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This article provides the mathematical solutions to the elastodynamic fields of a semi-infinite interface
lying along two dissimilar media subjected to sudden loading. The article offers the solution to the cases
when: (1) the interface slips, i.e., it cannot transfer shear stress from one material to the other, which rep-
resents a Hertzian contact; (2) the interface is welded, i.e., all stress components are transferred, in which
case it acts as a crack. We obtain the full, explicit analytic solutions to the fields of the interface along the
slipping boundary via the Wiener-Hopf and Cagniard-de Hoop techniques. We show that such interface
does not entail an oscillatory singularity at the crack tip owing to the fact that shear forces are not trans-
ferred across the interface. The welded interface crack leads to a matricial Wiener-Hopf problem that is
Contact mechanics not reducible to any form that would allow an immediate analytic factorisation of the resulting scattering
Bimaterial kernel matrix. The factorisation in this case is achieved via successive Abrahams approximations of the
Crack scattering kernel itself, rather than via a Williams expansion of the elastic displacement field. This leads
to a quickly convergent solution that retains the asymptotic character in the near and in the far field.
Explicit proof of the nature of the oscillatory singularity at the crack tip is provided by studying the scat-
tering matrix, which in the near field is shown to reduce to a Daniele-Khrapkov form amenable to ana-
lytic factorisation. The solutions presented in this article are explicit, and will prove eminently useful in
the modelling of fast fibre debonding in composite materials, and in the study of the scattering of seismic
waves by cracks and faults in layered media.
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1. Introduction faulting, where layered media are common and where, indeed,
time-dependent considerations are often necessary to offer a com-
plete account of the seismological signals that faults such as cracks
may trigger (Aki and Richards, 2002), particularly in the far field.

Owing to the relevance of the aforementioned interfacial

This article concerns the mathematical solution to the elastody-
namic fields of a non-moving interface found along two elastically
dissimilar media. Problems related to bimaterial interfaces are of

particular relevance for laminated media such as fibre reinforced
composites (McCartney, 1987), the phase boundaries between a
particle and matrix in metallic alloys (Sutton and Balluffi, 1995),
biomedical materials such as flexible joints (Gaul and Nitsche,
2001), or in geophysics (Aki and Richards, 2002). In such situations,
pre-existing flaws along the interface may lead to the debonding of
the interface via the propagation and growth of an interfacial crack.
Under high strain rate loading, it is possible for such interfacial
crack to propagate at a significant fraction of the speed of sound;
alternatively, the loading rate can be high enough that inertial con-
siderations may be required to fully account for the role the kinetic
energy of the material plays in the fracture process. Such conditions
are relevant in materials physics, but particularly so in geophysical
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debonding, the study of bimaterial interfaces has received consid-
erable attention in the past. Most past studies focus on the elasto-
static (time independent) interfacial crack, the theoretical study of
which largely began with the Williams (1959) analysis of the
asymptotic near elastic field of a bimaterial crack. As Williams
found, the near field of an interfacial crack displays an oscillatory
singularity that suggests the crack faces would interpenetrate
one another (England, 1965) in a small region surrounding the
crack tip (Erdogan, 1963). The feasibility of this situation has long
since been questioned because no empirical evidence of that inter-
penetration is typically found. Several solutions to this problem
have been proposed. One avenue argues that the standard linear
elastic analysis used by Williams (1959) and others (England,
1965; Erdogan, 1963) to model such problem may be inappropri-
ate. That is, one may question whether the linear elastic formula-
tion itself is adequate to model the interfacial crack’s tip elastic


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2021.03.018&domain=pdf
https://doi.org/10.1016/j.ijsolstr.2021.03.018
mailto:b.gurrutxagalerma.1@bham.ac.uk
https://doi.org/10.1016/j.ijsolstr.2021.03.018
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr

B. Gurrutxaga-Lerma

RO B L.

—_—. > — > — > —

Material |

Crack faces Interface

Material 2

- - - - -—

S

Fig. 1. Schematic of the bimaterial crack under consideration.

fields, as the underlying constructive hypotheses (small displace-
ment gradient, harmonic behaviour, neglecting lattice discrete-
ness) are bound to break down at the crack tip (Broberg, 1999).
Thus, large strain continuum level formulations such as those pro-
posed by, amongst others, Knowles and Sternberg (1983), Geubelle
and Knauss (1994a,b,c) or Gao and Shi (1994), showed that inter-
penetration is not necessary so long as a non-linear elastic beha-
viour is considered when describing the materials. A second
source of criticism focuses on whether the geometrical modelling
of the crack tip itself as infinitely sharp may be adequate in this
case. For instance, Comminou (Comminou, 1977a,b; Comninou
and Schmueser, 1979) argued that if the crack faces were to inter-
penetrate, the nature of the problem would shift from a pure frac-
ture analysis to a contact mechanics problem where in the
immediacy of the crack tip the crack faces are allowed to touch.
In the presence of interfacial friction, she showed that the inter-
penetration became redundant, and that the oscillatory singularity
cancelled (Comminou, 1977a,b): this configuration would in effect
relax the sharp crack tip into a cusp. Furthermore, in examining
different crack tip geometries, Sinclair (1980) showed that a crack
tip formed by faces meeting at an angle would not display such an
oscillatory singularity either. Atkinson (1977) argued that the
oscillatory singularity could also be cancelled if the interfacial
crack were embedded in a so-called ‘intervening layer’ representing
the interface itself. Although the physical motivation for such a
layer need not be clear in all cases, it has lent itself to several prag-
matic attempts at modelling interfacial cracks by employing per-
turbed elastic moduli at the interface, such that they cancel the
oscillatory singularity while enabling the definition of an effective
fracture toughness (He and Hutchinson, 1989; Suo and
Hutchinson, 1990).
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Compared to elastostatic studies, the elastodynamic treatment
of bimaterial interfaces has been more limited. Chief amongst the
reasons for this appears to be the inherent difficulty in solving elas-
todynamic problems compared to elastostatic ones, particularly in
the presence of a bimaterial system, which entails 4 different
speeds of sound. For this reasons, particular focus has been placed
in the simplest bimaterial crack problem: the anti-planar (mode
III) crack, that concerns solely transverse perturbations. Brock
and Achenbach (1973, 1974)) studied the problem of a crack
expanding at uniform speeds in the steady state, and under the
influence of remote loading (Brock and Achenbach, 1973). The
problem of a mode III crack propagating at uniform speed across
a bimaterial interface was studied by Atkinson (1974). Non-
uniform propagations have also been studied for the mode III prob-
lem (Brock, 1974). The self-similarly expanding unloaded plane
strain crack was also studied by Brock (1976) using an approach
reliant on the Chaplygin transformation and on conformal map-
ping, albeit this result drew criticism from Atkinson (1977) that
the recovery of the steady state solution found in previous work
by Gol'dshtein (1966) and Willis (1971) was not obvious. Further
work on solving full transient problems concerning plane strain
cracks appears to be largely unavailable. Most of subsequent theo-
retical work has been placed in solving problems concerning
asymptotic studies of crack tip fields and their energetics (e.g.,
Achenbach et al., 1976; Comninou and Achenbach, 1978; Rice,
1988; Yang et al, 1991; Liu et al, 1993; Yu and Yang, 1995;
Huang et al, 1996) and numerical studies (e.g. Xu and
Needleman, 1996; Needleman and Rosakis, 1999; Scala et al,,
2017) of different aspects of the debonding at a bimaterial inter-
face, or in the experimental verification of such analyses (e.g. Liu
et al,, 1993, 1995; Lambros and Rosakis, 1995).

This article solves the fully transient solution to the elastody-
namic field of a suddenly loaded bimaterial interface in plane
strain, both for mode I and mode II type of loading. The interest
of these solutions lies in two separate areas of concern: dynamic
contact, as these solutions can be employed to model Hertzian con-
tact; and in studying wave diffraction by pre-existing flaws in a
material or the earths’ crust, as the solutions can be employed to
model the elastodynamic wave scattered by the interfacial flaw.

As is explained in Section 2, the system under consideration
consists of a planar fault running along the interface of two differ-
ent materials. The fault is suddenly loaded with a normal or tan-
gential remote load. The ensuing elastic field radiated away from
the crack tip depends on the specific conditions governing the
interface. In Section 3, the simpler problem of a slipping interface
(i.e., unable to transfer shear/normal stress) is solved in full using
the Wiener-Hopf technique (Noble, 1958). As will be shown, this
interface does not display an oscillatory singularity. In Section 4,
the welded bimaterial interface is considered instead, where the
interface can transfer both normal and shear stress. In this case,
a matricial Wiener-Hopf problem is reached; the matricial scatter-
ing kernel is unfortunately non-commutative and irreducible to a
Daniele-Khrapkov form (Daniele, 1978; Khrapkov, 1971), which
makes achieving a full analytic solution difficult. Instead, an Abra-
hams approximation (Abrahams, 2002, 1996) of the kernel matrix
is offered, which facilitates a convergent approximate solution to
the welded bimaterial crack problem, and that the near field prob-
lem can be reduced to Daniele-Khrapkov form and displays the
expected oscillatory singularity. Section 5 offers a number of clos-
ing comments on this work and its significance.

2. Mathematical framework

The system we are considering here consists of two elastically
dissimilar materials, material 1 and material 2, of elastic constants
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W, 4n and density p, with n = 1,2. Without loss of generality, we
shall assume that material 1 is located in the y > 0 half-plane,
and that material 2 corresponds with the y <0 half-plane, as
depicted in Fig. 1. The system is remotely loaded by a tensile P or
by a tangential Q load, which triggers a time-dependent elastody-
namic field at the crack tip in, respectively, mode I and mode II
fracture.

2.1. Governing equations

The elastic response of each of the materials is governed by the
Navier-Lamé equation of linear isotropic elastodynamics:

(} +:un) jji +:u’n ljj pn z (2-1)

where repeated index denotes summation, n = 1,2 denotes the first

(y > 0) or the second (y < 0) material, and u;(x,t) denotes the ith
displacement

The problem under consideration is in plane strain, whereupon
the Navier-Lamé equation can be divided into two separate
monochromatic wave equations by means of the scalar Kelvin-
Helmbholtz potentials ¢, and ¢, (cf. Eringen et al., 1975). The poten-

tials are such that

ulm — 8¢“ % um — ad)n _ 8'10”
X ox oy’ y ay  ox

(2:2)

Upon substituting Eq. (2.2) on Eq. (2.1) we obtain the two governing
equations of the problem:

32&4_32_47211 7a20247n

9x2 9y n ot
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X2 ay? n o2
where

_ 1 [ _ 1 _ /b
= Cl(n) - ;Ln ‘i’zlun7 bn B an) - Uy, (24)

are the longitudinal and the transverse slownesses of sound, respec-

tively, in the material n. Similarly c[” and c¢{” are the longitudinal
and transverse speeds of sound.

3. The slipping bimaterial interface

We first seek the solution to the problem of a mode I and a
mode II elastodynamic crack acting along a slipping interface
between the two dissimilar media. The author is unaware of previ-
ous complete solutions to these two problems, which we do in the
sequel for the case when a sudden shock loads are applied on the
faces of the crack. Other loading conditions can then be obtained
from convolution of this fundamental solution. The solution tech-
nique relies on the Wiener-Hopf technique (Noble, 1958). We shall
solve the mode I and mode II problems independently from one
another.

A slipping interface is an interface that in mode I carries no
shear stress; by mathematical analogy, in mode II we improperly
call ‘slipping’ an interface that carries no normal stress. In single
material problems, the interface is always slipping by symmetry
(see for instance Freund, 1998; Gurrutxaga-Lerma, 2020). This is
not necessarily the case in bimaterial systems, where the symme-
try argument does not stand anymore as the materials at either
side of the interface are different. In this case, the interface may
need to accommodate the elastic mismatch by transferring shear
(mode I) or normal (mode II) stresses across. Such an interface con-
stitutes what we will refer to as a welded interface, because both
sides of the interface are glued together. We study this problem
in Section 4.
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Slipping boundaries in mode I bear considerable physical inter-
est, as they concern a type of Hertzian contact. In any situation
where the interface is lubricated, a slipping boundary of this kind
offers a reasonable model for the interface. Such circumstances
are common in, for example, lubricated rotating machinery and
in geophysical faults, where fluids may be intercalated between
different material layers. The presence and role of interfacial fric-
tion, which we neglect in the sequel, will be the subject of future
work. Whereas the welded interface leads to a largely intractable
problem, the slipping boundary problem discussed in this section
is relatively simple and analytically tractable, and many of the fac-
torisation strategies we describe in the sequel apply to the welded
interface problem as well, as we discuss in Section 4. Slipping
interfaces in mode II are more contrived in nature, and here they
are solved for completion.

3.0.1. Statement of the Wiener-Hopf problem

The mode I and II problems are governed by the same set of
equations (Eq. (2.3)), and are defined by the usual boundary condi-
tions (see for instance Freund, 1998 ch. 2). In a slipping interface,
we assume that no shear stress is transmitted across the interface
(for mode I); this entails an interface that is allowed to ‘slip’ in
being unable to transfer shear stress across.

In invoking the Wiener-Hopf technique, we extend the bound-
ary conditions by continuity to the whole real line. Thus, for mode I
we have:

0y (%,0,t) = 0.(x,t) = PoH()H(=X) x € R (3.1)
oy (x,0,t) =0 X€ R (3.2)

[uy(x,0,t)] = u D(x,0,t) — u D(x,0,t) =v_(x,t) XxcR (3.3)
And for mode II:
(x 0,t)=0xeR (34)
§/060.0 = t-(x.0) ~ QH(OH(-x) x€ R (3.5)
[[ux(th]E (th)—uff(th)—u(x,t)xeR (3.6)

where H(-) denotes the Heaviside step function, Py and Qq are the
magnitude of two suddenly applied normal and shear ‘shock’ loads,
and o, (x,t) and t,(x,t) are the unknown normal and tangential
tractions, both defined as non-vanishing in x € R". The u_(x,t)
and v_(x,t) are, respectively, the unknown uy, and u,, interfacial dis-
placements along the crack’s faces, with compact support over
XeR.

