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The propagation of transient waves in two-dimensional square lattices

Nadezhda I. Aleksandrova (nialex@misd.ru)

Chinakal Institute of Mining, Siberian Branch of the Russian Academy of Sciences, Krasnyj pr. 54, 

Novosibirsk, 630091 Russia

Abstract: The aim of this article is to study the attenuation of transient low-frequency waves in 2D 

lattices in both plane and antiplane problems. The main idea of this article is that analytical solutions to 

problems of mechanics of discrete periodic media can be obtained by a method of asymptotic inversion 

of the Laplace and Fourier transforms in the vicinity of the quasi-front of infinitely long waves; 

moreover, in this method it is possible to take into account the contribution of short waves. Using this 

method, we obtain asymptotics of perturbations in lattices in plane and antiplane formulations under a 

local transient load. Besides, we show that equations describing 2D plane motion of a square lattice can 

be represented in the form of two linearly independent wave equations, each of which contains one 

unknown function only. By analogy with the theory of elasticity, one equation describes the propagation 

of shear waves in the lattice, while the other equation describes the propagation of longitudinal waves. 

As a result, it is shown that, in a homogeneous infinite lattice, a load can be specified in such a manner 

that either predominantly longitudinal or predominantly shear waves are formed. The problems under 

study are also solved by a finite difference method. The qualitative and quantitative correspondence of 

asymptotic and numerical solutions is shown.

Keywords: 2D lattice, block medium, transient wave, analytical solution, numerical simulation, plane 

problem, antiplane problem 

Highlights

 Wave equations describing the plane motion of a 2D square lattice are splitted.

 Asymptotic solutions are obtained describing the propagation of antiplane and plane 

perturbations under a local step load. 



2

 Numerical examples are given to demonstrate the accuracy of asymptotic solutions.

 For problems of mechanics of discrete-periodic media, a method is proposed for asymptotic 

inversion of the Fourier and Laplace transforms.

1. Introduction

The studies [1 – 3] show that the block structure of rocks should be taken into account in 

mathematical models. The fundamental concept of M.A. Sadovsky [1] had a particularly great influence 

on the development of this approach. According to that hypothesis, the rock mass is a system of blocks, 

interconnected by interlayers consisting of weaker fractured rocks. The presence of interlayers with 

weakened mechanical properties leads to the fact that the deformation of the block rock mass both in 

statics and in dynamics occurs mainly due to their pliability [2, 3]. As noted in [2, 3], the block structure 

of the rock mass is the cause of the appearance of low-frequency waves with low propagation velocity, 

long wavelength, and weak damping. In the literature, such waves are often called pendulum waves, 

see, for example, [2-5].  The simplest model of a block rock medium can be obtained if the dynamic 

behavior of the block medium is approximately described as the movement of rigid blocks due to 

deformation of the interlayers, which are modeled as springs and dampers. In this case, the block 

medium can be represented as a periodic lattice of point-masses. Such a representation of a block 

medium makes it possible to describe low-frequency waves arising from impact loading fairly 

accurately. The comparison of the results of field and laboratory experiments and numerical 

calculations made according to this approach to modeling a block rock medium is given, for example, in 

[4] (in the one-dimensional case) and in [5] (in the 3D case). In the present article, a block medium is 

modeled as a 2D square lattice of masses connected by springs either in the axial directions only, or in 

the axial and diagonal directions. 

Note that in the literature, the mass lattice model is used not only for modeling rock masses, but 

also for modeling crystal structures. In publications devoted to crystal lattices, the main attention is paid 



3

to the study of the pass- and stop-bands in the frequency domain for band-gap materials. There are 

many such publications. We refer the interested reader, for example, to [6 – 12]). 

Other aspects of the study of lattices are presented in the books [13, 14] and other publications 

of the authors of these books, see, for example, [15, 16]. They contain analytical methods, formulations 

of problems and their solutions, and an overview of the results devoted to the problems of crack 

propagation and the effects of wave localization in inhomogeneous or disordered discrete structures and 

lattices.

In many publications, the behavior of lattice Green's function is studied as a function of the 

frequency time-harmonic excitation near the critical frequencies and the dispersion properties of Bloch–

Floquet waves are analyzed, see, for example, [14], [17] and references given therein. In contrast, our 

article examines the behavior of the solution as a function of time under transient excitation.

The problem of propagation of transient waves in discrete-periodic media has a long history. To 

solve transient elastic problems, Slepyan [18] proposed an asymptotic method for joint inversion of the 

Laplace – Fourier transforms in the vicinity of the quasi-front of a traveling wave. Subsequently, this 

method was used to obtain asymptotic solutions that allow as to estimate long-wave disturbances in 

various one-dimensional media having either a homogeneous or periodic structure, see, for example, [4, 

19, 20].

Less studied are transient wave processes in 2D and 3D discrete-periodic media. Nevertheless, 

some results are known for such media as well. For example, in [21 – 26], some models of periodic 

lattices of masses are used to describe plane or antiplane viscoelastic deformations of 2D discrete 

media. In [21], analytical and numerical results are presented concerning the formation of “star” waves 

in 2D square and triangular lattices under the action of a concentrated load with a resonant frequency. In 

[22], an analytical solution to the antiplane problem for a square lattice of masses (masses are connected 

in axial directions only) is obtained under a concentrated in space step in time load. In [23], an 

analytical solution to the plane problem for a square lattice of masses (masses are connected in axial and 
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diagonal directions) is obtained under a concentrated in space step in time vertical load applied on the 

boundary of a half-plane filled with the lattice of masses. In [24], a numerical study in a planar setting 

of wave propagation is carried out in a square lattice under the action of a load of the “center of 

dilatation” type. Transient wave processes in 3D discrete media were studied in [5, 25, 26]. In [25], a 

solution to the Lamb problem for 2D and 3D lattices is given in the form of multiple integrals, which 

are similar to the integral representations of the Bessel functions. In [5, 26], the Lamb problem in a 3D 

lattice is studied numerically.

