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A linear theory of the elasto-plasticity of crystalline solids based on a continuous representation of crystal
defects – dislocations and disclinations – is presented. The model accounts for the translational and rota-
tional aspects of lattice incompatibility, respectively associated with the presence of dislocations and dis-
clinations. The defects content relates to the incompatible plastic strain and curvature tensors. The stress
state is described by using the conjugate variables to strain and curvature, i.e., the stress and couple-
stress tensors. Defect motion is described by two transport equations. A dynamic interplay between
dislocations and disclinations results from a disclination-induced source term in the transport of disloca-
tions. Thermodynamic guidance provides the driving forces conjugate to dislocation and disclination
velocity in a continuous context, as well as admissible constitutive relations for the latter. When disloca-
tion and disclination velocity vanish, the model reduces to deWit’s elasto-static theory of crystal defects.
It also reduces to Acharya’s linear elasto-plastic theory for dislocation fields when the disclination density
is ignored. The theory is intended for use in instances where rotational defects matter, such as grain
boundaries. To illustrate its applicability, a finite high-angle tilt boundary is modeled using a disclination
dipole and its behavior under tensile loading normal to the boundary is shown.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

With motivations deriving from Weingarten’s theorem (Wein-
garten, 1901), disclinations and dislocations were simultaneously
introduced by Volterra, as early as the turn of the last century
(Volterra, 1907). Dislocations are the crystal defects arising from
translational lattice incompatibility, as measured by the Burgers
vector, whereas disclinations are defects originating in the rota-
tional incompatibility of the crystal lattice, as characterized by
the Frank’s vector (deWit, 1970). Disclinations have long been con-
sidered as secondary topics in the field theory of crystal defects, due
to the very large level of elastic energy they involve, as compared
with dislocations, which precludes their occurrence as isolated
crystalline objects (Friedel, 1964). However self-screened configu-
rations, such as disclination dipoles, involve relatively small elastic
energy levels (Romanov and Vladimirov, 1992; Romanov and
Kolesnikova, 2009). Hence, they may enter the description of the
lattice structure when a single-valued elastic rotation field does
not exist. Grain boundaries are such instances and, as rotational de-
fects, disclinations may prove useful in their modeling (Li, 1972). A
series of examples in relation with this idea was given in a recent
ll rights reserved.
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review paper (Kleman and Friedel, 2008) (also concerned with
liquid crystals), namely: high-angle boundaries, grain boundary
ledges, grain boundaries as sources and sinks for dislocations, grain
rotation in polynanocrystals. . .Yet, as suggested above, dislocation-
based models have been preferentially used for that purpose over
the last decades. Employing the Frank-Bilby surface-dislocation
concept (Frank, 1950; Bilby, 1955), they have become widely ac-
cepted for low angle boundaries. Well-known examples are the tilt
and twist boundaries. However, the dislocation-based models suf-
fer from several limitations. Considering infinite dislocation walls
makes it difficult to model the three-dimensional network of grain
boundaries in a polycrystal. Accounting for high-angle boundaries
requires packing dislocations so tightly along the interface that
their cores must overlap. Perhaps more to the point, boundaries
are seen as infinitely thin planes. Yet, grain boundaries feature spa-
tial patterns referred to as structural units spreading over a finite
width area (Sutton and Vitek, 1983). Disclination-based models
remove these limitations. They may be used to model finite high-
angle boundaries, and to account for their fine structure (Li, 1972;
Shih and Li, 1975; Gertsman et al., 1989; Hurtado et al., 1995).

In the present paper, the aim is to present a field defect (disloca-
tion and disclination) theory for crystal plasticity accounting for
both the translational and rotational aspects of lattice incompatibil-
ity. To focus on the relevant physical ideas and avoid the complica-
tions arising from geometric nonlinearity, we limit the presentation
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to infinitesimal transformations, leaving the differential geometry
developments inherent to finite transformations for future work.
By a field theory, we mean a theory of continuously distributed
crystal defects using the mathematical tools of the theory of partial
differential equations and boundary problems solving. As such, we
capitalize on the earlier elasto-static theories of dislocation fields
(Kröner et al., 1980; Kröner, 1958) and of crystal defects (disloca-
tions and disclinations) (deWit, 1970). Both theories are strongly
connected: the latter reduces to the former when the disclination
density vanishes. We also benefit from the more recent mechanical
theory of dislocation fields (Acharya, 2001), which deals with crys-
tal plasticity. In this theory, the material displacements as well as
the density and motion of dislocations can be derived uniquely
from initial and boundary conditions, provided constitutive infor-
mation for elasticity and the dislocation velocity is supplied (Ach-
arya, 2003). When the dislocation velocity vanishes, the field
dislocation mechanics theory (Acharya, 2001) reduces to the elas-
to-static theory of dislocations (Kröner et al., 1980; Kröner, 1958).
As we shall demonstrate below, the present framework reduces
to field dislocation mechanics when the disclination density is ig-
nored, and to the elasto-static crystal theory of defects (deWit,
1970) when the velocities of dislocations and disclinations vanish.
A previous attempt at a theory of plasticity accounting for both
the translational and rotational aspects of lattice incompatibility
was that of Kossecka and deWit (1977). The theory offered kine-
matic guidelines, but did not provide driving forces and was not ap-
plied towards the solution of a realistic boundary value problem.
Our goal in putting forward this model is to deal with situations
where the dynamic interplay between dislocations and disclina-
tions is essential to the understanding of the defect structure. Such
a situation is described in a companion paper (Upadhyay et al., in
press), where a disclination-based framework is used to quantify
the effect of rotational incompatibility on the elastic energy of sym-
metric tilt boundaries and triple junctions in face centered cubic
materials. The analysis strongly suggests that a complete under-
standing of the stability of triple junctions cannot be obtained
through energy minimization, and is only achievable through a dy-
namic mechanical model of linear crystal defects. We shall illus-
trate this point of view by investigating the nucleation and
motion under applied loading of disclination dipoles, perhaps the
simplest possible case-study, but also the one where the structure
of the governing equations of the model is the more self-evident.

The paper is organized as follows. In Section 2, notation conven-
tions are settled. For the sake of completeness, we provide a brief
review of the incompatible elastic defect theory (deWit, 1970) in
Section 3. Static coupling between dislocations and disclinations
is included at this level, through the continuity condition for dislo-
cation densities and the Cosserat equilibrium equation for couple-
stresses (Cosserat and Cosserat, 1909). Section 4 is devoted to the
transport properties of dislocations and disclinations. Dynamic
coupling occurs at this stage, since disclination mobility provides
for a source term in the transport equation for dislocations. In Sec-
tion 5, guidance of the Clausius–Duhem inequality is sought to de-
fine the driving forces associated with the dislocation and
disclination velocities, as well as appropriate constitutive relations
between these forces and velocities. Section 6 deals with the algo-
rithms used for the solution of the governing equations. A plane
‘‘edge–wedge’’ model is detailed in Section 7, and used in Section
8 to investigate the structure and mobility of disclination dipoles.
Concluding remarks follow.
2. Notations

A bold symbol denotes a tensor. When there may be ambiguity,
an arrow is superposed to represent a vector: V

