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ABSTRACT 

Contributions of 15 convex polyhedral particle shapes to the overall elastic properties of 

particle-reinforced composites are predicted using micromechanical homogenization and direct 

finite element analysis approaches. The micromechanical approach is based on the combination 

of the stiffness contribution tensor (N-tensor) formalism with Mori-Tanaka and Maxwell 

homogenization schemes. The second approach involves FEA simulations performed on 

artificial periodic representative volume elements containing randomly oriented particles of the 

same shape. The results of the two approaches are in good agreement for volume fractions up to 

30%. Applicability of the replacement relation interrelating N-tensors of the particles having the 

same shape but different elastic constants is investigated and a shape parameter correlated with 

the accuracy of the relation is proposed. It is concluded that combination of the N-tensor 

components of the 15 shapes presented for three values of matrix Poisson’s ratios with the 

replacement relation allows extending the results of this paper to matrix/particle material 

combinations not discussed here. 

 

Keywords: polyhedral particles; homogenization; effective elastic properties; Mori-Tanaka; 

Maxwell; stiffness contribution tensor; periodic RVE; finite element analysis; micromechanics; 

replacement relation 
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1. Introduction 

Regular polyhedra can be used to describe shapes of some crystalline metallic particles that 

are encountered as precipitates or synthesized as powders to be used as additives in particle-

reinforced composites (Sundquist (1964), Menon and Martin (1986), Wang (2000), Onaka et al. 

(2003), Miyazawa et al. (2012), Niu et al. (2009)). Table 1 presents microscopy images of 

particles having polyhedral shapes along with their idealized shapes. 

In this study, we analyze the effect of shape of several representative convex polyhedral on 

the overall elastic properties of particle-reinforced composites. Traditionally, the effect of 

inhomogeneities on elastic properties of materials is described using the classical Eshelby (1957) 

and Eshelby (1961) results for an ellipsoidal inhomogeneity. It means that the shape of the 

inhomogeneities is explicitly or implicitly assumed to be ellipsoidal (in most cases – just 

spherical). Few results on inhomogeneities having irregular geometry have been published in 

literature. In 2D, general cases of pores and inhomogeneities of arbitrary irregular shape have 

been studied using conformal mapping approach, see for example Zimmerman (1986), Jasiuk et 

al. (1994), Tsukrov and Novak (2002), Tsukrov and Novak (2004), Ekneligoda and Zimmerman 

(2006), Ekneligoda and Zimmerman (2008), Mogilevskaya and Nikolskiy (2015).  

In 3D, several results for contributions of irregularly shaped inhomogeneities to effective 

elastic properties exist. Solutions for cracks having irregular shape are presented in Kachanov 

and Sevostianov (2012). Effect of concavity factor of superspheres and axisymmetric concave 

pores has been analyzed in the works of Sevostianov et al. (2008), Sevostianov and Giraud 

(2012), Chen et al. (2015) and Sevostianov et al. (2016). The authors supplemented finite 

element analysis (FEA) calculations with analytical approximations for compliance contribution 

tensors of pores of such shapes. The possibility to extend the results from pores to 

inhomogeneities with arbitrary properties has been discussed by Chen et al (2017). The authors 

showed that replacement relations (Sevostianov and Kachanov (2007)) that allow calculation of 

the compliance contribution tensor of an inhomogeneity from the one of a pore of the same shape 

are applicable to convex inhomogeneities only. Concave inhomogeneities require direct 

calculation of property contribution tensors. Drach et al. (2011) used FEA calculations to obtain 

compliance contribution tensors of several 3D irregularly shaped pores typical for carbon-carbon 

composites, and Drach et al. (2016) presented numerically obtained compliance contribution 
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tensors of cubical, octahedral and tetrahedral pores. Garboczi and Douglas (2012) presented a 

procedure to approximate bulk and shear elastic contribution parameters in the case of randomly 

oriented inhomogeneities shaped as blocks. 

The effect of shape of an irregular inhomogeneity can also be analyzed by considering 

representative volume elements (RVEs) containing arrangements of inhomogeneties with 

orientation distribution of interest (e.g. random or aligned in the same direction). Rasool and 

Böhm (2012) analyzed contributions of spherical, cubical, tetrahedral and octahedral 

inhomogeneities to the effective thermoelastic properties of particle-reinforced composites with 

random particulate orientations. The results were obtained for the material combination with the 

particles ten times stiffer than the matrix and for the volume fraction of 0.2. Recently, Böhm and 

Rasool (2016) extended the approach by considering elasto-plastic behavior of the matrix 

material. In addition to the contribution tensors of individual pores, Drach et al. (2016) used FEA 

to study the shape effects of cubical, octahedral and tetrahedral pores on the overall elastic 

properties of porous materials using periodic RVEs containing parallel and randomly oriented 

pores. 

The inverse problem – design of microstructures of particle-reinforced composites – has been 

studied extensively in the works of Zohdi (2001), Zohdi (2003a), Zohdi (2003b). The author 

presents efficient computational algorithms for determining volume fractions, shapes, 

mechanical properties and orientations of particles for doping of a homogeneous matrix material 

so that the overall composite properties match the desired. The methodology is based on 

“microstructure-nonconforming” FEA approach. 
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Table 1. Examples of ipolyhedral shapes 

Shape Idealized Microscopy  Shape Idealized Microscopy 

Sphere [1] 

  

 Truncated 

Octahedron 

[6] 

 
 

Polyhedral 

Supersphere 

(smooth) [2] 

 

  

 Cuboctahedron 

[7] 

 
 

Polyhedral 

Supersphere 

(smooth) [2] 

 

 
 

 Rhombic 

Dodecahedron 

[8] 

  

Cube (smooth) 

[3] 

 
 

 Octahederon 

(smooth) [7] 

 

 
 

Cube [4] 

  

 Octahederon [9] 

  

Icosahedron [5] 

 

  

 Tetrahedron [10] 

 

 
 

 
[1] Seo et al. (2006) 

[2] Menon and Martin (1986) 

[3] Onaka et al. (2003) 

[4] Cao et al. (2010) 

[5] McMillan (2003) 

[6] Zeon Han et al. (2015) 

[7] Seo et al. (2006) 

[8] Cravillon et al. (2012) 

[9] Sun and Yang (2014) 

[10] Park et al. (2007) 

 

The shapes in Table 1 can be described using the following general formula combining 

different types of polyhedra (Onaka (2006), Miyazawa et al. (2012), Onaka (2016)): 

 *         
  

        
  

         +
   

          
   

 +         
      , (1.1) 
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where                   are constants,   is a shape parameter, and      ,      ,        , 

       and        are functions that are given below: 

                      , 

                                            , 

                                                   , 

                                                                       

                                                              , 

                                     , 

where  

                    ,   
 

√ 
,   √  √ 

 
,   √  √ 

 
,   

                                                              , 

                                . 