In order to solve the problem, we introduce the following
Laplace transforms:

fxy.s) / fx,y,0edt,  F(k,y,s)

= / fx,y,s)ek*dx (3.7)

By using these Laplace transforms, we can reduce the boundary
conditions to a single Wiener-Hopf equation. Here we detail how
to achieve the one for mode I. Because mode II follows the same
procedure, we will not repeat it and shall merely quote the relevant
results.

Thus, for mode I the boundary conditions transform into:

2 _Z,(k)  Po
,un{(bn—Za )5, +22 8y2 :0_ Sotop (38)
2
Uy aq) [) bl oW, =0 (3.9
%
dy=0
oD, LV (k)
Ka k%) < —sk‘P2> L (3.10)
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where we have defined

>, (k;s) =s? / G, (x,s)e"dx,

—o0

V_(k)

= / V_(x,8)e~dx (3.11)
The governing Eqs. (2.3) transform into
PO PV
gz = SO, = Bull)s (3.12)
where o, (k) = /a2 — k*, B,(k) = y/b> — k%

The solutions to these equations are of the form:

@ (k,y,5)=Cp (s,k)e 0 P, (ky,s)=Cpi(s,k)e 1Y (y>0) (3.13)
D, (k,y,s)=Cya(s,k)e™2 Y, Wy (k,y,s)=Cya(s,k)e2®  (y<0) (3.14)

where C,, and C;, are integration constants.

Thus, we are faced with a problem consisting of 6 unknowns
(the four integration constants and P, (k) and U_(k)), for which
we have in principle only 5 equations. This allows us to reduce
the problem to a single equation of Wiener-Hopf type, by adequate
manipulation of the continuity requirements across the interface.
In particular, the stress field across the interface for y = 0 must
be continuous, which means that

Snlyo =t (B - 2K)$2Cor + 252BKCpn
(3.15)
=L, [(b% - 2k2>52C¢2 - 252/£sz¢2]
2xy|y:0 =H [(b% - 2k2>52C¢,1 - 252a1kC¢1] (3.16)
= 1| (B3~ 2K)57C, + 25205KC]

where here X; denotes the dual Laplace transform of g.
Thus, we are able to reduce the problem to the following
Wiener-Hopf relation between P, (k) and V_(k):

K(k) {L(k) + %} =V_(k) (3.17)
where
2 2
Kik) — o1 (k)b oa(k)bs 1
. hmw R (k) 518
Here the function
Rk) = (52 2% + 4K 2l (k) (3.19)

is the secular equation for the Rayleigh waves of the ‘n’ material
halfspace. The two real roots of this function are the positive and
negative inverses of the Rayleigh wave speed of the relevant mate-
rial, k = +c,, where c, = 1/cg, with cg, the relevant Rayleigh wave
speed (Eringen et al., 1975).

For mode II, we similarly obtain the following Wiener-Hopf
equation:

G(k) {L(k) +% =U_(k) (3.20)
K
where
| BiBi(k) | BB, (k)
G“‘h&w 1oRo (k) G-21)

and we have defined T, (k) and U_(k) in an analogous way to
mode I:

International Journal of Solids and Structures 225 (2021) 11031

D S

00

U_(k)=s® /0C i_(x,y,s)e~*dx (3.22)

3.1. Analytic factorisation of the Wiener-Hopf problem

The key concern is therefore to reach a successful factorisation
of the kernels K(k) and G(k) into two sectionally analytic functions
defined as

K(k) =K, (k)-K_(k), (3.23)
and
G(k) = G, (k) - G_(k), (3.24)

where K. (k) and G.(k) are holomorphic over some strip of the
k € R* segments of the real line. In achieving these two product fac-
torisations, we are able to express the corresponding Wiener-Hopf
equations as:

K, (k) {Z@(k) + PI—:} = X:Eg (3.25)
and
G, (k) {ﬂ(k) + %} = gigg (3.26)

As we detail below, by invoking Liouville’s theorem it is possible to
separate the equations above and reach a solution to the problem.
Before that however, it is necessary to successfully separate K(k)
and G(k) into sectionally analytic functions. For brevity, in the
sequel the product factorisation of K(k) alone is detailed; that of
G(k) follows an almost analogous procedure, and its main result is
quoted at the end.

3.1.1. The product factorisation of K(k)

At this stage, we face a choice regarding the way of expressing
K(k) for its subsequent factorisation. This choice depends on the
relative value of the slownesses of sound and the Rayleigh wave
speeds in both materials. Provided that a; < b; < ¢;, we find that
whether or not a; > a,, b; > b, and ¢; > ¢, has an effect in the
analytical form of the factorisation; for most usual materials (those
with v > 0.2),¢; = 1.02 — 1.1b;, and c¢; > c; if by > b,. Nevertheless,
there are 20 distinct orderings, and 14 that lead to distinct factori-
sations. The procedure to follow for all of them is nevertheless
analogous. Thus, in the following we shall consider the case where
a; > a; > by > ¢y > b, > c,. In that event, we find it is advanta-
geous to express K(k) as follows:

w (k)b |, 01(k) Ra(k) o3 —S,WFK)

K(k) = (3.27)

1Ry (k) o2 (k) Ri(k) p, b2
where

ota (k) b%
S (k) — by 3.28
2(k) Ry (k) 1, ( !
and

2

F(k) =1+ o (k) Ra(k) p, b3 (3.29)

a2 (k) Ri(k) p, b3

We extract S, (k) rather than S; (k) because ¢; < b,. As will be seen in
the sequel, this ensures that no branch point in the auxiliary func-
tion In F(k) falls outside the [ay, b,] strip.

We seek the product factorisation of K(k) into two sectionally
analytic functions as



B. Gurrutxaga-Lerma

Im[z]}

Re[z]
Fig. 2. Integration contour for F. (k).
K(k) = K. (k) - K_(k) = S; (k)F..(k) - S; (k)F_(k) (3.30)

Thus, we reduce the problem to achieving the product factorisation
of Sy(k) = S; (k)S, (k) and of F(k) = F, (k)F_(k).

Factorisation of S, (k). The factorisation of S (k) is well-known,
as it appears in the solution to the mode I crack running along elas-
tically similar half-spaces (see Freund, 1998; Achenbach, 1973). It
requires the product factorisation of o5 (k), which can be achieved
by inspection as:

\/(12 \/(12+ —O(z

o o (k)

o (k) = oa(k ko (k) (3.31)

It also requires the product factorisation of R, (k). This is done in the
standard manner, by introducing the auxiliary function

Ry (k)

- 2(a§ - bg) (c% - kz)

which factorises into (see Eq. 2.5.29 in Freund, 1998)

,/zz—a2 b — 22 (333)

222 z+ I<

D, (k)

(3.32)

In D; (k) = —% / arctan
az

This factorisation allows us to write
b,
—b ).Uz
so that S; (k) is holomorphic on Re[k] = [+a,
Re[k] = (—o0, —ay].
Factorisation of F(k). We are not aware of this factorisation

having been offered before. We begin by noting that the function
F(k) is bounded at infinity with:

. fobt (a% - bg)
dim F(k) =1 wbi(@ 2

sty =2tk

)
(c2 £ k)D5 (k) 2( (3.34)

o) and S, (k) on

K, (3.35)
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Furthermore, the function F(k) has poles at k = +ay, k= +c;

along the real axis, and branch cuts defined by
Re[k] = %[dmin, bmax] Where
(min = Min(ay, a,), bmax = max(bq, b,) (3.36)

We can safely state that a; <b; <c;, but whether or not
a, > ay,a; > b,, etc depends on the specific materials in contact.
In the current derivation, we have stated we assume that
a, < a; < by < ¢1 < by < ¢y, so that both poles fall within the branch
cuts.

The factorisation of F(k) is achieved by using the auxiliary func-
tion In F(k), and identifying the sectionally analytic functions using
the Plemelj formulae as (Noble, 1958):

1 (%> InF(z)
ﬁ/d 7=k

where d is some arbitrary real number defined so that Re[k] > d for
F. (k) and Re[k] < d for F_(k). Eq. (3.37) already enables us to write
F(k) =F,(k)-F_(k) with F (k) and F_(k) analytic on the strips
Re[k] > d and Re[k] < d respectively.

Albeit formally correct, Eq. (3.37) does not provide an analyti-
cally useful expression for the F. (k) terms in the factorisation. In
order to achieve one, we shall consider the closed contour C shown
in Fig. 2 for the case when Re[k] > d. This contour C encloses the
pole at z = k, as well as the branch cut Re[Z] € [ay, b,]. The contour
comprises the line parallel to the imaginary axis Re[z]=d >0
which corresponds with to the integration contour in Eq. (3.37),
and the outer contour Iy that meets the former at |k| — cc.
Although not shown in Fig. 2, the Re[k] = d < 0 branch would com-
prise the mirror image of the contour of integration in Fig. 2. In
order to ease the derivation, we shall only perform it for F,(k),
and quote the results for F_(k) at the end. We note here that the
function F(k) has poles at k = a, and k = +c;. In defining F(k), we
have chose it so that these pole falls by construction within the
branch cut [a4, b;] and, therefore, do not act as accumulation points
in In F(k).

We invoke the residue theorem (Markushevich, 2005), which

states:
d+ico
=l k)
d T, r il

%ln F(z )dzf 2miln F(z

cz—k

where J denotes the arc at infinity. Upon changing variables z = Re"
with 0 € [n/2,—-m/2] and R — oo, it is immediate to show that the
integral is non-vanishing, but constant:

/. =In {1 +M] =Ink, with x
Ji ,u]bg(a%—bﬂ

.uzb% (a% - bg)
(@) >

The integrals in Eq. (3.38) along I, and I"_ refer to, respectively,
the Im[z] > 0 and Im[z] < O parts of the contour enclosing the
branch cut Re[z] € [a;, b;] (see Fig. 2). They can be expressed in a
more agreeable analytical form. We note however that unlike in
the antiplanar case discussed in Atkinson (1977), the planar case
here requires we express the I'. in a piecewise fashion. This is
because the imaginary character of the factors o;(z),o,(z) and
B1(z) changes as Re[z] varies from a; through to a, and b; to by:
for z<a; all o4(2),00(z) and p;(z) are real, but for
a; <z < @,,04(2) is imaginary, and so on. This difficulty is solved
by partitioning the I'. contour as follows:

InF.(k)=F

(3.37)

—ioco

(3.38)
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A++/7:[TUnFuagwnn@n§¥E

by
+ / [11’1 Fu( —1In F]_ ]—

by dz
+/ [In Fy(z) —In F.(2)] — (3.40)
by z-k
where Fy(z) and Fi(z) stand for the values of F(z) on the upper
(0 = 0) and lower (0 = 27) sides of the branch cut. Over each parti-
tion of the integration interval, different parts of F(z) take imaginary
values. This leads to the following analytic formulae:'

——ﬂm/fa

1. For Re[k] € [a1,ay]

/az In Fy(z) — In Fy(2) (3.41)

where

fa(k) = arctan

F o=

12\/b? — K (bfuz (i - a2) (41<2,/a§ — 1\ /b~ i+ (] - 2k2)2> b2k — @\ Ja — k )
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with

7b§;¢2\/k2—u§<—4lt \/kz \/18 b} +by - 4b2k2+4k) bSpy K~} +4b3IE [ — @t — b3k, /K —a}
b 1y I —a2 I a3\ [l
(3.49)

This concludes the decomposition of F, (k). An almost analogous
one can be performed for F_(k) on the Re[k] < 0, where we would
swap k for —k and the slownesses for —a;, —b;, —c;.

Thus, for a; < a, < by < ¢; < b, < ¢c; we find that:

+In K}
(3.50)

InF, (k) { {/ fa@) zik /2 fo(2) zik /fc Zik

Alternative combinations in the values of the slownesses of sound
and the Rayleigh wave speeds would render different factorisations
of the Fy and F; functions.

(3.42)

2. For Re[k] € [az, by],

by by
/ (In Fy(z) — In F.(2)] % — 2 f,,(z)% (3.43)
where
1)
fy(k) = arctan [ff; )] (3.44)

with
= <—16k"u2 (a +K) /I a3 5y /I —a —ab3I° 1, /18— + 4By ﬂ) -
_ap? (—4a%k5,uz\/@ B3Iy [~ b, JI - @ 40, ﬂ)+
T (—4a$ﬂ\/ﬂ\/ﬂ+ b\~ — a2\ I8 — @t 4k~
+4kzﬂ\/ﬁ\/ﬂ> #0412 - a3~ 858K 1 [ — a2+ 246K 11 K ~ 2

(3.45)
£ Ay, (—b{'\/kz—a%w/kz—ugx/bﬁ—k%rkz <4bf«/k2—a%/kz—a%‘/bﬁ—kz—
PN e N s N
_ag,/bf_zf(bg_z#)z) (3.46)
3. For Re[k] € [by, by,
by dz dz
| i Fute) 1o a2 = i m> .
f.(k) = arctan [fﬂ”(k)] (3.48)

! Throughout, we have used the equivalence arctan(x) = lelnL" ’} by extracting the
imaginary part of the integrand of Fy and F, and rewriting it as

1/Im[F|(Re[F]/Im[F] + i), with x = Re[F]/Im[F].