!
. The symmetric
part of tensor A is denoted fAg. The symbol A:B represents multi-
plication of the tensors A and B, and A� B their tensorial product.
A: represents the trace inner product of the two second order ten-
sors A : B ¼ AijBij, in rectangular Cartesian components, or the
product of a higher order tensor with a second order tensor, e.g.,
A : B ¼ AijklBkl. The cross product of a second-order tensor A and a
vector V, the div and curl operations for second-order tensors
are defined row by row, in analogy with the vectorial case. For
any base vector ei of the reference frame:

ðA� VÞt:ei ¼ At
:ei

� �
� V; ð1Þ

ðdiv AÞt :ei ¼ div At
:ei

� �
; ð2Þ

ðcurl AÞt:ei ¼ curl At
:ei

� �
: ð3Þ

In rectangular Cartesian components:

ðA� VÞij ¼ ejklAikVl; ð4Þ

ðdiv AÞi ¼ Aij;j; ð5Þ
ðcurl AÞij ¼ ejklAil;k: ð6Þ

where ejkl is a component of the third-order alternating Levi–Civita
tensor X. A vector A

!
is associated with tensor A by using its trace

inner product with tensor X:

ðA
!
Þk ¼ �

1
2
ðA : XÞk ¼ �

1
2

eijkAij: ð7Þ

In the component representation, the spatial derivative with respect
to a Cartesian coordinate is indicated by a comma followed by the
component index. A superposed dot represents a material time
derivative.

3. Review of the incompatible elasto-static defect theory

In the present framework, it is assumed that the displacement
vector u can be defined continuously at any point of a simply-con-
nected body undergoing elasto-plastic deformation. Hence, it is re-
quired that the displacement field represent a consistent shape
change, possibly defined between atoms, below interatomic dis-
tance. Therefore, the total distortion tensor is defined as the gradi-
ent of the displacement U ¼ grad u. As such, it is curl-free:

curl U ¼ 0: ð8Þ

This equation is a necessary condition for the integrability of the
displacement u and a compatibility condition for the distortion U.
In the elasto-plastic theory of dislocations, such is not the case in
general for its plastic, Up, and elastic, Ue, components. Then, an
incompatible part, U?p , which is not curl-free, exists in the plastic
distortion tensor, due to the presence of dislocations, and an oppo-
site incompatible elastic distortion of the lattice, U?e , arises to main-
tain lattice continuity. Curl-free compatible components, Uke and Ukp,
may also exist to satisfy the balance of equilibrium and boundary
conditions, and the following relations are therefore satisfied:

U ¼ Ue þ Up; ð9Þ

Ue ¼ U?e þ Uke; ð10Þ

Up ¼ U?p þ Ukp; ð11Þ

0 ¼ U?e þ U?p ; ð12Þ

curl U?e ¼ �curl U?p ¼ a – 0: ð13Þ

Composing Eqs. (9)–(11) shows that Eq. (12) is needed to ensure
that the compatibility condition (8) is satisfied. On the one hand,
the incompatibility Eq. (13) define the incompatible plastic distor-
tion U?p associated with the presence of Nye’s dislocation density
tensor a, and on the other hand they provide the incompatible elas-
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tic distortion U?e offsetting the latter to ensure the continuity of
matter.1 Since Uke and Ukp are curl-free, Eq. (13) is still true when
U?e and U?p are respectively replaced with Ue and Up:

curl Ue ¼ �curl Up ¼ a: ð14Þ

Therefore, to ensure that the incompatible part U?p vanishes identi-
cally throughout the body when a ¼ 0, Eq. (13) must be augmented
with the side conditions div U?p ¼ 0 and U?p :n ¼ 0 on the boundary
with unit normal n. Further, the continuity condition:

diva ¼ 0; ð15Þ

follows directly from Eqs. (13) and (14).
Defining the strain tensor � as the symmetric part of the distor-

tion U, the rotation tensor x as its skew-symmetric part and the
associated rotation vector ~x as:

~x ¼ �1
2
x : X: ð16Þ

Eq. (8) becomes:

curl �þ divð~xÞI� gradt~x ¼ 0; ð17Þ

where I is the identity tensor. Transposing, then taking the curl of
Eq. (17) leads to:

curl curlt� ¼ 0: ð18Þ

This relation is the classical Saint–Venant compatibility condition
for the strain �. It is a necessary condition for the integrability of
the displacement u. The trace of Eq. (17) similarly yields a compat-
ibility condition for the rotation vector in the form:

divð~xÞ ¼ 0: ð19Þ

Applying the same curl-trace procedure to the elastic restriction of
Eq. (14), we obtain from the curl operation, with self-evident nota-
tions, an equation parallel to Eq. (17):

curl �e þ divð ~xeÞI� gradt~xe ¼ a; ð20Þ

and a similar equation for the plastic restriction of Eq. (14):

curl �p þ divð~xpÞI� gradt~xp ¼ �a: ð21Þ

As elastic and plastic rigid body rotations, ð~xe; ~xpÞ are integrable
quantities. From the trace operation, we find an equation parallel
to Eq. (19):

divð~xeÞ ¼ �divð ~xpÞ ¼
1
2

trðaÞ: ð22Þ

Motivated by the Saint–Venant compatibility condition (18), we
transpose Eqs. (20) and (21) and further rearrange with the help
of Eq. (22), to obtain:

grad ~xe ¼ curlt�e þ K; ð23Þ
grad ~xp ¼ curlt�p � K; ð24Þ

K ¼ 1
2

trðaÞI� at : ð25Þ

At this point, we can define the elastic, je, and plastic, jp, curvature
tensors as:
1 By virtue of Stoke’s theorem:
R

C U:dl ¼
R

S curlU:ndS on a closed curve C
surrounding surface S of normal n. In compatible theory, the distortion tensor U is
a gradient and its circulation along curve C is zero on the left hand side. Thus, from the
right hand side, the compatibility condition (8) is satisfied with sufficient continuity.
In the presence of a net content of dislocations threading S, a discontinuity in the
elastic displacement arises, and the closure defect of circuit C : b ¼

R
C Ue:dl is non

zero. b is referred to as the Burgers vector of the dislocations threading S. It
characterizes the incompatibility in the elastic displacement along circuit C. The left
Eqs. (13, 14) are now satisfied, and the net dislocation content is also characterized in
a continuous manner by Nye’s tensor a.
je ¼ grad ~xe; ð26Þ
jp ¼ grad ~xp; ð27Þ
grad ~x ¼ je þ jp; ð28Þ

and take the curl of Eqs. (23) and (24), to find:

curlje ¼ curl curlt�e þ curl K ¼ 0; ð29Þ
curljp ¼ curl curlt�p � curl K ¼ 0: ð30Þ

Hence, in the elasto-plastic theory of dislocations, the elastic and
plastic curvatures ðje;jpÞ are curl-free and, as mentioned above,
the rotation vectors ð~xe; ~xpÞ are integrable quantities. K is Nye’s
curvature tensor (Nye, 1953), sometimes used to estimate the cur-
vature tensors ðje;jpÞ by neglecting the contributions of the incom-
patible elastic and plastic strains. ðje;jpÞ are also known as the
elastic and plastic bend-twist tensors, respectively.