Using formula (1.1) we obtained 15 polyhedral shapes that are analyzed in this paper, see 

Table 2.  

In the present work, we utilize stiffness contribution tensor formalism to estimate overall 

elastic properties of materials with polyhedral inhomogeneities and compare the results with 

direct finite element simulations of periodic RVEs. The concept of the stiffness contribution 

tensor is introduced in section 2. The section also details our numerical approach to calculation 

of stiffness contribution tensors of individual inhomogeneities. In section 3, we present the 

components of stiffness contribution tensors of all shapes shown in Table 2. In addition, we 

investigate the applicability of replacement relations to the considered shapes and introduce a 

parameter correlating the accuracy of the relations with a shape’s geometry. Predictions of the 

effective elastic properties for particle-reinforced materials with randomly oriented polyhedral 

inhomogeneities based on stiffness contribution tensors are presented in section 4. The 

predictions obtained using non-interaction, Mori-Tanaka and Maxwell micromechanical 

homogenization schemes are compared with direct finite element simulations of periodic RVEs. 

Section 5 presents the conclusions of the paper. Finally, stiffness contribution tensors of the 

considered polyhedral shapes for two Poisson’s ratio values        and        of the matrix 

(in addition to the results for        presented in section 3) are given in the Appendix A.   
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Table 2. Considered polyhedral shapes 

# Shape Image                a b p 

1 Sphere 

 

1 0 0 0 0 1 1 2 

2 Polyhedral 

Supersphere 1 

 

1 1 1 0 0 1.69 1.58     

3 Polyhedral 

Supersphere 1 

(smooth)  

1 1 1 0 0 1.69 1.58     

4 Polyhedral 

Supersphere 2  

 

1 1 1 0 0 1.67 1.72     

5 Polyhedral 

Supersphere 2 

(smooth) 
 

1 1 1 0 0 1.67 1.72        

6 Cube 

 

1 0 0 0 0 1 1     

7 Cube (smooth) 

 

1 0 0 0 0 1 1       

8 Icosahedron 

 

0 0 0 1 0 1 1     

9 Truncated 

Octahedron 

 

1 1 0 0 0 1.2 1     

10 Cuboctahedron 

 

0 1 1 0 0 2 2     

11 Rhombic 

Dodecahedron 

 

0 0 1 0 0 1 1     

12 Octahederon 

 

0 1 0 0 0 1 1     

13 Octahederon 

(smooth) 

 

0 1 0 0 0 1 1        

14 Tetrahedron 

 

0 0 0 0 1 1 1     

15 Tetrahedron 

(smooth) 

 

0 0 0 0 1 1 1     
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2. Property contribution tensors 

Property contribution tensors were first introduced as compliance contribution tensors in the 

context of pores and cracks by Horii and Nemat-Nasser (1983). Components of such tensors 

were calculated for 2D pores of various shape and 3D ellipsoidal pores in isotropic material by 

Kachanov et al. (1994). For the general case of an elastic ellipsoidal inhomogeneity, compliance 

contribution tensor and its counterpart – stiffness contribution tensor – were presented in 

Sevostianov and Kachanov (1999, 2002). Kushch and Sevostianov (2015) established the link 

between these tensors and dipole moments. 

Following Sevostianov and Kachanov (1999), we consider a homogeneous isotropic elastic 

material (matrix) with a stiffness tensor    containing an inhomogeneity of volume    that has a 

different stiffness   . Fourth-rank stiffness contribution tensor   of an inhomogeneity relates 

additional stress due to the presence of the inhomogeneity    (per reference volume   of the 

elastic material including the inhomogeneity) with applied strain   : 

              
 .  (2.1) 

Strain distribution   is assumed to be uniform inside   in the absence of the inhomogeneity. 

Thus, the stiffness contribution tensor, which characterizes the far-field asymptotic of the elastic 

fields generated by an inhomogeneity, determines its contribution to the effective elastic 

properties (Sevostianov and Kachanov, 2011).  

We calculate the stiffness contribution tensors (N-tensors) of individual particles using FEA. 

In the procedure, for a given particle geometry we simulate a single inhomogeneity in a large 

volume subjected to remotely applied uniform displacement fields. To prepare the necessary 3D 

FEA mesh for the analysis, we begin by generating the surface mesh of the particle in a custom 

MATLAB script using formula (1.1) and built-in function “isosurface.m”. Figure 1 shows the 

truncated octahedron and icosahedron surface meshes generated using our script. Each mesh is 

composed of approximately 50,000 elements. The generated surface mesh of a particle is then 

used in the numerical procedure to find components of the particle property contribution tensor 

as described below. 
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(a) (b) 

Figure 1. Particle surface meshes: a) truncated octahedron; b) icosahedron 

 

Particle surface mesh is placed in a large cubic-shaped reference volume with sides five 

times larger than the largest linear dimension of the particle to reduce boundary effects and 

simulate remote loading. The setup is auto meshed with 10-node tetrahedral 3D elements 

(tetra10), see Figure 2. Note, that the choice of the reference volume size and the order of the 

tetrahedral elements used in the analysis is based on a sensitivity study performed for a particle 

of spherical shape, for which an analytical solution is available in the literature. In the case of the 

particle/matrix elastic contrast equal to 20 and 10,000 surface elements used for the particle 

shape description, the average relative error in FEA calculations of the N-tensor components was 

calculated to be 0.027%. 

