harmonic) material [ B, A ] = ] A, B [ with P CA ,P CB

≡ P, P ′ the same equation as Eq. (26) for f A = f = 1 − f B holds with

permuted volume fractions such that f A = 1 − f and permuted prob-

abilities P, 
→ 

← 

P ′ . This symmetry assumption yields the system: 

P P ′ 
(

d 
	 

N 

mLS 
[ AB ] 

− d 
	 

N 

HSA 
[ AB ] 

− d 
	 

N 

HSB 
[ AB ] 

)
+P 

(
d 

	 

N 

HSA 
[ AB ] 

)
+P ′ 
(

d 
	 

N 

HSB 
[ AB ] 

)
=−

	 

N 

cLS 
[ AB ] 

. 

(27a)

P P ′ 
(

d 
	 

N 

mLS 
[ AB [ 

−d 
	 

N 

HSA 
] AB [ 

−d 
	 

N 

HSB 
] AB [ 

)
+P ′ 
(

d 
	 

N 

HSA 
] AB [ 

)
+P 

(
d 

	 

N 

HSB 
] AB [ 

)
=−

	 

N 

cLS 
] AB ] 

, 

(27b)

with scalar coefficients. Eliminating the PP ′ terms from the form:{
P P ′ [ a ] + P [ b ] + P ′ [ d ] = [ k ] 
P P ′ [ a ] + P [ d ] + P ′ [ b ] = [ k ] 

, (27c)

yields a relation between P and P ′ that reads P ′ = α + βP , with

scalar α and β coefficients. In Eq. (27), the quantities 
	 

N 

X −
	 

N 

Y read

in terms of shear moduli: 

	 

N 

X −
	 

N 

Y = 

μo − 	 

μ∗X 

3 μo + 2 

	 

μ∗X 
− μo − 	 

μ∗Y 

3 μo + 2 

	 

μ∗Y 

= 

μo 
( 	 

μ∗Y − 	 

μ∗X 
)

((
1 − 2 

5 

)
μo + 

2 
5 

	 

μ∗X 
)((

1 − 2 
5 

)
μo + 

2 
5 

	 

μ∗Y 
) , (28)

with the coefficient 2/5 being characteristic of the involved Green

operator term for this I-I elastic shear case. This term being de-

fined on the disordered material of reference with effective shear

modulus μo that results from a SC scheme, the resolution of Eq.

(27) in terms of existing probabilities ( P, P ′ ) is dependent on the
Please cite this article as: P. Franciosi, Multiple continuity of phases in
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xpressions for the five μo = μ∗SC , 
	 

μHSA , 
	 

μHSB , 
	 

μ∗mLS , 
	 

μ∗mLS mod-

li involved, with either 
	 

μ∗ = μ∗ (effective properties) in option

 or 
	 

μ∗ = μo (reference matrices) in option 2 (for the SC estimate,
o = μOSC = μ∗SC ). 

The analytical resolution (sketched in Appendix B ) of this I-I

ase establishes the contrast independency of the solution which

orresponds to: 

β = 

3 f B − 2 f A 
3 f A − 2 f B 

; α = 

2 ( f A − f B ) 

3 f A − 2 f B 
= − f A β + f B with 

α

β
= − f A + 

f B 
β

= 

2 ( f A − f B ) 

3 f B − 2 f A 
. (29)

The resulting solution for the P = P CA ,P 
′ = P CB probabilities

eads: 

 = −1 

2 

⎛ 

⎝ 

4 f A − 5 

3 − 5 f A 
±

√ (
4 f A − 5 

3 − 5 f A 

)2 

− 4 

3 f A 
3 − 5 f A 

(
3 − 5 f A 
3 − 5 f A 

)⎞ 

⎠ 

for f A 

{
< 3 / 5 

> 3 / 5 

, P ′ = α + βP. (30)

The four probabilities P CA ,P CB ,P DA ,P DB as well as the four prob-

bilities (and proportions) of the elementary references matri-

es P CACB ,P CADB ,P DACB ,P DADB in the reference matrix of two-phase

-I disordered elastic composites are plotted in Fig. 7 left and

ight respectively, for several numerically checked moduli con-

rast values superposed with the analytical solution from Eqs.

29,30 ). It is observed on Fig. 7 right that, i) as expected, the

SA (resp. HSB ) matrix type becomes more and more dom-

nant when the phase A (resp. B) becomes the densest one

ith the probabilities of all three other elementary arrange-

ents going to zero; ii) the intermediate range combines the

our matrix arrangements in more or less equal quantities

near 25%) with a slightly larger “bi-continuous” mLS part at

0% and a (only slightly) smaller “bi-discontinuous” cLS part

t 20%, far from being a domain where phase co-continuity

ominates. 

Hence, contrast independency clearly results from the use of

he mLS (2) and cLS (2) estimates together with the three HSA, HSB,

C ones and it is lost when using other pairs of estimates instead

f the mLS (2) and cLS (2) one. This contributes to validate these two

S estimates as representative of the properties of “bi-continuous”

maximally continuous) and “bi-discontinuous” (minimally contin-

ous) two-phase structures first as well as their consistent mLS ( n ),

LS ( n ) and mLS ( p, n ) extensions for multi-continuous n-phase

omposites. In passing, if the latter extension well holds as an
 composite materials: Overall property estimates from a laminate 
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Fig. 8. From left to right; effective shear modulus and related reference matrix modulus for the five estimates of two-phase isotropic incompressible composites μA,μB at 

(i) moderate and (ii) high phase contrast and the corresponding (iii,iv) weighted four elementary matrix contributions to the reference matrix modulus of a disordered 

arrangement of the two-phases. The weights are the four functions of Fig. 7 right at any contrast. 
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stimate for q = n − p embedded phases in maximally co-

ontinuous p ones, the dual estimate cLS ( p, n ) evoked in

ection 2.4 as formally existing finds an interpretation as cor-

esponding to minimally co-continuous p phases embedding the

 = n − p ones. This also reinforces the max/min co-continuity du-

lity for the stiffness and compliance LS schemes. 

Generalizing the I-I elastic case, one easily verifies from the

ppendix details that if changing the Green operator coeffi-

ient 2/5 of the I-I shear modulus case into some 0 ≤ w ≤
 value (e.g. in taking a different (as cuboidal) Green opera-

or 10 or the one of a different one-modulus similar problem),

he contrast-independent solution of Eqs. (29,30 ) still applies

n substituting 2/5 with w (for isotropic dielectric-like moduli,

 = 1/3 11 ). The contrast-independent solution from the descrip-

ion option 2 thus is also shown morphology- and property-

ependent. 

