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ABSTRACT

Contributions of 15 convex polyhedral particle shapes to the overall elastic properties of
particle-reinforced composites are predicted using micromechanical homogenization and direct
finite element analysis approaches. The micromechanical approach is based on the combination
of the stiffness contribution tensor (N-tensor) formalism- with Mori-Tanaka and Maxwell
homogenization schemes. The second approachw=involves FEA simulations performed on
artificial periodic representative volume elements containing randomly oriented particles of the
same shape. The results of the two approaches.are in good agreement for volume fractions up to
30%. Applicability of the replacementrelation interrelating N-tensors of the particles having the
same shape but different elastic.constants is investigated and a shape parameter correlated with
the accuracy of the relation. is/proposed. It is concluded that combination of the N-tensor
components of the 15 shapes presented for three values of matrix Poisson’s ratios with the
replacement relation allows extending the results of this paper to matrix/particle material

combinations not‘discussed here.

Keywords: polyhedral particles; homogenization; effective elastic properties; Mori-Tanaka;
Maxwell; stiffness contribution tensor; periodic RVE; finite element analysis; micromechanics;

replacement relation
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1. Introduction

Regular polyhedra can be used to describe shapes of some crystalline metallic particles that
are encountered as precipitates or synthesized as powders to be used as additives in particle-
reinforced composites (Sundquist (1964), Menon and Martin (1986), Wang (2000), Onaka et al.
(2003), Miyazawa et al. (2012), Niu et al. (2009)). Table 1 presents microscopy images of

particles having polyhedral shapes along with their idealized shapes.

In this study, we analyze the effect of shape of several representative convex,polyhedral on
the overall elastic properties of particle-reinforced composites. Traditionally;, the effect of
inhomogeneities on elastic properties of materials is described using thé-classical Eshelby (1957)
and Eshelby (1961) results for an ellipsoidal inhomogeneity. It means that the shape of the
inhomogeneities is explicitly or implicitly assumed to be ellipsoidal (in most cases — just
spherical). Few results on inhomogeneities having irregular geometry have been published in
literature. In 2D, general cases of pores and inhomogeneities of arbitrary irregular shape have
been studied using conformal mapping approach, see for.example Zimmerman (1986), Jasiuk et
al. (1994), Tsukrov and Novak (2002), Tsukrov and’Novak (2004), Ekneligoda and Zimmerman
(2006), Ekneligoda and Zimmerman (2008), Mogilevskaya and Nikolskiy (2015).

In 3D, several results for contributions of irregularly shaped inhomogeneities to effective
elastic properties exist. Solutions for cracks having irregular shape are presented in Kachanov
and Sevostianov (2012). Effect,of concavity factor of superspheres and axisymmetric concave
pores has been analyzed(inythe works of Sevostianov et al. (2008), Sevostianov and Giraud
(2012), Chen et al. {2015) and Sevostianov et al. (2016). The authors supplemented finite
element analysis{FEA) calculations with analytical approximations for compliance contribution
tensors of pores of“such shapes. The possibility to extend the results from pores to
inhomogeneities.with arbitrary properties has been discussed by Chen et al (2017). The authors
showed that replacement relations (Sevostianov and Kachanov (2007)) that allow calculation of
the compliance contribution tensor of an inhomogeneity from the one of a pore of the same shape
are applicable to convex inhomogeneities only. Concave inhomogeneities require direct
calculation of property contribution tensors. Drach et al. (2011) used FEA calculations to obtain
compliance contribution tensors of several 3D irregularly shaped pores typical for carbon-carbon

composites, and Drach et al. (2016) presented numerically obtained compliance contribution
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tensors of cubical, octahedral and tetrahedral pores. Garboczi and Douglas (2012) presented a
procedure to approximate bulk and shear elastic contribution parameters in the case of randomly

oriented inhomogeneities shaped as blocks.

The effect of shape of an irregular inhomogeneity can also be analyzed by considering
representative volume elements (RVEs) containing arrangements of inhomogeneties with
orientation distribution of interest (e.g. random or aligned in the same direction){ Rasool and
Bohm (2012) analyzed contributions of spherical, cubical, tetrahedral“and octahedral
inhomogeneities to the effective thermoelastic properties of particle-reinforced.composites with
random particulate orientations. The results were obtained for the material.combination with the
particles ten times stiffer than the matrix and for the volume fraction of 0.2; Recently, Béhm and
Rasool (2016) extended the approach by considering elasto=plastic behavior of the matrix
material. In addition to the contribution tensors of individual pores,Drach et al. (2016) used FEA
to study the shape effects of cubical, octahedral and ‘tetrahedral pores on the overall elastic
properties of porous materials using periodic RVEs centaining parallel and randomly oriented

pores.

The inverse problem — design of microstructures of particle-reinforced composites — has been
studied extensively in the works of Zohdi (2001), Zohdi (2003a), Zohdi (2003b). The author
presents efficient computational’, algorithms for determining volume fractions, shapes,
mechanical properties and orientations of particles for doping of a homogeneous matrix material
so that the overall composite properties match the desired. The methodology is based on

“microstructure-nonconforming” FEA approach.
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Table 1. Examples of ipolyhedral shapes

Shape ldealized Microscopy Shape Idealized Microscopy
Sphere [1] Truncated P ¥
Octahedron
Polyhedral Cuboctahedron
Supersphere [7]
(smooth) [2]
Polyhedral Rhombic
Supersphere i Dodecahedron
(smooth) [2] [8]
0.1 1 : .

Cube (smooth) Octahederon
[3] (smooth) [7]
. : 20 nm

Cube [4] Octahederon [9]

Icosahedron [5] Tetrahedron [10]

Spum

[1] Seo et al. (2006) [6] Zeon Han et al. (2015)
[2] Menon and Martin'(1986) [7] Seo et al. (2006)

[3] Onaka et al. (2003) [8] Cravillon et al. (2012)
[4] Cao et al. (2010) [9] Sun and Yang (2014)
[5] McMillan (2008) [10] Park et al. (2007)

The,shapes in Table 1 can be described using the following general formula combining
different types of polyhedra (Onaka (2006), Miyazawa et al. (2012), Onaka (2016)):

]1/p

A A
[Alhhexa + a_:,hocta + b_;hdodeca + A4hicosal/p + Ashtetral/p =1 ) (1-1)
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where A, A,, A3, Ay, As, Ag are constants, p is a shape parameter, and hyexa: Roctar Raodeca:

Ricosa @nd heetrq are functions that are given below:

hhexa = |xIP + |yIP + |z|P,
hocta =|lx+y+2zIP+ |—x+y+zP+ |x—y+z|]P+ |x+y—z|P,
haogeca = X +Y[P + |x = Y|P + |y +z|P + |y — z|P + |x + z|P + |x — 2|
hicosa = IfF V. IP + If (v v. DIP +If v DI H Iy, =P +If(En 0P +
£ =0 +1f0,&EmIP + 0.8 -—mIP +1f(,0,DIP + |f(n,0,55)°,

hietra = H,v,7) + 1/0) PP H(—y, -y, —Y),
where

1 3—5 3+/5
f(a.b,c)=Iax+by+c2|p,y:\/—§,§:\/T,n= +T’

H{y,y,v) = {h@, v, +{h(@, -7, = + {(h(zr, v, < + {h(=v, -V, N},
h(a! b, C) = {lf(ai b, C)l - f(a’ b: C)}/Z

Using formula (1.1) we obtained 15 polyhedral shapes that are analyzed in this paper, see
Table 2.