If ðje;jpÞ are not supposed to be curl-free anymore, i.e., if the
possibility of a rotational incompatibility is acknowledged, then
the rigid body rotations ð~xe; ~xpÞ do not exist, and a non-zero ten-
sor h such that

h ¼ �curl jp ¼ curl je; ð31Þ

can be defined. h is the disclination density tensor, and Eq. (31) is
part of the theory of crystal defects. It replaces Eqs. (29) and (30),
which pertain to the theory of dislocations. On the one hand, Eq.
(31) means that an incompatible plastic curvature, j?p , is associated
with the presence of the disclination density h and, on the other
hand, that the incompatible elastic curvature, j?e is needed to en-
sure the continuity of matter in the presence of this density. As al-
ready discussed for the translational incompatibility, to ensure that
the incompatible parts j?e ;j

?
p

� �
vanish identically throughout the

body when h ¼ 0, Eq. (31) must be replaced with:

h ¼ �curl j?p ¼ curl j?e ; ð32Þ

augmented with the side conditions divj?e ¼ divj?p ¼ 0 and
j?e :n ¼ j?p :n ¼ 0 on the boundary with unit normal n. These condi-
tions ensure uniqueness of the solution. The continuity condition
for disclinations:

div h ¼ 0; ð33Þ

follows directly from Eqs. (31) and (32). Since the rigid body rota-
tions ð~xe; ~xpÞ do not exist in the theory of crystal defects, the corre-
sponding elastic and plastic distortion tensors Ue and Up are also
undefined. Substituting the elastic and plastic curvatures ðje;jpÞ,
which now include an incompatible part, for ðgrad ~xe;grad ~xpÞ in
Eqs. (20) and (21), leads to the modified equations:

curl �e ¼ þaþ jt
e � trðjeÞI; ð34Þ

curl �p ¼ �aþ jt
p � trðjpÞI: ð35Þ

Eq. (35) defines the incompatible plastic strain associated with the
dislocation density tensor a in the concurrent presence of plastic
curvature, while Eq. (34) specifies the incompatible elastic strain
needed to ensure the continuity of matter in the presence of dislo-
cations and disclinations. Eq. (34) may be utilized to estimate Nye’s
tensor from high resolution EBSD experiments. It also suggests that
the true state quantities to be used in specifying the free energy of
the body are the elastic strain �e and elastic curvature je tensors
(see below Eq. (47)). If the incompatibility tensor g is defined as:

g ¼ curl curlt �p; ð36Þ

it is seen from Eqs. (30) and (31) that:

g ¼ curl K� h: ð37Þ

When dislocations and disclinations are absent, we find: g ¼ 0,
which shows that g is indeed a measure of incompatibility. When
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only dislocations are present, g ¼ curl K, while Eq. (37) describes
how dislocations and disclinations respectively participate to the
overall incompatibility. The continuity condition (15) for disloca-
tions is also modified in the theory of crystal defects. Taking the
divergence of Eq. (34) and defining the twist-disclination vector
H
!

as:

H
!¼ �1

2
h : X; ð38Þ

it is found that:

div aþ 2H
!¼ 0: ð39Þ

This continuity equation implies the existence of geometric interac-
tions between twist- disclinations ði – jÞ and dislocations. Of
course, when the disclination density vanishes, Eqs. 34, 35, 39 re-
duce to Eqs. (14), (15), and the elastic theory of crystal defects re-
duces to the theory of dislocations.

In the theory of crystal defects, the Frank’s and Burgers vectors
for a close circuit C bounding a surface S are defined as (deWit,
1970):

X ¼
Z

C
je:dr; ð40Þ

b ¼
Z

C
ð�e � je � rÞ:dr: ð41Þ

They can be related to the dislocation and disclination density ten-
sors a and h by applying Stoke’s theorem to the surface S (deWit,
1970):

X ¼
Z

S
h:ndS; ð42Þ

b ¼
Z

S
ða� h� rÞ:ndS: ð43Þ

From Eq. (42), it is seen that, for a unit surface of normal n, the dis-
clination density tensor can alternatively be written:

h ¼ X� n: ð44Þ

The material displacement u and rotation vector ~x are independent
kinematic variables, which can be integrated from the knowledge of
�e and je. The conjugate variables to the latter are the stress and
couple-stress tensors, and the equilibrium equations are, in the ab-
sence of body forces:

div T ¼ 0; ð45Þ

div Mþ 2 T
!¼ 0: ð46Þ

Here T is the (generally non-symmetric) stress tensor, T
!

the stress
vector defined as T

!¼ �1=2T : X, and M is the couple-stress tensor.
In principle, boundary conditions on the stress and couple-stress
are therefore needed. In this sense, the theory of crystal defects de-
fines a Cosserat continuum. A specific free energy density function
is introduced as follows:

w ¼ wð�e;jeÞ: ð47Þ

As already suggested, w contains contributions to the stored energy
from the elastic strain �e and curvature je arising from the presence
of crystal defects and the application of loads. At nanoscale (for
instance in dislocation core problems), the body is seen as a contin-
uum containing material points between atoms, capable of trans-
mitting stresses and couple-stresses at this scale, and w presents
nonlinear and non-convex properties to respect the periodicity of
the lattice. At larger scales, lattice fluctuations may be overlooked
and w may be taken as a convex function of elastic strain and
curvature. Differentiating Eq. (47), we obtain the following identifi-
cation of the stress and couple-stress tensors with the partial deriv-
atives of the free energy:
_w ¼ @w
@�e

: _�e þ
@w
@je

: _je ¼ T : _�e þM : _je: ð48Þ

The elastic constitutive relations for T and M are consistently cho-
sen in the form suggested in deWit (1970):

T ¼ C : �e þ D : je; ð49Þ
M ¼ A : je þ B : �e: ð50Þ

Here A, B, C and D are tensors of elastic constants. While the Cijkl and
Aijkl constants have dimension of a stress and a stress times a
squared length respectively, Bijkl and Dijkl have dimension of a stress
multiplied by a length. Hence, the relations (49) and (50) involve
characteristic lengths and have nonlocal character. The tensor D in-
duces stresses due to the inhomogeneity in rotation over some
(short) length scale, while the tensor B gives rise to couple stresses
from inhomogeneity in strain over some other (short) length scale.
Further detail will be provided in Section 7 in a specific problem.

4. Transport of dislocations and disclinations

Consider a material surface S bounded by a closed curve C. Let f
be the disclination flux field used to measure the rate of inflow into
S of disclination lines, carrying along with them their correspond-
ing Frank vectors X, through a line element dx of curve C. Let Vh be
the velocity of the disclinations with respect to the lattice, and l the
unit vector along the disclination lines. Then the disclination ten-
sor is: h ¼ X� l. In the absence of any disclination source term,
the conservation of the Frank’s vector content demands that the
rate of change of the Frank’s vector of all disclination lines thread-
ing S be equal to the total disclination flux across curve C:

d
dt

Z
S

h:ndS ¼
Z

C
f:dx: ð51Þ

For small transformations, the point-wise statement corresponding
to (51) is:

_h ¼ curl f ð52Þ

where _h represents the time derivative of the disclination density
tensor. The rate of inflow of Frank vectors across the surface
dS ¼ l� dx is:

f:dx ¼ XðVh:dSÞ ð53Þ

Some manipulations then lead to:

f ¼ �X� l� Vh ¼ �h� Vh: ð54Þ

Consequently, the local statement of balance (52) becomes:

_h ¼ �curlðh� VhÞ: ð55Þ

Comparison with Eq. (31) shows, after a derivation of the latter with
respect to time, that the cross product in (55) can be identified with
the plastic curvature rate tensor:

_jp ¼ h� Vh: ð56Þ

Eq. (55) is a transport law for the disclination density tensor h. It can
be understood as an evolution law for h, provided the disclination
velocity Vh is known as a function of the stress state from constitu-
tive statements. Its meaning is that, through the curl term, the
incompatible part of the plastic curvature rate, _j?p , incrementally
feeds the disclination density. As we shall discuss below, the com-
patible part _jkp increments the history-dependent compatible plas-
tic curvature produced by the motion of dislocations and
disclinations.