(bf - 2k2>2 (bf,uz\/k2 —a <4k2\/a§ - kz\/b§ — K+ (bi - 2k2> ) — by - k2>

Factorisation of G(k). The factorisation of G(k) into G.(k) is
achieved through an almost analogous procedure to that of
K. (k). For a; < a; < by < c; < by < c; leads to:

G (k) = —L; (k)H. (k) (3.51)
where
b3 By (k) Br(K)Ra (k) b g
Lo(k) = -2 222 k) =1+ 20 S102 3.52
W= R PO =T B R ®) b, (3.32)
Using the same strategy described for F(k), we reach:
ﬁf(k)blz(ag - b§) (c; k)
Ly (k) = , Bi(k)=+vby £k  (3.53)
’ VD5 (k) ’ ’
and
by by
In H.. (k) = { {/ a zik / zik / zik +1n11}
(3.54)
where
b (a3 - b3)
n=1+——7——-% (3.55)
@m(—f)
h(l)
hq(k) = arctan {hﬁz)} (3.56)

with
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B = 16b3Kk u, (K — @) (b7 — k) /3 — K 4 gy (7 — 2b1k2)2
x /b — K <4k2\/ag b2 e (B2 2k2>2>

+ +(bf - 2k2)4

and

he = 4bkep,

<\ Jié —ai (b7 - ) (418\/(15 N 218)2),

g
hy (k) = arctan {b} (3.57)

e
hb

with

h = aplK* (4k2;¢2(ﬂ\/@\/ﬁ#\/ﬁ> +4ab3p, [0~ b, [0 K+
B2 (pz\/ﬂwﬂ/ﬂ» _ap? <4k4yz<ﬂﬂ\/b§_—k‘z—kz\/bf7)—
—b§k2u2m+2b§k" (Uz\/ﬁ*ﬂh \/IE—_kZ)) —lsaﬁbgks,ul\/b%sz—b?bép, \/lﬁj+
+b; (—b;‘uz\/bfj+4b§kz (;tZWJrZyI\/ﬂ) —4k4u2\/bf7>

h‘;f‘:4bfk2u2( bf(hj K a3 b3k \JIE — a3 + 4k \ K~ @t + 4K\ [~ a3/} ~ Kb} k2>4

er‘:lcz\'/kZ —a 74bik4\/k2 —a?+4K° \/k2 7a2l+4k4\/k2 —a3y/ b -k \/bi —K +bj /K —a3 V b} —K V/bj —k2>.

and finally
NC <4b§kzy] (kz —ea e 7bf) _apk? (Mz Vi —a i 7bf+b§ul> +b‘;b§;¢1>

he(k)=arctan -
B0y 182 (82 -2

(3.58)

3.1.2. Solution of the mode I and mode II problems

The product factorisations of K(k) and G(k) enables the separa-
tion of the corresponding Wiener-Hopf equations into sectionally
analytic parts and, by extension, the solution of the problem in
Laplace space. This is achieved as we detail in the sequel.

The mode I problem. The product factorisation of K(k) enables
us to write Eq. (3.18) as

K. (k)K_(k) [L(k) + @} = U_(k)

k
Py
=K. (k)X (k) + K, (k) "
_U_(k)
T K_(k) (3-59)
All that remains is the sum factorisation of the term
I(Ak)% (3.60)

This entails a pole at k = 0, which may be eliminated requiring the
residue to be zero (see Freund, 1998, p. 90), leading to:

K. (oo - {pow} N {POM}

k k k (3.61)

where the first term on the left hand side is analytic on k > 0, and
the second on k < O respectively.
Thus, we can finally write

K (k)-K.0)] U (k) K.(0)
K+(k)2+(k)+{l’o 0 } 727(,()—{1)0 . } (3.62)

+
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Invoking Liouville’s theorem, we are able to separate both branches
so that

K. (k)= (k) + {po w

K.(0)
& [Ko(k) 1}

The mode II problem. Similarly to the mode I problem, the product
factorisation of G(k) enables us to write

} =0= 3, (k)

(3.63)

G, (K)G_(K) [mk) n %} ~ Uk

Q
k
k

= G, (KT (k) + G, (k)
_U.(k)
Tl (3.64)

Where following the same procedure as for mode I, we find an anal-
ogous form of the solution:

0, [G.(0)
rb=Em

(3.65)

3.1.3. Inversion of the mode I and mode Il Wiener-Hopf solutions

The inversion of X, (k) and T, (k) is achieved using the
Cagniard-de Hoop methodology (Cagniard, 1939; De Hoop,
1960). The procedure is analogous for both, so in the interest
of brevity here we merely outline it for X, (k), and quote the
final result for T, (k).

We begin by inverting X, (k;s) in space. The spatial inversion is
given by the Bromwich integral:

_ 11 t skx
=5ng /400 > (k)e**sdk

_ 1T P K0) ] e
_Znis/_ k Lg(k) ]]e dk

0.(x,s)

(3.66)

ico

Invoking the Cagniard-de Hoop procedure, we distort the Bromwich
contour along the imaginary axis with a semi-circle and define a
branch cut along the real axis for Re[k] < —a; (we still assume that
a, is the smallest slowness of sound in the bimaterial system). It is
possible to close a contour of integration with a Jordan semi-circle
at infinity, that surrounds the branch cut. No pole is enclosed by this
contour, so by Cauchy’s theorem the integral along the closed con-
tour must be zero. Equally, the Jordan contour’s contribution van-
ishes as the integrand decays with e~*/k as |k| — —oo. Thus, the
contribution of the integral along the imaginary axis must equate
that along the branch cut. Thus, using Schwarz’s reflection principle,
we have:

; _ 1 [P [Ki(0) -

0.(x,8) = pon A ?Lﬁ(k) 1|e™*dk (3.67)
If we make the variable change © = —kx, then

5 [Ty (LD

G = - / 2 (- 3)ede (3.68)

Therefore, by inspection we can rewrite the inversion integral as

oL (x,t) = —% /]tx Im [L(—%)]dr (3.69)
Similarly,
£ (x,t) = f% /a: Im|T, (fg)]dr (3.70)
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The tractions o, (x,t)and t,(x,t)on their own are the solutions to
the interfacial traction ahead of mode I and mode II cracks in dis-
similar media.

It is worth remarking that, as is the case with the crack running
along a single medium, the interfacial stresses can be expressed in
self-similar form by changing variable to u — £, e.g.:

o,.(x,t)=0.(u)= —% /u Im(X, (—u)|dv

3.2. Near field behaviour

We seek to investigate the near field behaviour of the crack tip’s
stress field, i.e., the behaviour as x — 0. This is related to the beha-
viour at |k| — —oco. Following Freund (1998) and Atkinson (1977),
we may investigate the asymptotic behaviour of the kernels in
Laplace space and then invoke the Tauberian theorems to deduce
the near field behaviour of the solution. In the |k| — —oo limit,
the kernel function K(k) has the following behaviour:

i (a2b2p, + @bl p, — b2b3 (1, + ;
K(k)w—i( b3y + azbip, — byb; (1, ﬂz)) N

k 2041, <a% - b?) (a% - b;) k

We can factorise K(k) into the product of two sectionally analytic
functions, say

(3.71)

VA VA
K. (k) ~—, K_(k)=—= 3.72
g~ (== (3.72)
From Eq. (3.63) we may deduce:
Py
T, (k) ~ —=VAK. (0 3.73
(k) K +(0) (3.73)
whereupon
limv7xé . (x,5) = Jim @Slzx(k) (3.74)
x—0" k— 400
entails, invoking the Tauberian theorem
Ki(s) = V2PoK, (0)VA LN Ki(t) = V2PoK , (0)VAVE (3.75)

532

An analogous result is found for mode II cracks. Hence, under a slip-
ping boundary the crack displays no oscillatory singularity and, as
in the single material case (cf. Freund, 1998), it is unbounded in
time. This character is confirmed in Section 3.3, where the full tran-
sient solution is examined.

3.3. Fully transient solution

Eq. (3.69) provides the fully transient solution to the bimaterial
crack along a slipping interface. Albeit slightly more cumbersome
on account of the three integrals along the [a;, b,] strip, the solution
is in essence as simple as the one obtained for the crack along
homogeneous materials, where the three integrals collapse into
just one along the [ay, bq] strip (see Eq. (2.5.29), p. 88 in Freund,
1998). Thus, it is immediate to obtain the fully transient solution
to the mode I (or mode II) crack along a slipping boundary.

The solution can be achieved through simple numerical integra-
tion of Eq. (3.54). We note that albeit the Cauchy style integrals
involved are convergent, the presence of the 1/(z+ k) pole may
make the numerical integration unstable, particularly when evalu-
ating values of k < 0. A simple way of avoiding all problems related
to this pole is to change variables via a mapping of the kind
Z + k' e'~%, This removes the pole and turns Eqn. 3.54 into three
regularised integrals over the partitions u e[l —In(a; + k),
1—1In(a; + k)]U[1 —In(ay + k),1 —In(b; + k)] U[1 —In(by +k),1—
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In(b, + k)]. In the present work, the integrals were solved numeri-
cally via Gauss-Kronrod quadrature. Given that both mode I and
mode II interfacial stresses display the same salient features, in
the sequel we focus solely on mode 1.

Fig. 3 offers a representative form of the solution to the mode |
interfacial normal stress, ¢, (X, t), assuming the loading is compres-
sive. Three different time steps are shown for the case when
a=1/6, a, =1/5, by =1/3, b =1/2.5, u,/u, =1.15. As may
be seen, the solution may be interpreted as consisting of four
superposed wave fronts, each traveling at the corresponding
speeds of sound in the two media (respectively, ¢, c,, ¢, and
¢, ). For the current choice of sound speeds, before the fastest wave
front reaches point x at time t = x/a,, the interface is undisturbed
by the transient part of the loading. Once this first longitudinal
front reaches a point in the interface, medium 2, the speeds of
sound of which are lower, is subjected to an intrinsically super-
sonic transient loading. Because no disturbance in medium 2 can
travel at ¢, the interface resolves the ensuing supersonic mis-
match by transferring a tensile load across the interface (relative
to reference). The magnitude of this tensile load appears insuffi-
cient to cause interfacial detachment. The singularity at the origin

6F '
— t=0.15
s — t=0.1
t=0.05

Fig. 3. The o,(x,t) at three different instants in time field using
a, =1/6, a =1/5, by =1/3, b, =1/2.5, p;/u, = 1.15. The position of the dif-
ferent wave fronts is marked for the t = 0.15 case. All units are notional.

— A
B

—D

Fig. 4. The o (x,t) at t = 0.15 for four different combinations of elastic constants.
Here (A): a; =1/6, a, =1/5, by =1/3, b, =1/2.5, u,/p, =1.15; (B): a
=1/6, a, =1/4, by =1/3, b, =1/2, W/, =1.15; (C): a; =1/6, a, =1/5,
by =1/2, by =1/1, w,/p, =1.15; (D): & =1/6, a, =1/2, by =1, b, = 1/0.5,
My /py =1.15.
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remains of 1/v/x character, as has been discussed in Section 3.2,
and is modulated by the v/A factor dependent on the different elas-
tic constants.

Varying the elastic constants results in wave profiles of similar
characteristics, as is shown in Fig. 4, which depicts the interfacial
normal stress at the same time step for different combinations of
elastic constants. It is noteworthy that the relative distance
between the 4 speeds of sound impacts the qualitative response
so much: if a, > a;, then the transient relative traction is much lar-
ger, as a result of medium 2 being subjected for longer periods of
time to a supersonic load. Conversely, if b; >> b,, the 1//x singular
character is delayed.

4. The welded bimaterial interfacial crack

In the case of a welded boundary, the interface is able to trans-
fer shear stress (in mode I) and normal stress (in mode II). As was
discussed in Section 3, the symmetry considerations that for single
materials mean that the shear stress (in mode I) and normal stress
(in mode II) vanish at the epicentral line of a flat crack do not hold
the moment the materials at either side of the said line change.
This means that in the presence of an interfacial crack, a fully
adhered bimaterial interface will need to transfer stress compo-
nents across, and entail displacements in both directions even
though the crack remains nominally flat. Such an interface is
referred to as a ‘welded interface’ (Atkinson, 1977).

In order to model the crack along a welded interface, the bound-
ary conditions must be modified accordingly. In the interest of gen-
erality, we consider the following boundary value problem which
includes both remote ‘shock’ shear and normal tractions; pure
mode I and mode II cracks can be obtained by setting Qo = 0 or
Py = 0, respectively.

ol (x,0,t) = 0, (x,t) — PoH()H(—X) x € R 4.1)
0y (x.0,0) = T, (x,1) QoH(t)H(fx) xeR (4.2)
[uy(x,0,6)] = ul" (x,0,t) —ulP (x,0,t) = v_(x,t) X € R (4.3)
[ux(x,0,6)] = uM(x,0,t) — uP(x,0,t) =u_(x,t) X € R (4.4)

where o, (x,t) and 7. (x,t) are now an unknown interfacial normal
and shear tractions, and where u_(x, t) and v_(x, t) are the displace-
ment field components are.

The continuity conditions across the interface are maintained,
which lead to the following general system of equations in Laplace
space:

1
Ry ()R, (K)
o (D R (k) + o (B3, Ry (k) e[y R () (b3 — 2K = 200.(k) B (k) ) -
—quz(k)(b? 21— 20, (k) (k))]

k[iiRi () (B3 = 2% = 200(K)By(K))— b By (K)paRa (K) + B3 (K) s R (K)

—iRa(k) (bf — 2K = 201 (K)B, (k)ﬂ
Ho(k)]  [V_(k)
‘ [L(k)] - [u,(k)]

where here R, (k) is the secular equation for the Rayleigh waves (Eq.
(3.19)), H.(k) = =, (k) — % and J, (k) = T, (k) — 9. We have defined
the stress and displacement components in Laplace space as in
Egs. (3.11) and (3.22).