In the present work, we utilize stiffness,contribution tensor formalism to estimate overall
elastic properties of materials with_pelyhedral inhomogeneities and compare the results with
direct finite element simulations of,periodic RVEs. The concept of the stiffness contribution
tensor is introduced in section 2.-Thé section also details our numerical approach to calculation
of stiffness contribution<tensors of individual inhomogeneities. In section 3, we present the
components of stiffness contribution tensors of all shapes shown in Table 2. In addition, we
investigate the applicability of replacement relations to the considered shapes and introduce a
parameter correlating the accuracy of the relations with a shape’s geometry. Predictions of the
effective elastic.properties for particle-reinforced materials with randomly oriented polyhedral
inhomogeneities based on stiffness contribution tensors are presented in section 4. The
predictions obtained using non-interaction, Mori-Tanaka and Maxwell micromechanical
homogenization schemes are compared with direct finite element simulations of periodic RVEs.
Section 5 presents the conclusions of the paper. Finally, stiffness contribution tensors of the
considered polyhedral shapes for two Poisson’s ratio values v, = 0.2 and v, = 0.4 of the matrix

(in addition to the results for v, = 0.3 presented in section 3) are given in the Appendix A.
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ACCEPTED MANUSCRIPT

Table 2. Considered polyhedral shapes

# Shape Image Ay A, A, A, Ag a b p

1 | Sphere ‘ 1 0 0 0 0 1 1 2

2 | Polyhedral ) 1 1 1 0 0 169 158 pow
Supersphere 1

3 | Polyhedral 1 1 1 0 0 1.69 158 =9
Supersphere 1
(smooth) ol

4 | Polyhedral 1 1 1 0 0 1.67 4.1 p—> ®
Supersphere 2

5 | Polyhedral 1 1 1 0 0 1 72 p=144
Supersphere 2
(smooth) L

6 | Cube ‘ 1 0 0 0 1 1 p— o

7 | Cube (smooth) - . 1 0 0 : EQ 0 1 1 p=33

8 | Icosahedron ' 0 0 v 1 0 1 1 poo

wln

9 | Truncated 0 0 0 1.2 1 p—o
Octahedron

10 | Cuboctahedron . 1 1 0 0 2 2 p— o

N
L ')

11 | Rhombic 0 0 1 0 0 1 1 p—>®
Dodecahedron |,

12 | Octahede ‘ 0 1 0 0 0 1 1 p -

13 |/Octahedeton | 0o 1 0 0 0 1 1 p=64s

mooth)

1% '.Ietrahedron N ’ 0 0 0 0 1 1 1 p— o

15 | Tetrahedron | o o o0 0 1 1 1 p=4
(smooth)
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2. Property contribution tensors

Property contribution tensors were first introduced as compliance contribution tensors in the
context of pores and cracks by Horii and Nemat-Nasser (1983). Components of such tensors
were calculated for 2D pores of various shape and 3D ellipsoidal pores in isotropic material by
Kachanov et al. (1994). For the general case of an elastic ellipsoidal inhomogeneity, compliance
contribution tensor and its counterpart — stiffness contribution tensor — were/presented in
Sevostianov and Kachanov (1999, 2002). Kushch and Sevostianov (2015)sestablished the link

between these tensors and dipole moments.

Following Sevostianov and Kachanov (1999), we consider a*homogeneous isotropic elastic
material (matrix) with a stiffness tensor C, containing an inhomogeneity of volume V; that has a
different stiffness C;. Fourth-rank stiffness contribution tensor N of an inhomogeneity relates
additional stress due to the presence of the inhomogeneity:Ac (per reference volume V' of the

elastic material including the inhomogeneity) withrapplied-strain £°:

Aoy; = Nyjprer:- (2.1)
Strain distribution € is assumed to be uniferm inside V in the absence of the inhomogeneity.
Thus, the stiffness contribution tensor, which characterizes the far-field asymptotic of the elastic

fields generated by an inhomogeneity, determines its contribution to the effective elastic

properties (Sevostianov and Kachanov, 2011).

We calculate the stiffness contribution tensors (N-tensors) of individual particles using FEA.
In the procedure,fora given particle geometry we simulate a single inhomogeneity in a large
volume subjected to remotely applied uniform displacement fields. To prepare the necessary 3D
FEA mesh for the.analysis, we begin by generating the surface mesh of the particle in a custom
MATLAB script using formula (1.1) and built-in function “isosurface.m”. Figure 1 shows the
truncatedvoctahedron and icosahedron surface meshes generated using our script. Each mesh is
composed of approximately 50,000 elements. The generated surface mesh of a particle is then
used in the numerical procedure to find components of the particle property contribution tensor

as described below.
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@) (b)

Figure 1. Particle surface meshes: a) truncated octahedron; b) icosahedron

Particle surface mesh is placed in a large cubic-shaped“reference volume with sides five
times larger than the largest linear dimension of the particle to reduce boundary effects and
simulate remote loading. The setup is auto meshed=with. 10-node tetrahedral 3D elements
(tetral0), see Figure 2. Note, that the choice of the reference volume size and the order of the
tetrahedral elements used in the analysis is based on a sensitivity study performed for a particle
of spherical shape, for which an analytical'selution’is available in the literature. In the case of the
particle/matrix elastic contrast equal.to. 20 and 10,000 surface elements used for the particle
shape description, the average relative error in FEA calculations of the N-tensor components was
calculated to be 0.027%.

NNNL RS
o
pay A‘th'vé

@ (b)

Figure 2. 3D mesh density of the volume containing an icosahedral particle: a) general view of the reference
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volume; b) close-up view of the highlighted region

After volume mesh is generated, the N-tensor components are calculated from FEA of six load
cases: three uniaxial tension and three shear load cases. All FEA calculations at this stage are
performed using commercial multipurpose FEA package MSC Marc Mentat. Boundary
conditions for all six load cases are prescribed on the external faces of the referencewolume in
terms of displacements. Once the six FEA simulations are completed for the.given shape, the
result files are processed using a custom Python script to determine N-tensor.,Thesscript starts

with calculating volume-averaged stress components within V from each‘load.case:

1 ..
(O_ij)m = ;Z;V:‘l(o—l_(]l))m ' V(l)l (L] = 112;3: m = 1P21 !6) (21)

where (o;;)y, is the volume average of the stress component .ijcalculated from the m-th

loadcase, V is the reference volume, (a(l)

ij ) is the stress component ij at the centroid of the
m

finite element [ calculated from the m-th loadcase, V) is the volume of the element I, and N, is
the total number of elements in the models Given the average stress components we then
calculate the stiffness contribution tensor from:

Nijia (0D m = {0ij)m=(0}) . (summation over k, I = 1,2,3) (2.2)
where (e;), are the components of the prescribed strain and (ai‘})m are the stress components

inside V in the absence/of the‘inhomogeneity. For example, from the first load case all

components N; 1, are found (note that all &), except €2, are zero):

<0ij)1—(019j)1
UL (),

(2.3)

Components of'the stiffness contribution tensors normalized by particle volume fraction,

Nijr.= (Vll) N;ji., are presented for different shapes in Table 3.

3. Stiffness contribution tensors of polyhedral particles

3.1. N-tensor components of the considered shapes
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Table 3 presents non-zero components of stiffness contribution tensors calculated following
the procedure described in section 2 for the shapes presented in Table 2. Young’s moduli and
Poisson’s ratios of the matrix and particle materials used in calculations are E, = 1GPa, vy =

0.3, E; = 3GPa, v; = 0.4, respectively.

Only three components of the normalized stiffness contribution tensors are presented for the

shapes in the first part of Table 3 because the tensors have equal components in three directions:

SFEA _ NFEA _ \FEA WNFEA _ NFEA _ WFEA TFEA _ NFEA _ WFEA :
1111 = Na232 = N3333, Ni135 = N3p33 = N3zii and Niyi5 = N33z = N3p3p. This means that

the tensors are either isotropic or exhibit cubic symmetry. In the case of isotropy;only two out of
three presented components are independent and component N, ,,, canhe expressed as: N;,,, =
(N1111 — Ni122)/2. To check the shapes for isotropy, we calculated N, ,,, ¢omponents using the
relationship above and compared them with FEA calculations.cIn‘the case of a sphere, the
relative difference between the isotropic estimate and FEA¢s 0.0% as expected for a perfectly
isotropic shape. lcosahedron can also be considered isotropic with the relative difference of
0.1%. Polyhedral superspheres are close to being isotropic with relative difference values in the
range between 0.3 and 0.5%. The rest of the shapes\including cube, truncated octahedron,
cuboctahedron, rhombic dodecahedron and. octahedron have cubic symmetry with cube having

the greatest relative difference of 7.4%.