Thus, the propagation of transient waves in 2D and 3D discrete-periodic media has been studied 

in much less detail than in one-dimensional periodic media. In particular, for waves in 2D and 3D 

lattices, analytical solutions are practically unknown (we know just a few exceptions, namely, [21 –

 23]). The present article partially fills this gap. Namely, we find analytical solutions to a number of 

problems of wave propagation in 2D square lattices under the action of local transient loads. Moreover, 

our numerical experiments show good agreement with the asymptotic solutions found.

2. Splitting the equations of motion in the plane problem

Consider a uniform 2D unbounded square lattice consisting of equal masses M connected by 

massless elastic springs in the directions of axes x, y, and in the diagonal directions (Fig. 1). The length l 

of the springs in the directions of axes x, y is the same and equal to one. Note that this lattice is similar 

to lattices used by Born and Kármán in their study of problems in solid state physics [6] and by Jensen 

in his study of phonon band gaps [10].

Let n, m be the indices of the masses along axes x, y. The equations of the plane motion of the 

mass with indices n, m were derived in [24] and have the following form:

(1), 1 1, , 1, 2 1, 1 1, 1 1, 1 1, 1 ,

2 1, 1 1, 1 1 1 1 1 ,

( 2 ) ( 4 ) 2
( ) 2 ,

n m n m n m n m n m n m n m n m n m

n m n m n ,m n ,m n m

Mu k u u u k u u u u u
k v v v v P

         

       

       

    


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(2)1 1 1 2 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 , ,

( 2 ) ( ) 2
( 4 ) 2 .

n,m n,m n,m n,m n ,m n ,m n ,m n ,m

n ,m n ,m n ,m n ,m n m n m

Mv k v v v k u u u u
k v v v v v Q

         

       

      

     



Fig. 1. The square lattice of the masses connected by springs in the directions of axes x, y, and in the 

diagonal directions.

Here ,  are the displacements in directions x, y respectively; ,  are the projections of the ,n mu ,n mv ,n mP ,n mQ

external force on axes x, y;  is the spring stiffness in the directions of axes x, y;  is the spring 1k 2k

stiffness in the diagonal directions; M is the mass. The parameters M, , , appearing in (1) and (2), 1k 2k

have the same values for all points of the lattice.

From now on, we assume . As shown in [24], in this case the velocities of longitudinal 2 1 2k k

and shear infinitely long waves in the lattice are independent of the direction of wave propagation. In 

addition, we further assume that , .1M  1 1k 

In this section, we split equations (1), (2) under the assumption that there are no external forces 

(i.e., ). For this, we introduce the operators , , , , given by the formulas:, , 0n m n mP Q  1A 2A 1B 2B

, , , .(3)1 , 1, 1,n m n m n mA f f f   2 , , 1 , 1n m n m n mA f f f   1 , 1, 1,n m n m n mB f f f   2 , , 1 , 1n m n m n mB f f f  

Using (3), we obtain:

, (4)1, , 1, 1 ,2 ( 2)n m n m n m n mf f f A f    

, (5) 1, 1 1, 1 1, 1 1, 1 , 1 2 ,
1 14 1
4 4n m n m n m n m n m n mf f f f f A A f       

       
 
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. (6) 1, 1 1, 1 1, 1 1, 1 1 2 ,
1 1
4 4n m n m n m n m n mf f f f B B f          

Let us introduce also the following operator:

. (7), ,n m n mDf f 

Using (4) – (7), we rewrite (1), (2) as follows:

, (8)1 1 2 , 1 2 ,
1 13 0
4 4n m n mD A A A u B B v      

 

. (9)2 1 2 , 1 2 ,
1 13 0
4 4n m n mD A A A v B B u      

 

Apply the operator  to (8) and the operator  to (9). Add the results  2 1 23 4D A A A   1 2 4B B

together. Since any two of the operators , , ,  commute with each other, we obtain:1A 2A 1B 2B

. (10)2 2
1 1 2 2 1 2 1 2 ,

1 1 13 3 0
4 4 16 n mD A A A D A A A B B u                

Equation (10) can be rewritten as follows:

,,( )( ) 0n mD D D D u   

where the operators ,  are defined by the formulasD D

,      . , 1 2 ,
1 4
2n m n mD f A A f      , 1 2 ,

1 1 1 9
2n m n mD f A A f      

Similarly, we obtain the following equation for :,n mv

.,( )( ) 0n mD D D D v   

Let us consider functions  and  such that,n m ,n m

. (11), ,( ) 0, ( ) 0n m n mD D D D     
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Note that every  satisfying  is a solution to . Similarly, ,n m ,( ) 0n mD D   ,( )( ) 0n mD D D D    

every  satisfying  is a solution to . For a similar splitting ,n m ,( ) 0n mD D   ,( )( ) 0n mD D D D    

of some other equations describing the elastic motion of a discrete medium the reader is referred to [25].

Passing from the operator form of equations (11) to the differential-difference form, we find that 

the system of equations (1), (2) with respect to two unknown functions  and  splits into two n,mu n,mv

linearly independent scalar wave equations, each with respect to one unknown function  or :,n m ,n m

, (12) , 1, 1 1, 1 1, 1 1, 1 1, 1, , 1 , 1 ,
1 8
2n m n m n m n m n m n m n m n m n m n m                            

. (13) , 1, 1, , 1 , 1 ,
1 4
2n m n m n m n m n m n m            

Let us investigate the dispersion properties of (12), (13). Substituting  and ( )
,

x yi t q n q m
n m e     

 into (12), (13), we obtain the following dispersion equations for Bloch–Floquet ( )
,

x yi t q n q m
n m e     

waves in the square lattice:

, (14)2 4 cos cos 2cos cosx y x yq q q q    

. (15)2 2 cos cosx yq q   

Here ,  are the projections of wave vector Bloch q on axes x, y, respectively. Note that (14), (15) xq yq

coincide with the dispersion equations obtained in [24] for Eq. (1), (2) in the case . Passing to 2 1 2k k

the limit in (14), (15) as  or , we obtain:0,y xq q   0,x yq q  

, .3 2  1 2 

From (14), (15) we determine the moduli of phase velocity vector  and group velocity vector phc

 of infinitely long waves ( ) in the lattices (we mean that frequencies ,  correspond grc , 0x yq q   

to phase velocity vectors ,  and group velocity vectors , , respectively):phc
phc

grc
grc
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.ph gr ph gr3 2, 1 2c с c с      

Let us introduce the notation

,    . (16)1 23 2, 1 2c c  1 23 2, 1 2  

As shown in [24], velocity  ( ) is equal to the velocity of longitudinal (respectively, shear) infinitely 1с 2с

long waves in the lattice; frequency  ( ) is equal to the frequency of short waves in a longitudinal 1 2

(respectively, shear) wave. Thus, (12) describes the propagation of longitudinal waves in the lattice 

shown in Fig. 1, while (13) describes the propagation of shear waves in a lattice in which the masses are 

connected in the directions of axes x, y only, as shown in Fig. 2.