In the theory of dislocations, the dislocation density tensor a
satisfies a transport equation similar to Eq. (55), in the absence
of a source term (Acharya, 2001; Mura, 1963):
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_a ¼ �curl ða� VaÞ ¼ �curl _Up: ð57Þ

Here, Va denotes the dislocation velocity. However, the plastic dis-
tortion rate _Up is undefined in the theory of crystal defects, where
only its symmetric part _�p can be prescribed:

_�p ¼
1
2

a� Va þ a� Vað Þt
� �

: ð58Þ

The transport equation of the theory of dislocations has therefore to
be modified. For small transformations, it is readily obtained from a
time derivative of Eq. (35):

_a ¼ �curl _�p þ _jt
p � trð _jpÞI ¼ �curl _�p þ sh: ð59Þ

An outstanding consequence of Eq. (59) is that dislocations are
nucleated not only because the plastic strain rate has an incompat-
ible part, _�?p , but also because a source term, sh ¼ _jt

p � trð _jpÞI,
involving the mobility of the disclinations is existing. Thus, a wake
of dislocations (nucleated or absorbed) is accompanying the motion
of disclinations. In contrast with the dislocations arising from lattice
incompatibility (the curl term in Eq. (59)), this wake of dislocations
may be seen as systematically contributing to the relaxation of
internal stresses in the neighborhood of disclinations (Romanov
and Vladimirov, 1992; Kleman and Friedel, 2008). When the dislo-
cation and disclination velocities are known from the stress state
through constitutive relations, Eq. (59) can be used as an evolution
equation for the dislocation densities. Of course, the compatible
part of the plastic strain rate, _�kp, increments the compatible strain
produced by the motion of dislocations through the lattice. Note
that, like the transport equation for disclinations (55), Eq. (59) has
propagative character. Fundamental implications on the mathemat-
ical nature of the boundary value problem derive from this prop-
erty, which has also a strong impact on the algorithms devoted to
its solution (see for example Varadhan et al., 2006).
5. Constitutive relations for the dislocation and disclination
velocities

In Eqs. (55), (59) the dislocation and disclination velocities
ðVa;VhÞ need to be constitutively specified. In doing so below, we
seek guidance in a procedure originally introduced in (Coleman
and Gurtin, 1967). We first look for the driving forces associated
with the dislocation and disclination velocities. The mechanical
dissipation in the body D is defined as the difference between
the power of the applied forces and the rate of change of the stored
energy, i.e.

D ¼
Z
@D
ðv:Tþ _~x:MÞ:ndS�

Z
D

_wdv

¼
Z
@D
ðv iTij þ _xiMijÞnjdS�

Z
D

_wdv : ð60Þ

Here, v is the material velocity, and volumetric forces and couples
are ignored for the sake of simplicity. Using the divergence theorem
and the Cosserat equilibrium Eqs. (45) and (46), we can also write in
component form:

D ¼
Z

D
½ðv iTij þ _xiMijÞ;j � v iTij;j � _xiðMij;j � eiklTklÞ � _w�dv ; ð61Þ

then simplify and employ the equivalence (16): xi ¼ � 1
2 eimnxmn

between the rotation vector and skew-symmetric part of the dis-
placement gradient tensor:

D ¼
Z

D
Tijv i;j þMij _xi;j �

1
2

eikleimn _xmnTkl � _w

� �
dv; ð62Þ

to successively obtain:
D ¼
Z

D
ðTijv i;j þMij _xi;j �

1
2
ðdkmdln � dkndlmÞ _xmnTkl � _wÞdv ð63Þ

D ¼
Z

D
ðTijv i;j þMij _xi;j � Tij _xij � _wÞdv; ð64Þ

D ¼
Z

D
ðTij _�ij þMij _xi;j � _wÞdv ¼

Z
D
ðT : _�þM : grad _~x� _wÞdv: ð65Þ

Substituting Eq. (48) into Eq. (65), and using Eq. (28), it is seen that
the dissipation is:

D ¼
Z

D
Tij _�p

ij þMij _jp
ij

� �
dv ¼

Z
D

T : _�p þM : _jp
� �

dv ð66Þ

We now substitute in this relation the plastic curvature rate and
strain rate obtained from the disclination and dislocation densities
and velocities, as detailed in Eqs. (56), (58). In component form, we
find:

D ¼
Z

D

1
2

Tij ejklaikVa
l þ eiklajkVa

l

� �
þMijejklhikVh

l

� �
dv ð67Þ

or:

D ¼
Z

D
ejkl

Tij þ Tji

2
aikVa

l þ ejklMijhikVh
l

� �
dv

¼
Z

D
ðFa:Va þ Fh:VhÞdv; ð68Þ

where Fa and Fh are defined as:

Fa ¼ fTg:a : X; Fa
l ¼ ejkl

Tij þ Tji

2
aik; ð69Þ

Fh ¼Mt :h : X; Fh
l ¼ ejklMijhik; ð70Þ

Fa and Fh define the driving force for the dislocation and disclination
velocity, respectively. When the disclinations are absent, the stress
tensor is symmetric and the dissipation density is only due to dis-
locations (Acharya, 2003). Using the dyadic notation a ¼ b� t for
the dislocation density tensor per unit surface (b is a Burgers vector
and t a line vector), the dislocation driving force (69) can also be
written as: Fa ¼ fTg:b� t, a form reminiscent of the Peach–Köhler
force on discrete dislocations. This Peach–Köhler-type relationship
still holds when couple-stresses are present, despite the non-sym-
metry of the stress tensor, which indicates that dislocation motion
is insensitive to couple-stresses. If the disclination density tensor is
also written in dyadic notation: h ¼ X� l (again X is a Frank’s vec-
tor, l a line vector), the driving force associated with the disclination
velocity is:

Fh ¼Mt :X� l; ð71Þ

a representation analog to the Peach–Köhler relationship for the
driving force on dislocations. This driving force is normal to the dis-
clination line, and is produced by the couple-stress tensor, with no
contribution of the stress tensor. Positiveness of the dissipation rate
(68) is ensured by choosing, in the simplest possible manner, con-
stitutive relations in the form:

Fa ¼ BaVa; Ba > 0; ð72Þ
Fh ¼ BhVh; Bh > 0; ð73Þ

Ba and Bh are positive material parameters, possibly varying with
strain and curvature, the physical dimension of which is that of a
stress divided by a length and a velocity. Eqs. (72) and (73) assume
linear viscous drag and may be applicable at relatively high loading
rate. They would need modification to account for thermally-acti-
vated motion of defects typical at low loading rates. Note that both
the glide and non-glide components of the Peach–Köhler force are
used to induce dislocation motion in Eq. (72), and that Bh and the
tensors of elastic constants ðA; B; DÞ are the only additional phys-
ical parameters requiring determination in the present model.
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6. Solution algorithms