Table 3. Stiffness contribution tensor components of the considered shapes

Shape Niith  NifZz  Nidh

Sphere 1.512 0.7701 0.3712

Polyhedral Supersphere 1 1.522 0.7751 0.3746
Polyhedral Supersphere 1 (smooth) 1.513 0.7710 0.3720
Polyhedral Supersphere 2 1.524 0.7769 0.3757
Polyhedral Supersphere 2 (smooth) 1.516 0.7730 0.3733
Cube 1.583 0.7837 0.3719

Cube (smooth) 1.530 0.7685 0.3681
Icosahedron 1.523 0.7745 0.3739

Truncated Octahedron 1.523 0.7803 0.3784
Cuboctahedron 1.539 0.7746 0.3720
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Rhombic Dodecahedron 1.524 0.7815 0.3791

Octahedron 1.540 0.7934 0.3850
Octahedron (smooth) 1.522 0.7846 0.3813
Shape N NS Ni7 N3 NI N
Tetrahedron 1.622 0.8034 0.3698 1.583 0.8427 0.4001
Tetrahedron 1.551 0.7780 0.3693 1.534 0.7948 0.3862

(smooth)

3.2. Replacement relations

Replacement relations play an important role in geomechanics-in the context of the effect of
saturation on seismic properties of rock. This problem.was first addressed by Gassmann (1951)
who proposed the following relation expressing bulksmodulus K of fully saturated rock in terms
of the elastic properties of dry rock (see Mavkoet al- (2009), Jaeger et al. (2007) for application

of these relations in rock mechanics and geaphysics):

KO(l_KdTy/KO)Z (3 1)
1-@—Kgry/Ko+@Ko/Kq' '

K =Kgry +
where subscripts “0” and ‘1> denote elastic constants of the matrix material and material filling
the pores, respectively;.¢:is the volume fraction of the inhomogeneities (porosity for the material
with unfilled pores); Kgyy, is the bulk modulus of the porous material of the same morphology.
This approach-was further developed in the works of Ciz and Shapiro (2007) who obtained
relation similar to/ (3.1) for shear modulus and Saxena and Mavko (2014) who derived
replacement relations (they use term “substitution relations™) for isotropic rocks containing
inhomogeneities of the same shape, but different elastic constants. The latter were obtained
underithe assumption that strains and stresses inside inhomogeneities are uniform and overall
properties and properties of the constituents are isotropic. Replacement relations for the most
general case were obtained by Sevostianov and Kachanov (2007) in terms of property
contribution tensors of inhomogeneities having the same shape but different elastic constants and
embedded in the same matrix:
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Z(N7L = Ng) = (€, — €)™ = (€5 — Co) ™ (3.2)
where N, and Ny are the stiffness contribution tensors of inhomogeneities with material

properties A and B, respectively, C, and Cy are the stiffness tensors of particles having material
properties A and B, and C, is the stiffness tensor of matrix material. (Chen et al., 2017) showed
that these relations lead to the following one relating effective properties of a dry porous material
and material containing inhomogeneities with material properties A having the same
morphology:

—11~1
SV = So+ @ [(S4 = So) ™ + @(Sary — S0) |, (3.3)
where S denotes compliance tensor of a material.

For an isotropic mixture of inhomogeneities, (3.3) yields the following expressions for

effective bulk and shear moduli K and G:

‘PKdry(KO_KA)"'KA(KO_Kdry)
©Ko(Ko—Ka)+K a(Ko=Kary) '

K:KO

©GaryGo _GA)"f'GA(Go _Gdry)

G =Go 9Go(Go—Ga)+Ga(Go—Gary)

(3.4)

These relations coincide with the ones obtained by Gassmann (1951), Ciz and Shapiro (2007),
and Saxena and Mavko (2014). Mareover, relations (3.4) are independent of the homogenization
method (e.g. non-interaction approximation, Mori-Tanaka scheme, Maxwell scheme etc.)
provided that properties ofboth perous material and the composite are calculated using the same
method. (Chen et al., 2017) also showed that replacement relations (3.2) and (3.3), being exact
for inhomogeneities of ellipsoidal shape, can be used as an accurate approximation for non-
ellipsoidal convex superspheres. In this section, we investigate the applicability of the

replacement relation (3.2) to the polyhedral shapes presented in Table 2.

We start with an inhomogeneity A having elastic properties E, = 3GPa, v, = 0.4 (see
Table 3)and calculate the stiffness contribution tensor for inhomogeneity B of the same shape
having elastic properties Ez = 20GPa, vg = 0.2 using the replacement relation (3.2). Matrix
material is the same in both cases with Young’s modulus and Poisson’s ratio equal to E, =

1GPa and v, = 0.3, respectively. Table 4 presents the comparison between stiffness contribution

tensors calculated via FEA (N/ii') and obtained utilizing the replacement relation (Nirjfjfl') as
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described above for all shapes presented in Table 2. The table also contains unsigned relative

errors for individual components (AN; ;) and Euclidean norm of the absolute error (||[N"£4 —

N"ePL||). Additional results for v, = 0.2 and v, = 0.4 are presented in Appendix A.

Table 4. Comparison between stiffness contribution tensors calculated via direct FEA and obtained. utilizing the
replacement relation. Matrix material: E, = 1GPa and v, = 0.3, particle material: E; = 20GPa, v, = 0.2

_ _ _ oot e —rep. ANy ANiipe AN NFEA _
Shape NSNS ONERS ORONIL O OWEN ™ e Nt e |
Sphere 2169 07014 07331 2169 07014 0.7331 0.00.~ 000 0.00 0.000
Polyhedral
Supersphere 1 2168 07035 07372 2174 0.7050 0.7416 / 0.08%0.01  0.11 0.009
(smooth)

Polyhedral 2210 07036 07571 2.188 0.7050 07468 103 020  1.35 0.024
Supersphere 1
Polyhedral
Supersphere 2 2185 0.7044 07465 2174 0705007416 050 008  0.65 0.012
(smooth)

Polyhedral 2224 07047 07659 2193/ 07065 07512 138 026 192 0.033
Supersphere 2

Cube (smooth)  2.240 0.6835 0.7304 2926, 06824 07214 050 016 124 0.016
Cube 2505 06617 07932 2372 06667 07361 529 075  7.20 0.137
Icosahedron 2216 0.7013%.07564 2193 07025 07439 107 017  1.65 0.025
Truncated 2213 07168, 0.7816 2183 07154 07618 134 019  2.52 0.033
Octahedron

Cuboctahedron  2.201.  0:6849 0.7559 2.244 0.6882 0.7365 2.02 048 256 0.050
Rhombic 22187 0.7194 07901 2184 07172 07646 154 031  3.23 0.039
Dodecahedron
Octahedrfin 2204 07344 08099 2172 07258 07736 145 117 448 0.049
(smooth)

Octahedon 2282 07472 08617 2214 07298 07892 297 233 842 0.103

Shape Tetrahedron Tetrahedron
(smooth)
NFEA 2.339 2754

1111
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NFEA 0.6937 0.7024

NIE 0.7911 0.9141
NEEA 2.310 2.644
NFEA 0.7232 0.8128
N5t 0.8205 1.0241
NPy 2.262 2.432
Ny 0.6695 0.6339
NPy 0.7260 0.7280
N3Py 2.194 2.262
Ny 0.7379 0.8040
Nists 0.7941 0.8977
max(AN; (%)) 8.22 20.35
[INFEA — NTept| 0.131 0.400

Sphere is a special case of an ellipsoid for'whichthe replacement relation is exact. Therefore,
there should be no difference between FEA.results and N-tensor values obtained via replacement
relation in the case of a sphere. As“expected relative errors as well as Euclidean norm of the
absolute error are zero, see the first row/in Table 3. Calculations for other shapes result in non-
zero relative errors and error'norms with the largest relative error and error norm observed in the
case of a tetrahedron. Based on Table 3, it can be concluded that the replacement relation can be
applied to most of the eonsidered shapes with very good accuracy (maximum error <5%) except
for a cube, octahedron, tetrahedron and a smooth tetrahedron for which the maximum relative
errors are higher — 7.2%, 8.4%, 20.4% and 8.2%, respectively. Note that the replacement relation
works better for shapes with low values of the parameter p, which has the effect of smoothing of

the edges and‘corners of a shape.