This characteristic relation between five “elementary property

stimates” for two-phase composites is illustrated in Fig. 8 for

wo shear moduli contrasts μB/μA = 0.05 and 0.0 0 0 05. The two

ig. 8 left show the reference matrix and effective shear mod-

li pairs for the four phase arrangements of the two phases to-

ether with the pair for the composite which are superimposed

ince assumed given by the SC estimate. The 9 curves are well

istinct at moderate contrast while at high contrast several curves

re too close to zero to be distinguished but they remain in same

rder. The two Fig. 8 right show for both contrasts how the four

atrix contributions from the two-phase elementary assemblages

ield a null sum for the composite reference matrix (according to

q. (23b) ), when using the same four fixed probabilities from Eqs.

29,30 ) and shown in Fig. 7 right (on both Fig. 8 right, the plot-

ed null sum confuses with the abscissa axis). In brief analysis, 3

ontributions over 4 are negative (resp. positive) at low hard (resp.

oft) phase fractions and two are of each sign in the median zone.

he sharp transitions at high contrast near 40% of hard phase cor-

espond to the sharp slope change of the SC estimate. As far as the

odulus of the composite reference matrix is low (resp. high), the

egative term(s) come from the stiff (rep. weak) elementary ma-
rices. 

10 All Green operators with a single term symmetry in the I-I elastic or I dielectric 

ases yield a different w value. 
11 From the second part of the (iiii) term for elastic-like rank-four operators. 

0

Please cite this article as: P. Franciosi, Multiple continuity of phases in
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.2. A multi-moduli problem example on an isotropic-compressible 

I-C) elastic composite 

The direct problem of finding a probability set P ( N ) to fix a ref-

rence matrix for any n-phase composite following the proposed

reference matrix mixture” method according to Eq. (23b) ap-

lies for any phase moduli symmetries. Two experimental com-

arisons have been possible from literature data concerning a par-

icular type of 3-phase bicontinuous composite, made of a porous

edium (commercially pure titanium) in which the porosity is

artly connected and partly disconnected ( Torres et al., 2012 ). It

s a multi-moduli I-C elastic situation, with a priori 6 distinct

hase moduli. This microstructure is representative of the type 4

hase arrangement presented in Sections 1 and 2 . The reported

iterature data concerning both the three phase relative concen-

rations and the corresponding effective Young moduli allow to

rst compare with the proposed C ∗mLS 
(p,n ) 

= C ∗mLS 
(2 , 3) 

estimate recalled

n Section 2.3 for which the fourth reference matrix phase of in-

nitesimal concentration has the properties of the reference ma-

rix C ∗mLS 
(2) 

for the bicontinuous composite part, according to Eq.

14). If the data are not considered precise enough to ensure the

lementary arrangement C ∗mLS 
(2 , 3) 

be the best estimate, it is possi-

le to apply the “matrix mixture method” from determining a

ikely probability set P (4) also based on the available data. We

ere report and compare the obtained results from these two

stimates. 

In the Isotropic-Compressible (I-C) elastic cases, considering

oth shear μ and bulk θ moduli eigenvalues, the tensorial

q. (22b) for the moduli estimates from the reference matrix mix-

ure using the SC scheme yields to two similar scalar ones, one for

ach modulus, as: 

 = 

N= A (n ) ∑ 

J=1 

P J 

((
μ∗ − μoJ 

)−1 − t Iso 
μ∗

)−1 

= 

N= A (n ) ∑ 

J=1 

P J 

(
1 

μ∗ − μoJ 
− 2 

5 μ∗

(
6 μ∗ + θ ∗

4 μ∗ + θ ∗

))−1 

, (31a) 

 = 

N= A (n ) ∑ 

J=1 

P J 

((
θ ∗ − θ oJ 

)−1 − t Iso 
θ ∗

)−1 

= 

N= A (n ) ∑ 

J=1 

P J 

(
1 

θ ∗ − θ oJ 
− 3 

4 μ∗ + 3 θ ∗

)−1 

. (31b) 
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Fig. 9. Effective Young moduli estimates from a cLS(2,3) scheme for a 3-phase bicontinuous composite associating connected and disconnected porosities in a titanium solid 

phase. Experimental moduli and structure characteristics correspond to data from ( Torres et al., 2012 ). 
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Table 1 

Data for the curves plotted in Fig. 8 (the asterisks indicate the parameters 

estimated from the data in ( Torres et al., 2012 ) and estimated Young moduli 

from the mLS(2,3) scheme for a three-phase bicontinuous I-C elastic com- 

posite. 

fPo fTi fPocont fPodisc fBicontMatr Y MPa Y MPa 

∗ ∗ ∗ ∗ ∗ ∗ mLS (2,3) 

0,38 0,62 0,312 0,068 0,932 28–33 26–29,2 

0,47 0,53 0,3896 0,0804 0,9196 19–23 22,5–25,6 

0,58 0,42 0,5452 0,0348 0,9652 12–15 18,8–20 

0,67 0,33 0,6539 0,0161 0,9839 8–11 15,1–15,4 
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12 Taking νTi = 0, 31 also frequently found in literature yields θ Ti = 290 MPa and 

μTi = 42 MPa . 
The particular explicit two-phase forms of this SC estimate are

given in Appendix C which sketches briefly the route to investi-

gate the two moduli inverse problem corresponding to the one-

modulus I-I case treated in the previous sub-section. The involved

Green operator terms in Eq. (31) take the coupled forms with re-

gard to the moduli eigenvalues μ and θ = 

2 μ(1+ ν) 
1 −2 ν : 

 

Iso 
μ∗ = 

2 

15 μ

(
4 − 5 ν

1 − ν

)
= 

2 

5 μ

6 μ + θ

4 μ + θ
; t Iso 

θ = 

1 − 2 ν

2 μ(1 − ν) 
= 

3 

4 μ + 3 θ
, 

(32)

that result from the terms of the isotropic (spherical) strain

Green operator recalled in ( Franciosi and Lormand, 2004 ; Franciosi,

2010): { 

t Sph 
1111 

= 

1 
5 

( −1 
2 μ(1 −ν) 

)
+ 

1 
3 

(
1 
μ

)
= 

7 −10 ν
30 μ(1 −ν) 

t Sph 
1212 

= 

1 
15 

( −1 
2 μ(1 −ν) 

)
+ 

1 
6 

(
1 
μ

)
= 

4 −5 ν
30 μ(1 −ν) 

, 

t Sph 
1122 

= t Sph 
1111 

− 2 

Sph 
1212 

= 

−1 

30 μ(1 − ν) 
. (33)

According to the SC scheme when n > 2, Eq. (31) are solved

from a common iterative procedure applied on the scalar forms

of Eq. (5) in starting for any arbitrary matrix in the admissible (i.e.

within HS bounds) range and which easily converges to a moduli

pair ( μ∗SC , θ ∗SC ). 