For brevity, we denote the resulting Riemann-Hilbert problem

(4.5)

K(k) [x(k) - }—(P} =U_(k) (4.6)
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where the matrix K(k), given by

[;cn kn] _ 1
k12 koo Uy 1Ry (k)R (k)
2 (k)b pRa(K) + o (kb3 R (k) k[, Ra (k) (B3 = 2% = 200k} (K)) -
— 1Ry (k) (bf 212~ 20, (k) (k))]
k[ Ra(0) (B = 2% = 20(K)Ba (k) — by (k)RR (K) + B3 Ba (), R (K)
— IRy (k) (bf 201~ 20, (k) (k))]
(4.7)

is the (antisymmetric) scattering matrix, the elements of which are

=[5 20
- [0
Ao (o
and

SRS ch ST

We assume that X, (k) and U_(k) are analytic and integrable over
Re[k] > 0 and Re[k] < O respectively. We note here that the scatter-
ing matrix used here is a subset of the one that may be found tab-
ulated in ch. 5 of Aki and Richards, 2002.

4.1. Factorisation of the K(k) kernel

We would like to factorise the K(k) kernel matrix using the fol-
lowing representation:
K(k) = K_(k)K, (k) (4.12)
with K. (k) regular and holomorphic over the positive (negative)
half plane. Unfortunately, the branch cuts of o, (k) and $,(k) mean
that the kernel is not commutative. Abrahams (1996) proposed a
technique to approximate the kernel in these cases, which we
employ in the following.If we define the product decomposition

of the elements of K(k) as k; = kj k;, then we can write

K(k):[k” —ku}:{k{z 0} & 1|k, o0
kiz  kxn 0 k172 1 I;ﬂ 0 kTZ

=K, (k)€ (k)K, (k)
(4.13)

We note here that the product factorisation of ki = K(k) = k;, - ki,
and ko, = G(k) = k3, k3, has already been achieved in Section 3 as
the kernels of, respectively, the mode I and mode II cracks along
the slipping interface. The strategy to factorise ki, = kj,k;, would
be almost analogous to the one followed to factorise ki; and ks;.
Whereas the leftmost and rightmost matrices in Eq. (4.13) are
factorised to the desired form and are commutative (i.e.,
KK, = K;K{, = Kj,, the central matrix is not commutative,
despite it can be written in a form similar to the one considered
by Khrapkov (1971) and by Daniele (1978). As we argue in the
sequel, this caveat can be ameliorated by considering an Abrahams
approximation of the kernel matrix (Abrahams, 1996, 2002).
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4.1.1. Approximate factorisation of C(k)

The Abrahams approximation is reliant on the Padé approxi-
mant of one of its members. We describe this procedure in the fol-
lowing. For convenience, we begin by introducing

-1 1 -0 1 01
/ - ki o k12 _
C("){ . k_]lg_ . “1 o] =€ o)

k12

(4.14)

where the second matrix is trivially entire. Now,

_ 1 —% :I+i|:0 —k11:|
ke kiz [k 0

ki

(k) (4.15)

We may then reduce this matrix to its Daniele-Khrapkov form:

_ ki f (k) [0 ﬂ% _
R e 0" 1+ h(k)J(k), -
£ = \/f Bk = g1k

The matrix J(k) has the property expected of the Daniele-Khrapkov
form:

F=-1

However, the function f(k) is not entire, as it has a branch cut we
define, in analogy with Section 3, for Re[|k|| € [a;,b,], assuming
again that ap;, =a; and bpe = b,. Thus, a proper Daniele-
Khrapkov form cannot be reached, and an alternative strategy must
be employed to reach an approximate solution to the transient
problem.

We have narrowed down the problem of the matricial factorisa-
tion of the scattering matrix to the fact that f(k) has an unavoid-
able branch cut. This in principle appears to prevent the
matricial factorisation of the Wiener-Hopf problem, at least via
conventional means. It is nevertheless possible to cancel the
branch cut via recursive approximation of f(k).

The strategy relies on noting that f(k) is the quotient of two
functions of the same order, so that f(k) — 1 as |k| — oco. It is then
possible to construct an approximating function f,(k) such that
lim,_..f,(k) = f(k) and such that it has no branch cuts. One option
to do so would be to consider the truncated Taylor series expansion
of f(k), which would lend itself to a strategy similar to the conven-
tional Williams expansion of elastostatics (cf. Broberg, 1999). Per-
forming such expansion about |k| — oo would capture asymptotic
near field behaviour of the crack tip; in Section 4.2.2 we show that
the near field asymptotic analysis actually puts the scattering ker-
nel in Daniele-Khrapkov form. This approach has the caveat that it
fails to capture correctly the far field: the |k| — O limit is inevitably
misrepresented by the truncation of the Taylor series expansion.
The latter is important in capturing the wave fronts of the transient
solution and ensuring that any approximation retains causality,
which is eminently desirable in approximating a transient solution.

An alternative to the Williams expansion first offered by
Abrahams (1996) is to approximate f(k) not by a truncated Taylor
series, but by the function’s diagonal Padé approximant of order
[n/n] (with n € N), given by

_ Pa(k)
—Qu(k)’

where P,(k) and Q, (k) are two order 2n polynomials of the form:

(4.17)

fk) ~ fu(k)

(4.18)

Pu(k) =co+cik? + ek + .+ k",

4.19
Quk) =1+dik* +dok* + ... +d, k" (4.19)

10
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The coefficients of the Padé approximant are found in the usual
manner (see for instance Baker and Graves-Morris, 1996 p. 56
onwards), by matching the Taylor series expansion of f(k) about,
say, k = 0, with that of f,(k) up to order 4n on 4n regular points.
This ensures the approximant retains the adequate asymptotic
behaviour at |k| — o and k — 0.

As may be deduced from Eq. (4.18), f,(k) will have 2n zeroes
and 2n poles, all of them simple and symmetrically disposed lying
within the branch cut Re|k| € [a;, b,;]. However, because f, (k) is the
quotient of polynomials, which are entire functions, the Padé
approximant will entail no branch cuts, leading to the desired
Daniele-Khrapkov form of C(k) in approximate manner. In effect,
the Padé approximant serves to substitute the branch cut in f(k)
for infinitely many discrete poles laying in the same interval
(Abrahams, 1996). As a Padé approximant, it has the property that
fa(k) — f(k) as n — oo, so the approximating solution resulting
from this kernel is guaranteed to converge to the actual solution,
for sufficiently large n.

Using f,(k) instead of f(k), we can introduce the Abrahams
approximating kernel:

0 _ 1
. B ) _ w0
C(k) ~ Cy(k) =T+ h(k), k), with J, (k) = [fn(k) 0 }

(4.20)

With C, (k) written in its Daniele-Khrapkov form, we can fully fac-
torise it as explained for instance in Daniele (1978), by considering
its (matrix) logarithm

In C,(k) = In [T+ h(k)J, (k)] (4.21)

If we expand this in series, use ]ﬁ(k) = —I, and then group the terms
in I and ], together, one is able to decompose the approximant
matrix C,(k) into two sectionally analytic matrices:

In C, (k) = In C; (k) + In C; (k) (4.22)

where C (k) is analytic in the |k|>0 respectively, and given by

C: (k) = cos [h (k)JT + sin [h (k)]J, (k) (4.23)

In Section 4.1.3, we discuss how to factorise h_(k) + h. (k) alongside
the product factorisation of ki (k) = ki, (k) - ki, (k).

4.1.2. Regularisation of the discrete poles

With those two factorisations in place, there remains a problem
with Eq. (4.23): the matrix C,(k) is regular everywhere except for
on the 2n zeroes of P,(k) and Q,(k), which are carried as poles by
J. (k). We shall refer to the zeroes of P,(k) as {+p;}!,, and to the
zeroes of Q,(k) as {£q;}[;. As we have said, these lay by construc-
tion symmetrically disposed about the origin and fall within the
branch cut Rel|k| € [ay, b,]. These poles must be removed to finish
the factorisation. As is detailed in Clancey and Gohberg (2013), this
is typically achieved heuristically, by introducing a regularising
matrix A(k) of the form

A(k) = diag Z(k ipj)’l,Z(k + qj)f1

] 1

(4.24)

which merely denotes that the regularising matrix must cancel the
poles of C,(k) and be meromorphic. For convenience, we shall
define it such that

D™ (k) = C, (k)A(k)
D (k) = A1 (k)C! (k)

(4.25)
(4.26)

which ensures that D~ (k)D* (k) = C (k)C;! (k). For both analytical
and subsequent convenience (see Section 4.2, where the Wiener-
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Hopf problem is finally solved) it is better to consider the inverse of
Ci(k), ie

o [C )] Ak

The specific form of the regularising matrix A(k) is largely a
matter of choice. Here, we choose the following type, proposed
by Abrahams (1996):

n a
_ il
’< P] Z k+p; Z k-p; Z k+p;
j=1 j=1
Z/j Wj 1
Z k—q; + Z k+q; + Z k—q, + Z k+q;
j=1 j=1

where ¢, ¢}, d;, d vj, w;, w; are unknown coefficients to be deter-
mined so as to guarantee that the poles in C,(k) are cancelled.

The latter is done by requiring that the elements of the matrices
D. (k) in Egs. (4.26) have no poles at k = +p; and k = +q;. Because
there are 4 times as many unknown coefficients as there are poles,
this task becomes increasingly more protracted the higher the
order of the chosen Padé approximant f, (k). It is however immedi-
ate to identify the system of linear equations that lead to the deter-
mination of the coefficients.The procedure to obtain the
coefficients of the regularising matrix is as follows. Consider the
elements of D™ (k):

[D* (k)] (4.27)

A(k) = (4.28)

dy; = cosh_(k) {1 -

smh (k)
{Zk q] }Z,qu (4.29)
dh, = —cosh( { k—p; Zk+pj
sinh_(k) oy W
- 1+ + 4.30
Lm | aEgt Xkrg 430)
n Cj n d
dy, =sinh_(k)f,(k)|1 - = p, 2 k+p,-
v’ w;
+cosh_(k) 4 4 4.31
{Zk q] j=1 k+ 49 ( )
n C/ n d’
- i J
dy, = —sinh_(k)f,(k) L = Pj+j:1 K+,
ho(k)|1 Z": Z": Wi (4.32)
+cosh_(k) |1+ :
k=g —k+g
and of [D* (k)]
n n
_ i d,
di,]”" = cosh, (k) {1 - S __ J
[ 11} + = k*Pj = k+p)-
sinh, (k) |~ Y W
n 433
fn (k) =1 k— qj j=1 k+ qj ( )
inh, (k) Y, W
)t =3y iy ]
(] fa(k) Hk-q Hk+g
—cosh,( (4.34)
+ {Zkfp] Zk+pj
, 1 n
[dZI} _COSh {Zk,q) jz:k+qj
n
—fa(k)sinh, (k)1 - 4.35
falk)sin m[ k_pj Zkﬂ,} (4.35)
-1 v;
[d3] =coshy(k)|1+ Zk qu Zk
J=
k) (k) 4.
+ fak)sinh, (k {Z: Zkerj (4.36)
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Let us now express f,(k) in terms of its Mittag-Leffer expansion
(Hormander, 1973):

7 1 .
7 - 437
- f k) C+Zk —p? (437)
with
Px(q;) Q.(p)) :
9. = 2q, ) =2p, ) c=limf, (k) ~ 1 (4.38
AN A

Consider then, say, d;;, and let us examine the conditions that make
this coefficient be pole-free in Re[k] < 0:

h_(k
cos (<){{ jzk—s—p]

—tanh_(k) E +

k—pj
n v noow
J + J }
Lzlkqj j:Z]k+Qj

(4.39)

n (Sj
2 )7 p)

If we focus on the terms that bear poles at k = —p;, we find the
term:

(4.40)

Z

=1

v ow
d+tanh L4 L
l—pJ {Zk a ;sz

By setting, say, k = —p;, we find that the only way the pole at
k = —p; vanishes is if:

5 |v= Y nW
— +
2p; {Z —bi — G ; —Di+ ¢

j=1 J

di = tanh_(-p;)

(4.41)

Similarly with the rest of elements, we would find, fori=1,...,n:

d—tanh (-py [ Y W (4.42)
; = tan * '
r P | oi-g e
n W
4 = tani ( - j 4.43
2191 Z —P, 4 121: 4= p’} o
5,
¢; = tanh, (p;) = + .
= tanh. ()5 Lzljp 7 Zpﬂrq] (4.44)
¢, =tanh,( T+ Z 7 e
qj = pi+ g;
n c 1 d;
v;=—tanh /i o : 0
+(g; )qu { 4 —-D Fau+D ( )
n
v, =tanh, (g) -+ [1 - o : 4.47
A +(q) 2q; { =49-P Z49+Pp ( )
ey 2 " ot . nd (4.48)
2q j=1 ~9i— P =1 bi=4i
. o V_x a n Cj _ & dj
wi = tan h,( qi) 2q' |:1 ; —q; — pj ]:Z]p_) —q; (449)
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This set of 8n relations form a linear system of equations of dimen-
sion 8n. Its solution renders the value of the pole cancelling con-
stants cj,c},dj,dj’-, vj, V), Wy, Wj, i=1,...,n, and completes the
factorisation. The solution can be easily achieved through linear
numerical algebra for each case.

4.1.3. Wiener-Hopf factorisation of the scalar terms

In introducing the Abrahams approximating matrix, we have
shown it to depend on the Wiener-Hopf factorisation of two scalar
terms, namely: ki, = k;,k5, and h_(k) + h, (k). We perform these
factorisations in the sequel.