It ‘appears that the errors in the replacement relation predictions are smaller for the shapes
resembling a sphere (e.g. smooth polyhedral superspheres) and greater for the shapes different

from the sphere (e.g. cube, tetrahedron). The parameter that can be used to measure the

“sphericity” of a shape is the ratio S 3/2/ y» Where S is the surface area and V' is the volume of the
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shape. Among all possible 3D shapes, a sphere has the minimum surface area for a given volume

and the ratio S3/2/V = 10.63. Figure 3a presents the Euclidean norm of the absolute error in

replacement relation results for different shapes as a function of the surface area-to-volume
parameter. Figure 3b presents the Euclidean norm of the absolute difference between the FEA

calculated N-tensors of different shapes and N-tensor of a sphere. Two conclusions can be drawn

. . . . 3/2
from the figures: a) the error norm increases linearly with the parameter %/ /V; and b) the error

norms in Figure 3b are almost half of the error norms in Figure 3a for the“carresponding shapes.
The latter conclusion indicates that the replacement relation (3.2) resultstin a better N-tensor
approximation for a given inhomogeneity shape and elastic properties.combination compared to

a simple replacement of the shape with a sphere.

< o7 <
O sphere O sphere
08l ® polyhed. supersph 1 ® polyhed. supersph 1
: O polyhed. supersph 2 oe- O polyhed. supersph 2
| cube | cube
03 4\ jcosahedron A jcosahedron
A trunc oct. 05~ A trunc oct.
0251 * cubeoct. ¥ cubeoct.
’ * rhombic dodec. * rhombic dodec.
o < octahedron _o % < octahedron -
g 02r <« tetrahedron w <« tetrahedron
-  oar
045
[
2 <
04 < 02
%
005 % o
n® o
1‘1 1‘2 1‘3 1‘4 15 1‘6 1‘7 1‘5 1‘9 1‘1 1‘2 1‘3 1‘4 1‘5 1‘6 1‘7 1‘8 1‘9
S3/2/V S3/2/V
(@) (b)

Figure 3. Effectiof the surface area-to-volume ratio parameter of a shape on the Euclidean norm of the absolute
error: (a) between N-tensors of the polyhderal shapes from Table 2 calculated via FEA and replacement relation;
(b) between N-tensors of the polyhedral shapes from Table 2 calculated via FEA and N-tensor of a sphere

4. Effective elastic properties

In this section, we use N-tensors of individual shapes to estimate effective elastic moduli of
materials containing randomly oriented inhomogeneities of the same shape. We focus on five
shapes — polyhedral supersphere 1, rhombic dodecahedron, icosahedron, cuboctahedron and

octahedron.
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4.1. Analytical homogenization based on N-tensor

To characterize contribution of multiple particles to the effective elastic properties a
homogenization procedure based on N-tensor is used. The effective stiffness tensor of a material
with particles is given by

C - CO + ACRVE (41)
where C, is the stiffness tensor of the matrix material and ACgyg is the collective.contribution of

all particles to the overall stiffness of the representative volume element.

The non-interaction scheme provides a reasonably good appreximation for a dilute
distribution of particles, and ACryg in this case is obtained by direct/'summation of contributions

from all individual particles in the RVE:

ACRyE = XiNgy, (4.2)
where Ny is the stiffness contribution tensor of the i-th particle. The procedure for calculation of
stiffness contribution tensors of individual particles is presented in section 2.

For higher volume fractions when interaction between particles is significant and the non-
interaction approximation is no longer -applicable, more advanced micromechanical schemes
should be used. One of the most widely. used’is the Mori-Tanaka scheme, proposed in Mori and
Tanaka (1973) and clarified in Benwveniste (1987). Following this approximation the combined

contribution of all particles to theoverall stiffness of the RVE is given by

-1
ACRYE ="DCRVE: [@(Cq — Co) + ACRYE] :(Cq — Co) (4.3)
where ¢ is the volume fraction of particles and C; is the stiffness tensor of the inhomogeneity

material.
Alternatively,»ACryg may be found using Maxwell’s homogenization scheme (Maxwell
(1873), McCartney and Kelly (2008), Sevostianov (2014)):
- -1
ackEvel = {[acys] " - Pa) (4.4)

where P, is the Hill’s tensor (Hill (1965), Walpole (1969)) for the “effective inclusion” of shape
Q. In our study we consider randomly oriented inhomogeneities and therefore the effective

inclusion is of spherical shape.
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In the framework of non-interaction approximation, contributions from randomly oriented
particles of the same shape to the effective bulk and shear moduli can be calculated using the

relationship presented in Wu (1966):

K _ ~K0—K1 i_ ""GO _Gl
=1+ k== =149 G6=, (4.5)
K= % G = % (summation over i,j = 1,2,3), (4.6)

where K, and G, are bulk and shear moduli of the matrix material, K; and G, are.bulk and shear
moduli of the inhomogeneity material, T is the Wu’s strain concentration,tenser related to N-
tensor and stiffness tensors Co and C; as T = (C; — Co) 1:N (Sevostianov and Kachanov
(2007)).

Relations for the effective bulk and shear moduli following Mari-Tanaka scheme can be

expressed as (see Benveniste (1987)):

L F_—faiKe G2 A Gi=Go
Ko L+ oK Kol(1-9)+9K1” Go Lt oG Gol(1-@)+¢GT’ (4.7)

Finally, for the Maxwell scheme we have:
ﬁ E G E (48)

Ko - 3Ko(1=2v) G_O - 2Go(1+v)’
where E and v are the effective Young’s modulus and Poisson’s ratio that can be calculated from

the effective stiffness tensor camponents, see (4.1).

4.2. Finite elementanalysis of periodic representative volume elements

The analytical-homaogenization predictions are compared with direct FEA of RVEs containing
multiple inhomogeneities (also known as numerical experiments, see Zohdi and Wriggers
(2005)).. To generate the RVEs with non-intersecting particles we use a simplified
implementation of the collective rearrangement method based on Altendorf and Jeulin (2011)
and detailed in Drach et al. (2016). The procedure is implemented in a custom script that results
in periodic surface meshes of non-intersecting particles. The RVE surface mesh is imported into
MSC Marc/Mentat for further numerical analysis using the “microstructure-conforming” FEA
approach (Zohdi and Wriggers (2005)). All FEA model preparation steps at this stage are
performed automatically using a custom script that provides a ready-to-run model upon
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completion. The final RVE is meshed with 10-node tetrahedral 3D elements. Figure 4 illustrates

two examples of generated microstructures.