  

(a) (b) 

Figure 2. 3D mesh density of the volume containing an icosahedral particle: a) general view of the reference 
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volume; b) close-up view of the highlighted region 

 

After volume mesh is generated, the N-tensor components are calculated from FEA of six load 

cases: three uniaxial tension and three shear load cases. All FEA calculations at this stage are 

performed using commercial multipurpose FEA package MSC Marc Mentat. Boundary 

conditions for all six load cases are prescribed on the external faces of the reference volume in 

terms of displacements. Once the six FEA simulations are completed for the given shape, the 

result files are processed using a custom Python script to determine N-tensor. The script starts 

with calculating volume-averaged stress components within   from each load case: 

 〈   〉  
 

 
∑ (   

   
)
 

       
   ,                                (2.1) 

where 〈   〉  is the volume average of the stress component    calculated from the  -th 

loadcase,   is the reference volume, (   
   )

 
 is the stress component    at the centroid of the 

finite element   calculated from the  -th loadcase,      is the volume of the element  , and    is 

the total number of elements in the model. Given the average stress components we then 

calculate the stiffness contribution tensor from: 

          
    〈   〉  (   

 )
 

,    (summation over          ) (2.2) 

where      
    are the components of the prescribed strain and (   

 )
 

 are the stress components 

inside   in the absence of the inhomogeneity. For example, from the first load case all 

components       are found (note that all    
  except    

  are zero):  

        
 〈   〉  (   

 )
 

(   
 )

 

. (2.3) 

Components of the stiffness contribution tensors normalized by particle volume fraction, 

 ̅     (
 

  
)     , are presented for different shapes in Table 3.  

 

3. Stiffness contribution tensors of polyhedral particles 

3.1. N-tensor components of the considered shapes 
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Table 3 presents non-zero components of stiffness contribution tensors calculated following 

the procedure described in section 2 for the shapes presented in Table 2. Young’s moduli and 

Poisson’s ratios of the matrix and particle materials used in calculations are        ,    

   ,        ,       , respectively. 

Only three components of the normalized stiffness contribution tensors are presented for the 

shapes in the first part of Table 3 because the tensors have equal components in three directions: 

 ̅    
     ̅    

     ̅    
   ,  ̅    

     ̅    
     ̅    

    and  ̅    
     ̅    

     ̅    
   . This means that 

the tensors are either isotropic or exhibit cubic symmetry. In the case of isotropy, only two out of 

three presented components are independent and component  ̅     can be expressed as:  ̅     

( ̅      ̅    )  . To check the shapes for isotropy, we calculated  ̅     components using the 

relationship above and compared them with FEA calculations. In the case of a sphere, the 

relative difference between the isotropic estimate and FEA is 0.0% as expected for a perfectly 

isotropic shape. Icosahedron can also be considered isotropic with the relative difference of 

0.1%. Polyhedral superspheres are close to being isotropic with relative difference values in the 

range between 0.3 and 0.5%. The rest of the shapes including cube, truncated octahedron, 

cuboctahedron, rhombic dodecahedron and octahedron have cubic symmetry with cube having 

the greatest relative difference of 7.4%. 

Table 3. Stiffness contribution tensor components of the considered shapes 

Shape  ̅    
     ̅    

     ̅    
    

Sphere 1.512 0.7701 0.3712 

Polyhedral Supersphere 1 1.522 0.7751 0.3746 

Polyhedral Supersphere 1 (smooth) 1.513 0.7710 0.3720 

Polyhedral Supersphere 2 1.524 0.7769 0.3757 

Polyhedral Supersphere 2 (smooth) 1.516 0.7730 0.3733 

Cube 1.583 0.7837 0.3719 

Cube (smooth) 1.530 0.7685 0.3681 

Icosahedron 1.523 0.7745 0.3739 

Truncated Octahedron 1.523 0.7803 0.3784 

Cuboctahedron 1.539 0.7746 0.3720 
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Rhombic Dodecahedron 1.524 0.7815 0.3791 

Octahedron 1.540 0.7934 0.3850 

Octahedron (smooth) 1.522 0.7846 0.3813 

 

Shape  ̅    
     ̅    

     ̅    
     ̅    

     ̅    
     ̅    

    

Tetrahedron 1.622 0.8034 0.3698 1.583 0.8427 0.4091 

Tetrahedron 

(smooth) 
1.551 0.7780 0.3693 1.534 0.7948 0.3862 

 

3.2. Replacement relations 

Replacement relations play an important role in geomechanics in the context of the effect of 

saturation on seismic properties of rock. This problem was first addressed by Gassmann (1951) 

who proposed the following relation expressing bulk modulus   of fully saturated rock in terms 

of the elastic properties of dry rock (see Mavko et al. (2009), Jaeger et al. (2007) for application 

of these relations in rock mechanics and geophysics): 

        
  (         )

 
 

                  
, (3.1) 

where subscripts “0” and “1” denote elastic constants of the matrix material and material filling 

the pores, respectively;   is the volume fraction of the inhomogeneities (porosity for the material 

with unfilled pores);      is the bulk modulus of the porous material of the same morphology. 

This approach was further developed in the works of Ciz and Shapiro (2007) who obtained 

relation similar to (3.1) for shear modulus and Saxena and Mavko (2014) who derived 

replacement relations (they use term “substitution relations”) for isotropic rocks containing 

inhomogeneities of the same shape, but different elastic constants. The latter were obtained 

under the assumption that strains and stresses inside inhomogeneities are uniform and overall 

properties and properties of the constituents are isotropic. Replacement relations for the most 

general case were obtained by Sevostianov and Kachanov (2007) in terms of property 

contribution tensors of inhomogeneities having the same shape but different elastic constants and 

embedded in the same matrix:  
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   (3.2) 

where    and    are the stiffness contribution tensors of inhomogeneities with material 

properties A and B, respectively,    and    are the stiffness tensors of particles having material 

properties A and B, and    is the stiffness tensor of matrix material. (Chen et al., 2017) showed 

that these relations lead to the following one relating effective properties of a dry porous material 

and material containing inhomogeneities with material properties A having the same 

morphology: 

         *       
    (       )

  
+
  

, (3.3) 

where   denotes compliance tensor of a material.  