Product factorisation of k;,. The term k;, (given in Eq. (4.10)
has a structure similar to that of k1; = K(k) and kx; = G(k), the pro-
duct factorisation of which was obtained in Section 3.1. As before,

we shall derive  the factorisation for the case
a; <a;<by<ci<by,<cy.
For convenience, we begin by renaming the term:

(k) = b} — 2k — 201(k)B; (k) (4.50)
and reorder the terms of k;, as follows.
ki — { mk) (k) }

R (K)  1Ry(K)

11, (k) { 17, (k) Ry (k) ﬂz}
—k 1- 451
Raor; |1~ 1,080 Rk 51

We may now factorise each multiplying term into sectionally
analytic functions, which consists of an entire function k
and the secular form of the Rayleigh function. The factorisa-
tion of which are known (see Freund, 1998; Achenbach,
1973). Say

k = sign(k)k'/*k'/? (4.52)

where k}/* has the branch cut so that it is meromorphic on the
+k > 0 plane, and

Ry(k) = R; (k)R, (k), with R;(k)

=2 (ag - b§) (¢, + k)DZ (k) (4.53)
where D, (k) is given in Eq. (3.33). The factor #,(k) has no poles,
bears branch cuts on Relk| € [a;,b,], and has the property that
1, (k) — —a3 as |k| — oo. We can therefore formally express its fac-
torisation using the Plemelj formula as:

1 /dHoc In ’72( )dz

T oni 2mi —k

Inn3 (k) = (4.54)

d—ico

We can rewrite the integral in an analytically convenient form, by
closing the Bromwich contour with a semi circle at infinity. Thus

~d-+ico o . .
%wdz:/ +/ +/ +/ (4.55)
Je z—-k d-icc Jr. Jr_. Jj
where
/ — 2inIn[-a] (4.56)
]
b2 dz
[ = [ o -] ;%
I+ ay
b, 92
:21/ arctan 2z (4.57)

m\/ﬂ z—k
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whereupon

deico b,
/ = -2imln[-a3] - 21/
d—ico ay

x arctan —2z dz (4.58)
[ —a2 /bz 2|2k ’
1 (b b5 — 222 dz
In n3 (k) = +{ In[—a? +—/ arctan
R A S Nl
(4.59)

Finally, we use the same strategy developed in Section 3.1.1 to
achieve the product factorisation of the term

11 (k) Ra (k) py

F(k)y=1- == 4.60

=100 R (460

This term has poles at +cy; the zeroes of 7, (k) are found to be
ilb—z b2 — (4.61)

This means that if b, > 2a, the poles fall on the imaginary axis, and
need not be considered, and if b, < 2a, they fall on the real line, and
must be considered. The latter only happens if u, > 27, (or
v, < 1/6). The branch cuts are defined under the assumption that
a; < Gz < by < ¢1 < by <y, for Relk| € [ay, by).

If a; < e, we can proceed as we did in Section 3.1.1:

1 [*"=InF(z)
InFok) =% 5 /d g (4.62)
with
d+ico
/ / +/ +/ (4.63)
d r. g
Here,
a i, (b% — a
[=imin(1- 2028 dl : ) (4.64)
7/ a3y (bl - a%)
/ +/. =2i /.a2 arctan/! (z)£+ /b1 arctan/ (z)—z
/S VA kT ok
bz dz
—|—/b1 arctanlg(z)m} (4.65)

where

1 (463 (2630 1K) - 8a3k + b5 — 617 (41<Z @ -\ o K (B2 2k2>2>
m (—16bfk‘ (a% +k2> +16a2k° + bt — 8bEK? +24b§k“) <b§ —2(\/05 — kb2 -k +k2)> B
202\ /i — a2 (bf 72/8)1/1;? K

li(k) =

1 (k)
2, (b —4a3 (03 -7 ) (b} — 812D +224k"b‘1' —16k" (a3 +K*) b} +16a3K° ) 57 (k)

h(k)=—

with
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15" (k)

1P (k) =

Thus,

03 (B34, b — (pipb + 2% (A4, — 3pp)b5 + 4K* 1y ) b5 + (6K b + 4 (K (6p4, — 9pt,)
—JBE bR — I — a3 i - aguz)bi + 8K, <3k4 + 0 =01\ I a2\ Ji - a%))b‘]‘—

i (kzﬂzbg + (k“ (411, — 611) — 267 — P\ 02 — 1\ lE — @3 Jie — agu2> b2 + 203 (b3 + 20 (1, - 3,)B% + 4Ky ) +

+4K* 11, <k4 + \/bf —K \/bi -k \/k2 - \/k2 - a%))bf + 8a2k* <,uzb‘21 + 2K (g — 34,)b3 + 4k4,u2)) -

—4a2 (bﬁ - k2) (/,le? + 2K (1 — A, ) BS + 12K (2p, — )Y — 8((2,u1 — W)k +2a2 (p, — ,uz)k4>bf +16a2k® (u, — ,uz))
(62— 2°) /b2 — 2\ i — a3 - Wﬁﬂbg + 61<2<\/b§ —3\ e - -\ 18\ i - a$>b§+
+4<<\/bf - I<2\/I<2 - - 3\/b§ - kz\/k2 - aﬁ)k4 + 2a§\/bf——k2 K- a%k2>b§ - 8a§k4\/ﬁﬂ>b?+

L2k (ﬂ W @bt + (ﬁ/ﬂﬂa% e (2\/b§ N NN a%>>b§+

LAk <72\/b§fik2\/k2fa§a% 263/ — I\ I - @ + 1 <\/bf —R - -\ -1\ fié - a§)>b§—

—8azkt\/b? — i ﬂ) bl - 8@tk (b3 — 26 ) /b3 — I\ i — 3

S 172
InF.(k) = 1%{1n<1_22:ﬁg*z§g> *

(1)
1(32)(’() +{ j:f arctanl (z) % + jf; arctanl(z) £ + j:f arctanlg(z)z“fﬁ{]}
157 (k) (4.66)

= b} (—2 <\/ @\l b} — k ) (B3t + 20507 (g = 341,) +4K* 1y ) + bibpe, — b7 (Bapty + 263K (2 = 3p,)+
+4I<4u2>) 4a2 b2 )( —4I% (y — 1 <\/k2 —@\/I* - b - k2> + b}y + 267K (1, — 2,u])>

2631,/ — a3 (b} — 22 \/b§_1<2<2\/k2_a$\/k2—bf+bf_218) <—4k2«/k2—a$‘/k2—bf+b‘]‘_

—4b%K + 4k“) ( b2 — kZ))

)
4 (5

If a; > ey, then it is best to consider a function of the following kind
instead:

13
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F(k) = <k2 _ a%) myk) — ny(k) Ro(k) py | <k2 _ a%) K where
b | (¢ -a) K -a Rk 11, (k) ) - %
(4.67) my
with

In this case, #,(k) is already factorised, and k> — a2 is entire. The
branch cuts for this version of F(k) remain the same, but the poles
have changed: there is a simple pole in k= +a;, and at the
k = +c;. Both poles fall ex hypothesis within the branch cut. This
form of F(k) has the advantage that F(k) — 0 as |k| — oco. In that

ml) = —4b7 (aﬁ <8k4(,u1 ) (m\/WJr kz) —2b5K% 1, — 4b3k* (u, — 2,uz)>+
+4K° (21, — 1) (\/ﬁ\/ﬂ+ k2> — byk* 11, + 4b3K° (1, — ,u1)> + 8a2k* (4k2 (1 - 1) (m\/ﬂJr k2> +
b () — 263K (1, —241,)) + gy (2 (m\/ﬂ + k2> _ b§> 4B (_418 (41, — 1) (\/ﬂ\/ﬂ+ 1<2>+
b3, + 4B (20, — 1)) + 6} <4k4 (21, - 1) Wﬂ N zﬁ) b3 () + 4B o, m)

event, we have that mﬁz) _ bf 1 & _ @ (bf B 2k2> \/ﬁ

" In H(z)
/J Tk =0 (4.68) x (4(k2\/a§ — 12\ /B2 kP + k“) +bi- 4b§k2),

and
& dz by dz
=2i arctanm; (z) — arctanm;(z) — m
/r}+/F MI 1(),z—k+/a2 22 —¢ my(k) = —25

b2 dz
+ /b 1 arctanm3(z)z_k} (4.69)

mi" = (bi - ZkZ)MH/k2 —a?b} - (bi - 2k2>\/k2 —a (ﬂzbi +1 (8, - 2u2)>b?+
1212 (3;42,/18 @B 12 (1, — i) — b — 4K\ — I\ [ — 1[I — gy

+12K* (1, — Zul)\/kz —a?+4aiu, \/bf 'S \/bi - kz\/k2 - a%) b} +4<—4w/k2 — @1k + 8/ — a2+

+4b5 (1, — 1)/ K — a2k® +4,uz\/bf - 1<2\/b§ -k \/kz — a2k’ — b3\ /I — a2 p,kt+

+a2 <8(u] - ,uz)\/kz —a2k® - 4\/bf - kz\/bﬁ - kz\/k2 — @kt —4b3 (py — 21,/ K — @2k — 2b5, /K — a%y21<2>>bf+

+8a2k* (b; - ZkZ) (uzbg + 2K (g, — ,uz))a/kz —a?

14
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Before discussing the branch cuts of this function, we shall

and reduce it to a more useful form. We note that in invoking the Ple-
m — 2<u1 \/bi - kz\/k2 - a%\/k2 — a3bf + 2k (u, — 4,u1)\/b§ - kz\/k2 - a%\/k2 —a2bj+

+<—4 b — KLk + 4(6/11 Vb2 -1\l - a2\ K — ag+

i <\/bf — 1@ + b2\ /b — I =3,/ — 1P\ I — a2\ [ - a%))k“ — b3 (40} + B3) /b — K, + a%bguz\/ﬁ> bt

—2<—4\/Iﬁ7u21<8 +4<,u2\/bf — kb5 — \/bg - I<2\/k2 - af\/k2 — a2, + 24, \/b§ - kz\/k2 - af\/k2 - a%)ksf

b /02— 1K+ @ <4u2\/bf 1K+ (-4 b — b} — 803 — 12\ /I — a2\ /i — i, +

83— 12\ I — a2\ JIP — a§>k4 b, /b — k2k2>>b$ 166K (11, — p1,) (/b2 — I3\ JKP — @2 — a§>

m{" (k) melj formula to write the formal additive factorisation of h(k), we
ms (k) = m? (k) would have

3

with h (k) — izim. /d dj 75‘“;3?2(2) dz (4.75)

mi) = (021 <b;‘uﬂ/k2_a§_b$,/k2_a§ (B2, 47 (41 - 20,) ) +
+2 <a§\/k2 —b2 412 <\/k2 —a2— \/k2 —bf)) (b§u2 +2K (1, —,uz))>

m? = 2,/ —a3 /3 -2 (b;‘,ul VI - @+ 2051 — a2 (s, —240,) +
AR (1 — 1) (af\/kz —bI+ K <\/k2 —al-— \/k2 7bf>>>

whereupon
_(k+ay) 17 [*® dz
F.(k) = =R exp | F /a] arctanml(z)m

b dz bz dz
+/az arctanmz(z)ﬂJr/bl arctanm;(z)zk} }(4.70)

Thus, we reach that the product factorisation of k;, is:
12 M3 (k)
© Ry (b,

Additive factorisation of h(k). The need to factorise h(k) into h. (k)
arises from Eq. (4.23), whereby

C.(k) = C, (k)C! (k) = cos[h_(k) + h (k)]l + sin[h_ (k) + h, (k)]J,

ki, = —k

Fok), iy = kppkl, (4.71)

=1+h(k), (4.72)
Comparing both sides, we find that
h_(k) + h, (k) = arctan [h(k)] (4.73)
where
ki1 ki [k
h(k) = — =4[
(k) k12 kia \ ki1
o (k)b iRy (k) + o2 (K)b3 4, Ry (K)
k(1 (k) 1Ry (k) = 1y (k) iR (k)
% b%ﬁ] (kZ)MZRZ(k) + b%ﬁZ(kgﬂlRl (k) (474)
o1 (K)bY 4, Ra (k) + 012 (K) b3y Ry (k)
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where h, (k) would be holomorphic in the positive half-plane, and
h_(k) in the negative one.

Due to the form of h(k), the expression above is not particularly
easy to handle. However, Eqn. 4.75 can be reduced to a more ana-
lytically useful expression by considering the additive factorisation
of h(k) instead. Let us define

1 —ih(k
£ =1 (4.76)
so that arctanh(k) = 3 In g(k). Then
Ing(k) =Ing. (k) +1Ing_(k) = 2ilh, (k) + h_(k)] = h.(k)
1
=5 Ing_ (k) (4.77)

where g (k) is the product factorisation of g(k). The factorisation of

g.(k) can be achieved by invoking the property that if
Ing(k)=Ing, (k) +Ing_(k). Thus, by simple term-by-term
differentiation:
ding(k) _g'(k) _ 2ih'(k) _g\.(k) g (k
= = = + 4.78
kgl 14nk) &0 £ K (478)

and renaming giﬁﬁ) = L.(k), we find we can avoid the branch cuts of

20
the arctan h(k) (or, equivalently, the In g(k)) by performing the sum
factorisation of

2ih’ (k
2K _ o = 1 k) 1 (k)

1+ h(k) 4.79)

Having achieved it, we can write h. (k) in terms of the primitive
function of L. (k), to wit:

ho(l) = L / L (K )dk (4.80)
2i k
We therefore seek the additive factorisation of I(k) = 11";;}22),
given by the Plemelj formula:
d-+ico L/
L (k) — ii./ i) 1, (4.81)
270 Jg i 1+ h(z)2—k
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For all subsequent purposes, we define the branch cuts due to the
terms in the integrand so that they fall within the familiar strip
Relk| € [ai,b,]. We need to examine the location of the poles due
to this term. Operating in terms of the k;(k) factors, we find that
the denominator of I(k) entails poles when

2
2kt (K )kaa (k) <\/kn (K)kaa (k) — il<12(k)> —0 (4.82)
Thus, the integrand has simple poles at ki;(k) =0 and kj» (k) =0,
which happen to be the same as those in F(k) and G(k) discussed
in Section 3. Furthermore, there are also poles at

ki1 (K)kaa (k) = iki2(k) or ki1ka + I<f2 = 0. These poles are related
to the Stoneley waves along the bimaterial interface (see Barnett
et al, 1985; Chadwick and Borejko, 1994), inasmuch as

ki1ky + kfz =0 is the secular equation for the Stoneley waves
and, therefore, h(k) = 1 for them to exist.