(b)

Figure 4. lllustration of generated RVEs: (a) packed cuboctahedralparticles, volume fraction ¢ = 0.2: (b) final RVE
with polyhedral particles, volume fraction ¢ = 0.2

Since RVEs are generated to have congruent meshes on the opposite faces we treat them as
unit cells and subject them to periodic boundary conditions. The boundary conditions for two
corresponding nodes on the opposite«(positive and negative) faces are introduced similarly to
Segurado and Llorca (2002):

= ul?+e, (=123) (4.9)

where uj(”) -

negative faces respectively; and §; is the prescribed average displacement in the x; direction.

and u}i are displacements in x; direction of the i-th node on the positive and
Periodic boundary conditions were implemented in MSC Marc/Mentat using the “servo-link”
feature (see, forexample, Drach et al. (2014), MSC Software (2012), Drach et al. (2016)). Servo-
links allow to_prescribe multi-point boundary conditions for nodal displacements in the form of a
linear function with constant coefficients. In this formulation, §;-s are implemented as
translational degrees of freedom of control nodes, which are linked to the nodes on the
corresponding opposite faces of an RVE. To constrain rigid body displacements, a node inside
the RVE is fixed. Rigid body rotations are not allowed by the periodic boundary conditions, so

additional constraints are not required.
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Six sets of boundary conditions are applied in terms of displacements to simulate three
uniaxial tension and three shear load cases. Note that the prescribed strains are set to 0.001 to
ensure small deformations so that the initial element volumes could be used in the volume
averaging procedure described below. Figure 5a and 5b present stress distributions within two
RVE subjected to uniaxial tension along x; direction. Once the numerical simulations are
performed, the result files are processed using a custom Python script to calculate effective
elastic properties of the RVE. First, volume-averaged stress components are calculated for each
load case. Given the averaged stress components and applied strain, we calculate‘the effective

stiffness tensor using Hooke’s law:

Cr ) m = (0i)m (4.10)
where (o;;),, and (7). are the volume-averaged stress and applied Strain components,

respectively, and m is the load case number. For example, frem the second load case we can

eff

calculate all C;,, components:

ceff - Yo (4.11)

22 (),
Engineering constants are then obtained«from the effective compliance tensor assuming

orthotropic effective response, in whichicase the tensor can be expressed in the following matrix

form:
-/ o _¥soog g 0]
Eq Ep E3
V12 1 V32 0 0 0
vz _Ves 1 0 0 0
geff —| B2 B ) (4.12)
0 0 0
2Gy3
0 0 0 0 2; 0
31
0 0 0 0 0 2;
12-

The overall isotropic Young’s modulus and Poisson’s ratio are calculated as averages of Ej,
E,, E5 and v4,, v,3, V31, respectively. The average relative error between the moduli E,, E, and

E; was observed to be below 0.1%.
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B 1.918¢-001
1.859%-001
1.800e-001
1.741¢-001

(b)

Figure 5. Distribution of g;, stress component (GPa) within an RVE subjected to'uniaxial tension along x; direction: (a)
matrix material with E, = 120 GPa and v, = 0.34, polyhedral supersphere particles-with E;, = 70 GPa and v; = 0.35,
volume fraction ¢ = 0.2; (b) matrix material with E, = 2.89 GPa and vy, = 0.35, cuboctahedral particles with E; =
79 GPa and v, = 0.4, volume fraction ¢»="0.2

4.3. Results

Effective bulk (K) and shear (G) moduli\ of"materials containing five types of particles
selected from Table 2 (polyhedral. supersphere 1, rhombic dodecahedron, icosahedron,
cuboctahedron and octahedron), Were approximated using non-interaction, Mori-Tanaka and
Maxwell homogenization schemes based on numerically calculated N-tensors for individual
particles. Table 5 presents elastic properties of the matrix and inhomogeneity materials that were
used in homogenization. The ‘results are compared to FEA simulations performed on RVES
containing 50 particles each (see section 6.5.1 in Zohdi and Wriggers (2005) for discussion on
sufficient number of yparticles) with volume fractions ¢ = 0.10,0.15,0.20 for the octahedral
shape and ¢ =.0:10,0.20,0.30 for all other shapes. For each microstructure five RVE
realizations were generated. Each realization is shown as a separate data point. All results are
presented’in Figure 6.

Good correspondence between FEA simulations and Mori-Tanaka and Maxwell schemes is
observed with the latter being a little closer to the direct FEA, see Figures 6a-e. From Figure 6a it
can be concluded that Maxwell and Mori-Tanaka schemes produce almost identical predictions,

since polyhedral supersphere 1 is very close to the spherical shape for which Maxwell and Mori-
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Tanka schemes coincide. Note that with increasing elastic contrast between the matrix and the
particles, correlation between homogenization schemes and direct FEA decreases. The greatest
elastic contrast considered in this paper (~360) was used for the material with octahedral
particles (Figure 6e). The maximum relative error between the Maxwell scheme and direct FEA

in this case is observed in shear modulus predictions and is equal to 2.5%.

Table 5. Elastic properties of the considered material combinations

Matrix material Particleimaterial
Particle shape
Ey, GPa Vo E{,GPa V4
polyhedral supersphere 1 120 0.34 70 0.35
rhombic dodecahedron 70 0.17 35 0.44
icosahedron 25 0.34 83 0.37
cuboctahedron 2.89 0.35 79 0.4
octahedron 2.89 0.35 1050 0.1
1 1
——Non-Int K/K o ——Non-Int K/KK o
- - - Mori-Tanaka K/Ko - - —Mori-Tanaka K/Ko
————— Maxwell K/Ko ==+ Maxwell K/Ko
——Non-Int G/G o ——Non-Int G/G o
- - -Mori-Tanaka G/G o - - —Mori-Tanaka G/Go
----Maxwell G/Go 08k o Maxwell G/Go
o FEA K/Ko ’ ... © FEAKI/Ko
o FEA G/Go - q\fEA G/Go
0.9+ o KIK
[+
v KIK 0.6-
N o
GIG
GIG
08 0.1 02 03 04 04 0.2 03
p, particles volume fraction p, particles volume fraction
(@) (b)
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(e)
Figure 6. Effective elastic properties of materials containing randomly oriented particles of different shapes:
a) polyhedral supersphere 1 (smoath);®) rhombic dodecahedron; c) icosahedron; d) cuboctahedron; e) octahedron

The replacement-relation (3.2) interrelates contributions of inhomogeneities having the same
shape but different,elastic constants to the overall elastic properties. This allows extending the
results presented in section 3.1 and Appendix A to combinations of matrix/particle properties not
discussed in the paper. Here we investigate the accuracy of K and G predictions based on the
replacement~relation for materials containing randomly oriented octahedral, cubical, and
tetrahedral particles. The predictions were obtained using Maxwell homogenization scheme
based on N-tensors of polyhedral particles estimated using the relation (3.2). First, we obtained
N-tensor components of the individual shapes for E, = 1,v, = 0.33,E; = 20 and v; = 0.2 by
interpolating the components for v, = 0.3 and v, = 0.4 presented in Table 4 and Appendix A,

respectively. Then, we applied the replacement relation (3.2) to estimate the N-tensor
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components for E, = 1,v, = 0.33,E; = 10 and v; = 0.1, and used the result to predict effective
bulk and shear moduli for ¢ = 0.2. The predictions are compared to the FEA results for periodic
RVEs published in Rasool and Bohm (2012) and presented in Table 6. Note that the moduli K
were calculated based on the effective Young’s moduli and Poisson’s ratios from Table 3 in
Rasool and Béhm (2012) because we believe the authors made a mistake in their calculations of

the effective bulk moduli in the paper.

From the analysis of Table 6 we conclude that Maxwell scheme in combination with the
replacement relation (3.2) provide very good estimates for the effective bulk maeduli of all three
shapes (relative error <1%) and good predictions for the effective shear.moduliexcept for a cube

(relative error of 6.14%).