For an isotropic mixture of inhomogeneities, (3.3) yields the following expressions for 

effective bulk and shear moduli   and  : 

     
               (       )

             (       )
,  

     
               (       )

             (       )
. (3.4) 

These relations coincide with the ones obtained by Gassmann (1951), Ciz and Shapiro (2007), 

and Saxena and Mavko (2014). Moreover, relations (3.4) are independent of the homogenization 

method (e.g. non-interaction approximation, Mori-Tanaka scheme, Maxwell scheme etc.) 

provided that properties of both porous material and the composite are calculated using the same 

method. (Chen et al., 2017) also showed that replacement relations (3.2) and (3.3), being exact 

for inhomogeneities of ellipsoidal shape, can be used as an accurate approximation for non-

ellipsoidal convex superspheres. In this section, we investigate the applicability of the 

replacement relation (3.2) to the polyhedral shapes presented in Table 2. 

We start with an inhomogeneity A having elastic properties         ,        (see 

Table 3) and calculate the stiffness contribution tensor for inhomogeneity B of the same shape 

having elastic properties         ,        using the replacement relation (3.2). Matrix 

material is the same in both cases with Young’s modulus and Poisson’s ratio equal to    

     and       , respectively. Table 4 presents the comparison between stiffness contribution 

tensors calculated via FEA ( ̅    
   ) and obtained utilizing the replacement relation ( ̅    

     
) as 
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described above for all shapes presented in Table 2. The table also contains unsigned relative 

errors for individual components (  ̅    ) and Euclidean norm of the absolute error (‖     

      ‖). Additional results for        and        are presented in Appendix A.  

 

 

Table 4. Comparison between stiffness contribution tensors calculated via direct FEA and obtained utilizing the 

replacement relation. Matrix material:         and       , particle material:         ,        

Shape  ̅    
     ̅    

     ̅    
     ̅    

     
  ̅    

     
  ̅    

     
 

  ̅     
    

  ̅     
    

  ̅     
    

‖     
      ‖ 

Sphere 2.169 0.7014 0.7331 2.169 0.7014 0.7331 0.00 0.00 0.00 0.000 

Polyhedral 

Supersphere 1 

(smooth) 

2.168 0.7035 0.7372 2.174 0.7050 0.7416 0.08 0.01 0.11 0.009 

Polyhedral 

Supersphere 1 
2.210 0.7036 0.7571 2.188 0.7050 0.7468 1.03 0.20 1.35 0.024 

Polyhedral 

Supersphere 2 

(smooth) 

2.185 0.7044 0.7465 2.174 0.7050 0.7416 0.50 0.08 0.65 0.012 

Polyhedral 

Supersphere 2 
2.224 0.7047 0.7659 2.193 0.7065 0.7512 1.38 0.26 1.92 0.033 

Cube (smooth) 2.240 0.6835 0.7304 2.226 0.6824 0.7214 0.50 0.16 1.24 0.016 

Cube 2.505 0.6617 0.7932 2.372 0.6667 0.7361 5.29 0.75 7.20 0.137 

Icosahedron 2.216 0.7013 0.7564 2.193 0.7025 0.7439 1.07 0.17 1.65 0.025 

Truncated 

Octahedron 
2.213 0.7168 0.7816 2.183 0.7154 0.7618 1.34 0.19 2.52 0.033 

Cuboctahedron 2.291 0.6849 0.7559 2.244 0.6882 0.7365 2.02 0.48 2.56 0.050 

Rhombic 

Dodecahedron 
2.218 0.7194 0.7901 2.184 0.7172 0.7646 1.54 0.31 3.23 0.039 

Octahedron 

(smooth) 
2.204 0.7344 0.8099 2.172 0.7258 0.7736 1.45 1.17 4.48 0.049 

Octahedron 2.282 0.7472 0.8617 2.214 0.7298 0.7892 2.97 2.33 8.42 0.103 

 

Shape Tetrahedron 

(smooth) 
Tetrahedron 

 ̅    
    2.339 2.754 
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 ̅    
    0.6937 0.7024 

 ̅    
    0.7911 0.9141 

 ̅    
    2.310 2.644 

 ̅    
    0.7232 0.8128 

 ̅    
    0.8205 1.0241 

 ̅    
     

 2.262 2.432 

 ̅    
     

 0.6695 0.6339 

 ̅    
     

 0.7260 0.7280 

 ̅    
     

 2.194 2.262 

 ̅    
     

 0.7379 0.8040 

 ̅    
     

 0.7941 0.8977 

    (  ̅       ) 8.22 20.35 

‖           ‖ 0.131 0.400 

 

Sphere is a special case of an ellipsoid for which the replacement relation is exact. Therefore, 

there should be no difference between FEA results and N-tensor values obtained via replacement 

relation in the case of a sphere. As expected relative errors as well as Euclidean norm of the 

absolute error are zero, see the first row in Table 3. Calculations for other shapes result in non-

zero relative errors and error norms with the largest relative error and error norm observed in the 

case of a tetrahedron. Based on Table 3, it can be concluded that the replacement relation can be 

applied to most of the considered shapes with very good accuracy (maximum error <5%) except 

for a cube, octahedron, tetrahedron and a smooth tetrahedron for which the maximum relative 

errors are higher – 7.2%, 8.4%, 20.4% and 8.2%, respectively. Note that the replacement relation 

works better for shapes with low values of the parameter  , which has the effect of smoothing of 

the edges and corners of a shape. 