Fig. 2. The square lattice of the masses connected by springs in the directions of axes x, y only. 

3. Antiplane problem. Propagation of longitudinal waves

The equations of the plane problem (1), (2) split into two scalar wave equations. In Sections 3–8, 

we study antiplane problems for each of these equations. There are three reasons for this: (a) each 

problem is of independent interest; (b) the study of these problems allows us to reveal the features of 

wave processes in the plane problem because, from the mathematical point of view, the wave nature of 

plane and antiplane processes is the same; (c) the method for solving the antiplane problem will be used 

to solve the plane problem in Sections 9, 10.
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In this Section, we study the antiplane problem for the lattice shown in Fig. 1. Let a concentrated 

step load Q orthogonal to the plane of the lattice acts at the point with coordinates , , i.e., let 0n  0m 

, where H is the Heaviside unit step function, t is time,  is the Kronecker delta. Then 0 0( ) n mQ H t   0n

the equations of the motion of the masses of the lattice are of the form:

. (17) , 1, 1 1, 1 1, 1 1, 1 1, 1, , 1 , 1 ,
1 8
2n m n m n m n m n m n m n m n m n m n m Q                             

Here  is the displacement of the lattice mass with coordinates n, m in the direction orthogonal to the ,n m

lattice plane. The initial conditions for (17) are supposed to be zero.

In order to construct an analytical solution, we apply to (18) the Laplace transform with respect 

to time and the discrete Fourier transforms with respect to coordinates n, m:

,     , ,
0

( ) ( )L ptf p f t e dt


  ( )n x
n

F iq n
x n

n
f q f e




  ( ) ym

m
iq mF

y m
m

f q f e



 

, , .1( ) ( )
2

i
L pt

i

f t f p e dp
i





 

 

 
1( ) ( )

2
n xF iq n

n x xf t f q e dq
i








 
1( ) ( )

2
ym iq mF

m y yf t f q e dq
i








 

Here superscript L corresponds to the Laplace transform in time with parameter p, while superscripts nF

,  correspond to the discrete Fourier transforms with respect to coordinates n, m with parameters , mF xq

, respectively.yq

The Laplace–Fourier transform of  is as follows:

, (18)
1

1( , , )
( , , )

n mLF F
x y

x y

p q q
pD p q q

 

where

, . (19)  1
1 1 1( , , ) 1 2cos 1 cosx y x yD p q q В q B q    

2
1 cos 4xB p q  

Let us list the asymptotic formulas derived in Appendix A (as ) for displacement , t   ,0n

velocity  and acceleration  of the lattice masses in the vicinity of the longitudinal wave front:,0n ,0n
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(20)

 

2 2
1 1

1 2

,0 2
1

1

( ) ln 1 , 0,1( )
2

ln 4 6 , 0,
n

t tH t n n
n nt

t n

 



 

  
       
  


 



  for  , (21)1
,0 2 2 2

1 1

( )( )
2

n
H t nt

t n


 



  0n 

  as  , (22)
 

2

,1
,0 1 3

1 1

Ai( )1( )
2 2

n
n t

t




 

 
 
  

  n  

  as  , (23),1 ,1
,0

1

2Ai( )Ai ( )
( ) n n

n t
t

 





  n  

where  is the Airy function andAi( )

. (24)
 

1
,1 1 3

1 2
n

n t
t







Asymptotics of velocity (22) and acceleration (23), calculated for , take into account both t  

long-wave perturbations ( ) and short-wave perturbations (  or ) , 0x yq q  0,x yq q   , 0x yq q 

propagating in the axial directions. Asymptotics of displacements (20) and velocities (21) take into 

account only the contribution of long-wave perturbations and do not take into account the contribution 

of short-wave perturbations.

In the case , infinitely long waves propagate in the square lattice with the same velocities in 1 22k k

all directions. Hense, in this case, the low-frequency wave process is symmetric with respect to the point of 

load application. Therefore, solutions (20) – (23) can be rewritten in terms of the radial coordinate 

:2 2r n m 

(25)

 

2 2
1 1

1 2

, 2
1

1

( ) ln 1 , 0,1( )
2

ln 4 6 , 0,
n m

t tH t r r
r rt

t r

 



 

  
       
  


 


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 for , (26)1
, 2 2 2

1 1

( )( )
2

n m
H t rt

t r


 



  0r 

 as , (27)
 

2

,1
, 1 3

1 1

Ai( )1( )
2 2

r
n m t

t




 

 
 
  

  r  

 as . (28),1 ,1
,

1

2Ai( )Ai ( )
( ) r r

n m t
t

 





  r  

4. Analytical solution of the antiplane problem for a homogeneous elastic medium

In this Section, we show that, for , solution (25), (26) of the antiplane problem for a lattice 0r 

coincides with the solution of the antiplane problem for a homogeneous elastic medium, i.e., show that 

infinitely long waves propagate in the lattice as in a homogeneous elastic medium.