Gathering all the above governing equations, the model reads:

curl jp ¼ �h; ð74Þ
curl �p ¼ �aþ jt

p � trðjpÞI; ð75Þ
div T ¼ 0; ð76Þ

div Mþ 2~T ¼ 0; ð77Þ
_jp ¼ h� Vh; ð78Þ

_�p ¼
1
2
ða;�Va þ a� Vað ÞtÞ; ð79Þ

_h ¼ �curl _jp; ð80Þ
_a ¼ �curl _�p þ _jt

p � tr _jp
� �

I ¼ �curl _�p þ sh; ð81Þ
T ¼ C : fgradug � �p

� �
þ D : grad~x� jp

� �
; ð82Þ

M ¼ A : grad~x� jp
� �

þ B : ðfgradug � �pÞ; ð83Þ

Va ¼
1
Ba
fTg:a : X ð84Þ

Vh ¼
1
Bh

Mt :h : X: ð85Þ

The unknowns are the dislocation and disclination tensors, and the
displacement u and rotation vector ~x fields. All the equations of
field dislocation mechanics (Acharya, 2001), where the unknown
variables are the dislocation tensor and displacement, generalize
into pairs of equations. However, the solution algorithm is some-
what different, because dislocations are generated not only because
the plastic strain has an incompatible part, but also through discli-
nation mobility. Indeed, assuming that the disclination and disloca-
tion densities are known at a step in time does provide the
incompatible part of jp from Eq. (74) (using the side conditions
mentioned in relation with Eq. (32)), but finding the incompatible
part of �p from Eq. (75) requires knowledge of the history-depen-
dent compatible part of jp. Therefore, the algorithm is as follows.
Suppose an arbitrary distribution of dislocations and disclinations
is known at the initial time and let the compatible part of the plastic
curvature and plastic strain tensors arbitrarily set to zero, without
loss of generality. Then, the incompatible parts of jp and �p can
be determined from Eqs. (74) and (75) respectively. Further, using
the constitutive relations (82) and (83), the equilibrium problem
(76) and (77) can be solved for the displacement and rotation vector
fields, which are obtained uniquely, up to a rigid body motion. In
addition, the plastic strain rate and curvature rate can be computed
from Eqs. 78, 79, 84, 85, and utilized to update the plastic strain and
curvature. In this algorithm, only the compatible parts of the plastic
strain and curvature are needed for the update. Finally, the disloca-
tion and disclination densities are updated using Eqs. (80) and (81),
and the procedure can therefore be iterated at the next time step.

The rate form of the governing equations leads to a simpler
incremental algorithm, to the expense of complete arbitrariness
in the initial distribution of crystal defects. Taking the time deriv-
ative of Eqs. 76,77,82,83, the rate equations are:

div _T ¼ 0; ð86Þ

div _Mþ 2 _~T ¼ 0; ð87Þ
_jp ¼ h� Vh; ð88Þ

_�p ¼
1
2
ða� Va þ ða� VaÞtÞ; ð89Þ

_h ¼ �curl _jp; ð90Þ
_a ¼ �curl _�p þ _jt

p � trð _jpÞI ¼ �curl _�p þ sh; ð91Þ
_T ¼ C : ðfgradvg � _�pÞ þ D : ðgrad _~x� _jpÞ; ð92Þ
_M ¼ A : ðgrad _~x� _jpÞ þ B : ðfgradvg � _�pÞ; ð93Þ
Va ¼
1
Ba
fTg:a : X; ð94Þ

Vh ¼
1
Bh

Mt:h : X: ð95Þ

Suppose that all fields are known at a given step in time. The un-
knowns are the rotation rate _~x and material velocity v fields. They
are solution to the rate of equilibrium problem 86,87,92, 93. In
these equations, the plastic strain rate and curvature are obtained
from the dislocation/disclination densities and stress/couple-stress
tensors by using Eqs. (88) and (89) and (94) and (95). Once the dis-
location and disclination densities are updated using Eqs. (90) and
(91), the rate of equilibrium procedure can be iterated at the follow-
ing time step. In this incremental scheme, the determination of the
incompatible parts of the plastic curvature and strain arising from
an initial distribution of crystal defects is avoided. Hence, in con-
trast with the first algorithm, there is no continuity requirement
on the plastic curvature and strain, but only on their rates. There-
fore, the solutions obtained from these two algorithms might turn
out to be somewhat different. If the choice is made to also avoid
the initial determination of the incompatible part of the plastic cur-
vature and strain, then the relaxation of an arbitrarily chosen con-
figuration of plastic strain and curvature may be used to define
workable initial conditions, as will be shown below in Section 8.
The numerical implementation couples a conventional Galerkin Fi-
nite Element scheme for the solution of the rate of equilibrium
problem with a mixed Galerkin-Least Squares (GLS) Finite Element
algorithm for the solution of the dislocation/disclination transport
problem. Details of the latter can be found in Roy and Acharya
(2005) and Varadhan et al. (2006). Exchanges of data between the
two schemes are as follows. In the rate of equilibrium problem
86, 87, 92, 93, the plastic shear strain and curvature rates are inputs
from the GLS scheme for dislocation/disclination transport. Con-
versely, the stress and couple-stress tensors, solutions to the equi-
librium problem, are inputs for the GLS transport problem 88, 89.

7. A plane edge-wedge model

Let us consider a distribution of pure wedge disclinations. In an
orthonormal reference frame ðe1; e2; e3Þ, let the disclination ten-
sor be: h ¼ h33e3 � e3, all other components being zero. In this sim-
ple setting, the continuity condition (33) implies: h33;3 ¼ 0. Thus,
the wedge disclination density h33 only depends on the coordinates
ðx1; x2Þ: h ¼ hðx1; x2Þ. In component form, the rotational incom-
patibility Eq. (31) reads: hij ¼ �ejkljp

il;k ¼ ejklje
il;k. In the present case,

Eq. (31) reduces to:

h33 ¼ jp
31;2 � jp

32;1 ¼ je
32;1 � je

31;2: ð96Þ

Hence the only relevant elastic and plastic curvatures are: je
31;je

32

� �
and jp

31;j
p
32

� �
. Additionally, we note that: trðjpÞ ¼ 0. Thus, the dis-

clination transport Eq. (55) is:

_h33 ¼ _jp
31;2 � _jp

32;1: ð97Þ

The plastic curvature rate (56) reads, in component form:
_jp

ij ¼ ejklhikVh
l . Hence, we find:

_jp
31 ¼ �h33Vh

2; ð98Þ
_jp

32 ¼ þh33Vh
1: ð99Þ

Using the constitutive relation (73) for the disclination velocities
provides their relationship with the couple-stresses:

Vh
1 ¼ þ

1
Bh

M32h33; ð100Þ

Vh
2 ¼ �

1
Bh

M31h33: ð101Þ
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Hence, the plastic curvature rates are:

_jp
31 ¼

1
Bh

M31h
2
33; ð102Þ

_jp
32 ¼

1
Bh

M32h
2
33; ð103Þ

and the disclination transport equation now reads:

_h33 ¼
1
Bh

M31h
2
33

� �
;2 �

1
Bh

M32h
2
33

� �
;1: ð104Þ

Since the trace of the plastic curvature rate tensor is zero, the source
term sh in the dislocation transport Eq. (59) feeds only the edge dis-
locations densities ða13;a23Þ. Using Eq. (58), it is seen that the mo-
tion of these dislocations produce the plastic strain rate
components _�p