It appears that the errors in the replacement relation predictions are smaller for the shapes 

resembling a sphere (e.g. smooth polyhedral superspheres) and greater for the shapes different 

from the sphere (e.g. cube, tetrahedron). The parameter that can be used to measure the 

“sphericity” of a shape is the ratio  
   

 ⁄ , where   is the surface area and   is the volume of the 
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shape. Among all possible 3D shapes, a sphere has the minimum surface area for a given volume 

and the ratio  
   

 ⁄       . Figure 3a presents the Euclidean norm of the absolute error in 

replacement relation results for different shapes as a function of the surface area-to-volume 

parameter. Figure 3b presents the Euclidean norm of the absolute difference between the FEA 

calculated N-tensors of different shapes and N-tensor of a sphere. Two conclusions can be drawn 

from the figures: a) the error norm increases linearly with the parameter  
   

 ⁄ ; and b) the error 

norms in Figure 3b are almost half of the error norms in Figure 3a for the corresponding shapes. 

The latter conclusion indicates that the replacement relation (3.2) results in a better N-tensor 

approximation for a given inhomogeneity shape and elastic properties combination compared to 

a simple replacement of the shape with a sphere. 

  

(a) (b) 

Figure 3. Effect of the surface area-to-volume ratio parameter of a shape on the Euclidean norm of the absolute 

error: (a) between N-tensors of the polyhderal shapes from Table 2 calculated via FEA and replacement relation; 

(b) between N-tensors of the polyhedral shapes from Table 2 calculated via FEA and N-tensor of a sphere 

 

4. Effective elastic properties 

In this section, we use N-tensors of individual shapes to estimate effective elastic moduli of 

materials containing randomly oriented inhomogeneities of the same shape. We focus on five 

shapes – polyhedral supersphere 1, rhombic dodecahedron, icosahedron, cuboctahedron and 

octahedron. 
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4.1. Analytical homogenization based on N-tensor 

To characterize contribution of multiple particles to the effective elastic properties a 

homogenization procedure based on N-tensor is used. The effective stiffness tensor of a material 

with particles is given by  

             (4.1) 

where    is the stiffness tensor of the matrix material and       is the collective contribution of 

all particles to the overall stiffness of the representative volume element.  

The non-interaction scheme provides a reasonably good approximation for a dilute 

distribution of particles, and       in this case is obtained by direct summation of contributions 

from all individual particles in the RVE: 

      
   ∑      , (4.2) 

where      is the stiffness contribution tensor of the i-th particle. The procedure for calculation of 

stiffness contribution tensors of individual particles is presented in section 2.  

For higher volume fractions when interaction between particles is significant and the non-

interaction approximation is no longer applicable, more advanced micromechanical schemes 

should be used. One of the most widely used is the Mori-Tanaka scheme, proposed in Mori and 

Tanaka (1973) and clarified in Benveniste (1987). Following this approximation the combined 

contribution of all particles to the overall stiffness of the RVE is given by 

      
        

   [              
  ]

  
         (4.3) 

where   is the volume fraction of particles and    is the stiffness tensor of the inhomogeneity 

material. 

Alternatively,       may be found using Maxwell’s homogenization scheme (Maxwell 

(1873), McCartney and Kelly (2008), Sevostianov (2014)): 

      
        ,[     

  ]
  

    -
  

 (4.4) 

where     is the Hill’s tensor (Hill (1965), Walpole (1969)) for the “effective inclusion” of shape 

 . In our study we consider randomly oriented inhomogeneities and therefore the effective 

inclusion is of spherical shape.  
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In the framework of non-interaction approximation, contributions from randomly oriented 

particles of the same shape to the effective bulk and shear moduli can be calculated using the 

relationship presented in Wu (1966): 

 
 

  
     ̃

     

  
    

 

  
      ̃

      

  
, (4.5) 

  ̃  
     

 
     ̃  

            

  
   (summation over          ),  (4.6) 

where    and    are bulk and shear moduli of the matrix material,    and    are bulk and shear 

moduli of the inhomogeneity material,   is the Wu’s strain concentration tensor related to  -

tensor and stiffness tensors    and    as           
     (Sevostianov and Kachanov 

(2007)). 

Relations for the effective bulk and shear moduli following Mori-Tanaka scheme can be 

expressed as (see Benveniste (1987)):  

 
 

  
     ̃

      

  [        ̃]
  

 

  
     ̃

      

  [        ̃]
, (4.7) 

Finally, for the Maxwell scheme we have: 

 
 

  
 

 

         
   

 

  
 

 

        
, (4.8) 

where   and   are the effective Young’s modulus and Poisson’s ratio that can be calculated from 

the effective stiffness tensor components, see (4.1). 

 

4.2. Finite element analysis of periodic representative volume elements 

The analytical homogenization predictions are compared with direct FEA of RVEs containing 

multiple inhomogeneities (also known as numerical experiments, see Zohdi and Wriggers 

(2005)). To generate the RVEs with non-intersecting particles we use a simplified 

implementation of the collective rearrangement method based on Altendorf and Jeulin (2011) 

and detailed in Drach et al. (2016). The procedure is implemented in a custom script that results 

in periodic surface meshes of non-intersecting particles. The RVE surface mesh is imported into 

MSC Marc/Mentat for further numerical analysis using the “microstructure-conforming” FEA 

approach (Zohdi and Wriggers (2005)). All FEA model preparation steps at this stage are 

performed automatically using a custom script that provides a ready-to-run model upon 
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completion. The final RVE is meshed with 10-node tetrahedral 3D elements. Figure 4 illustrates 

two examples of generated microstructures.  

   
(a) (b) 

Figure 4. Illustration of generated RVEs: (a) packed cuboctahedral particles, volume fraction      : (b) final RVE 

with polyhedral particles, volume fraction       

 

Since RVEs are generated to have congruent meshes on the opposite faces we treat them as 

unit cells and subject them to periodic boundary conditions. The boundary conditions for two 

corresponding nodes on the opposite (positive and negative) faces are introduced similarly to 

Segurado and Llorca (2002):  

   
    

    
    

   ,             (4.9) 

where   
    

 and   
    

 are displacements in     direction of the i-th node on the positive and 

negative faces respectively; and    is the prescribed average displacement in the    direction. 