Recall that l is the length of the springs. Replacing equation (17) by its differential 

approximation and passing to the limit as , we obtain the following equation describing the 0l 

antiplane motion of a homogeneous elastic medium:

. (29)
2 2

2 2 2 ( ) ( ) ( )u u u Q t x y
c x y

  
  

 


Here u is the displacement of the elastic medium in the direction orthogonal to plane x, y;  is the ( )x

Dirac function;  is a step load; c is the velocity of propagation of perturbations in the ( ) ( )Q t H t

medium. Applying to (29) the Laplace transform with respect to time and the Fourier transforms with 

respect to coordinates x, y, we obtain:

.2 2 2 2
1( , , )x yLF F

x y
x y

u p q q
p c q q


 



Here superscripts ,  correspond to the Fourier transforms with respect to coordinates x, y with xF yF

parameters , , respectively. Successively applying the inverse Fourier and Laplace transforms, we xq yq

get the exact solution to (29) for displacements and their velocities:
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, (30)   2 2 21( , ) 1 ln 1 , , 0
2

сtu r t H z z z z r x y
r

       

(31)
2 2 2

( )( , ) , 0.
2
c H ct ru r t r

c t r


 




Solution (30) coincides with the solution obtained in [13] (see formula (18.34)).

For the convenience of comparing the solution for a homogeneous elastic medium with the 

above obtained solution for a lattice, we substitute  into (30), (31). Then the comparison of (26) 1с c

and (30) shows that, for displacements, the exact solution for a homogeneous elastic medium coincides 

with the long-wave asymptotic solution for a lattice for . Similarly, for velocities of masses, exact 0r 

solution (31) for a homogeneous elastic medium coincides with the long-wave asymptotic solution (26) 

for a lattice for .0r 

5. Comparison of finite-difference and analytical solutions for equation (17)

In order to determine the limits of applicability of asymptotic solutions (25) – (28), we solve 

equation (17) also by the method of finite differences according to an explicit scheme. For this, we 

approximate the second time derivative in (17) by the central difference:

(32)
1 1

, , ,
, 2

2
( ) , 0.

k k k
n m n m n m

n m

f f f
f t k



  
 

Here ;  is the time step of the difference mesh, k is the number of the layer in time in the t k 

difference scheme.

Fig. 3, 4 and 5 show the numerical and analytical solutions. The thin curves correspond to finite-

difference solutions with time step , while the thick curves (solid and dashed) correspond to 0.07 

analytical solutions (25) – (28). As can be seen in Fig. 3, over the entire interaction interval, asymptotics 

(25) describes with high accuracy the low-frequency part of the displacement obtained numerically.
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Fig. 3. Time dependences of displacements  of masses for . Thin curves correspond to ,0n 0, 2, 4, 6,10, 20, 30n 

finite-difference solutions; thick curves correspond to analytical solution (25).

Fig. 4. Time dependences of velocities  of masses: (a) ; (b) . Thin curves correspond ,n m 30, 0n m  21n m 

to finite-difference solutions; thick solid curves correspond to analytical solution (27); thick dashed curves 

correspond to analytical solution (26).

Fig. 4 shows that analytical solution (27) for the velocities of the masses of the lattice, in which 

the contribution of short-wave perturbations is taken into account, oscillates around solution (26), in 

which the contribution of short-wave perturbations is not taken into account. As can be seen in this 

figure, asymptotics (27) on the axis of loading ( ) practically coincides with the finite-difference 0m 

solution before the arrival of short-wave perturbations, while on the diagonal ( ) asymptotics (27) n m
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is close to the numerical solution only in the vicinity of the quasi-front of the longitudinal wave ( 1n c t

). Fig. 5 shows that the same conclusion is valid for the asymptotic behavior of the acceleration of the 

masses (28).

Fig. 5. Time dependences of accelerations  of masses: (a) ; (b) . Thin curves ,n m 30, 0n m  21n m 

correspond to finite-difference solutions; thick curves correspond to analytical solution (28).

6. Antiplane problem. Propagation of shear waves 

In this Section, we study the antiplane problem for the lattice shown in Fig. 2. Let a concentrated 

step load Q orthogonal to the plane of the lattice acts at the point with coordinates , , i.e., let 0n  0m 

. Then the equations of the motion of the masses of the lattice are of the form:0 0( ) n mQ H t  

. (33) , 1, 1, , 1 , 1 ,
1 4
2n m n m n m n m n m n m Q             

Here  is the displacement of the lattice mass with coordinates n, m in the direction orthogonal to the ,n m

lattice plane. The derivation of (33) is similar to that presented in [24] and is not given here. The initial 

conditions for (33) are supposed to be zero.

In order to construct an analytical solution, we apply to (33) the Laplace transform with respect 

to time and the discrete Fourier transforms with respect to coordinates n, m. 

The Laplace–Fourier transform of  is as follows:
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, (34)
2

1( , , )
( , , )

n mLF F
x y

x y

p q q
pD p q q

 

where

 and . (35) 1
2 2 2( , , ) 1 cosx y yD p q q В B q  2

2 2 cos xB p q  

From (34), one can obtain asymptotic expressions for function  and its derivatives with ,0n

respect to time, which describe the behavior of perturbations in the vicinity of the quasi-front of the 

shear wave ( ). This can be done using transformations similar to those detailed in Appendix A 2c t n

for longitudinal wave. Omitting details, we indicate these asymptotic formulas:

(36)

 

2 2
2 2

2 2

,0 2
2

2

( ) ln 1 , 0,1( )
2

ln 4 2 , 0,
n

t tH t n n
n nt

t n

 



 

  
         


 



 for , (37)2
,0 2 2 2

2 2

( )( )
2

n
H t nt

t n


 



  0n 

 as  , (38)2
,0 2

2

1( ) ( )
2n nt J t 


  n  

 as  . (39),0 2 2( ) ( )n n nJ t J t    n  

Here  is the Bessel function of the first kind of integer order n [28].nJ

Using (A4) and (A7), we obtain from (38), (39) as :t  

 as , (40)
 

2

,2
,0 1 3

2 2

Ai( )1( )
2 2

n
n t

t




 

 
 
  

  n  

   as   , (41),2 ,2
,0

2

2Ai( )Ai ( )
( ) n n

n t
t

 





  n  

where
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. (42)
 