- The porous titanium as a 3 phase bicontinuous com-

posite. The difference with the exemplified curves for the sole

shear modulus in Fig. 6 for a I-I elastic material is that here

the three (isotropic) phases have different compressibility moduli

θ = Y /(1 − 2 ν), where Y = 2 μ(1 + ν) is the Young modulus, with at

most one phase being nearly incompressible ( ν∼= 

0, 5), say the dis-

continuous (embedded) part of the porosity. Compressibility and

shear moduli for Ti are θ Ti = 275 MPa and μTi = 42, 31 MPa respec-

tively from the given Young modulus Y Ti = 110 MPa and a litera-

ture Poisson ratio νTi = 0, 3. The connected (continuous) poros-

ity phase has been taken of null Poisson ratio (compressibility

modulus θPocont = 2 μPo ). The whole porous phase has an assumed

shear modulus μPo = 1.10 −3 MPa <<μTi . The shear moduli ratio
μPo 
μTi 

= 

1 . 10 −3 

42 , 31 ≈ 2 , 3 . 10 −5 is arbitrarily chosen and not varied. The

only varied modulus in our performed simulations is the Poisson

ratio for the incompressible porosity embedded part νPodisc from

0.4 to 0.5, such that the compressibilty modulus range is θ Podisc 

∈ {0, 03 − 15.10 6 }. According to Eq. (14), the two moduli μ, θ of
Please cite this article as: P. Franciosi, Multiple continuity of phases in

system scheme, International Journal of Solids and Structures, https://d
he infinitesimal reference matrix fourth phase made of the two

o-continuous phases take the form { x } T i,Pocont = 

f Pocont x Ti + f Ti x Pocont 
f Pocont + f Ti 

.

hen the effective moduli are obtained from embedding the three

 Ti, Pocont, Podisc ) phases in this reference matrix. 

The plotted comparisons with C ∗mLS 
(2 , 3) 

estimated Young moduli in

ig. 9 for 4 different phase relative volume fractions correspond

o the data collected in Table 1 for the phase concentrations and

or the effective Young moduli, including the obtained C ∗mLS 
(2 , 3) 

esti-

ate. The HS bounds are also indicated. The composite is issued

rom a powder compaction technique that we do not enter in. The

elected set of comparison data corresponds to those obtained for

he highest compaction pressure of 800 MPa used in elaboration.

hey do not differ noticeably from a second group (obtained at

00 MPa pressure) in terms of phase concentrations, but the mea-

ured Young moduli slightly differ. The min/max reported interval

n Figs. 9 (and 10 ) for the measured Young moduli to compare with

stimates is based on these two (80 0–60 0) MPa data series. 

With regard to general accuracy of porosity measurements, the

btained Y ∗mLS 
(2 , 3) 

estimate pretty well matches the measured mod-

li and any better matching attempt (especially at the lowest Ti

olume fraction points) needs more accurate phase (moduli and

oncentrations) characteristics which are the only information con-

ributions to insert in the estimate expression from Eq. (31) for

he two (shear and bulk) moduli eigenvalues. In particular, varying

Podisc ∈ {0, 03 − 15.10 6 } in varying the Poisson ratio to the closest

o 0.5 is shown to have very little effect on the resulting Young

oduli estimates (bounded at Y ∗ = 3 μ∗) and all other moduli can-

ot be varied much. 12 
 composite materials: Overall property estimates from a laminate 

oi.org/10.1016/j.ijsolstr.2019.02.021 

https://doi.org/10.1016/j.ijsolstr.2019.02.021


P. Franciosi / International Journal of Solids and Structures xxx (xxxx) xxx 17 

ARTICLE IN PRESS 

JID: SAS [m5G; March 13, 2019;2:9 ] 

Fig. 10. Effective Young moduli estimates for a (porous titanium) two-phase composite, based on the proposed “matrix mixture description” from the four elementary 

two-phase arrangements with given probabilities. Experimental moduli and structure characteristics correspond to data from ( Torres et al., 2012 ). 
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Table 2 

Estimated probabilities for the four elementary two-phase arrangements to con- 

tribute to the two-phase porous titanium structure examined and characterized in 

( Torres et al., 2012 ). 

fPo ∗ f Podisc 
f Po 

∗ f Pocont 
f Po 

∗ P ( HS + ) P ( mLS ) P ( cLS ) P ( HS −) 

0,38 0,18 0,82 0,18 0,82 × ( A ) 0,82 × (1 − A ) 0 

0,47 0,17 0,83 0,17 0,83 × ( A ) 0,83 × (1 − A ) 0 

0,58 0,06 0,94 0,06 0,94 × ( A ) 0,94 × (1 − A ) 0 

0,67 0,024 0,976 0,024 0,976 × ( A ) 0,976 × (1 − A ) 0 
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- The porous titanium as a two-phase composite of which

he connected versus disconnected porosity status is not precisely

nown. For application of the “reference matrix mixture” method

s proposed, the need is a four-probability set P (4) to obtain a

eference matrix for the (porous titanium) composite as the SC

ffective moduli of the assemblage of the reference matrices of

he four two-phase elementary arrangements. These four reference

atrices have the moduli pairs which are those of the two con-

titutive phases, with the additional consideration that the pore

ompressibility depends on the continuous versus discontinuous

ature of its arrangement, as done for the 3-phase analysis re-

orted first. For the HS estimates, the phase moduli are ( μTi , θ Ti )

nd ( μPo , θPo ) with θPo being incompressible when included and

ompressible if it were (although unlikely as seen next) embed-

ing the Ti phase. Similarly for the mLS (2) and cLS (2) estimates,

he moduli pairs are ({ μ} Ti,Po , { θ} Ti,Po ) and ( { ̄μ} T i,Po , { ̄θ} T i,Po ) , with

he given definitions of the Voigt and Reuss averages on the har-

onic two-phase medium, for both moduli, { x } Ti,Po = f Po x Ti + f Ti x Po 

nd { ̄x } T i,Po = ( f Po (1 / x T i ) + f T i (1 / x Po ) ) 
−1 . θPo is taken compress-

ble in the bicontinuous mLS (2) scheme and incompressible in the

LS (2) one. 

Then taking the probability P Cont ( Ti ) = 1 − P Disc ( Ti ) = 1, yields

or the probability of the lower HS estimate that P ( HS −) Ti,Po =
 Ti ⊂Po = 0, regardless of the probabilities for the pore phase

 Cont ( Po ) = 1 − P Disc ( Po ) to be continuous or discontinuous. If

hese probabilities were unconditional to those on Ti (what is not

nown), the probability of bicontinuity would be P Cocont ( Ti,Po ) =
 Cont ( Ti ) × P Cont ( Po ) = P Cont ( Po ) and the one of “bi-discontinuity”

 Codisc ( Ti,Po ) = P Disc ( Ti ) × P Disc ( Po ) = 0. Similarly for probability

 ( HS + ) Ti,Po = P Po ⊂TI it would read P Cont ( Ti ) × P Disc ( Po ) = P Disc ( Po ).

n which case, the non zero probabilities are P ( HS + ) Ti,Po = P Disc ( Po ),

nd P Cocont ( Ti,Po ) = P ( mLS ) Ti,Po = P Cont ( Po ). This is already different

rom the previous pure bicontinuous description plotted in Fig. 9 .

he addition of a probability that the structure may have a part

ith all embedded porosity makes it stiffer, as expectedly. 