Periodic boundary conditions were implemented in MSC Marc/Mentat using the “servo-link” 

feature (see, for example, Drach et al. (2014), MSC Software (2012), Drach et al. (2016)). Servo-

links allow to prescribe multi-point boundary conditions for nodal displacements in the form of a 

linear function with constant coefficients. In this formulation,   -s are implemented as 

translational degrees of freedom of control nodes, which are linked to the nodes on the 

corresponding opposite faces of an RVE. To constrain rigid body displacements, a node inside 

the RVE is fixed. Rigid body rotations are not allowed by the periodic boundary conditions, so 

additional constraints are not required. 
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Six sets of boundary conditions are applied in terms of displacements to simulate three 

uniaxial tension and three shear load cases. Note that the prescribed strains are set to 0.001 to 

ensure small deformations so that the initial element volumes could be used in the volume 

averaging procedure described below. Figure 5a and 5b present stress distributions within two 

RVE subjected to uniaxial tension along    direction. Once the numerical simulations are 

performed, the result files are processed using a custom Python script to calculate effective 

elastic properties of the RVE. First, volume-averaged stress components are calculated for each 

load case. Given the averaged stress components and applied strain, we calculate the effective 

stiffness tensor using Hooke’s law:  

      
       

     〈   〉 , (4.10) 

where  〈   〉  and     
    are the volume-averaged stress and applied strain components, 

respectively, and   is the load case number. For example, from the second load case we can 

calculate all      
   

 components: 

      
   

  
〈   〉 

(   
 )

 

. (4.11) 

Engineering constants are then obtained from the effective compliance tensor assuming 

orthotropic effective response, in which case the tensor can be expressed in the following matrix 

form: 

      

[
 
 
 
 
 
 
 
 
 

 

 

  
 

   

  
 

   

  
   

 
   

  

 

  
 

   

  
   

 
   

  
 

   

  

 

  
   

   
 

    
  

    
 

    
 

     
 

    ]
 
 
 
 
 
 
 
 
 

. (4.12) 

The overall isotropic Young’s modulus and Poisson’s ratio are calculated as averages of   , 

  ,    and    ,    ,    , respectively. The average relative error between the moduli   ,    and 

   was observed to be below 0.1%. 
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(a) (b)  

Figure 5. Distribution of     stress component (GPa) within an RVE subjected to uniaxial tension along    direction: (a) 

matrix material with            and        , polyhedral supersphere particles with            and        , 

volume fraction      ; (b) matrix material with             and        , cuboctahedral particles with     
       and       , volume fraction       

  

4.3. Results 

Effective bulk ( ) and shear ( ) moduli of materials containing five types of particles 

selected from Table 2 (polyhedral supersphere 1, rhombic dodecahedron, icosahedron, 

cuboctahedron and octahedron) were approximated using non-interaction, Mori-Tanaka and 

Maxwell homogenization schemes based on numerically calculated  -tensors for individual 

particles. Table 5 presents elastic properties of the matrix and inhomogeneity materials that were 

used in homogenization. The results are compared to FEA simulations performed on RVEs 

containing 50 particles each (see section 6.5.1 in Zohdi and Wriggers (2005) for discussion on 

sufficient number of particles) with volume fractions                  for the octahedral 

shape and                  for all other shapes. For each microstructure five RVE 

realizations were generated. Each realization is shown as a separate data point. All results are 

presented in Figure 6. 

Good correspondence between FEA simulations and Mori-Tanaka and Maxwell schemes is 

observed with the latter being a little closer to the direct FEA, see Figures 6a-e. From Figure 6a it 

can be concluded that Maxwell and Mori-Tanaka schemes produce almost identical predictions, 

since polyhedral supersphere 1 is very close to the spherical shape for which Maxwell and Mori-
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Tanka schemes coincide. Note that with increasing elastic contrast between the matrix and the 

particles, correlation between homogenization schemes and direct FEA decreases. The greatest 

elastic contrast considered in this paper (~360) was used for the material with octahedral 

particles (Figure 6e). The maximum relative error between the Maxwell scheme and direct FEA 

in this case is observed in shear modulus predictions and is equal to 2.5%. 

Table 5. Elastic properties of the considered material combinations 

Particle shape 
Matrix material Particle material 

                    

polyhedral supersphere 1 120 0.34 70 0.35 

rhombic dodecahedron 70 0.17 3.5 0.44 

icosahedron 2.5 0.34 83 0.37 

cuboctahedron 2.89 0.35 79 0.4 

octahedron 2.89 0.35 1050 0.1 

 

  

(a) (b) 
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(c) (d) 

 

 

(e)  

Figure 6. Effective elastic properties of materials containing randomly oriented particles of different shapes: 

a) polyhedral supersphere 1 (smooth); b) rhombic dodecahedron; c) icosahedron; d) cuboctahedron; e) octahedron 

 

The replacement relation (3.2) interrelates contributions of inhomogeneities having the same 

shape but different elastic constants to the overall elastic properties. This allows extending the 

results presented in section 3.1 and Appendix A to combinations of matrix/particle properties not 

discussed in the paper. Here we investigate the accuracy of   and   predictions based on the 

replacement relation for materials containing randomly oriented octahedral, cubical, and 

tetrahedral particles. The predictions were obtained using Maxwell homogenization scheme 

based on N-tensors of polyhedral particles estimated using the relation (3.2). First, we obtained 

N-tensor components of the individual shapes for                    and        by 

interpolating the components for        and        presented in Table 4 and Appendix A, 

respectively. Then, we applied the replacement relation (3.2) to estimate the N-tensor 
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components for                    and       , and used the result to predict effective 

bulk and shear moduli for      . The predictions are compared to the FEA results for periodic 

RVEs published in Rasool and Böhm (2012) and presented in Table 6. Note that the moduli     

were calculated based on the effective Young’s moduli and Poisson’s ratios from Table 3 in 

Rasool and Böhm (2012) because we believe the authors made a mistake in their calculations of 

the effective bulk moduli in the paper.  

From the analysis of Table 6 we conclude that Maxwell scheme in combination with the 

replacement relation (3.2) provide very good estimates for the effective bulk moduli of all three 

shapes (relative error <1%) and good predictions for the effective shear moduli except for a cube 

(relative error of 6.14%). 