11; _�p
12; _�p

21; _�p
22

� �
:

_�p
11 ¼ �a13Va

2; ð105Þ

_�p
12 ¼ _�p

21 ¼
1
2
ða13Va

1 � a23Va
2Þ; ð106Þ

_�p
22 ¼ þa23Va

1: ð107Þ

The relations (105) and (107) suggest that out-of-plane motion of
the edge dislocations ða13;a23Þ is involved in the extension rates

_�p
11; _�p

22

� �
, whereas their glide is responsible for _�p

12 in Eq. (106). Con-
sistently, the dislocation transport Eq. (59) reduces to:

_a13 ¼ _�p
11;2 � _�p

12;1 þ _jp
31; ð108Þ

_a23 ¼ _�p
21;2 � _�p

22;1 þ _jp
32; ð109Þ

or, accounting for Eqs. (98), (99), (105)–(107):

_a13 ¼ � a13Va
2

� �
;2 �

1
2

a13Va
1 � a23Va

2

� �
;1 � h33Vh

2 ð110Þ

_a23 ¼ � a23Va
1

� �
;1 þ

1
2

a13Va
1 � a23Va

2

� �
;2 þ h33Vh

1: ð111Þ

Thus, if all other dislocation densities are initially absent, the dislo-
cation distribution involves only a13 and a23 edge densities. The
continuity Eq. (39) then implies that this distribution be a plane
state: a13 ¼ a13ðx1; x2Þ;a23 ¼ a23ðx1; x2Þ. The symmetric ‘‘Peach–
Köhler’’ constitutive relation (72) provides the dislocation velocities
in terms of the stress tensor, for both the out-of-plane motion of
dislocations:

Va
1 ¼ þ

1
Ba

T22a23 ð112Þ

Va
2 ¼ �

1
Ba

T11a13; ð113Þ

and their glide:

Va
1 ¼ þ

1
2Ba
ðT12 þ T21Þa13 ð114Þ

Va
2 ¼ �

1
2Ba
ðT12 þ T21Þa23: ð115Þ

Therefore, the plastic strain rates induced by the motion of these
dislocations are:

_�p
11 ¼

1
Ba

T11a2
13 ð116Þ

_�p
12 ¼ _�p

21 ¼
1

2Ba
ðT12 þ T21Þ a2

13 þ a2
23

� �
ð117Þ

_�p
22 ¼

1
Ba

T22a2
23; ð118Þ

and the dislocation transport equation can be rewritten as:
_a13 ¼ þ
1
Ba

T11a2
13

� �
;2 �

1
4Ba

ðT12 þ T21Þ a2
13 þ a2

23

� �� �
;1 þ

1
Bh

M31h
2
33

ð119Þ

_a23 ¼ �
1
Ba

T22a2
23

� �
;1 þ

1
4Ba

ðT12 þ T21Þ a2
13 þ a2

23

� �� �
;2 þ

1
Bh

M32h
2
33:

ð120Þ

The stress and couple-stress components relevant to the present
problem are ðT11; T12; T21; T22Þ and ðM31; M32Þ respectively. Hence
the Cosserat balance of momentum Eqs. (45), (46) reduce to:

T11;1 þ T12;2 ¼ 0 ð121Þ
T21;1 þ T22;2 ¼ 0 ð122Þ
M31;1 þM32;2 þ T21 � T12 ¼ 0: ð123Þ

Thus, the loading applied at the boundaries of the body may include
shear and tension/compression the directions ðe1; e2Þ. Couple-
stresses or rotations along the direction e3 may also be involved.

We now focus on describing the elastic properties in the model.
In Eq. (41), the infinitesimal displacement je � r:dr arising from
the curvatures je

31;je
32

� �
is zero at any point along any in-plane cir-

cuit C. Hence, the incompatible displacement due to the inhomoge-
neity of the lattice curvature is zero on any such circuit. Since these
circuits allow characterizing all the dislocation densities present in
the model, the contribution of the curvatures je

31;je
32

� �
to stresses

is zero in Eq. (49). Hence we write:

T11 ¼ C1111�e
11 þ C1122�e

22 ð124Þ
T12 ¼ C1212�e

12 þ C1221�e
21 ð125Þ

T21 ¼ C2112�e
12 þ C2121�e

21 ð126Þ
T22 ¼ C2211�e

11 þ C2222�e
22: ð127Þ

Assuming cubic symmetry of the crystal and denoting by l the elas-
tic shear modulus, the relations C1111 ¼ C2222 ¼ al; C1122 ¼ C2211 ¼
bl; C1221 ¼ C1212 ¼ C2112 ¼ C2121 ¼ cl hold, leaving only three inde-
pendent non-dimensional constants: ða; b; cÞ in relations (124),
(127). In Eq. (50), the infinitesimal rotation r� �e:dr=r2 induced
by the inhomogeneity of the in-plane strains �e

21; �
e
22

� �
and

�e
11; �

e
12

� �
produce curvature components j031;j032

� �
respectively,

giving rise in turn to couple-stress components ðM31; M32Þ. We
therefore conjecture the following relationship between the cou-
ple-stresses and the elastic curvatures and strains:

M31 ¼ A3131je
31 þ B3121�e

21 þ B3122�e
22 ð128Þ

M32 ¼ A3232je
32 þ B3211�e

11 þ B3212�e
12 ð129Þ

Assuming further A3131 ¼ A3232 ¼ Mlb2 and B3211 ¼ B3212 ¼ �B3121 ¼
�B3122 ¼ lb, where b the length of the Burgers vector and M a non-
dimensional elastic modulus, we additionally conjecture that the
characteristic length scale A3131=B3112 involved by the elastic behav-
ior is b. As already suggested, this internal length scale sets the
characteristic dimension of the area over which inhomogeneity of
the shear strains induces a significant couple stress component.
Experimental measurements of the Aijkl and Bijkl elastic constants
and of the viscosity constant Bh have yet to be carried out. Provi-
sionally, we adopt the values M ¼ 1, consistent with an earlier esti-
mate (Kröner, 1963), and a common value Bh ¼ Ba ¼ B. The mobility
of the disclinations might be overestimated by doing so, but this va-
lue conveniently allows showing the features of disclination
dynamics in the following. Further, orders of magnitude found in
Section 8 below seem to be consistent. The values of the parameters
utilized in the forthcoming calculations are presented in Table 1.
They are typical of aluminum. However, the non-dimensional elas-
tic constants: ða;b; cÞ are chosen in conformity with elastic isot-
ropy: a ¼ 2ð1� mÞ=ð1� 2mÞ;b ¼ 2m=ð1� 2mÞ; c ¼ 1, with m ¼ 0:3 for
Poisson’s ratio, in order to compare the elastic energy predicted in



Fig. 1. Disclination density h33 and Burgers vector fields in domain D after
relaxation. The disclination density is color-coded in m�2 units. The arrows
represent the local Burgers vector, whose components are the edge dislocation

Table 1
Numerical constants used in the model.

b l b2B

0.27 nm 27 GPa 0:4� 10�4 Pa s

a b c M
3.5 1.5 1 1
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the following for disclination dipoles with literature values (see be-
low Eq. (130)).