Considering the third probability P ( cLS ) Ti,Po to not be neces-

arily zero can for example be justified by conditional probabil-

ties (that we do not know either). It is noteworthy that while

he co-discontinuous interpretation of the phase arrangement type

ssociated to the cLS (2) estimate prohibits a non zero P ( cLS ) Ti,Po 

alue for Ti cannot be discontinuous, the interpretation of min-

mal co-continuity allows it, corresponding to a weakly continu-

us part of the Ti phase mixed with a weakly connected porous

art. In order to compare the first estimate (with P ( cLS ) Ti,Po = 0)
Please cite this article as: P. Franciosi, Multiple continuity of phases in

system scheme, International Journal of Solids and Structures, https://d
ith estimates obtained with a non zero P ( cLS ) Ti,Po , one intro-

uces a coefficient A in order to consider probability forms as

 ( mLS ) Ti,Po = P Cont ( Po ) × A and P ( cLS ) Ti,Po = P Cont ( Po ) × (1 − A ), while

eeping P ( HS + ) Ti,Po = P Disc ( Po ). In Table 2 are collected the data con-

erning the continuous and discontinuous parts of the porosity

s measured in ( Torres et al., 2012 ). Using the assumption that

 Cont (Po) = 

f (Pocont) 
f (Po) 

and P Disc (Po) = 

f (Podisc) 
f (Po) 

, the Table 3 summa-

izes the 3 cases of A values from which estimated Young moduli

re compared with the measured ones. Since the compressibility

f the porosity has been taken different whether it is connected

r not, pairs of Young moduli have been estimated for the two-

hase composite, corresponding to a pore phase being either to-

ally incompressible or totally compressible. The obtained values

re plotted in Fig. 10 , in comparison with the measured moduli:

ase 1, with A = 100%, corresponds to the strict two non zero prob-

bility case which yields an effective modulus interval stiffer than

easured one, with a globally increasing tendency. Case 2 assumes

 constant A = 50% value independently of the ( Ti, Po ) partition.

his estimate interval also increases regularly but in remaining be-

ow the experimental interval. The third test makes use of roughly

djusted A values on the measured Young moduli to determine

hich variation with the Ti volume fraction must have the ratio
P (cLS) Ti,Po 

P (mLS) Ti,Po 
= 

1 −A 
A 

(note that the estimated two (lower and upper)

oduli, for compressible and incompressible pores, approximately

atch the min/max experimental interval limits such as to com-

are the middle lines of both intervals, but it is not meant that

here must be a one-to-one matching of these curve pairs). One

an notice that the satisfyingly matching A values are larger than

he fTi volume fraction they correspond to and that, in the fTi range

f the data, A increases between the two previously tested con-

tant values of 50% and 100%. Hence, the fraction of phase arrange-

ent represented by the cLS (2) estimate decreases drastically in

omparison to the increase of the one represented by the mLS (2)
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Table 3 

Data for the curves plotted in Figure 13 (the asterisks indicate the parameters estimated from the data in 

( Torres et al., 2012 ) and estimated Young moduli from the “matrix mixture” method for a two-phase I-C 

elastic composite. 

fPo fTi A values A values A values Y MPa Y MPa Y MPa Y MPa 

∗ ∗ Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 ∗
0,38 0,62 1 0,5 0,87 31,25–37,3 11,37–18,8 27,3–33,9 28–33 

0,47 0,53 1 0,5 0,72 26,1–31,37 9–15,25 17,84–24 19–23 

0,58 0,42 1 0,5 0,68 19,5–24,06 4,25–8,54 10,8–15,85 12–15 

0,67 0,33 1 0,5 0,65 15,1–18,96 2,75–5,9 7,07–11,3 8–11 
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estimate. An interpretation would be that a weakly co-connected

composite fraction is significantly present at medium Ti concentra-

tions and decreases with the decrease of the total porosity, such

that only a strongly co-connected composite remains at higher Ti

concentrations. This encouragingly shows that the mLS ( p, n ) esti-

mate type appears relevant for stiffness estimate of multi continu-

ous composites and that the proposed “matrix mixture method”

is consistent as well and is also capable of providing insights

on phase arrangement characteristics in composite structures. Fur-

ther examination of this method will be the topic of forthcoming

papers. 

6. Conclusion 

Starting from previously obtained new results concerning the

effective property estimates for the various one-level (opposed

to multi-scaled) phase arrangement possibilities in n -phase com-

posite structures, we here elaborate further on multiple phase

continuity in composites as viewed from Laminate System ( LS )

schemes. These Laminate Systems were defined first as interpene-

trated directional laminate structures to represent 3D co-continuity

of several assembled phases, none of them playing a priori a

particular role. This phase co-continuity having been shown to

enhance the composite effective stiffness in a way well repre-

sented by arithmetic (weighted) average of the stiffness prop-

erties of directional laminate structures constitutive of the sys-

tem, the dual approach considering arithmetic averaging of com-

pliances (harmonic average of stiffness) were first associated to

the converse phase co-discontinuity assumption without clear

representation. 

Continuity being to be taken in the sense of connected-

ness, phase discontinuity is necessarily a set of disconnected do-

mains of same phase. This definition makes impossible full co-

discontinuity in the sense of simultaneous disconnectedness of n

assembled phases. The minimum of connectedness for a single

phase being 3D through-sample spanning infinite clusters made

of point-connected finite domains, minimal co-continuity of n

phases appears to be the closest possible arrangement correspond-

ing to co-discontinuity. Hence, the duality co-continuity versus

“co-discontinuity” is substituted with maximal versus minimal co-
Please cite this article as: P. Franciosi, Multiple continuity of phases in

system scheme, International Journal of Solids and Structures, https://d
ontinuity. This is one first clarification of the present work to

ssociate the arithmetic stiffness averaging to maximal phase co-

ontinuity and conversely the arithmetic compliance averaging to

inimal phase co-continuity. 

This refined interpretation makes easier to figure out min-

mally co-continuous phase arrangements. The made availabil-

ty of estimates for any possible elementary phase arrangement

mong n opens on potential applications in physical processes

nvolving possible changes of connectedness status for some of

he constitutive phase of a mixture. This happens during solidi-

cation/fusion, precipitation/dissolution, compaction/fragmentation

nd other many phenomena characterized by percolation-like

harp or gradual transitions. 