Table 6. Comparison of effective bulk and shear moduli predictions for materials containing randomly oriented 

particles of octahedral, cubical and tetrahedral shapes (     ) based on the replacement relation (3.2) with 

numerical calculations presented in Rasool and Böhm (2012) 

Particle shape 
Rasool and Böhm (2012) Our predictions Unsigned rel. error, % 

                    

Octahedron 1.248 1.479 1.254 1.450 0.51 1.93 

Cube 1.263 1.466 1.257 1.562 0.45 6.14 

Tetrahedron 1.271 1.529 1.280 1.590 0.75 3.82 

 

In addition, we looked at the performance of the replacement relation in two extreme cases – 

when N-tensors of elastic particles are estimated from N-tensors of pores and from N-tensors of 

perfectly rigid particles. We began by calculating N-tensors for pores (    ) and perfectly 

rigid inhomogeneities (    ) for the five shapes discussed above (polyhedral supersphere 1, 

rhombic dodecahedron, icosahedron, cuboctahedron and octahedron), then used the results to 

calculate  -tensors for elastic properties from Table 5 via the replacement relation. Stiffness 

contribution tensor components for the five particles having          and             are 

presented in Table 7. Finally, we estimated the effective bulk ( ) and shear ( ) moduli using 

Maxwell homogenization scheme. The results are compared with direct FEA simulations and 

effective elastic properties of RVEs containing spheres, and presented in Figure 7. 

Table 7. Stiffness contribution tensor components for pores and rigid particles of the following shapes: polyhedral 

supersphere 1, rhombic dodecahedron, icosahedron, cuboctahedron and octahedron 
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Shape 
Rigid,            Pore,          

 ̅    
     

  ̅    
     

  ̅    
     

  ̅    
    

  ̅    
    

  ̅    
    

 

polyhedral supersphere1,  

                   
315.4 98.33 120.7 -508.6 -84.27 -337.9 

rhombic dodecahedron,  
                  

160.3 65.07 37.22 -157.9 -62.72 -28.17 

icosahedron, 

                   
6.727 2.103 2.504 -10.77 -1.786 -7.207 

cuboctahedron, 

                    
8.285 2.428 3.007 -13.99 -2.158 -10.05 

octahedron, 

                    
8.177 3.292 2.977 -15.18 -2.326 -10.82 

 

From the examination of the Figures 7a and 7b it can be concluded that in the case of soft 

inhomogeneities, Maxwell scheme in combination with N-tensor obtained from the replacement 

relation based on a pore provides a good correlation with direct FEA results. On the other hand, 

for stiff inhomogeneities, Maxwell scheme predictions with N-tensor obtained from the 

replacement relation based on a perfectly rigid particle result in a better agreement with direct 

FEA calculations, see Figures 7c-e. Comparing the predictions for the effective moduli from 

spheres with direct FEA results indicates that the effective shear modulus is more sensitive to the 

shape of inhomogeneitis than the effective bulk modulus. In addition, the results show that 

predictions obtained from the replacement relation work better than approximations by spheres. 

  

(a) (b) 
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(c) (d) 

 

 

 

(e)  

Figure 7. Effective elastic properties estimated via Maxwell scheme and N-tensors based on the replacement 

relation of materials containing randomly oriented particles of different shapes: a) polyhedral supersphere1; b) 

rhombic dodecahedron; c) icosahedron; d) cuboctahedron; e) octahedron 

 

5. Conclusions 

Stiffness contribution tensors (N-tensors) of 15 convex polyhedra were calculated using 

Finite Element Analysis and presented in this paper. The N-tensor components of these shapes 

were analyzed to determine whether the tensors were isotropic or exhibited cubic symmetry. As 

expected, a sphere was confirmed to be isotropic; polyhedral superspheres were found to be 

nearly isotropic; and a cube, truncated octahedron, cuboctahedron, rhombic dodecahedron and 

octahedron were concluded to have cubic symmetry.  

The applicability of the replacement relation that interrelates stiffness contribution tensors of 

inhomogeneities having the same shape but different elastic properties to the considered shapes 
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was investigated. It was found that the replacement relation can be used with good accuracy 

(<5% maximum relative error) for most of the considered shapes except for a tetrahedron, 

octahedron, cube and smooth tetrahedron for which the maximum relative errors were 

considerably higher. Application of the replacement relation to a tetrahedron resulted in the 

largest relative error of 20.4% among all considered shapes. Note that the replacement relation 

works better for shapes with low values of the parameter  , which has the effect of smoothing of 

the edges and corners of a shape. We also observed a correlation between the accuracy of the 

replacement relation and the sphericity shape parameter – the Eucledian norm of the difference 

between N-tensor calculated via replacement relation and N-tensor obtained from direct FEA 

increases linearly with sphericity. Similar correlation was observed for the Eucledian norm of the 

difference between the N-tensor of a polyhedral particle and its approximation by a sphere. 

We used N-tensors of individual polyhedra to calculate overall elastic properties of materials 

containing multiple randomly oriented polyhedral particles via micromechanical homogenization  

based on non-interaction approximation, Mori-Tanaka and Maxwell schemes. The results were 

compared with direct FEA calculations performed on periodic RVEs. Good correspondence 

between FEA simulations and Mori-Tanaka and Maxwell schemes up to volume fractions of 

30% was observed with Maxwell scheme being a little closer to direct FEA. FEA results were 

also compared with effective properties calculated using Maxwell scheme and the replacement 

relation based on perfectly rigid particles and pores. We observed that in the cases when particle 

material is stiffer than the matrix, the replacement relation based on perfectly rigid particles 

results in good predictions for effective elastic properties. Conversely, in the cases when 

particles are softer than the matrix, the replacement relation based on pores produces better 

estimates for the overall elastic properties. 

Combination of N-tensor components presented in this paper for different values of matrix 

Poisson’s ratio (see Table 4 and Appendix A) with the replacement relation (3.2) can be used to 

estimate stiffness contribution tensors of polyhedral particles for any set of particle/matrix elastic 

properties. The estimate will have a particularly good accuracy in the cases when particles are 

stiffer than the matrix because Table 4 and Appendix A results were obtained for stiff particles. 