Nevertheless, because I(k) does not appear in logarithmic form,
the poles entailed by its denominator are not branch points but
isolated singularities and, therefore, can be dealt with individually
in terms of the residue they leave when applying the Plemelj for-
mula over one of the two k half-spaces. Any complex pole will have
a mirror image about the real line, rendering the compounded resi-
due 0 in a way similar to the Rayleigh function (see Freund, 1998).
The only causes for concern would be the real roots of the denom-
inator, if there were any. Even then, if the root falls within the
branch cut then it leaves no residue. Say however that k = +wj; is
a positive real root such that w; < a; or w; > b,. The residue left
behind by any such root can then be computed almost immedi-
ately. Expressing [(z) as

1V(z)
1?(2)

1" (w)
(w; — k) (w))
(4.83)

I(z) =

= Res[z = wj] = lim(z - w)) =

We omit a transcription of I (k) and I”) (k) as they can be immedi-
ately identified. In practice, owing to the lengthy analytic form of
the Stoneley waves, it is simpler to evaluate the w; pols numerically
and then compute the residue above if so required; the reader is
directed to Barnett et al. (1985) and Chadwick and Borejko (1994)
for an in-depth discussion of the place of these roots.

The role this residue would play is that of a pre-factor in the
additive factorisation. Indeed, using the same strategy we have
employed in previous sections, we would find that the Plemelj for-
mula (Eq. (4.75)) can be written as:

2ni;Res[z:wj]:/d +/r++/7+/]

The Jordan integral vanishes since h(z)* is of higher order than
zh'(2),

/ 2i(z) 1
]

1+h@z-k
The integrals along the branch cuts can be expressed invoking
Schwartz’ reflection principle. We find:

@ by by
‘L+lfﬂﬁAlmMm;%lemMﬂ£%+AlmHM£%}

(4.86)

d+ico
(4.84)

—ico

(4.85)

where [ (k) — (k) when \/af -’ i\/k2 — a3, l(k) — I(k) when
\/af 'S Hi\/k2 — and \/a§ 'S Hi\/k2 —a2 and I5(k)— I(k)

\/a% 'S '—>i\/k2 —a%,\/ag 'S Hi\/k2 -,

when and
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\/ b — I — i\/ k* — b3. We omit a full transcription of these terms

owing to their length.
Thus,

L (k) :i%{/:z

- ZRes [z=+w)]

tmih (2%,

by by
+lemm£%+ﬁlmam£5}

(4.87)
Then, we can write that
h..(k) :% {f. /k jZRes [z==w] (k’)dk’i}—r{. / ‘az Im{h (2)]In(z - k)dz
by by
+/ Im[lz(z)]ln(z—k)dZJr/ lm[l;(z)]ln(z—k)dzH (4.88)
a by

Note that if any pole needs to be included, their terms take the
form:

/ Res[z = +w;] (K')dK o Cln(k — w;)
k

This finalises the factorisation of the matricial Wiener-Hopf
problem.

4.2. Solution of the matricial Wiener-Hopf problem

Having obtained the factorisation of all terms in the matricial
Wiener-Hopf problem, we may now proceed to solve it. Thus, con-
sider the equation:

1

- EP} =U_(k)
where all factors have been derived in the previous section, albeit
K*(k) ~K; (k) is given in an approximate form such that as
n — oo, Kz (k) — K* (k).

The presence of the 1/k term requires further care, particularly
because the cancellation of the pole via the usual procedure (see
e.g. Freund, 1998), which relies on adding and subtracting
K*(0)1P term to both sides of the equation so as to cancel the
k = 0 pole, will not work owing to the fact that K*(0) = &. This
is because the K" (k) matrix is proportional to ki, « vk. Thus, in
reality the expected 1/k term of LK" (k)P is a 1/vk term, and the
pole cancellation strategy may be reworked by defining
K" (k) = vkL" (k), whereupon,

K*(k)z, (k) — %L* (k)P = [K™ (k)] 'U~ (k)

K (KK (k) {&(k) (4.89)

Thus, we may avoid the pole at k = 0 by adding and subtracting the
term 1/vkL*(0) to the left side of equation, leading to:

+ _l + R G
K" (k)Z, (k) \/E[L (k) — L (0)]P
= [K (k)] "U~ (k) + L/%U(O)] P

We may now separate the Wiener-Hopf equation into two section-
ally analytic parts:

+ 1 + +
K (k)2+(k)—ﬁ[L (k) —L*(0)]P
— K (k1 'u- 1o =
=K (k)] U (k)+\fk[L (0)]_P=E(k) (4.90)
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Where we have used that [I(i(k)]_1 = J:L* (k). Here E(k) is, as pre-
scribed by Liouville’s generalised theorem, a matrix the elements of
which are polynomial of a certain order. Following an almost anal-
ogous reasoning to the one discussed in Section 3, we can invoke
the Tauberian theorems over the expected asymptotic limit of the
stress and displacement fields to deduce that E(k) = ¢ owing to
the behaviour of the stress and displacement fields at infinity. Here
& represents the null matrix.

Thus, we are able to separate the Wiener-Hopf equation into
the following approximate solutions:

1
k

L. (k) =
- 1.
U (k)= L

[1 - [L*(k)]”L*(O)]P (4.91)

(k)[L*(0)] P (4.92)
We note that in the Abrahams approximation the matrix K, (k)
takes the form:

— Sinf (k) Az (k) +cosh, (k) A

TR n(k)

K* (k)= Ai{glcl(j (k) =k, (k )lim

and similarly for L*(k), with each component given by
L; (k) = VKK;; (k). Recall that the A;(k) are the elements of the reg-
ularising matrix A(k) given in Eq. (4.28).

Thus, for mode I (setting Q, = 0) we would have that the inter-
facial normal traction is:

Z.00 = [1 - e (20O 0 - L0l 0) (49
And for mode II (setting Py = 0):
00 =2 [1 - e (G0 - LyLp0)|  (495)

It is important to remark that both the mode I and mode II
cracks entail, respectively, non-vanishing interfacial shear and nor-
mal tractions as well. The shear traction acting along the interface
for the mode I crack is given by:

I B @ 1 n _
100 = 1y [0 (R 0) (4.96)
and the interfacial normal traction for the mode II crack is:

Wy % 1 + -
(k)= kL7 (k)| (L1, (k)Ly,(0)] (4.97)

These two additional tractions exist along the welded interface
because of the existing elastic mismatch between the two medium.
In mode I, the interface must be sufficiently strong as to sustain the
associated t', (x, t) traction. We note here that if medium 1 and med-
ium 2 were to be the same, then the solution described here col-
lapses to that of the standard mode I+II crack found e.g. in
Freund (1998).

These equations display the oscillatory singularity at the crack
tip observed in elastostastic problems even for the lowest order
approximation. This is shown in Section 4.3, where the equations

smh (k)
(k)

17

A2 (k) +cosh (k) Arz (k)
o | cosh, (k)Az1 (k) —f,(k)sinh, (k)Aq1 (k) cosh (k)/\zz(k) —fa(k)sinh, (k)Aq2(k)
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are solved numerically for a number of loading cases. The reasons
for this singularity are shown in further mathematical detail in
Section 4.2.2.

4.2.1. Inversion of the solution to the interfacial tractions of a welded
bimaterial crack

The inversion of the expressions attained in Eqgs. (4.94) and
(4.95) can be obtained via the Cagniard-de Hoop technique
(Cagniard, 1939; De Hoop, 1960). We perform that of X, (k) in
Eq. (4.94) as an example. If we set the spatial inversion integral
first:

} . {I(;z(k) KE(’O} (4.93)

K3, (k) Ky (k)

. 11

. _ - skx
0.(x;8) = i s ), X, (k)e**sdk
_11 /
T27i s Jy
Py 1 + + + + skx
X 1- KK (K3, (K7, (0) — K3, (k)K3, (0)) [ e**dk
(4.98)
By setting T = —sk, we can proceed as before to reach
1 T
0. (x 1) = —— / 1le [L (— ;)]dr (4.99)
An analogous result may be quoted for the mode II crack:
L(x,y) = 77/ Im ]dr (4.100)

All other components of stress can be obtained in the same manner.
Having obtained the interfacial tractions, the full field on the two
half planes can be immediately obtained (see e.g. Aki and
Richards, 2002, p.39).

4.2.2. Form of the near field solution

The near field solutions (and the corresponding stress inten-
sity factors) for the bimaterial plane strain crack were fully
characterised by Achenbach et al. (1976) using a procedure lar-
gely analogous to William’s for the elastostatic case (Williams,
1959). Subsequent work by e.g., Deng (1992) or Liu et al
(1993) aimed at examining higher order expansion by means
of the Williams asymptotic expansion of the Kelvin-Helmholtz
potentials.

In the present work, it is possible to seek the near field solution
by means of the asymptotic form in the dual Laplace space, i.e., in
the |k| — —oco limit. In that case, the asymptotic behaviour
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of the K(k) scattering matrix can be expressed in Daniele-Khrapkov
form:

—il ((ag - bf)bgu + (a% - bi)bfﬂz)

Kik) =4
(k) (a2~ b2)azp, — (a3 - b2) iy

11
20 11, (@ 7) (@13

_ g (@b (BB )bire) (1 (At (B )abrs) o [O
2k? tafty (@27 ) (a2 -b3) ((a3-b7) b3y +(a2-b3 b3 py ) ki1
=a(k)I+ b(k)]
where here

Ikl —i((a% - bf)b;,u] + (a

5— bg)ﬁ:“z)

T (@8
1 (@b - (B-B)an, o 1
g R @ o)

(4.102)

We use k/|k| to emphasise the importance of the sign of k in the
procedure.

The treatment we offer here relies on examining the near-field
Daniele-Khrapkov factors, which are (Daniele, 1978):

K. (k) = b.(k)[cos a. (k)I + sina. (k)J] (4.103)
so that
K(k) = K_(k)K, (k)
= b_(k)b. (k)[cos (a_ (k) +a, (k) +sin (a_ (k) +a. (k)]

(4.104)

whereupon

b_(k)b. (k) cos (a_(k) + a,(k)) = b(k) (4.105)

b_(k)b. (k) sin (a_(k) + a,(k)) = a(k) (4.106)

From here we deduce that

a_(k) + a, (k) = arctan {a(k)]

b(k)
@m@%ﬁ%ﬁm@—@lg
@y (0t 1) -~ atuy (@3 ~b3) K

(4.107)

= arctan [—

and

b_(k)b. (k) = 1/ a(k) + b* (k)
1

~ 2k,
J (a0 — 1) = B} 01y + 1)) (@3 (1t — 1) + B3 (1 + 1) )

CRGICED:

X

=k"'A
(4.108)

These two factorisations can be achieved heuristically.

18

(-
(-
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The product factorisation of b_(k)b, (k) would be immediate,
say:

by )adu, — (a3 - b3 )@ty )
by )b+ (a3 — b3 )by )

(4.101)
o))

0

b.(ky=k"?, b (ky=k’A (4.109)

where k"% has its branch cut defined so that the function is mero-

morphic in the positive half-plane, and k~"/? in the negative half
plane.

The sum factorisation of a(k) is also simple owing to the pres-
ence of the |k|/k factor. We merely need express

i(b3u (@ ~b1) +biia (@3~ 3) )] Argii

W | (@) (@ #) | T

(4.110)

where Arg[k] is the argument of k, which is defined so that it has its
branch cut for Re[k] > 0. Thus we need only separate the argument
function into two analytic branches. Now, by definition

Arglk] = —iln ‘;" (4.111)
which has the same branch cuts.
Thus, we can write
a. (k) = Fi
« arctan {i(bglﬁ (a% b ) Jrbn“z( b2)>:| In k|
a3 Uy (a% - bl) — il (az - bz) k
(4.112)
With this in place, we note that
arctan [_l(b;'u] <a2 b2> + b (az bz))}
as <a% - bl) — a3l <a% - b%)
= arctanh { batt (a% b ) i, (az bz)]
as i, (‘12 - b?) —aifly (az - b%)
:——lln Eflﬂ = —ime (4.113)
where we define
_ (bg.“l (a% b ) +bi, (az b%)) (4114)

a5t (a% - bl) -G, (az - b%)

Having separated both a(k) and b(k) into sectionally analytic
functions, we have the asymptotic scattering matrix separated,
and can employ Eq. (4.94) to find that in the near field,



B. Gurrutxaga-Lerma

iln

~ Pok™% cos
0 27

=, (k)

1 ! —1/2—ie
lfﬂ In (%)} ~Pok 2 (4.115)

Upon inverting this, we find that, as expected, if one introduces an
arbitrary length parameter ro

—ie 1

0. (X;S) ~ o5 (4.116)

7 ()
m
which renders the usual logarithmic singularity, as usual makes the
asymptotic solution unbounded in time with v/t growth. An almost
analogous oscillatory singularity would be found for mode II.