Beyond this, the essential purpose of this work is a descrip-

ion proposal for any composite when not well defined in terms

f its elementary phase arrangement as a combination or “mix-

ure” of them. In examining how a two-phase disordered com-

osite could be so described, it is first shown that a description

ased on defining a reference matrix for the composite as a disor-

ered assemblage of the reference matrices of its elementary phase

rrangements provides access to an admissible solution. This de-

cription is supported by a remarkable relation found in the simple

ases of disordered two-phase materials with Isotropic (dielectric-

ike) or Isotropic-Incompressible (elastic-like) one-modulus (physi-

al) symmetry: a definition of the reference matrix of such a dis-

rdered two-phase composite as a disordered mixture of the refer-

nce matrices of its elementary phase arrangements proves to be

ndependent of the phase moduli contrast. This relation between

he elementary estimate types for two-phase composites is a re-

ult of the use of the two dual Laminate System ( LS ) estimates

or representing the effective properties of bi-continuous (max-

mally continuous) and of bi-discontinuous (minimally continu-

us) phase arrangements. They complement the Hashin-Shtrikman

 HS ) estimates for the two other arrangements of the well known

einforced-matrix types to provide that unique relation with the

C estimate. Application to experimental data from literature on a

-phase material both supports the relevancy of the proposed es-

imate for multi-continuous composites and of the proposed “ref-

rence matrix mixture” method for estimating effective properties

f general composites. 
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A obey LS schemes 

ded to p co-continuous ones among n. 

ions (with �C BA = C B − C A ): 

�
(A1.1) 

I (A1.2) 

(
f B t 

V 
B : �C BA 

)
, (A1.3) 

I �C BA , (A1.4) 

(A1.5) 

w  BA : t 
V 
B 

. 

inuous yields from Eq. (16b) : 

� (A2.1) 

( )
= t V A − t V B + 〈 T 〉 (A ) − 〈 T 〉 (B ) , (A2.2) 

=  t V B : �C BA : t 
V 
A , (A2.3) 

w the equality of Eq. (17) . 

h: 

 + f D T 
A 

D 

 + f D T 
B 

D 

} 

, (A2.4) 

�  . (A2.5) 

C BA : t 
V 
A 

= t V 
B 

: t V 
A 

− I, such that: 

〈  

V 
B 

: t V A − I 

)
: 〈 T 〉 (A ) . (A2.6) 

A hase isotropic-incompressible composites 

o a single (shear) modulus to estimate, all terms of the form N 

X − N 

Y 

r
	 

μ∗X 

2 
	 

μ∗X 
− μo −	 

μ∗Y 

3 μo +2 
	 

μ∗Y 
= 

5 μo ( 
	 

μ∗Y −	 

μ∗X ) 

( 3 μo +2 
	 

μ∗X )( 3 μo +2 
	 

μ∗Y ) 
. When directly considering the 

r  satisfy the remarkable contrast independency property, the system to 

s

P

 

 ] 
− μA 

+ 2 μA 
+ P ′ 

μOcLS 
[ A,B ] 

− μB 

3 μ[ o ] + 2 μB 
= 

μOcLS 
[ A,B ] 

− μ[ o ] 

5 μ[ o ] 
, 

P

 

 [ 
− μB 

+ 2 μB 
+ P ′ 

μOcLS 
] A,B [ 

− μA 

3 μ] o [ + 2 μA 
= 

μOcLS 
] A,B [ 

− μ] o [ 

5 μ] o [ 
. 

S 
 ] and 

3 μ] o[ +2 μOcLS 
] A,B [ 

5 μ] o[ 
respectively and use is made of 

	 

μ∗HSA 
[ A,B ] 

= μOHSA 
[ A,B ] 

= μA , 

μ

 and { μ}, yields, without modifying the Equation system to solve in 

E

P  

μA 
(
μB − 〈 μ〉 )(

3 μ[ o ] + 2 μA 
) + P ′ 

μB 
(
μA − 〈 μ〉 )(

3 μ[ o ] + 2 μB 
) , 

r

ppendix A. Effective properties of multi-continuous materials 

The first considered co-continuous two-phase case is next exten

A1: for two-phase cases (A,B), assuming Eq. (15) yields the relat

C BA = f A 
(
�C BA 

−1 − f B t 
V 
B 

)−1 + f B 
(
�C BA 

−1 + f A t 
V 
A 

)−1 

= �C BA : 

(
f A 
(
I − f B t 

V 
B : �C BA 

)−1 + f B 
(
I + f A t 

V 
A : �C BA 

)−1 
), 

 = f A 
(
I − f B t 

V 
B : �C BA 

)−1 + f B 
(
I + f A t 

V 
A : �C BA 

)−1 
, 

I + f A t 
V 
A : �C BA 

)
: 
(
I − f B t 

V 
B : �C BA 

)
= f A 

(
I + f A t 

V 
A : �C BA 

)
+ f B 
(
I −

 + 

(
f A t 

V 
A − f B t 

V 
B − f A f B t 

V 
A : �C BA : t 

V 
B 

)
: �C BA : I + 

(
f 2 A t 

V 
A − f 2 B t 

V 
B 

)
: 

f A t 
V 
A − f B t 

V 
B − f 2 A t 

V 
A + f 2 B t 

V 
B = f A f B (t V A − t V B ) = f A f B t 

V 
A : �C BA : t 

V 
B , 

hat yields the laminate property of Eq. (13) that t V 
A 

− t V 
B 

= t V 
A 

: �C

A2: for three phases A,B,D, assuming phases A and B to be cont

C BA = 

(〈 T 〉 (B ) + t V B 

)−1 −
(〈 T 〉 (A ) + t V A 

)−1 
, 

〈 T 〉 (B ) + t V B 

)
: �C BA : 

(〈 T 〉 (A ) + t V A 

)
= 

(〈 T 〉 (A ) + t V A 

)
−
(〈 T 〉 (B ) + t V B 

 〈 T 〉 (B ) : �C BA : 〈 T 〉 (A ) + t V B : �C BA : 〈 T 〉 (A ) + 〈 T 〉 (B ) : �C BA : t 
V 
A +

ith over barred tensors standing for their inverse. This arrives at 

Next multiplying left by 〈 T 〉 ( B ) and right by 〈 T 〉 ( A ) , it comes, wit

〈 T 〉 (A ) = f B 
(
( C A − C B ) 

−1 − t V A 

)−1 + f D 
(
( C A − C D ) 

−1 − t V D 
A 

)−1 = f B T 
A

B 

〈 T 〉 (B ) = f A 
(
( C B − C A ) 

−1 − t V B 

)−1 + f D 
(
( C B − C D ) 

−1 − t V D 
B 

)−1 = f A T 
B

A 

C BA + 〈 T 〉 (B ) : t 
V 
B : �C BA + �C BA : t 

V 
A : 〈 T 〉 (A ) + 〈 T 〉 (A ) − 〈 T 〉 (B ) = 0

One arrives at Eq. (18), noting that t V 
B 

: �C BA = I − t V 
B 

: t V 
A 

and �

 

T 〉 (B ) : t 
V 
B : �C BA + �C BA : t 

V 
A : 〈 T 〉 (A ) = 〈 T 〉 (B ) : 

(
I − t V B : t V 

A 

)
+ 

(
t

ppendix B. Elementary structure analysis for disordered two-p

In the isotropic incompressible (I-I) elastic case that reduces t

ead, for the two description options considered in Section 4 , μo −
3 μo +

eference matrix option 2 ( 
	 

μ∗ = μo ) which numerically proved to

olve from Eq. (27c) , simplifies to 13 : 