Table 6. Comparison of effective bulk and shear moduli predictions for materials containing randomly oriented
particles of octahedral, cubical and tetrahedral shapes (¢ = 0.2) based on,the.replacement relation (3.2) with
numerical calculations presented in Rasool'and Bohm (2012)

Rasool and Bohm (2012) Our predictions Unsigned rel. error, %
Particle shape
Ky Grp K G AK% AGY%
Octahedron 1.248 1.479 1.254 1.450 0.51 1.93
Cube 1.263 1.466 1.257 1.562 0.45 6.14
Tetrahedron 1.271 1.529 1.280 1.590 0.75 3.82

In addition, we looked at'the performance of the replacement relation in two extreme cases —
when N-tensors of elastic: particles are estimated from N-tensors of pores and from N-tensors of
perfectly rigid particles:’We began by calculating N-tensors for pores (E; = 0) and perfectly
rigid inhomogeneities (E, — o) for the five shapes discussed above (polyhedral supersphere 1,
rhombic dodecahedron, icosahedron, cuboctahedron and octahedron), then used the results to
calculate N-tensors for elastic properties from Table 5 via the replacement relation. Stiffness
contribution'tensor components for the five particles having E; = 0 GPa and E; = 10° GPa are
presented in Table 7. Finally, we estimated the effective bulk (K) and shear (G) moduli using
Maxwell homogenization scheme. The results are compared with direct FEA simulations and

effective elastic properties of RVEs containing spheres, and presented in Figure 7.

Table 7. Stiffness contribution tensor components for pores and rigid particles of the following shapes: polyhedral
supersphere 1, rhombic dodecahedron, icosahedron, cuboctahedron and octahedron
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Rigid, E; = 10° GPa Pore, E; = 0 GPa

Shape — — —
T 7 I~ xypore xypore rypore
Nt N3tz Nii% Nt N2tz N1
polyhedral superspherel, i i i
E, = 120 GPa, v, = 0.34 315.4 98.33 120.7 508.6 84.27 337.9
rhombic dodecahedron,
E, = 70 GPa, vy = 0.17 160.3 65.07 37.22 -157.9 -62.72 -28.17
icosahedron,
E, = 2.5 GPa, v, = 0.34 6.727 2.103 2.504 -10.77 -1.786 -7.207
cuboctahedron,
E, = 2.89 GPa, vy = 0.35 8.285 2.428 3.007 -13.99 -2(158 -10.05
octahedron, 8.177 3.292 2.977 -15.18 2.326 -10.82

E, = 2.89 GPa,v, = 0.35

From the examination of the Figures 7a and 7b it can be<concluded that in the case of soft
inhomogeneities, Maxwell scheme in combination with N-tensorobtained from the replacement
relation based on a pore provides a good correlation with direct FEA results. On the other hand,
for stiff inhomogeneities, Maxwell scheme predictions with N-tensor obtained from the
replacement relation based on a perfectly rigid particle result in a better agreement with direct
FEA calculations, see Figures 7c-e. Comparing the predictions for the effective moduli from
spheres with direct FEA results indicates that'the effective shear modulus is more sensitive to the
shape of inhomogeneitis than the effective bulk modulus. In addition, the results show that

predictions obtained from thereplacement relation work better than approximations by spheres.

1
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- - - Maxwell K/Ko from pores - - - Maxwell K/Ko from pores
== Maxwell K/Ko from sphere == Maxwell K/Ko from sphere
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- - - Maxwell G/Go from pores - - - Maxwell G/Go from pores
== Maxwell G/Go from sphere == Maxwell G/Go from sphere
o FEAK/Ko 0.8- o FEAK/Ko
o FEA G/Go FEA G/Go
0.9¢ ~ KIK
KIK, 0.6t <
GIG T® GIG
o o
0-8 L L L 04 L L L
0 0.1 i 0.2 i 0.3 0 0.1 . 0.2 . 0.3
p, particles volume fraction p, particles volume fraction
(a) (b)
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Figure 7. Effective elastic properties estimated via Maxwell scheme and N-tensors based on the replacement
relation of materials containing randomly oriented particles of different shapes: a) polyhedral superspherel; b)
rhombic dodecahedron; ¢) icosahedron; d) cuboctahedron; e) octahedron

5. Conclusions

Stiffness (contribution tensors (N-tensors) of 15 convex polyhedra were calculated using
Finite Element Analysis and presented in this paper. The N-tensor components of these shapes
were analyzed to determine whether the tensors were isotropic or exhibited cubic symmetry. As
expected, a sphere was confirmed to be isotropic; polyhedral superspheres were found to be
nearly isotropic; and a cube, truncated octahedron, cuboctahedron, rhombic dodecahedron and

octahedron were concluded to have cubic symmetry.

The applicability of the replacement relation that interrelates stiffness contribution tensors of
inhomogeneities having the same shape but different elastic properties to the considered shapes
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was investigated. It was found that the replacement relation can be used with good accuracy
(<5% maximum relative error) for most of the considered shapes except for a tetrahedron,
octahedron, cube and smooth tetrahedron for which the maximum relative errors were
considerably higher. Application of the replacement relation to a tetrahedron resulted in the
largest relative error of 20.4% among all considered shapes. Note that the replacement relation
works better for shapes with low values of the parameter p, which has the effect of smoothing of
the edges and corners of a shape. We also observed a correlation between the<accuracy of the
replacement relation and the sphericity shape parameter — the Eucledian norm,of the difference
between N-tensor calculated via replacement relation and N-tensor obtained from direct FEA
increases linearly with sphericity. Similar correlation was observed for the Eucledian norm of the

difference between the N-tensor of a polyhedral particle and its approximation by a sphere.

We used N-tensors of individual polyhedra to calculate.overall elastic properties of materials
containing multiple randomly oriented polyhedral particles viasmicromechanical homogenization
based on non-interaction approximation, Mori-Tanaka.and Maxwell schemes. The results were
compared with direct FEA calculations performed.on-periodic RVEs. Good correspondence
between FEA simulations and Mori-Tanaka and Maxwell schemes up to volume fractions of
30% was observed with Maxwell scheme being a little closer to direct FEA. FEA results were
also compared with effective properties calculated using Maxwell scheme and the replacement
relation based on perfectly rigid particles and pores. We observed that in the cases when particle
material is stiffer than the/matrix, the replacement relation based on perfectly rigid particles
results in good predictions for effective elastic properties. Conversely, in the cases when
particles are softer~than’the matrix, the replacement relation based on pores produces better
estimates for the.overall elastic properties.

Combination of N-tensor components presented in this paper for different values of matrix
Poisson’s ratio/(see Table 4 and Appendix A) with the replacement relation (3.2) can be used to
estimate.stiffness contribution tensors of polyhedral particles for any set of particle/matrix elastic
properties. The estimate will have a particularly good accuracy in the cases when particles are
stiffer than the matrix because Table 4 and Appendix A results were obtained for stiff particles.