We note here that the near field approximation can also be
obtained by taking the |k| — oo limit in the approximate form that
was given in e.g., Egs. (4.94) and (4.95). The Padé approximant
fa(k) has by construction the property that f,(k) — 1 as |k] — oo
for all values of n. This means that in the asymptotic limit, K;, (k)
takes a mathematically analogous form to K(k). In particular, given
that h(k) ~ a(k), in the asymptotic limit of Eq. (4.93) we would find
that for any n, the dominant terms in the asymptotic expansion
allow us to write the K (k) matrix as

+ 1 1 cosa, (k) —sina, (k)
K (i I(+ k .
a (k) ~ K (k) = kl/zJﬂlﬂz(a%_lﬁ)(a%_b;)[sma,(k) cosa, (k)
(4.117)

and the rest of the decomposition would follow naturally to reach
Eq. (4.116).

The presence of this oscillatory singularity in both the nominal
Wiener-Hopf problem and the approximating one is not a core
result of this work, but rather serves to verify that the results
matches in this article match the expected behaviour observed in
the elastostatic case. The presence of the logarithmic singularity
ought to regarded undesirable because it entails interpenetration
of the crack faces about the crack tip. Because this region, in case
of existing, would be spatially localised about the region immedi-
ately surrounding the tip, the transient solution away from it
would largely remain the same, and hence the transient solution
would remain valid away from the crack tip. Nevertheless, it is pos-
sible to relax the boundary conditions in such a way that the oscil-
latory singularity disappears. As we have seen in Section 3, relaxing
the shear stress transfer condition along the interface cancels the
oscillation altogether; thus, in interface where in the immediate
area surrounding the crack tip the interface were allowed to slip
would not display such oscillation whilst maintaining the vt/vx
singularity. This would resemble Comminou’s contact zone solu-
tion (Comminou, 1977a; Comninou and Achenbach, 1978) for the
elastostatic bimaterial crack. Alternatively, a single material inter-
vening layer (Atkinson, 1977) would also cancel the oscillation,
albeit the crack tip would in this case be subjected to continuous
rarefaction waves diffracted by the boundaries between this layer
and the bulk materials, the magnitude of which would be depen-
dent on the width of an artificial layer, an undesirable situation
unless the layer itself could be proven to have a physically moti-
vated width. Conceivably, Sinclair's suggestion (Sinclair, 1980,
2004a,b) that the crack tip geometry also affects the oscillatory
nature of the singularity is also extensible to the elastodynamic
case.

4.3. The transient solution

The formalism leading to Eqs. (4.94) and (4.95) (and their
inverted counterparts, Egs. (4.99) and (4.100)) are a core result of
this work. Their significance is that they enable a fast and simple
treatment of the far field, and can be employed to obtain the full
transient solution to arbitrary accuracy. This is particularly impor-
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tant for dynamic applications where multiple interacting cracks
may be present, as is the case of fragmentation of composite mate-
rials or the interaction between faults in multilayered geophysical
systems.

Egs. (4.99) and (4.100) render the normal and shear field radi-
ated away by a bimaterial crack under the action of remote normal
and tangential loading respectively. Both equations may be solved
numerically with relative simplicity, following a procedure very
similar to that outlined in Section 3 for the slipping interface.
The salient features of these solutions are shown in Figs. 5 and 6,
which display the numerical solution to the transient bimaterial
crack fields under varied material conditions and for increasing
accuracy of the Padé approximant.

In both figures, we observe two common features. First, an
oscillatory singularity at the crack tip, the nature of which has been
explained in detail in Section 4.2.2; this oscillation is marked in
Figs. 5 and 6. Second, a far field displaying the characteristic wave-
fronts due to the two longitudinal and two transverse waves that
make up the dissimilar elastic medium. Fig. 5 shows the solution
with increasing level of accuracy at time t=0.15 using
a=1/6, a =1/5, by =1/3, b, =1/2.5, u,/u, =1.15 (i.e., rela-
tively similar materials). As in the slipping boundary’s case (see
Fig. 3), the first longitudinal wavefronts mildly disturb the inter-
face, is subsequently accompanied by a sign reversal in the interfa-
cial traction relative to reference, which is reversed once the
transverse wavefronts reach a point. The convergence of the solu-
tion is such that by n = 12 we observe small differences other than
in the width of the peak the approximation introduces in the sign
change. Fig. 6 explores the same spatial situation, for two very dis-
similar elastic materials. In that case, no obvious sign reversal in
the solution is observed between the longitudinal and transverse
wavefronts. The solution does reveal more clearly, even for low
order approximations, the role of the wavefronts, and it highlights
the importance the Rayleigh wave speed appears to have in trig-
gering an oscillation in the interfacial traction about the first trans-
verse front. More importantly, the successive approximations are
able to capture with high fidelity the average trends in each part
of the wavefront: aside from the oscillatory near field, the dissim-
ilarity in the elastic constants appears to induce a much faster drop
in the stress, and all approximations capture this trend irrespective
of particular local details.

4.4. Final remarks and generalisations

The loading conditions we have examined in this article concern
a shock load, suddenly applied at the interface. The interest of this
solution is that it can be used as a fundamental solution to more
complex loadings, whilst the salient features of all such cases
would mirror those of the solutions presented here.

If the remote loading is given by P(x,t),Q(x,t) at the interface,
then the resulting interfacial tractions p(x,t) and t(x,t) would be
given by (cf. Aki and Richards, 2002, ch. 11)

2

p(x,0) / /a“+ Xara);t ) p(x, ¢)dxdr (4.118)
2 /

tx, b) / /m*"mgxt*t) P(x, t')dxdt (4.119)

where o, (x,t) and t, (x,t) are the interfacial tractions due to the
shock load that has been derived in this work, whether for the slip-
ping or welded boundaries.

Furthermore, the solution in this case has focused on a quies-
cent crack, i.e., a crack that does not propagate. The solutions we
have achieved here can be readily adapted to solve the problem
of a uniformly moving crack. If the crack tip moves at a constant
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Fig. 5. The o (x,t) using a; =1/6, a, =1/5, by =1/3, b, =1/2.5, u,/u, = 1.15. The position of the different wave fronts is marked for the t = 0.15 case. All units are

notional.
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Fig. 6. The o, (x,t) using a; =1/6, a, =1/2, by =1/0.5, b, =1/0.25, u,/u, = 1.15. The position of the different wave fronts is marked for the t = 0.15 case. All units are

notional.

speed v = 1/d, this can be imagined to modify the support of
boundary conditions to the region where H(x — »t). This leads to
swapping the 1/kP term with 1/(k —d)P in all its occurrences
(for a similar remark, see e.g. Markenscoff and Clifton, 1981). The
treatment of the pole this entails will be largely analogous too. In
particular, in the solution to the matricial Wiener-Hopf problem
we would find that

1

k-d

T, (k) = [1 - [L*(k)]’lv(d)]l’ (4.120)
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Under such circumstances, the crack tip’s speed v = 1/d may cause
the solution to diverge when L*(d) does. In this study, we have
identified several instances when this happens: if the crack tip were
to travel at the Rayleigh wave speeds of any of the two media, or if
the crack tip were to travel at the Stoneley wave speeds of the inter-
face under some circumstances, the scattering kernel would
become divergent when k = d. These barriers are prompted by the
fact the loading is remote; they do not necessarily entail that inter-
sonic crack motion be impossible, provided that the elastic mis-
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match between the two media is large as we have seen in Sec-
tion 4.3; this is found to be in agreement with empirical observa-
tions by Rosakis and coworkers (Liu et al., 1993, 1995; Rosakis
et al.,, 1998). Furthermore, as with the case of crystallographic dis-
locations (Gurrutxaga-Lerma et al., 2020), it is not necessarily clear
either that non-uniform acceleration across such barriers be impos-
sible when considering other effects that may be dominant at the
crack tip (e.g., discreteness and trapping, or other non-linearities);
such effects, missed in their entirety by linear elasticity, may facil-
itate the motion across these barriers.

5. Conclusions

In this article, we have solved the transient problem of a mode I
(or mode II) plane strain bimaterial interface subjected to transient
loading. The first part of the article shows that when the bimaterial
interface lies along a slipping boundary (i.e., an interface unable to
transfer shear stress), its fields can be solved analytically in full
using the Wiener-Hopf technique. This article has fully derived
this solution, and used it to study the most important features of
the fully transient state. The slipping boundary fields display a
characteristic four-wave front: two longitudinal waves and two
shear waves, each propagating at the corresponding longitudinal
and transverse speeds of sound of the media, combine to form
the full solution. As has been explained, in the far field, sign rever-
sals (relative to reference) of the interfacial tractions are possible,
and result from the fact that in the region loaded by the fastest
wavefront alone, the second medium, the speeds of sounds of
which are by definition lower than those of the first, is being
loaded at a supersonic speed. The interface accommodates this
by prompting a transient sign reversal, which is significant as it
could prompt the transient detachment of the interface, and is a
source of unexpected vibrations that appear only in the transient.
The near field solution has been shown to display a 1//x singular-
ity: relaxing the ability of the interface to carry on interfacial shear
(in mode I) or normal tractions (in mode II) avoids the formation of
oscillatory singularities about the tip. In mode I, the slipping inter-
face is a solution to the Hertzian contact problem along a bimate-
rial system. In mode II (i.e., when the interface cannot transfer
normal loads), it may be regarded as a deformation kernel for cou-
pled dynamic contact problems.

The article has then focused on solving the problem for the fully
transient crack along a welded boundary, i.e., a bimaterial crack
along an interface able to transfer both normal and shear tractions.
The subsequent mathematical problem is of much greater com-
plexity than the slipping boundary’s. It results in a matricial
Wiener-Hopf problem dominated by a scattering kernel matrix
that cannot be obviously separated into sectionally analytic parts
via the usual Daniele-Khrapkov decomposition. Rather than per-
forming a near field Williams expansion of the matricial problem,
which is only useful to study the near field, but renders the study
of the far field transients more difficult, here we have advocated
using an Abrahams expansion of the scattering matrix instead,
thereby retaining the right asymptotics for both near and far field,
and converges quickly to an acceptable approximation. The thus
obtained far-field solution displays similar features to the one in
the slipping boundary, with a four wavefront structure, and sign
inversions related to the relative speed with which the two media
are being loaded; in this case, the presence of interfacial Stoneley
waves is also noted. Furthermore, the solution also captures an
oscillatory 1//x singularity at the crack tip, which we derive fully
from the near field asymptotics of the scattering kernel, familiar
from the solution to the equivalent elastostatic problem.

The oscillations of the stress field about the crack tip revealed
here for the elastodynamic solution are a well-known feature of
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the static solutions. Because the oscillation is highly localised
about the immediacy of the crack tip, the transient solution
derived here for the far field remains unaffected by it, and hence
the inasmuch as the far field is concerned, no further mathematical
considerations are needed to remedy the presence of the oscilla-
tory singularity via any of the strategies that have been proposed
for the elastostatic case. In the elastodynamic case this article is
concerned with, we have regarded the traditional ‘intervening
layer’ solution to the oscillatory singularity as undesirable owing
to the expected elastic wave scattering at the boundaries of the
said layer, the width of which would have to be physically moti-
vated to justify allowing for such a scattering to interfere with
the crack tip itself. Other alternatives reliant on the relaxation of
the boundary conditions about the crack tip may be more suitable
for the elastodynamic case, e.g., via Comminou’s proposal of con-
tact zones about the crack tip (Comminou, 1977a), or by allowing
the crack tip to slip freely or with friction, or altering the crack
tip geometry as suggested by Sinclair (2004a,b).

The far field of the solution we have achieved for the welded
interface displays the same general characteristics irrespective of
the order of the Padé approximant employed: a slow uptake in
the interfacial traction upon the first longitudinal wavefront reach-
ing a point, with a sign reversal of the interfacial stress field that is
cancelled once the shear waves reach the same point. The trends
observed in all approximate solutions were the same irrespective
of local detail; the latter included the presence of peaks of stress
preceding the arrival of the shear waves, and oscillations in the
solution due to Stoneley wavefronts.

Comparing a welded and a slipping interface has further
revealed that inherent role the nature of the interface plays in
dominating the near and the far field response of the crack. For
instance, Stoneley waves do not appear to play any role in the
motion of the crack along the slipping interface, nor would they
do so if only the area immediately surrounding the crack tip along
a welded interface were allowed to slip, in which case the oscilla-
tory singularity would also cancel. However, in relative terms,
interfacial tractions appear to drop faster in the far field for welded
boundaries, and the magnitude of the sign reversals, if present, can
also be smaller.

Irrespective of the solution chosen, this article offers a self-
contained hierarchy to solve the bimaterial interface problem in
transient elastodynamics. We have shown the method developed
in this article is able to study the transient solution in its entirety,
both in the near field about the crack tip and in the far field, with
solutions the mathematical complexity of which is comparable to
that of the well-known single material solutions. Therefore, solu-
tions and method developed in this work will serve as the basis
for further studies of the transient behaviour of interfaces in lay-
ered media. For both the slipping and welded interfaces, the solu-
tions we have derived in this article have a vast array of
applications. On the one hand, they provide an easily imple-
mentable analytical formula with which to study the far field sig-
nals radiated or diffracted by a bimaterial interface. This is
significant in geological materials, where seismological signals
are often triggered by the sliding or fracturing at bimaterial inter-
faces (Aki and Richards, 2002); the models derived in this article
offer a pathway with which to study those signals in the far field.
Furthermore, they provide a physical rationale with which to
understand instabilities in the motion of the interface (e.g., at the
speeds of sound, or the Stoneley wave speeds). On the other hand,
the solutions achieved here will find wide use in the study of fast
delamination in composite materials, and in the study of the near
field and the far field of cracks in layered media. In these cases, we
have provided closed form solutions to determine the crack tips’
stress field, one of the key ingredients to determine whether or
not the crack will propagate, and at which rate. Our solutions
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enable the modelling of these crack’s propagation as convolution
kernels. Finally, the solutions presented here pave the way for
the analytic study of the bimaterial contact problem in the pres-
ence of friction, which can now be achieved using an approach
similar to that discussed in Gurrutxaga-Lerma (2019, 2020). Conse-
quently, this article offers an analytic treatment for a problem of
significance both in geophysics and materials science: elastic wave
scattering by a bimaterial interface.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements
The author conceived, derived and wrote the whole article.