Substituting �ij � �p
ij;xi;j � jp

ij

� �
for �e

ij;je
ij

� �
in the constitutive

Eqs. (124)–(129), then the resulting stresses and couple-stresses
in the balance of equilibrium Eqs. (121)–(123), one obtains three
partial differential equations for the unknowns ðu1; u2; x3Þ. As al-
ready mentioned in Section 6, the plastic strain and curvature are
updated by using the plastic strain and curvature rates (102),
(103), (116)–(118), and the disclination and dislocation densities
by using the transport Eqs. 104, 119, 120. Boundary conditions
comprise the prescription of tractions and moments, or/and dis-
placements and rotation on the surface of the body. Finally, the dis-
clination and dislocation densities must be specified on inflow
boundaries, but no condition is required on outflow boundaries.
Fig. 2. Rotation x3 and Burgers vector field in domain D after relaxation. The
dislocation lines and rotation axis sit along the normal to the figure. The rotation is
color-coded in radiants. The arrows represent the local Burgers vector, whose
components are the edge dislocation densities ða13 ; a23Þ per unit surface (also
shown in Fig. 1). In areas where the incompatibility is small, the Burgers vector is
approximately aligned with the gradient vector of x3.

densities ða13 ; a23Þ per unit surface. The dislocation and disclination lines are along
the normal to the figure.
8. Disclination dipoles

We consider a 75 nm� 75 nm square domain D in the crystal,
and use a ð15� 15Þ finite element mesh of incomplete quadratic
quadrangle elements to interpolate the unknown fields in the solu-
tion of the equilibrium problem, and of bilinear quadrangle ele-
ments in the transport problem. Integrations over all elements
use a four Gauss points method. An arbitrary set of initial condi-
tions is designed for the plastic curvatures jp

31;j
p
32

� �
in order to po-

sition near the center of the body a nearly discrete dipole of wedge
disclinations h33. As a first step in the determination of its dynam-
ics, we let this tentative crystal defect re-arrange in its own stress
and couple-stress fields, in accordance with the equilibrium and
transport equations. In this process, the boundary @D of the do-
main D is kept free from applied stresses and couple-stresses.
Any displacement and rotation is allowed on @D, and the lattice
is left free to rotate. We shall refer to this process as the relaxation
of the initial crystal defect, and monitor its evolution by plotting in
time the total elastic free energy of the body. A well-defined and
apparently stable defect pattern emerges from relaxation, as
shown in Figs. 1 and 2. Initially enclosed in an arbitrary
ð5 nm� 5 nmÞ central square, the disclination and dislocation den-
sities quickly spread out and stabilize within a much larger circular
area, about 60 nm in diameter, as seen in Fig. 1. In this figure, the
disclination density is color-coded, and the dislocation densities
can be apprehended through the field of Burgers vectors. At each
point in this area, the disclination and dislocation densities com-
bine to produce a complex crystal defect. However, we believe that
this pattern would slowly and steadily expand if an infinitely long
computation time was allowed for its complete relaxation. Such
expansion would occur in relation with the linearity of the elastic
constitutive relations (49) and (50). We conjecture a definitely
(meta) stable confinement of the defect within the body could be
realized if a non convex elastic potential was utilized. Employing
Eq. (42), the Frank’s vector magnitude over the half positive, D1,
and half negative, D2, parts of the resulting dipole is obtained as:
X ¼

R
D1

h33dS ¼ �
R

D2
h33dS ¼ 0:3rad. Using Eq. (43), the total Bur-

gers vector of the dipole is found as: b ¼
ffiffi
2
p

2 bð�e1 þ e2Þ;
b ¼ 15 nm. Through the intimate connections between the rotation
gradient and Burgers vector fields evidenced in Fig. 2, the inter-
twinning of the dislocation and disclination fields is self-obvious.
Indeed, subtracting Eq. (35) from Eq. (34), it can be shown that:
grad~x � 2at , or: x3;j � 2bj; j ¼ 1;2, in the regions where incom-
patibility is small before the compatible plastic curvature. Hence,
the gradient vector of x3 is approximately aligned with the
Burgers vector in areas where relaxation dislocations nucleated
by transport of disclination densities are prevailing. From Fig. 3,
it is seen that the elastic free energy converges in less than a ls
to the final value: w ¼ 2� 10�9 J=m, much smaller than the initial
value: w ¼ 5:5� 10�9 J=m. It is worth comparing this result with
the elastic energy EX of a two-axes discrete disclination dipole, as
provided by the linear isotropic elasto-static theory of disclinations
(Romanov and Vladimirov, 1992; Romanov and Kolesnikova,
2009):



Fig. 5. Disclination dipole with separation distance 2a ¼ 60 nm. Rotation x3 and
Burgers vector field in domain D after relaxation. The dislocation lines and rotation
axis sit along the normal to the figure. The rotation is color-coded in radiants. The
arrows represent the Burgers vector field, also shown in Fig. 4.

Fig. 3. Elastic energy of the crystal defect during relaxation in semi-logarithmic
coordinates. The dotted lines are a guide to the eye. The insert displays the time
derivative of the elastic energy in logarithmic coordinates, showing power-law
dependence with exponent close to 1.
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EX ¼
l

2pð1� mÞX
2a2ð2 ln

Rs

2a
þ 3Þ: ð130Þ

Here 2a is the dipole arm, i.e., the separation distance between the
disclination axes in Fig. 1 ð2a ¼ 5 nmÞ, and Rs is a screening distance
(here: 75 nm, the size of the body). Hence, we find: EX � 3�
10�8 J=m, a value 15 times larger than the energy of the relaxed
crystal defect. To sum up, it seems that in the course of relaxation,
through transport driven by their self-couple-stress field, discrete
disclination dipoles evolve into well-defined crystal defects ex-
tended in space and involving relaxation dislocations, in a way such
that their elastic free energy reaches much smaller levels than be-
lieved on the basis of elasto-static calculations. Interestingly, the
time dependence of the elastic energy during relaxation is close
to logarithmic (see Fig. 3). The relaxed configuration of an initial
’’discrete’’ disclination dipole with a wide separation distance
2a ¼ 60 nm along the e1 direction is shown in Fig. 4 and the corre-
Fig. 4. Disclination dipole with separation distance 2a ¼ 60 nm. Disclination
density h33 and Burgers vector fields in domain D after relaxation. The disclination
density is color-coded in m�2 units. The arrows represent the local Burgers vector,
whose components are the edge dislocation densities ða13; a23Þ per unit surface.
The dislocation and disclination lines are along the normal to the figure.
sponding rotation field in Fig. 5. In the relaxation process, transport
of the wedge dipole under its own stress and couple-stress field
generates a linear array of a23 edge dislocations forming a tilt seg-
ment enclosed in the dipole. The rotation field exhibits a continuous
shift across the tilt segment, to produce a 36� misorientation in less
than 10 nm. Hence, the dipole may be considered as modeling a
high-angle tilt boundary segment with a finite width. More elabo-
rate modeling of grain boundaries, using the relaxation of arrays
of disclination dipoles as introduced in (Gertsman et al., 1989) will
be envisioned in future work.