For a combination in which the particle material is softer than the matrix, approximation of the
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shape by a sphere might result in a better estimate than the one obtained from the replacement
relation based on a stiff particle.
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Appendix A

Table A.1. Comparison between stiffness contribution tensors calculated via direct FEA and obtained utilizing the
replacement relation. Matrix material: E, = 1GPa and v, = 0.2, particle material: E; = 20GPa, v, = 0.2

_ _ _ ot vt repl ANy ANiiyy ANipi, [INFEA —
Shape LN ONES NN ORRRORER o0 w0 ey (et |
Sphere 2011 05026 07540 2.011 05026 07540 000  0.00  0.00 0.000
Polyhedral
Superspherel 2012 05045 07576 2010 05046 07568 010 001 .0l 0.002
(smooth)
Polyhedral 2054 05057 07774 2031 05064 07671 115 0.3 %132 0.024
Supersphere
Polyhedral
Supersphere 2 2.029 0.5056 0.7669 2.018 05059 0.7620 0.56/ ~0.06._ 064  0.012
(smooth)
Polyhedral 2068 05069 0.7859 2.037 05078 0.7713 (1.54. ~0.19 186 0.033
Supersphere
Cube (smooth) ~ 2.078 04881 07541 2.064 04866 0,7449 069 030 123  0.0174
Cube 2336 04771 08236 2201 04766° 07645 578 010 7.7 0.136
Icosahedron 2060 05038 07771 2.035 . 05041 J0.7646 120  0.07  1.60 0.025
Truncated 2061 05172 07999 2/080. \0.5150 0.7803 152 043 245 0.036
Octahedron
Cuboctahedron  2.129 0.4912 07799 2081 04929 07601 224 034 254  0.049
Rhombic 2068 05199 £0.8082, 72.032 05167 07831 178 062  3.11 0.043
Dodecahedron
Octahedron 2060 0.5327% 0.8261 2.024 05231 07901 174 180 436 0.041
(smooth)
Octahedron 2146 05455 08756 2.070 05260 08046 354 358 811 0.115
Tetrahedron
Shape (smooth) Tetrahedron

NFEA 2.188 2,623

NFEA 0.4985 0.5155

NEEA 0.8146 0.9411

NEEA 2.160 2512

NFEA 0.5266 0.6269

NFEA 0.8427 1.052

1313
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~repl.
N1111

~repl.
N1122

arrepl.
N1212

repl.
N3333

~repl.
Nl 133

~repl.
N1313

maX(AIVijkl (%))

”NFEA _ Nrepl.”

2.106

0.4731

0.7497

2.041

0.5381

0.8145

7.96

0.130

2.280

0.4393

0.7558

2.116

0.6031

0.9192

19.69

0.443

Table A.2. Comparison between stiffness contribution tensors calculated via direct FEA and obtained utilizing the
replacement relation. Matrix material: E, = 1GPa and v, = 0.4, particle'material:-E; = 20GPa, v, = 0.2

= = = —repl.  mrepl.  wreplA. AN AN. AN. NFEA _
Shape NEESONERS O ONEES NI NI MR N o™ o™ [Nrer |
Sphere 2721 1260 07300 2721 1260 07300%000 000  0.00 0.000
Polyhedral
Supersphere1 2720 1262 07346 2718 1263 07337 007 002  0.12 0.002
(smooth)
Polyhedral 2761 1.260 0.7554 2738 \ 1263 0.7445 082 023 144 0.026
Supersphere
Polyhedral
Supersphere 2 2736 1.262 0.7445-=2.725 ¥ 1263 07394 039 010  0.69 0.012
(smooth)
Polyhedral 2773 1.260 /0.7651 $2.743 1264 07493 110 030 207 0.034
Supersphere
Cube (smooth)  2.800  1236% 07228 2.788 1235 07137 045 002  1.27 0.013
Cube 3.078- 1192 07777 2945 1207 07207 432 127  7.32 0.148
Icosahedron 2768%.1.257 07542 2744 1260 07410 085 023 175 0.027
Truncated 9756  1.275 07838 2727 1275 07627 1.04 003 269 0.029
Octahedron
CuboGtahedron  2.851 1.233 07490 2.805 1240 07290 164 053  2.67 0.053
Rhombiy 2760 1277 07928 2728 1277 07654 117 001  3.46 0.033
Dodecahedron
Octahedron 2736 1295 08155 2708 1289 07774 100 051  4.68 0.041
(smooth)
Octahedron 2802 1306 08725 2744 1293 07948 209 100 890 0.085
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Shape g;?;?:;gmn Tetrahedron

NFEA 2.883 3.267
NFES 1.242 1.226
NEES 0.7848 0.9041
NIEA 2.850 3.152
NFEA 1.275 1.341
NIEA 0.8179 1.018
NPy 2.811 2.968
Ny 1221
NPy 0.7173 %
NPy 2.735 ’@5
Nyeps 1.29 1.358
NPy o.? 0.8950

max (AN, i, (%)) 8.6 21.22

INFEA — NTept || 0.136 0.385

30/36




References

Altendorf, H., Jeulin, D., 2011. Random-walk-based stochastic modeling of three-
dimensional fiber systems. Physical Review E 83, 41804.

Benveniste, Y., 1987. A new approach to the application of Mori-Tanaka’s theory in

composite materials. Mechanics of Materials 6, 147-157.

Bohm, H.J., Rasool, A., 2016. Effects of particle shape on the thermoelastoplastic behavior

of particle reinforced composites. International Journal of Solids and Structures 87, 90-101.

Cao, Y., Fan, J., Bai, L., Hu, P, Yang, G., Yuan, F., Chen, Y., 2010"Formation of cubic Cu

mesocrystals by a solvothermal reaction. CrystEngComm 12, 3894.

Chen, F., Sevostianov, I., Giraud, A., Grgic, D., 2017. Accuracy-of the replacement relations
for materials with non-ellipsoidal inhomogeneities. International*Journal of Solids and Structures
104-105, 73-80.

Chen, F., Sevostianov, ., Giraud, A., Grgic, D., 2015, Evaluation of the effective elastic and
conductive properties of a material containing concave pores. International Journal of

Engineering Science 97, 60—68.
Ciz, R., Shapiro, S.A., 2007. Saturated With a Solid Material. 72.

Cravillon, J., Schroder, C. a., Bux;,H., Rothkirch, A., Caro, J., Wiebcke, M., 2012. Formate
modulated solvothermal synthesis .0f ZIF-8 investigated using time-resolved in situ X-ray

diffraction and scanning-electron microscopy. CrystEngComm 14, 492.

Drach, A., Drach, By Tsukrov, I., 2014. Processing of fiber architecture data for finite

element modeling of:3D woven composites. Advances in Engineering Software 72, 18-27.

Drach;, B., Tsukrov, I., Gross, T.S., Dietrich, S., Weidenmann, K., Piat, R., Bohlke, T., 2011.
Numerical. modeling of carbon/carbon composites with nanotextured matrix and 3D pores of

irregular shapes. International Journal of Solids and Structures 48, 2447-2457.

Drach, B., Tsukrov, I., Trofimov, A., 2016. Comparison of full field and single pore
approaches to homogenization of linearly elastic materials with pores of regular and irregular
shapes. International Journal of Solids and Structures 10.1016/j.ijsolstr.2016.06.023.

31/36



Ekneligoda, T.C., Zimmerman, R.W., 2006. Compressibility of two-dimensional pores
having n-fold axes of symmetry. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences 462, 1933-1947.

Ekneligoda, T.C., Zimmerman, R.W., 2008. Shear compliance of two-dimensional pores
possessing N-fold axis of rotational symmetry. Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences 464, 759-775.

Eshelby, J.D., 1961. Elastic inclusions and inhomogeneities. Progress in Solid/Mechanics 2,
89-140.

Eshelby, J.D., 1957. The Determination of the Elastic Field of an Ellipseidal Inclusion, and
Related Problems. Proceedings of the Royal Society A: Mathematical,,Physical and Engineering
Sciences 241, 376-396.

Garboczi, E.J., Douglas, J.F., 2012. Elastic moduli “ef .Ccomposites containing a low
concentration of complex-shaped particles having a general* property contrast with the matrix.
Mechanics of Materials 51, 53-65.

Gassmann, F., 1951. Uber die Elastizitat poroser Medien. Vierteljahrsschrift der
Naturforschenden Gesellschaft in Zurich 96,-1-23.

Hill, R., 1965. A self-consistentimechanics of composite materials. Journal of the Mechanics
and Physics of Solids 13, 213<222.

Horii, H., Nemat-Nasser,'S., 1983. Overall moduli of solids with microcracks: load-induced
anisotropy. Journal of the’'Mechanics and Physics of Solids 31, 155-171.

Jaeger, J., _€CooK, N., Zimmerman, R., 2007. Fundamentals of Rock Mechanics. Fourth
Edition.