References

McCartney, L.N., 1987. Mechanics of matrix cracking in brittle-matrix fibre-
reinforced composites. Proc. Roy. Soc. A 409 (1837), 329-350.

Sutton, A.P., Balluffi, RW., 1995. Interfaces in Crystalline Materials. Clarendon Press,
Oxford, UK.

Gaul, L., Nitsche, R., 2001. The role of friction in mechanical joints. ASME Appl.
Mech. Rev. 54, 93-110.

Aki, K., Richards, P.G., 2002. Quantitative Seismology. University Science Books,
Sausalito, CA.

Williams, M.L., 1959. The stresses around a fault or crack in dissimilar media. Bull.
Seismol. Soc. Amer. 49 (2), 199-204.

England, A.H., 1965. A crack between dissimilar media. ]. Appl. Mech. 32, 400-402.

Erdogan, F., 1963. Stress distribution in a nonhomogeneous elastic plane with
cracks. J. Appl. Mech. 30 (2), 232-236.

Broberg, K.B., 1999. Cracks and Fracture. Academic Press, London.

Knowles, J.K., Sternberg, E., 1983. Large deformations near a tip of an interface-crack
between two neo-hookean sheets. J. Elast. 13 (3), 257-293.

Geubelle, P.H., Knauss, W.G., 1994a. Finite strains at the tip of a crack in a sheet of
hyperelastic material: I. Homogeneous case. ]J. Elast. 35 (1-3), 61-98.

Geubelle, P.H., Knauss, W.G., 1994b. Finite strains at the tip of a crack in a sheet of
hyperelastic material: II. Special bimaterial cases. J. Elast. 35 (1-3), 99-137.

Geubelle, P.H., Knauss, W.G., 1994c. Finite strains at the tip of a crack in a sheet of
hyperelastic material: IIl. General bimaterial case. J. Elast. 35 (1-3), 139-174.

Gao, Y.C,, Shi, Z.F., 1994. Large strain field near an interface crack tip. Int. J. Fract. 69
(3), 269-279.

Comminou, M., 1977a. Interface crack with friction in the contact zone. ]. Appl.
Mech. 44, 780-781.

Comninou, M., 1977b. The interface crack. ]J. Appl. Mech. 44, 631-636.

Comninou, M., Schmueser, D., 1979. The interface crack in a combined tension-
compression and shear field. ]J. Appl. Mech. 46, 345-348.

Sinclair, G.B., 1980. On the stress singularity at an interface crack. Int. J. Fract. 16 (2),
111-119.

Atkinson, C., 1977. On stress singularities and interfaces in linear elastic fracture
mechanics. Int. J. Fract. 13 (6), 807-820.

He, M.-Y., Hutchinson, J.W., 1989. Kinking of a crack out of an interface. ]. Appl.
Mech. 56 (2), 270-278.

Suo, Z., Hutchinson, J.W., 1990. Interface crack between two elastic layers. Int. J.
Fract. 43 (1), 1-18.

Brock, L.M., Achenbach, ].D., 1973. Extension of an interface flaw under the
influence of transient waves. Int. J. Solids Struct. 9 (1), 53-68.

Brock, L.M., Achenbach, ].D., 1974. Rapid tearing along an interface. Z. Angew. Math.
Phys. 25 (3), 331-345.

Atkinson, C., 1974. On the dynamic stress and displacement field associated with a
crack propagating across the interface between two media. Int. J. Eng. Sci. 12
(6), 491-506.

Brock, L.M., 1974. Dynamic intensity factors for an interface flaw extending at a
non-uniform rate. J. Elast. 4 (1), 51-63.

Brock, L.M., 1976. Interface flaw extension under in-plane loadings. Int. J. Eng. Sci.
14 (10), 963-974.

Atkinson, C., 1977. Dynamic crack problems in dissimilar media. In: Shih, G.C. (Ed.),
Elastodynamic Crack Problems, volume 4 of Mechanics of Fracture, chapter 4.
Noordhoff, Leyden, NL, pp. 213-248.

Gol'dshtein, R.\V., 1966. On the steady motion of a crack along a straight line
boundary between two joined materials. Mechanika Tverdogo Tela 1, 94-102.

Willis, J.R., 1971. Fracture mechanics of interfacial cracks. J. Mech. Phys. Solids 19
(6), 353-368.

22

International Journal of Solids and Structures 225 (2021) 11031

Achenbach, ].D., Bazant, Z.P., Khetan, R.P., 1976. Elastodynamic near-tip fields for a
rapidly propagating interface crack. Int. J. Eng. Sci. 14 (9), 797-809.

Comninou, M., Achenbach, ].D., 1978. Asymptotic fields at the transition zone of a
propagating interface crack. Mech. Res. Commun. 5 (5), 285-290.

Rice, J.R., 1988. Elastic fracture mechanics concepts for interfacial cracks. J. Appl.
Mech. 55 (1), 98-103.

Yang, W., Suo, Z., Shih, C.F,, 1991. Mechanics of dynamic debonding. Proc. R. Soc.
Lond. Ser. A: Math. Phys. Sci. 433 (1889), 679-697.

Liu, C., Lambros, J., Rosakis, AJ., 1993. Highly transient elastodynamic crack growth
in a bimaterial interface: higher order asymptotic analysis and optical
experiments. J. Mech. Phys. Solids 41 (12), 1887-1954.

Yu, H,, Yang, W., 1995. Mechanics of transonic debonding of a bimaterial interface:
The in-plane case. J. Mech. Phys. Solids 43 (2), 207-232.

Huang, Y., Liu, C., Rosakis, AJ., 1996. Transonic crack growth along a bimaterial
interface: an investigation of the asymptotic structure of near-tip fields. Int. J.
Solids Struct. 33 (18), 2625-2645.

Xu, X.-P., Needleman, A., 1996. Numerical simulations of dynamic crack growth
along an interface. Int. J. Fract. 74 (4), 289-324.

Needleman, A., Rosakis, A.J., 1999. The effect of bond strength and loading rate on
the conditions governing the attainment of intersonic crack growth along
interfaces. J. Mech. Phys. Solids 47(12), 2411-2449. .

Scala, A, Festa, G., Villote, ].P., 2017. Rupture dynamics along bimaterial interfaces:
a parametric study of the shear-normal traction coupling. Geophys. J. Int. 209
(1), 48-67.

Lambros, ., Rosakis, A.J., 1995. Shear dominated transonic interfacial crack growth
in a bimaterial-I. Experimental observations. ]. Mech. Phys. Solids 43 (2), 169-
188.

Liu, C.,, Huang, Y., Rosakis, A.J., 1995. Shear dominated transonic interfacial crack
growth in a bimaterial. II. Asymptotic fields and favorable velocity regimes. J.
Mech. Phys. Solids 43 (2), 189-206.

Noble, B., 1958. Methods based on the Wiener-Hopf technique for the solution of
partial differential equations. International Series of Monographs on Pure and
Applied Mathematics, vol. 7. Pergamon Press, New York.

Daniele, V., 1978. On the factorization of Wiener-Hopf matrices in problems
solvable with Hurd’s method. IEEE Trans. Anten. Propag. 26 (4), 614-616.
Khrapkov, A.A., 1971. Certain cases of the elastic equilibrium of an infinite wedge
with a nonsymmetric notch at the vertex, subjected to concentrated forces:
Pmm, vol. 35, no. 4, 1971, pp. 677-689. ]. Appl. Math. Mech. 35 (4), 625-637. .

Abrahams, 1.D., 2002. On the application of the Wiener-Hopf technique to problems
in dynamic elasticity. Wave Motion 36 (4), 311-333.

Abrahams, I.D., 1996. Radiation and scattering of waves on an elastic half-space; a
non-commutative matrix Wiener-Hopf problem. J. Mech. Phys. Solids 44 (12),
2125-2154.

Eringen, A.C., Suhubi, E.S., 1975. Elastodynamics, vol. 2. Academic Press, New York.

Freund, L.B., 1998. Dynamic Fracture Mechanics. Cambridge Univ. Press, Cambridge,
UK.

Gurrutxaga-Lerma, B., 2020. On the transient planar contact problem in the
presence of dry friction and slip. Int. J. Solids Struct. 193, 314-327.

Achenbach, ].D., 1973. Wave Propagation in Elastic Solids. North-Holland, New
York.

Markushevich, A.L, 2005. Theory of Functions of a Complex Variable, vol. IL
American Mathematical Society, Providence, RI, second ed. .

Cagniard, L., 1939. Réflexion et Réfraction des ondes Séismique Progressives.
Gauthiers-Villars, Paris.

De Hoop, A.T., 1960. A modification of Cagniard’s method for solving seismic pulse
problems. Appl. Sci. Res. B 8, 349-356.

Baker, G.A., Graves-Morris, P., 1996. Padé Approximants. Encyclopedia of
Mathematics and its Applications. Cambridge University Press.

Clancey, K.F., Gohberg, 1., 2013. Factorization of Matrix Functions and Singular
Integral Operators, vol. 3. Birkhduser.

Hormander, L., 1973. An Introduction to Complex Analysis in Several Variables.
Elsevier, Amsterdam, NL.

Barnett, D.M., Lothe, J., Gavazza, S.D., Musgrave, M.].P., 1985. Considerations of the
existence of interfacial (Stoneley) waves in bonded anisotropic elastic half-
spaces. Proc. Phys. Soc. A 402 (1822), 153-166.

Chadwick, P., Borejko, P., 1994. Existence and uniqueness of stoneley waves.
Geophys. J. Int. 118 (2), 279-284.

Deng, X., 1992. Complete complex series expansions of near-tip fields for steadily
growing interface cracks in dissimilar isotropic materials. Eng. Fract. Mech. 42
(2), 237-242.

Sinclair, G.B., 2004a. Stress singularities in classical elasticity-I:
interpretation, and analysis. Appl. Mech. Rev. 57 (4), 251-297.
Sinclair, G.B., 2004b. Stress singularities in classical elasticity-II: Asymptotic

identification. Appl. Mech. Rev. 57 (5), 385-439.

Markenscoff, X., Clifton, RJ., 1981. The nonuniformly moving edge dislocation. J.
Mech. Phys. Solids 29 (2), 253-262.

Rosakis, AJ., Samudrala, O., Singh, R.P.,, Shukla, A. 1998. Intersonic crack
propagation in bimaterial systems. J. Mech. Phys. Solids 46 (10), 1789-1814.

Gurrutxaga-Lerma, B., Verschueren, J., Sutton, A.P., Dini, D., 2020. The mechanics
and physics of high-speed dislocations: a critical review. Int. Mater. Rev., 1-41

Gurrutxaga-Lerma, B., 2019. On the transient dynamic antiplane contact problem in
the presence of dry friction and slip. Int. J. Solids Struct. 170, 142-156.

Removal,


http://refhub.elsevier.com/S0020-7683(21)00109-8/h0005
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0005
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0010
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0010
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0015
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0015
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0020
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0020
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0025
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0025
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0030
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0035
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0035
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0040
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0045
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0045
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0050
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0050
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0055
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0055
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0060
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0060
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0065
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0065
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0070
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0070
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0075
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0080
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0080
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0085
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0085
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0090
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0090
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0095
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0095
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0100
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0100
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0105
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0105
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0110
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0110
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0115
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0115
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0115
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0120
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0120
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0125
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0125
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0130
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0130
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0130
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0135
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0135
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0140
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0140
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0145
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0145
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0150
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0150
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0155
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0155
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0160
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0160
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0165
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0165
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0165
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0170
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0170
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0175
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0175
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0175
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0180
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0180
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0190
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0190
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0190
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0195
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0195
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0195
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0200
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0200
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0200
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0205
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0205
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0205
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0210
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0210
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0220
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0220
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0225
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0225
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0225
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0230
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0235
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0235
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0240
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0240
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0245
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0245
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0255
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0255
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0260
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0260
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0265
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0265
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0270
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0270
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0275
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0275
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0280
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0280
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0280
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0285
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0285
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0290
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0290
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0290
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0295
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0295
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0300
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0300
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0305
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0305
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0310
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0310
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0315
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0315
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0320
http://refhub.elsevier.com/S0020-7683(21)00109-8/h0320

	The elastodynamic bimaterial interface under mode I and mode II loading
	1 Introduction
	2 Mathematical framework
	2.1 Governing equations

	3 The slipping bimaterial interface
	3.0.1 Statement of the Wiener–Hopf problem
	3.1 Analytic factorisation of the Wiener–Hopf problem
	3.1.1 The product factorisation of [$]K\left(k\right)[$]
	3.1.2 Solution of the mode I and mode II problems
	3.1.3 Inversion of the mode I and mode II Wiener–Hopf solutions

	3.2 Near field behaviour
	3.3 Fully transient solution

	4 The welded bimaterial interfacial crack
	4.1 Factorisation of the [$]{\bf{K}}\left(k\right)[$] kernel
	4.1.1 Approximate factorisation of [$]{\bf{C}}\left(k\right)[$]
	4.1.2 Regularisation of the discrete poles
	4.1.3 Wiener–Hopf factorisation of the scalar terms

	4.2 Solution of the matricial Wiener–Hopf problem
	4.2.1 Inversion of the solution to the interfacial tractions of a welded bimaterial crack
	4.2.2 Form of the near field solution

	4.3 The transient solution
	4.4 Final remarks and generalisations

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