2
,2 1 3

2 2
n

n t
t







Just as in Section 3, we rewrite asymptotic solutions (36), (37), (40), and (41), valid for , t  

in terms of the radial coordinate :2 2r n m 

(43)

 

2 2
2 2

2 2

, 2
2

2

( ) ln 1 , 0,1( )
2

ln 4 2 , 0,
n m

t tH t r r
r rt

t r

 



 

  
         


 



   for   , (44)2
, 2 2 2

2 2

( )( )
2

n m
H t rt

t r


 



  0r 

   as   , (45)
 

2

,2
, 1 3

2 2

Ai( )1( )
2 2

r
n m t

t




 

 
 
  

  r  

   as   . (46),2 ,2
,

2

2Ai( )Ai ( )
( ) r r

n m t
t

 





  r  

The comparison of solutions for longitudinal wave (25) – (28) and for shear wave (43) – (46) 

obtained for a concentrated step antiplane load shows their qualitative agreement with each other. Under 

such a load, the following effects are observed in the lattice as  (or, which is the same, ): t   r  

(a) the amplitude of displacements is proportional to  for ; (b) the maximum amplitude of  ln t r 0r 

the velocities of masses decrease as  ( ); (c) the maximum amplitude of the accelerations of 2 3t 2 3r

masses decrease as  ( ); (d) the quasi-front zone, i.e., zone, where perturbations vary from zero to 1t 1r

maximum, expands as  ( ). Quantitatively, the solutions for shear and longitudinal waves differ 1 3t 1 3r

from each other in the velocity of the propagation of the quasi-front, in the frequency of oscillations 

behind the quasi-front, and in the amplitude of perturbations.
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7. Comparison of finite-difference and analytical solutions for equation (33)

Figures 6 – 8 show the displacements, velocities, and accelerations of the masses as functions of 

time under a concentrated step load, obtained numerically and analytically for equation (33). The thin 

curves correspond to finite-difference solutions obtained using approximation (32) with time step 

, while the thick curves (solid and dashed) correspond to analytical solutions (43) – (46).0.07 

As can be seen in Fig. 6, over the entire interaction interval, asymptotics (43) describes with 

high accuracy the low-frequency part of the displacement of masses obtained numerically. As can be 

seen in Fig. 7a and b, the asymptotics of the velocities of masses (45) coincides with the results of 

numerical calculations on axis  better than on diagonal . A similar conclusion is valid for 0m  n m

the accelerations of masses (see Fig. 8a and b). Note that, for a longitudinal wave, the opposite situation 

takes place: the asymptotics and numerical calculation coincide better on the diagonal than on the axis 

(see Fig. 4 and 5). Fig. 3 – 8 show that the numerical and asymptotic solutions for a lattice begin to 

coincide with each other at a finite distance from the loading point and at a finite time from the moment 

when the load is applied. 

Fig. 6. Time dependences of the displacements of masses  for . Thin curves ,0n 0,1,2,4,6,10,20,30n 

correspond to finite-difference solutions; thick curves correspond to analytical solution (43).
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Fig. 7. Time dependences of velocities  of the masses: (a) ; (b) . Thin curves ,n m 30, 0n m  21n m 

correspond to the finite-difference solutions, thick solid curves correspond to analytical solution (44) and thick 

dashed curves correspond to analytical solution (43).

Fig. 8. Time dependences of accelerations  of the masses: (a) ; (b) . Thin curves ,n m 30, 0n m  21n m 

correspond to the finite-difference solutions, thick solid curves correspond to analytical solution (46).

8. Propagation of resonant shear waves in the lattice

Let us return to the antiplane problem for a lattice described by equation (33) for displacement 

 of the lattice mass with coordinates n, m. In Section 8, we assume that a monochromatic load Q(t) ,n m

of frequency  is applied at the origin (0,0), i.e., we put . Since  0 0( ) sin( ) ( ) n mQ t t H t  
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, we first find an analytical solution to Eq. (33) for the load sin( ) Im exp( )t i t  

.0 0( ) exp( ) ( ) n mP t i t H t  

The Laplace–Fourier transform of  is as follows:,n m

, 
2

1( , , )
( ) ( , , )

n mLF F
x y

x y

p q q
p i D p q q







where  is defined by (35).2D

Let us find an asymptotic solution to Eq. (33) in the case of the above-specified monochromatic 

load as . As shown in [21], there are two resonance frequencies for the lattice of masses under t  

consideration:  ( ) and  ( ).22   y xq q   22 2   y xq q    

Put  and . Then22   p s i 

    as    .
1

2 1
2

( 1)( , )
2 sin 4 cos

x
m

i q nn
LF
n x

x x

i es q
s q is q











 0s 

Applying the inverse Fourier transform with respect to  to both sides of the last formula, we obtain:xq

    as    . (47)
1

, 2 1
0 2

cos( )exp( )( 1)( )
2 sin 4 cos

n
x xL

n m x

x x

q m iq nis dq
s q is q




 








 0s 

The asymptotics of functions  as  (i.e., the asymptotics of integrals (47)) and the , ( )L
n m s 0s 

asymptotics of the originals  of these functions as  are as follows:, ( )n m t t  

a) if  is even, thenm n

(48) 2
0,0 0,0 2

41 1( ) ln , ( ) ln(4 ) ,
2 2

L s t t
s s

   
 

   

, (49)2
, ,

2

( 1) ( 1)( ) ln , ( ) ln , 0
2 2

n n
L
n m n m

s n ts t m n
s n

  
  

   
        

 
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(50)
2 2

2
, , 2 2

2

( 1) ( 1)( ) ln 2 , ( ) ln , ,
2 2

n n
L
n m n m

s m n ts t m n
s m n

   
  

          
      

 

b) if  is odd, thenm n

(51)
1 1

, ,
( 1) ( 1)( ) , ( ) , max( , ).