Jasiuk, 1., Chen, J., Thorpe, M., 1994. Elastic moduli of two dimensional materials with

polygonal.and elliptical holes. Applied Mechanics Reviews 47, 18-28.

Kachanov, M., Sevostianov, l., 2012. Rice’s Internal Variables Formalism and Its
Implications for the Elastic and Conductive Properties of Cracked Materials, and for the
Attempts to Relate Strength to Stiffness. Journal of Applied Mechanics 79, 31002.

Kachanov, M., Tsukrov, l., Shafiro, B., 1994. Effective moduli of solids with cavities of

32/36



various shapes. Applied Mechanics Reviews 47, S151.

Kushch, V.1., Sevostianov, I., 2015. Effective elastic moduli of a particulate composite in
terms of the dipole moments and property contribution tensors. International Journal of Solids
and Structures 53, 1-11.

Mavko, G., Mukerji, T., Dvorkin, J., 2009. The Rock Physics Handbook: Tools for Seismic

Analysis in Porous Media. Cambridge University Press.
Maxwell, J.C., 1873. A Treatise on Electricity and Magnetism. ClarendonPress,,Oxford.

McCartney, L.N., Kelly, A., 2008. Maxwell’s far-field methodology-applied.to the prediction
of properties of multi-phase isotropic particulate composites. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences 464, 423-446.

McMillan, P.F., 2003. Chemistry of materials under extreme-high pressure-high-temperature

conditions. Chemical communications 919-23.

Menon, S.K., Martin, P.L., 1986. Determination of the anisotropy of surface free energy of

fine metal particles. Ultramicroscopy 20, 93-98.

Miyazawa, T., Aratake, M., Onaka, S:;2022. Superspherical-shape approximation to describe
the morphology of small crystalline-particles having near-polyhedral shapes with round edges.
Journal of Mathematical Chemistry 50, 249-260.

Mogilevskaya, G., Nikolskiy,” D. V., 2015. The shape of Maxwell’s equivalent
inhomogeneityand “‘strange” properties of regular polygons and other symmetric domainss.

Quarterly Journal of*Mechanics and Applied Mathematics 68, 363-385.

Mori, T., Tanaka; K., 1973. Average stress in matrix and average elastic energy of materials
with misfitting.inclusions. Acta Metallurgica 21, 571-574.

MSC Software, 2012. MSC Marc 2012 User Documentation. VVolume A: Theory and User

Information.

Niu, W., Zheng, S., Wang, D., Liu, X., Li, H., Han, S., Chen, J., Tang, Z., Xu, G., 2009.
Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold

nanocrystals. Journal of the American Chemical Society 131, 697-703.

33/36



Onaka, S., 2016. Extended Superspheres for Shape Approximation of Near Polyhedral

Nanoparticles and a Measure of the Degree of Polyhedrality. Nanomaterials 6, 27.

Onaka, S., 2006. Simple equations giving shapes of various convex polyhedra: the regular
polyhedra and polyhedra composed of crystallographically low-index planes. Philosophical
Magazine Letters 86, 175-183.

Onaka, S., Kobayashi, N., Fujii, T., Kato, M., 2003. Energy analysis with a_superspherical
shape approximation on the spherical to cubical shape transitions of coherentprecipitates in

cubic materials. Materials Science and Engineering: A 347, 42-49.

Park, K.H., Jang, K., Kim, H.J., Son, S.U., 2007. Near-monodisperse ‘tetrahedral rhodium
nanoparticles on charcoal: The shape-dependent catalytic hydrogenation of arenes. Angewandte
Chemie - International Edition 46, 1152—-1155.

Rasool, A., Bohm, H.J., 2012. Effects of particle shape on.thé macroscopic and microscopic
linear behaviors of particle reinforced composites. International Journal of Engineering Science
58, 21-34.

Saxena, N., Mavko, G., 2014. Exact equations for fluid and solid substitution. Geophysics
79.

Segurado, J., Llorca, J., 2002.”A,numerical approximation to the elastic properties of sphere-

reinforced composites. Journal of the\Mechanics and Physics of Solids 50, 2107-2121.

Seo, D., Ji, C.P.,, Song, H., 2006. Polyhedral gold nanocrystals with Oh symmetry: From
octahedra to cubes. Journal of the American Chemical Society 128, 14863-14870.

Sevostianow,. I.3:2014. On the shape of effective inclusion in the Maxwell homogenization

scheme for_anisotropic elastic composites. Mechanics of Materials 75, 45-59.

Sevostianoy, 1., Chen, F., Giraud, A., Grgic, D., 2016. Compliance and resistivity
contribution tensors of axisymmetric concave pores. International Journal of Engineering
Science 101, 14-28.

Sevostianov, I., Giraud, A., 2012. On the Compliance Contribution Tensor for a Concave

Superspherical Pore. International Journal of Fracture 177, 199-206.
Sevostianov, 1., Kachanov, M., 1999. Compliance tensors of ellipsoidal inclusions.

34/36



International Journal of Fracture 96, 3—7.

Sevostianov, 1., Kachanov, M., 2007. Relations between compliances of inhomogeneities
having the same shape but different elastic constants. International Journal of Engineering
Science 45, 797-806.

Sevostianov, I., Kachanov, M., Zohdi, T.l., 2008. On computation of the compliance and
stiffness contribution tensors of non ellipsoidal inhomogeneities. International Journal of Solids
and Structures 45, 4375-4383.

Sun, S., Yang, Z., 2014. Recent advances in tuning crystal facets of pelyhedral cuprous oxide
architectures. RSC Adv. 4, 3804-3822.

Sundquist, B.E., 1964. A direct determination of the anisotropy of the surface free energy of

solid gold, silver, copper, nickel, and alpha and gamma iron. Acta Metallurgica 12, 67—86.

Tsukrov, 1., Novak, J., 2002. Effective elastic properties of solids with defects of irregular

shapes. International Journal of Solids and Structures 39;, 1539-1555.

Tsukrov, ., Novak, J., 2004. Effective glastie” properties of solids with two-dimensional

inclusions of irregular shapes. InternationakJournalof Solids and Structures 41, 6905-6924.

Walpole, L.J., 1969. On the overall elastic moduli of composite materials. Journal of the
Mechanics and Physics of Solids*17,235-251.

Wang, Z.L., 2000. Transmission/Electron Microscopy of Shape-Controlled Nanocrystals and
Their Assemblies. The Journalief Physical Chemistry B 104, 1153-1175.

Wu, T. Te, 1966. Theeffect of inclusion shape on the elastic moduli of a two-phase material.

International Journalkof/Solids and Structures 2, 1-8.

Zeon/Han, S&Kim, K.H., Kang, J., Joh, H., Kim, S.M., Ahn, J.H., Lee, J., Lim, S.H., Han,
B., 2015.,Design of exceptionally strong and conductive Cu alloys beyond the conventional
speculation via the interfacial energy-controlled dispersion of y-Al203 nanoparticles. Scientific
Reports 5, 17364.

Zimmerman, R.W., 1986. Compressibility of Two-Dimensional Cavities of Various Shapes.
Journal of Applied Mechanics 53, 500-504.

35/36



Zohdi, T.I., 2001. Computational optimization of the vortex manufacturing of advanced

materials. Computer Methods in Applied Mechanics and Engineering 190, 6231-6256.

Zohdi, T.l., 2003a. Constrained inverse formulations in random material design. Computer
Methods in Applied Mechanics and Engineering 192, 3179-3194.

Zohdi, T.I., 2003b. Genetic design of solids possessing a random-particulate microstructure.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and' Engineering
Sciences 361, 1021-1043.

Zohdi, T.l., Wriggers, P., eds., 2005. An Introduction to Computational Micromechanics.
Springer Berlin Heidelberg, Berlin, Heidelberg.

36/36