 P ′ 
(

μOcLS 
[ A,B ] 

− μOmLS 
[ A,B ] 

3 μ[ o ] + 2 μOmLS 
[ A,B ] 

−
(

μOcLS 
[ A,B ] 

− μA 

3 μ[ o ] + 2 μA 
+ 

μOcLS 
[ A,B ] 

− μB 

3 μ[ o ] + 2 μB 

))
+ P 

μOcLS
[ A,B

3 μ[ o ] 

 P ′ 
(

μOcLS 
] A,B [ 

− μOmLS 
] A,B [ 

3 μ] o [ + 2 μOmLS 
] A,B [ 

−
(

μOcLS 
] A,B [ 

− μA 

3 μ] o [ + 2 μA 
+ 

μOcLS 
] A,B [ 

− μB 

3 μ] o [ + 2 μB 

))
+ P 

μOcLS
] A,B

3 μ] o [ 

All terms of each these equations were multiplied by 
3 μ[ o] +2 μOcL

[ A,B

5 μ[ o] 

	 ∗HSB 
[ A,B ] 

= μOHSB 
[ A,B ] 

= μB , 〈 N〉 [ o] 

[ A,B ] 
= 0 , { N} ] o[ 

] A,B [ 
= 0 . 

Further multiplying all (scalar) coefficients by respectively 〈 μ〉
q. (27c) , for the two left hand sides: 

 P ′ 
( 

μA μB − { μ} 〈 μ〉 (
3 μ[ o ] + 2 { μ} ) −

( 

μA 
(
μB − 〈 μ〉 )(

3 μ[ o ] + 2 μA 
) + 

μB 
(
μA − 〈 μ〉 )(

3 μ[ o ] + 2 μB 
)
) ) 

+ P
13 The notation [ A , B ] (resp. ] A , B [) stands for the material with f A fraction of phase A (resp. B) and f B of phase B (resp. A), while [ o ] (resp. ] o [) stands for the matrix of the 

elated SC estimate, by definition of which both quantities 〈 N〉 [ o] 

[ A,B ] 
and { N} ] o[ 

] A,B [ 
are simultaneously zero. 
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μB 
(
μA − { μ} )(

3 μ] o [ + 2 μB 
) + P ′ 

μA 
(
μB − { μ} )(

3 μ] o [ + 2 μA 
) , 

〉 and 

μA μB −μ] o[ { μ} 
5 μ] o[ 

. 

{ ̄μ} = 

μA μB 

〈 μ〉 , μOmLS 
] A,B [ 

= 〈 μ〉 , μOcLS 
] A,B [ 

= 〈 ̄μ〉 = 

μA μB 

{ μ} for the reference ma- 

o [ A, B ] and ] A, B [ dual two-phase I-I composites. Additional re- 
 −μB ) 2 ; μA ( μB −〈 μ〉 ) = f A μ

A ( μB −μA ); μB ( μA −〈 μ〉 ) = f B μ
B ( μA −μB ); 

also introducing the reduced notations ˜ μI = μI / μA with the contrast 

n term r − 1) to the left hand side forms: 

 

f B r 

3 ̃  μ[ o ] + 2 r 
, 

 

′ f B 

3 ̃  μ] o [ + 2 

, 

 A r( 1 − ˜ μ] o[ ) 

−1 ) 
. 

hich can be shown related as: 

− [ b ] − ( r − 1 ) [ b ] [ d ] 

[ d ] + r [ b ] 

− ] b [ − ( r − 1 ) ] b [ ] d [ 

] d [ + r ] b [ 

forms in each equation are solution of the relations which read (once 

it p = 

3 
5 f A − 2 

5 f B = f A − 2 
5 and q = 

3 
5 f B − 2 

5 f A = f B − 2 
5 ): 

0 , (B.1) 

; r − ˜ μ[ o ] = 

5 f A ̃  μ[ o ] 
(

˜ μ[ o ] − 1 

)
˜ μ[ o ] q + 2 

−1 ) 
). 

ply written: 

(
˜ μ[ o ] 2 − r 

)
r 

25 ̃  μ[ o ] 2 ( r − 1 ) 
, 

 

o ] 
)

= f A [ b ] − f B [ d ] . 

change with f B and q ): 

(
˜ μ] o [ 2 − r 

)
r 

25 ̃  μ] o [ 2 ( r − 1 ) 
, 

 o [ 
)

= f B ] b [ − f A ] d [ . 
P P ′ 
( 

μA μB − 〈 μ〉 { μ} (
3 μ] o [ + 2 〈 μ〉 ) −

( 

μA 
(
μB − { μ} )(

3 μ] o [ + 2 μA 
) + 

μB 
(
μA − { μ} )(

3 μ] o [ + 2 μB 
)
) ) 

+ P

to be respectively equal to the related right hand sides μA μB −μ[ o] 〈 μ
5 μ[ o] 

Use was here made of the definitions μOmLS 
[ A,B ] 

= { μ} , μOcLS 
[ A,B ] 

= 

trices of the two Laminate System schemes related to the tw

arrangements using relations such as μA μB −〈 μ〉 { μ} = − f A f B ( μ
A

μA ( μB − { μ}) = f B μ
A ( μB −μA ); μB ( μA − { μ}) = f A μ

B ( μA −μB ) and 

r = ˜ μB = μB / μA , yields finally (after having divided by the commo

P P ′ 
(

− f A f B ( r − 1 ) 

3 ̃  μ[ o ] + 2 { ̃  μ} −
f A 

3 ̃  μ[ o ] + 2 

+ 

f B r 

3 ̃  μ[ o ] + 2 r 

)
+ P 

f A 
3 ̃  μ[ o ] + 2 

− P ′

P P ′ 
(

− f A f B ( r − 1 ) 

3 ̃  μ] o [ + 2 〈 ̃  μ〉 −
f B 

3 ̃  μ] o [ + 2 

+ 

f A r 

3 ̃  μ] o [ + 2 r 

)
− P 

f A r 

3 ̃  μ] o [ + 2 r 
+ P

to be respectively equaled with 

f A ( r− ˜ μ[ o] )+ f B r( 1 − ˜ μ[ o] ) 

5 ̃ μ[ o] ( r−1 ) 
and 

f B ( r− ˜ μ] o[ )+ f
5 ̃ μ] o[ ( r

This is still the system of Eq. (27c) with simplified coefficients w

3 ̃  μ[ o ] + 2 { ̃  μ} 
f A f B 

= 

3 ̃  μ[ o ] + 2 

f A 
+ 

3 ̃  μ[ o ] + 2 r 

f B 
= 

1 

[ b ] 
+ 

r 

[ d ] 
= > [ a ] = [ d ] 

3 ̃  μ] o [ + 2 〈 ̃  μ〉 
f A f B 

= 

3 ̃  μ] o [ + 2 

f B 
+ 

3 ̃  μ] o [ + 2 r 

f A 
= 

1 

] b [ 
+ 

r 

] d [ 
= > ] a [ = ] d [ 

and with also [ a ] = 

[ d] 2 −r [ b] 2 

[ d]+ r[ b] 
and ] a [= 

] d[ 2 −r ] b[ 2 

] d[+ r] b[ 
. 