4 4
L
n m n ms t m n

s

 

  
  

 

We obtain (48) – (51) by a method which was proposed in [33] for finding the asymptotics of 

integrals (47) in the particular case . This particular case is also published as a problem in The 0n m 

American Mathematical Monthly in [34]. It is known that the Monthly editors select the best solution 

among those sent in by the readers for every problem and publish it. In the case of problem [34], the 

best solution was published in [35]. It was obtained by a method different from that used in [33]. Note 

that the same results are obtained both in [33] and [35]. The coincidence of the results obtained in [33] 

and [35] convinces us of the correctness of using the method proposed in [33] and, hence, formulas 

(48) – (51) obtained by that method. In addition, we checked the correctness of asymptotics (48) – (51) 

by comparing them with numerical solutions to Eq. (33) for arbitrary m and n.

The problem of finding the asymptotics of integrals (47) as  was also solved in [21]. 0s 

However, there are inaccuracies in some formulas given in [21]. More precisely, our formulas (48), (51) 

coincide with those given in [21], while (49), (50) have a different form in [21], namely:

, (52)2
,

4( 1)( ) ln 2 , 0
2

n

n m
tt m n

n
 


 

      
 



. (53)2
, 2 2

16( 1)( ) ln 4 ,
2

n

n m
tt m n

m n
 



      
  



The absolute value of the difference of the asymptotic expressions for  from formulas (49), (52) is ,n n

equal to

.,
1 0.0365ln 4 2

2 2n n 
 

   
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Thus, in the case  the absolute error between asymptotic solutions (49), (52) is constant, 0m n 

while the relative error tends to zero as . A similar situation occurs in the case , namely, t   m n

the absolute value of the difference of the asymptotic expressions for  from formulas (50), (53) is ,n m

constant and is equal to

,,
1 0.073ln 4 2

2n m 
 

   

i.e., it is twice as large as in the case . Thus, we see that formulas (46), (47) are more 0m n 

accurate than formulas (51), (53).

As can be seen from (48) – (51), under a concentrated sinusoidal load with frequency  22  

the resonant wave propagates mainly along the diagonals of the lattice.

Figure 9 shows the results of finite-difference calculations of displacements versus coordinates 

n, m of the lattice under a concentrated sinusoidal load with resonant frequency  ( , ).  200t  0.07 

The calculations were performed using approximation (32) for the second time derivative. As can be 

seen in Fig. 9a, under the action of the load with frequency , short-wave perturbations 22  

propagate mainly in diagonal directions. These are the so-called “star waves” [21]. As can be seen in 

Fig. 9b, under the action of the load with frequency , resonant waves do not have a 22 2  

preferred direction of propagation. In Fig. 9a and b one can see the front of low-frequency wave 

propagating in all directions with the same velocity  determined by (16).2c
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Fig. 9. Plots of displacements  versus coordinates n, m at the moment of time : (a) , (b) ,n m 200t  22  

.22 2  

9. The plane problem. Load of the “center of dilatation” type

Let us continue the study of the plane problem described by Eq. (1), (2). We use methods 

presented in Section 3 and Appendix A for solving the antiplane problem, but now we use them in a 

more complex situation of the plane problem. Namely, let us investigate the propagation of waves in a 

2D lattice under a transient local load parallel to the plane of the lattice, see Fig. 10. In the lattice, we fix 

a square with the following vertices: , , , . Assume that the 0 0( , )n m 0 0( , 1)n m  0 0( 1, )n m 0 0( 1, 1)n m 

lattice is acted upon by external forces applied at the vertices of this square, and these forces have equal 

magnitudes and are directed from the center of symmetry of the square, see Fig. 10. 

We say that such forces create a local load of the “center of dilatation” type. Let the dependence 

of the load on time be described by the Heaviside step function. In accordance with the above 

assumptions, we obtain the following formulas for projections ,  of the vectors of external ,n mP ,n mQ

forces appeared in (1), (2):

0 0 0 0

, 0 0 0 0

( ), if ( 1 & ) or ( 1 & 1) ,
( ) ( ), if ( & ) or ( & 1),

0, otherwise;
n m

H t n n m m n n m m
P t H t n n m m n n m m

      
      


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0 0 0 0

, 0 0 0 0

( ), if ( & 1) or ( 1 & 1),
( ) ( ), if ( & ) or ( 1 & ),

0, otherwise.
n m

H t n n m m n n m m
Q t H t n n m m n n m m

      
      



Fig. 10. Load of the “center of dilatation” type. The arrows show the direction and location of the external forces.

We apply to (1), (2) the Laplace transform with respect to time and the discrete Fourier 

transforms with respect to coordinates n, m. The Laplace–Fourier transforms of  and  are as follows:u v

(54)

2
22 12

2
11 21

( )( , , ) ,
( , , )

( )( , , ) ,
( , , )

n m n m
n m

n m n m
n m

LF F LF F
LF F

x y
x y

LF F LF F
LF F

x y
x y

p a P a Qu p q q
D p q q

p a Q a Pv p q q
D p q q

 


 


where

,   , (55)( 1)( 1)( , , )
yx

n m

iqiq
LF F

x y
e eP p q q

p
 


( 1)( 1)( , , )

yx
n m

iqiq
LF F

x y
e eQ p q q

p
 



(56)
11 22 12 21

4 2
11 22 11 22 21 12 1 2

3 2cos cos cos , 3 2cos cos cos , sin sin ,

( , , ) ( ) ( , , ) ( , , ).
x x y y x y x y

x y x y x y

a q q q a q q q a a q q

D p q q p p a a a a a a D p q q D p q q

       

     

Here  is defined by (19),  is defined by (35).1D 2D

Substituting (55), (56) into (54), we obtain:
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, . (57)
1

( 1)( 1)( , , )
( , , )

yx
n m

iqiq
LF F

x y
x y

e eu p q q
pD p q q

 


1

( 1)( 1)( , , )
( , , )

yx
n m

iqiq
LF F

x y
x y

e ev p q q
pD p q q

 


Note that the denominator in formulas (57) contains the dispersion operator  of the antiplane problem 1D

for longitudinal waves defined in Section 3. The functions u and v, corresponding to  and n mLF Fu n mLF Fv

from (57), are calculated in Appendix B.