For a combination in which the particle material is softer than the matrix, approximation of the 
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shape by a sphere might result in a better estimate than the one obtained from the replacement 

relation based on a stiff particle. 
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Appendix A 

Table A.1. Comparison between stiffness contribution tensors calculated via direct FEA and obtained utilizing the 

replacement relation. Matrix material:         and       , particle material:         ,         

Shape  ̅    
     ̅    

     ̅    
     ̅    

     
  ̅    

     
  ̅    

     
 

  ̅     
    

  ̅     
    

  ̅     
    

‖     
      ‖ 

Sphere 2.011 0.5026 0.7540 2.011 0.5026 0.7540 0.00 0.00 0.00 0.000 

Polyhedral 

Supersphere 1 

(smooth) 

2.012 0.5045 0.7576 2.010 0.5046 0.7568 0.10 0.01 0.11 0.002 

Polyhedral 

Supersphere 
2.054 0.5057 0.7774 2.031 0.5064 0.7671 1.15 0.13 1.32 0.024 

Polyhedral 

Supersphere 2 

(smooth) 

2.029 0.5056 0.7669 2.018 0.5059 0.7620 0.56 0.06 0.64 0.012 

Polyhedral 

Supersphere 
2.068 0.5069 0.7859 2.037 0.5078 0.7713 1.54 0.19 1.86 0.033 

Cube (smooth) 2.078 0.4881 0.7541 2.064 0.4866 0.7449 0.69 0.30 1.23 0.0174 

Cube  2.336 0.4771 0.8236 2.201 0.4766 0.7645 5.78 0.10 7.17 0.136 

Icosahedron 2.060 0.5038 0.7771 2.035 0.5041 0.7646 1.20 0.07 1.60 0.025 

Truncated 

Octahedron 
2.061 0.5172 0.7999 2.030 0.5150 0.7803 1.52 0.43 2.45 0.036 

Cuboctahedron 2.129 0.4912 0.7799 2.081 0.4929 0.7601 2.24 0.34 2.54 0.049 

Rhombic 

Dodecahedron 
2.068 0.5199 0.8082 2.032 0.5167 0.7831 1.78 0.62 3.11 0.043 

Octahedron 

(smooth) 
2.060 0.5327 0.8261 2.024 0.5231 0.7901 1.74 1.80 4.36 0.041 

Octahedron 2.146 0.5455 0.8756 2.070 0.5260 0.8046 3.54 3.58 8.11 0.115 

 

Shape 
Tetrahedron 

(smooth) 
Tetrahedron 

 ̅    
    2.188 2.623 

 ̅    
    0.4985 0.5155 

 ̅    
    0.8146 0.9411 

 ̅    
    2.160 2.512 

 ̅    
    0.5266 0.6269 

 ̅    
    0.8427 1.052 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

29/36 

 

 ̅    
     

 2.106 2.280 

 ̅    
     

 0.4731 0.4393 

 ̅    
     

 0.7497 0.7558 

 ̅    
     

 2.041 2.116 

 ̅    
     

 0.5381 0.6031 

 ̅    
     

 0.8145 0.9192 

    (  ̅       ) 7.96 19.69 

‖           ‖ 0.130 0.443 

 

Table A.2. Comparison between stiffness contribution tensors calculated via direct FEA and obtained utilizing the 

replacement relation. Matrix material:         and       , particle material:         ,         

Shape  ̅    
     ̅    

     ̅    
     ̅    

     
  ̅    

     
  ̅    

     
 

  ̅     
    

  ̅     
    

  ̅     
    

‖     
      ‖ 

Sphere 2.721 1.260 0.7300 2.721 1.260 0.7300 0.00 0.00 0.00 0.000 

Polyhedral 

Supersphere 1 

(smooth) 

2.720 1.262 0.7346 2.718 1.263 0.7337 0.07 0.02 0.12 0.002 

Polyhedral 

Supersphere 
2.761 1.260 0.7554 2.738 1.263 0.7445 0.82 0.23 1.44 0.026 

Polyhedral 

Supersphere 2 

(smooth) 

2.736 1.262 0.7445 2.725 1.263 0.7394 0.39 0.10 0.69 0.012 

Polyhedral 

Supersphere 
2.773 1.260 0.7651 2.743 1.264 0.7493 1.10 0.30 2.07 0.034 

Cube (smooth) 2.800 1.236 0.7228 2.788 1.235 0.7137 0.45 0.02 1.27 0.013 

Cube  3.078 1.192 0.7777 2.945 1.207 0.7207 4.32 1.27 7.32 0.148 

Icosahedron 2.768 1.257 0.7542 2.744 1.260 0.7410 0.85 0.23 1.75 0.027 

Truncated 

Octahedron 
2.756 1.275 0.7838 2.727 1.275 0.7627 1.04 0.03 2.69 0.029 

Cuboctahedron 2.851 1.233 0.7490 2.805 1.240 0.7290 1.64 0.53 2.67 0.053 

Rhombic 

Dodecahedron 
2.760 1.277 0.7928 2.728 1.277 0.7654 1.17 0.01 3.46 0.033 

Octahedron 

(smooth) 
2.736 1.295 0.8155 2.708 1.289 0.7774 1.00 0.51 4.68 0.041 

Octahedron 2.802 1.306 0.8725 2.744 1.293 0.7948 2.09 1.00 8.90 0.085 
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Shape 
Tetrahedron 

(smooth) 
Tetrahedron 

 ̅    
    2.883 3.267 

 ̅    
    1.242 1.226 

 ̅    
    0.7848 0.9041 

 ̅    
    2.850 3.152 

 ̅    
    1.275 1.341 

 ̅    
    0.8179 1.018 

 ̅    
     

 2.811 2.968 

 ̅    
     

 1.221 1.175 

 ̅    
     

 0.7173 0.7123 

 ̅    
     

 2.735 2.785 

 ̅    
     

 1.296 1.358 

 ̅    
     

 0.7924 0.8950 

    (  ̅       ) 8.60 21.22 

‖           ‖ 0.136 0.385 
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