The effective shear moduli ˜ μ[ o] and ˜ μ] o[ from the SC estimate 

reduced accordingly to the stepwise coefficient modifications and w

3 

5 

˜ μ[ o ] 2 − ˜ μ[ o ] ( p + qr ) − 2 

5 

r = 0 and 

3 

5 

˜ μ] o [ 2 − ˜ μ] o [ ( q + pr ) − 2 

5 

r = 

such that: 

r = 

3 ̃  μ[ o ] 2 − ˜ μ[ o ] p 

˜ μ[ o ] q + 2 

= ˜ μ[ o ] 3 ̃  μ[ o ] − p 

˜ μ[ o ] q + 2 

; r − 1 = 

(
˜ μ[ o ] − 1 

)(
3 ̃  μ[ o ] + 2 

)
˜ μ[ o ] q + 2 

(resp. r = ˜ μ] o[ 3 ̃ μ] o[ −q 

˜ μ] o[ p+2 
); r − 1 = 

( ̃ μ] o[ −1 )( 3 ̃ μ] o[ +2 ) 

˜ μ] o[ p+2 
; r − ˜ μ] o[ = 

5 f B ̃  μ
] o[ ( ̃ μ] o[ 

˜ μ] o[ p+2 

Then, the coefficients in the Equation system to solve can be sim

[ d ] = 

f B r 

3 ̃  μ[ o ] + 2 r 
= 

f B r 
(

˜ μ[ o ] − 1 

)
( q + 2 ) ̃  μ[ o ] ( r − 1 ) 

= 

r 
(

˜ μ[ o ] − 1 

)
5 ̃  μ[ o ] ( r − 1 ) 

, 

[ b ] = 

f A 
3 ̃  μ[ o ] + 2 

= 

f A 
(

˜ μ[ o ] − 1 

)(
˜ μ[ o ] q + 2 

)
( r − 1 ) 

= 

(
r − ˜ μ[ o ] 

)
5 ̃  μ[ o ] ( r − 1 ) 

, 

[ d ] + r [ b ] = 

r 
(

˜ μ[ o ] − 1 

)
5 ̃  μ[ o ] ( r − 1 ) 

+ r 

(
r − ˜ μ[ o ] 

)
5 ̃  μ[ o ] ( r − 1 ) 

= 

r 

5 ̃  μ[ o ] 
; [ d ] 

2 − r [ b ] 
2 = 

[ a ] = 

[ d ] 
2 − r [ b ] 

2 

[ d ] + r [ b ] 
= 

˜ μ[ o ] 2 − r 

5 ̃  μ[ o ] ( r − 1 ) 
; [ k ] = 

f A 
(
r − ˜ μ[ o ] 

)
+ f B r 

(
1 − ˜ μ[

5 ̃  μ[ o ] ( r − 1 ) 

Similarly (note that compared with the series [ x ], f A and p inter

] d [ = 

f A r 

3 ̃  μ] o [ + 2 r 
= 

f A r 
(

˜ μ] o [ − 1 

)
( p + 2 ) ̃  μ] o [ ( r − 1 ) 

= 

r 
(

˜ μ] o [ − 1 

)
5 ̃  μ] o [ ( r − 1 ) 

, 

] b [ = 

f B 

3 ̃  μ] o [ + 2 

= 

f B 
(

˜ μ] o [ − 1 

)(
˜ μ] o [ p + 2 

)
( r − 1 ) 

= 

(
r − ˜ μ] o [ 

)
5 ̃  μ] o [ ( r − 1 ) 

, 

] d [ + r ] b [ = 

r 
(

˜ μ] o [ − 1 

)
5 ̃  μ] o [ ( r − 1 ) 

+ r 

(
r − ˜ μ] o [ 

)
5 ̃  μ] o [ ( r − 1 ) 

= 

r 

5 ̃  μ] o [ 
; ] d [ 2 − r ] b [ 2 = 

] a [ = 

] d [ 
2 − r ] b [ 

2 

] d [ + r ] b [ 
= 

˜ μ] o [ 2 − r 

5 ̃  μ] o [ ( r − 1 ) 
; ] k [ = 

f B 
(
r − ˜ μ] o [ 

)
+ f A r 

(
1 − ˜ μ]

5 ̃  μ] o [ ( r − 1 ) 
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ly yields the coefficient set: 

[  ] , (B.2a) 

]  [ , (B.2b) 

f

β , (B.3a) 

α + f B . (B.3b) 

ield: 

μ , (B.4a) 

μ , (B.4b) 

s

β
 

)
 

)
r) + qr( ̃  μ[ o ] − 1) 

)
r) + qr( ̃  μ[ o ] − 1) 

)
1) ) 

1) ) 

(B.5) 

 

− f B ) 
2 f B 

. 

 P ( α + βC )[ a ] + P [ b ] − ( α + βP )[ d ] = [ k ], what simply yields P = 

(
3 − 5 f A 
3 − 5 f A 

)⎞ 

⎠ , (B.6a) 

(
3 − 5 f A 
3 − 5 f A 

)⎞ 

⎠ , (B.6b) 

a
2 ) P 

, (B.7) 

w

 ([ a ]] k [ − [ k ]] a [) + C ([ b ]] a [ + [ a ]] d [) = 0 say from Eq. (B.7) , P f A =0 . 4 = 

[ a ] − [ d] ) f A =0 . 4 = 9/13 ≈ 0.692 = P f B =0 . 4 , in the continuity of the plots 

o fficient 2/5, as it appears in particular in p and q , is substituted with 

c sites also holds for isotropic dielectric-like ones, in which case w = 1/3. 

A mposite 

oduli eigenvalues yields the two scalar coupled relations: 

μ SC 
B ] − θA 

)
: t ∗ISC 

θ : 
(
θ ∗SC 

[ AB ] − θ B 
)
. (C.1) 

) , they take the forms: 

μ (C.2a) 
Suppression of the common denominator in each equation final

 

a ] = ˜ μ[ o ] 2 − r, [ b ] = r − ˜ μ[ o ] , [ d ] = r 
(

˜ μ[ o ] − 1 

)
, [ k ] = f A [ b ] − f B [ d

 a [ = ˜ μ] o [ 2 − r, ] b [ = r − ˜ μ] o [ , ] d [ = r 
(

˜ μ] o [ − 1 

)
, ] k [ = f B ] b [ − f A ] d

rom which it comes (for [ d ]] a [ + [ a ]] b [ � = 0): 

= 

[ b ] ] a [ + [ a ] ] d [ 

[ d ] ] a [ + [ a ] ] b [ 
= 

(
r − ˜ μ[ o ] 