We now consider relaxing a point-disclination dipole to its sta-
ble self-organized configuration, and sequentially performing
transverse tensile loading along the ’’vertical’’ e2 axis, normal to
the dipole direction e1. During the loading sequence, the displace-
ment of the body is set to zero at one point on the lower boundary,
while the rest of the boundary has no vertical displacement but is
free to move in the ’’horizontal’’ e1 direction. On the upper bound-
ary, the vertical displacement is prescribed at a constant positive
velocity, such that the applied strain rate is _�a

22 ¼ 104 s�1, while
the horizontal component of the displacement is also free. In addi-
tion, the rotation is free on all boundaries. The relaxed configura-
tion is shown in Fig. 6, inset A1. The disclination density and
Burgers vectors shown are similar to those in Fig. 4. The corre-
sponding a23 edge-density is additionally shown in the inset A2.2

The rotation misfit across the dipole is 36�. The figures B1 and B2
are evolved from A1 and A2 after about 7% total tensile strain in
the loading sequence. It is seen that the disclination dipole stretches
and moves in both directions. The positive disclination stretches in
the direction normal to the dipole, while slightly moving to the right
in the dipole direction. The negative disclination shrinks toward the
dipole axis, while being essentially motionless. In the mean time, the
a23 edge dislocations are transported to the right along the dipole by
out-of-plane motion, possibly by climb or atom shuffling (see the
Burgers vectors evolutions in the main figure), which induces a sig-
nificant plastic strain (about 2%) when the traction reaches its max-
2 To improve the numerical stability of the solutions to the transport Eqs. 104, 119,
120 in tensile loading, the numerical diffusion parameter was set to a slightly higher
value than in a simple relaxation process (see details on the algorithm in Varadhan
et al. (c2006)). As a result, the relaxed a23 edge dislocation density is more evenly
distributed in the dipole. We checked that such a slight discrepancy has no influence
on the results shown in Fig. 6.



Fig. 6. Tensile loading of a relaxed disclination dipole with separation distance 2a ¼ 30 nm. Subset A includes color-coded maps of the relaxed disclination density and
Burgers vector distribution (represented by arrows) (A1), edge-dislocation density a23 and the corresponding velocity (arrows) (A2). Subset B shows the figures evolved from
A1 and A2 after approximately 7% total strain. The main figure includes normalized plots of the elastic energy of the body (blue line, circles, marks corresponding to subsets A
and B), tensile stress (black line, squares), tensile plastic strain (red line, crosses), Burgers vector magnitude of the a23 edge-dislocations (up triangles), Burgers vector
magnitude of the a13 edge-dislocations (down triangles), average magnitude of elastic curvature je

31 (diamonds) and average magnitude of elastic curvature je
32 (stars). The

applied strain rate is _�a
22 ¼ 104 s�1.
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imum value T22 ¼ 1:1 GPa. In the process, the elastic curvatures
je

31;je
32

� �
and the total rotation gap between the upper and lower

sides of the dipole increase. Recall that the rotation is free at the
boundaries, a condition not likely to be realistic if the simulation
box is seen as part of a bicrystal, but useful here to demonstrate rota-
tion of the crystallites, a prominent feature of the deformation pro-
cess. Nucleation of (a13;a23Þ edges occurs when the tensile stress and
elastic energy of the body decrease at yield. Eventually, the tensile
plastic strain reaches 6%, due to the out-of-plane motion of the a23

edges to the right of the dipole (see the Burgers vectors evolution
in Fig. 6, and inset B2 where the arrows show the velocity of the
a23 edges). Note that, because the displacement of the body is uncon-
strained in the dipole direction, the transverse strain �11 is every-
where of the order of 10�3 during the loading process, and that the
increase in the elastic energy of the body is essentially due to the
elastic tensile strain and curvatures.

Comparison of these predictions with experimental data and re-
sults from atomistic simulations is desirable. Recent experimental
work showed that nanocrystalline aluminum, with average grain
size 60 nm, dynamically compressed at a strain rate of 2636 s�1

using a Split Hopkinson Pressure Bar, yields at 800 Mpa (Khan
et al., 2006). Such a high yield stress level results from both the
small grain size and the high applied strain rate. Hence, although
the experimental conditions are rather different (loading path,
sample size, applied strain rate and boundary conditions), the po-
sitive rate sensitivity of the yield stress suggests that the 1:1 GPa
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value obtained in transverse tension at a strain rate of 104 s�1

could be plausible. Further, some aspects of the tilt boundary
behavior under transverse uniaxial tensile and compressive load-
ing in copper were recently investigated using atomistic simula-
tions (Tschopp et al., 2008; Spearot et al., 2008). The yield stress
obtained from the simulations (Tschopp et al., 2008) has values
significantly larger than ours, of the order of 3:1� 3:4 GPa, perhaps
due to more constrained boundary conditions and a much larger
strain rate level. In these simulations however, dislocation nucle-
ation is not seen before the tensile stress reaches its maximum,
at which point the simulations are stopped. In the present work,
edge dislocation nucleation and plastic straining occur earlier dur-
ing the loading sequence. It is also of interest to note that, under
tension normal to the dipole direction, with boundary conditions
such that the elastic strain in the direction of the dipole remains
negligible, the elastic energy of the body sharply increases until
plastic relaxation occurs, consistent with ideas conveyed in
(Spearot et al., 2008).

9. Conclusions

A linearized theory of the elasto-plasticity of crystalline materi-
als accounting for both translational and rotational crystal defects,
i.e., dislocations and disclinations, was proposed. The most original
contributions of this work can be summarized as follows: (i) It was
shown how, in particular by using the transport equations for dis-
locations and disclinations as evolution equations, the elasto-static
theory of disclination fields (deWit, 1970) can be extended to be-
come an elasto-plastic dynamic theory, (ii) The elasto-plastic the-
ory of dislocation fields (Acharya, 2001) was extended and
regularized in the sense that the proposed theory is able to deal
with discontinuities of the elastic rotation field, (iii) On thermody-
namical grounds, it was demonstrated that the mobility of disclina-
tions is driven by the couple-stress tensor and that of dislocations
by the stress tensor exclusively. The ensuing Peach–Köhler-type
driving forces for dislocations and disclinations were defined, and
dissipative constitutive relations were proposed. As a proof of con-
cept and in order to show the applicability of the theory, a simple
plane edge-wedge model was developed. The relaxation of a
point-disclination dipole into a self-organized dislocation–disclina-
tion pattern, and its behavior under tensile loading normal to its
axis were detailed. The results suggest that the model may be used
for further grain-boundary modeling and study of grain boundary-
mediated plasticity. This will be an objective of future work.

The size of the bodies to be investigated by using the present
approach can be of the order of (but may be larger than) the
dimensions of the atomistic samples studied in molecular dynam-
ics simulations. We emphasize that using a continuous approach at
length scales below the elementary lattice parameters is still fully
meaningful. As K. Kondo puts it: ‘‘No lower limit is. . .categorically
imposed on the terminology of differential geometry of continua.
Hence all the microscopic complications in scales much lower than
the lattice and dislocation structures could tacitly be included in
the formula’’ (Kondo, 1964). Besides, the time scale of our compu-
tations is much larger than that of molecular dynamics simula-
tions. In the present work, the simulations were carried out on a
single-processor desktop computer, which leaves room for sub-
stantial improvement in computational performance. Nevertheless
the loading strain rate was 105 smaller than the typical strain rates
employed in standard atomistic simulations. Diffusion related phe-
nomena such as climb of dislocations, which can hardly be envi-
sioned in the latter due to the exceedingly high loading rates
that are employed, can be dealt with in the present approach. This
feature may be of interest in the study of grain-boundary mediated
plasticity, where diffusion-related phenomena could play a role
(Mompiou et al., 2009).
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