)(
˜ μ] o [ 2 − r 

)
+ r 
(

˜ μ] o [ − 1 

)(
˜ μ[ o ] 2 − r 

)
r 
(

˜ μ[ o ] − 1 

)(
˜ μ] o [ 2 − r 

)
+ 

(
r − ˜ μ] o [ 

)(
˜ μ[ o ] 2 − r 

)
= 

[ a ] ] k [ − [ k ] ] a [ 

[ d ] ] a [ + [ a ] ] b [ 
= f B 

[ a ] ] b [ + [ d ] ] a [ 

[ d ] ] a [ + [ a ] ] b [ 
− f A 

[ a ] ] d [ + [ b ] ] a [ 

[ d ] ] a [ + [ a ] ] b [ 
= − f A β

The calculation of the coefficient β suffices. The Eq. (B.1) also y

˜ [ o ] 2 − r = 2 ̃  μ[ o ] P + 

r 

3 

(
˜ μ[ o ] q − 1 

)
= 

1 

3 

(
p( ̃  μ[ o ] − r) + qr( ̃  μ[ o ] − 1) 

)
˜ ] o [ 2 − r = 2 ̃  μ] o [ Q + 

r 

3 

(
˜ μ] o [ p − 1 

)
= 

1 

3 

(
q ( ̃  μ] o [ − r) + pr( ̃  μ] o [ − 1) 

)
uch that: 

= 

[ b ] ] a [ + [ a ] ] d [ 

[ d ] ] a [ + [ a ] ] b [ 
= 

(
r − ˜ μ[ o ] 

)(
˜ μ] o [ 2 − r 

)
+ r 
(

˜ μ] o [ − 1 

)(
˜ μ[ o ] 2 − r

r 
(

˜ μ[ o ] − 1 

)(
˜ μ] o [ 2 − r 

)
+ 

(
r − ˜ μ] o [ 

)(
˜ μ[ o ] 2 − r

= 

(
r − ˜ μ[ o ] 

)(
q ( ̃  μ] o [ − r) + pr( ̃  μ] o [ − 1) 

)
+ r 
(

˜ μ] o [ − 1 

)(
p( ̃  μ[ o ] −

r 
(

˜ μ[ o ] − 1 

)(
q ( ̃  μ] o [ − r) + pr( ̃  μ] o [ − 1) 

)
+ 

(
r − ˜ μ] o [ 

)(
p( ̃  μ[ o ] −

= 

( r − O ) ( q (X − r) + pr(X − 1) ) + r ( X − 1 ) ( p(O − r) + qr(O −
r ( O − 1 ) ( q (X − r) + pr(X − 1) ) + ( r − X ) ( p(O − r) + qr(O −

= 

q 
(
r 2 (X − 1)(O − 1) − (X − r)(O − r) 

)
p 
(
r 2 (X − 1)(O − 1) − ( X − r ) (O − r) 

) = 

q 

p 
= 

3 f B − 2 f A 
3 f A − 2 f B 

. 

From β , it comes α = − f A 
3 f B −2 f A 
3 f A −2 f B 

+ f B 
3 f A −2 f B 
3 f A −2 f B 

= 

2( f A 
2 − f B 

2 ) 
3 f A −2 f B 

= 

2( f A
3 f A −

The analytical resolution for P, P ′ then follows from

−( [ b]+ α[ a ] −β[ d] ) ±
√ 

( [ b]+ α[ a ] −β[ d] ) 2 +4 β[ a ]( α[ d]+[ k ] ) 

2 β[ a ] 
. 

Everything solved without difficulty to be reported, one finds: 

(1) For f A < 3 / 5 , P = −1 

2 

⎛ 

⎝ 

4 f A − 5 

3 − 5 f A 
+ 

√ (
4 f A − 5 

3 − 5 f A 

)2 

− 4 

3 f A 
3 − 5 f A 

(2) For f A > 3 / 5 , P = −1 

2 

⎛ 

⎝ 

4 f A − 5 

3 − 5 f A 
−

√ (
4 f A − 5 

3 − 5 f A 

)2 

− 4 

3 f A 
3 − 5 f A 

nd P ′ = α + βP = 

2 ( f A − f B ) 

3 f A − 2 f B 
+ 

3 f B − 2 f A 
3 f A − 2 f B 

P = 

( 2 − 4 f B ) + ( 5 f B −
3 − 5 f B 

hich are all shear contrast-independent quantities. 

For [ d ]] a [ + [ a ]] b [ = 0 (at f A = 0.4), the solution comes from

( 4 f B − 2 ) / ( 5 f B − 2 ) = 0 . 4 = P ′ 
f B =0 . 4 

, and P ′ 
f A =0 . 4 

= ( [ k ] − 0 . 4[ b] ) / ( 0 . 4

f Fig. 7 . All equations from the beginning still hold when the coe

oefficient w . Thus, the solution for two-phase I-I elastic-like compo

ppendix C. The Self-Consistent estimate for a two-phase I-C co

Using Eq. (7) for the shear μ and bulk θ = 

3 λ+2 μ
3 = 

2 μ
3 ( 

1+ ν
1 −2 ν ) m

∗SC 
[ AB ] = 〈 μ〉 + 

(
μ∗SC 

[ AB ] − μA 
)

: t ∗ISC 
μ : 

(
μ∗SC 

[ AB ] − μB 
)
; θ ∗SC 

[ AB ] = 〈 θ〉 + 

(
θ ∗

[ A

With the two involved Green operator terms recalled in Eq. (32

∗SC = 〈 μ〉 + 

(
μ∗SC − μA 

)( 2 

5 μ∗SC 

6 μ∗SC + 3 θ ∗SC 

4 μ∗SC + 3 θ ∗SC 

)(
μ∗SC − μB 

)
, 
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θ ∗SC = 〈 θ〉 + 

(
θ ∗SC − θA 

)( 3 

4 μ∗SC + 3 θ ∗SC 

)(
θ ∗SC − θB 

)
. 

From the bulk equation one obtains the relation: 

θ ∗SC = 

4 〈 θ〉 μ∗SC + 3 θA θB 

4 μ∗SC + 3 { θ} = 〈 θ〉 4 μ∗SC + 3 

{
θ̄
}

4 μ∗SC + 3 { θ} , 
that allows to first solving the shear equation of rank four in μ∗S

this I-C elastic SC solution that we do not need explicitly here, on

two-equation system as: 

μ∗SC = 〈 μ〉 + 

(
μ∗SC − μA 

) w 

μ∗SC 

(
μ∗SC − μB 

)
with w = 

2 

5 

6 + 3 z ∗SC 

4 + 3 z ∗
SC 

, 

θ ∗SC = 〈 θ〉 + 

(
θ ∗SC − θA 

) w 

′ 
θ ∗SC 

(
θ ∗SC − θB 

)
with w 

′ = 

3 z ∗SC 

4 + 3 z ∗
SC 

. 

In the I-I case that corresponds to an infinite z ∗SC ratio, w 

′ → 1 b

in the one-modulus I-I problem solved in Appendix B . 
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