Let us define radial coordinate r and radial displacement  of the mass of the lattice with ru

coordinates n, m according to the formulas  and2 2
0 0( 1 2) ( 1 2)r n n m m     

., 0 , 0
1( , , ) [ ( 1 2) ( 1 2)]r n m n mu n m t u n n v m m
r

     

Now we rewrite (B9) – (B11) in terms of the radial coordinate and radial displacement:

, (58)
12[ /( 3 2) 1]

1,1 ,1
12 2 3

1 1

Ai( )Ai( )1 {1 }( , , ) [ ( 3 2)]
( 2) ( 1 2)

t r
r r

r
eu n m t H t r

t r

 


  

  
 

    


, (59)
2 2

1,1 ,1
2 3

1 1

Ai ( ) Ai ( )
( , , )

( 2)
r r

ru n m t
t

 
 

 
 

. (60),1 ,1 1,1 1,1
1

4( , , ) Ai( )Ai ( ) Ai( )Ai ( )r r r r ru n m t
t

   
      

as  (or, what is the same, ). Here  is given by (24).t   r   ,1r

In the case of the load of the “center of dilatation” type, it follows from (B6) that the value of the 

static radial displacement is determined by the formula: 

. (61)2
1

1( , , )
( 1 2)ru n m t
r 



10. The plane problem. Load of the “center of rotation” type

Let us investigate the propagation of waves in a 2D lattice under a transient local load parallel to 

the plane of the lattice, see Fig. 11. As in Section 9, in the lattice, we fix a square with the following 

vertices: , , , . Assume that the lattice is acted upon by 0 0( , )n m 0 0( , 1)n m  0 0( 1, )n m 0 0( 1, 1)n m 
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external forces applied at the vertices of this square, and these forces have equal magnitudes and are 

directed as shown in Fig. 11. We say that such forces create a local load of the “center of rotation” type. 

Let the dependence of the load on time be described by the Heaviside step function.

Fig. 11. Load of the “center of rotation” type. The arrows show the direction and location of the external forces.

In accordance with the above assumptions, we obtain the following formulas for projections ,  ,n mP ,n mQ

of the vectors of external forces appeared in (1), (2):

0 0 0 0

, 0 0 0 0

( ), if ( & ) or ( 1 & ) ,
( ) ( ), if ( & 1) or ( 1 & 1),

0, otherwise;
n m

H t n n m m n n m m
P t H t n n m m n n m m

    
        



0 0 0 0

, 0 0 0 0

( ), if ( 1 & ) or ( 1 & 1),
( ) ( ), if ( & ) or ( & 1),

0, otherwise.
n m

H t n n m m n n m m
Q t H t n n m m n n m m

      
      



In the case of the load of the “center of rotation” type, the Laplace–Fourier transforms of  ,n mP

and  are as follows:,n mQ

, . (62)( 1)(1 )( , , )
yx

n m

iqiq
LF F

x y
e eP p q q

p
 


( 1)(1 )( , , )

yx
n m

iqiq
LF F

x y
e eQ p q q

p
 



Substituting (56), (62) into (54), we obtain:
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,  , (63)
2

( 1)(1 )( , , )
( , , )

yx
n m

iqiq
LF F

x y
x y

e eu p q q
pD p q q

 


2

( 1)(1 )( , , )
( , , )

yx
n m

iqiq
LF F

x y
x y

e ev p q q
pD p q q

 


where  is defined by (35).2D

From (63) we can obtain asymptotic formulas for displacements ,  and their time ,1nu ,1nv

derivatives as  (or ). For this, one can transform (63) in a way, similar to those used in t   n  

Appendix B. Omitting the calculations, we have:

,,1 ,1 ,1( ) 0, ( ) 0, ( ) 0n n nu t u t u t   

,     (64)   
22[ /( 3/2) 1]

,1 1 2 2 22
2

1 {1 }( ) [ ( 3 / 2)]
( 1/ 2)

t n

n n n
ev t J t J t H t n

n



  
 

  



 
    



, (65)2 2
,1 1 2 2

2

1( ) [ ( ) ( )]n n nv t J t J t 
   

, (66),1 1 2 1 2 2 2( ) 2[ ( ) ( ) ( ) ( )]n n n n nv t J t J t J t J t      

where  is defined by (16).2

Using (A4) and (A7), we obtain from (64) – (66) the following solution in terms of the Airy 

function:

, (67)
22[ /( 3/2) 1]

1,2 ,2
,1 22 2 3

2 2

Ai( )Ai( )1 {1 }( ) [ ( 3 / 2)]
( 2) ( 1/ 2)

t n
n n

n
ev t H t n

t n

 


  

  
 

    


, (68)
2 2

1,2 ,2
,1 2 3

2 2

Ai ( ) Ai ( )
( )

( 2)
n n

nv t
t

 
 

 
 

, (69),1 ,2 ,2 1,2 1,2
2

4( ) Ai( )Ai ( ) Ai( )Ai ( )n n n n nv t
t

   
      

where  is defined by (39).,2n

Let us define tangential displacement  of the mass of the lattice with coordinates n, m u

according to the formula
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., 0 , 0
1( , , ) [ ( 1 2) ( 1 2)]n m n mu n m t v n n u m m
r      

Now we rewrite (67) – (69) in terms of the radial coordinate r and tangential displacement:

, (70)
22[ /( 3/2) 1]

1,2 ,2
22 2 3

2 2

Ai( )Ai( )1 {1 }( , , ) [ ( 3 / 2)]
( 2) ( 1/ 2)

t r
r r eu n m t H t r

t r





 


  

  
 

     

, (71)
2 2

1,2 ,2
2 3

2 2

Ai ( ) Ai ( )
( , , )

( 2)
r ru n m t

t

 
 

 


. (72),2 ,2 1,2 1,2
2

4( , , ) Ai( )Ai ( ) Ai( )Ai ( )r r r ru n m t
t    

      

In the case of the load of the “center of rotation” type, the value of the static tangential 

displacement is determined by the formula:

. (73)2
2

1( , , )
( 1/ 2)

u n m t
r 




11. Comparison of finite-difference and analytical solutions for the plane problem

Eq. (1), (2) are solved by the finite difference method according to an explicit scheme using 

approximation (32) for time derivative. Numerical calculations, the results of which are shown in 

Fig. 12 – 19, were carried out for the following values of parameters: , and . Fig. 12, 0 0 75n m  0.07 

14 – 16 show the results of numerical calculations for radial displacement  and its velocity for a ( , , )ru n m t

step load of the “center of dilatation” type. Fig. 13, 17 – 19 show the results of numerical calculations for 

tangential displacement  and its velocity for a step load of the “center of rotation” type. ( , , )u n m t

Fig. 12, 13 show the results of numerical calculations of the radial and tangential displacements 

and their velocities at the points of the lattice with coordinates ,  at the moment of 0 150m  0 150n 

time . As can be seen in Fig. 12, 13, under the load of the “center of dilatation” type, a 50t 

longitudinal low-frequency wave is predominantly formed in the lattice, propagating with velocity , 1c
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while under the load of the “center of rotation” type, a shear low-frequency wave is predominantly 

formed, propagating with velocity .2c

Fig. 12. Plots of the radial displacement (a) and its velocity (b) versus coordinates at the moment of time  50t 

under a step load of the “center of dilatation” type.

Fig. 13. Plots of the tangential displacement (a) and its velocity (b) versus coordinates at the moment of time 

 under a step load of the “center of rotation” type.50t 

Figures 14 – 19 show the plots of radial and tangential displacements, their velocities, and 

accelerations versus time at the points with coordinates ,  on the axis of the 0 31n n  0 1m m 

loading, and coordinates ,  on the diagonal. These points are located 0 22n n  0 22m m 

approximately at the same distance from the place of loading. The thin curves correspond to the finite-

difference solutions; the thick solid curves correspond to analytical solutions. In Fig. 14 – 16, the 
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vertical dashed lines correspond to the arrival time of longitudinal wave propagating with velocity . In 1c

Fig. 17 – 19, the vertical dashed lines correspond to the arrival time of shear wave propagating with 

velocity . 2c

From (62), (74) and Fig. 14, 17, it can be seen that radial and tangential displacements behind 

the front of the low-frequency waves oscillate with respect to their static values, which decrease 

proportionally to the distance from the place of loading. 

As can be seen in Fig. 12, 14 – 16, in the case of the load of the “center of dilatation” type, the 

amplitudes of high-frequency oscillations of the radial velocities and accelerations of masses, formed 

behind the front of the low-frequency wave, on the axis of loading are significantly greater than on the 

diagonal. On the contrary, it can be seen in Fig. 13, 17 – 19 that, in the case of the load of the “center of 

rotation” type, the amplitudes of high-frequency oscillations of the tangential velocities and accelerations 

of masses, formed behind the front of the low-frequency wave, on the axis of loading are significantly less 

than on the diagonal.

Fig. 14. Plots of the radial displacement versus time under a step load of the “center of dilatation” type: (a) 

, ; (b) , . Thin curves correspond to the finite-difference solutions, 0 31n n  0 1m m  0 22n n  0 22m m 

thick curves correspond to analytical solution (58), dash-dotted lines correspond to the static values of 

displacement calculated by (61).
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Fig. 15. Plots of the radial velocities of masses versus time under a step load of the “center of dilatation” type: (a) 

, ; (b) , . Thin curves correspond to the finite-difference solutions, 0 31n n  0 1m m  0 22n n  0 22m m 

thick curves correspond to analytical solution (59).

Fig. 16. Plots of the radial accelerations of masses versus time under a step load of the “center of dilatation” type: 

(a) , ; (b) , . Thin curves correspond to the finite-difference 0 31n n  0 1m m  0 22n n  0 22m m 

solutions, thick curves correspond to analytical solution (60).
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Fig. 17. Plots of the tangential displacement versus time under a step load of the “center of rotation” type: (a) 

, ; (b) , . Thin curves correspond to the finite-difference solutions, 0 31n n  0 1m m  0 22n n  0 22m m 

thick curves correspond to analytical solution (70), dash-dotted lines correspond to the static values of 

displacement calculated by (73).

Fig. 18. Plots of the tangential velocities of masses versus time under a step load of the “center of rotation” type: 

(a) , ; (b) , . Thin curves correspond to the finite-difference 0 31n n  0 1m m  0 22n n  0 22m m 

solutions, thick curves correspond to analytical solution (71).
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Fig. 19. Plots of the tangential accelerations of masses versus time under a step load of the “center of rotation” 

type: (a) , ; (b) , . Thin curves correspond to the finite-difference 0 31n n  0 1m m  0 22n n  0 22m m 

solutions, thick curves correspond to analytical solution (72).

12. Conclusion

In this article, it is shown that equations describing 2D plane motion of a square lattice, in which 

point masses are connected by elastic springs in axial and diagonal directions, can be represented in the 

form of two linearly independent wave equations, each of which contains one unknown function only. 

One of those equations describes the propagation of shear waves in the lattice, in which the masses are 

connected by springs in axial directions only. The other equation describes the propagation of 

longitudinal waves in the lattice, in which the masses are connected by springs in both axial and 

diagonal directions.

Asymptotic solutions are obtained that describe the propagation of antiplane perturbations in 2D 

square lattices of two types (where the masses are connected only in the axial directions, and where the 

masses are connected in both the axial and diagonal directions) under a concentrated step load in the 

direction orthogonal to the plane of the lattice. It is shown that, under such load, the amplitudes of the 

displacements are proportional to  as , . ln t r t   0r 
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Asymptotic solutions are obtained that describe the propagation of perturbations in 2D square 

lattices in the plane formulation under step loads of the “center of dilatation” and “center of rotation” 

types. Under such loads, displacements oscillate with respect to their static values, which decrease as 

 when . The amplitude of these oscillations decreases with increasing time (distance) as  1 r r   2 3t

( ). It is shown that under the load of the “center of dilatation” type, mainly longitudinal waves are 2 3r

formed in the lattice, and the maximum perturbations are achieved in the radial direction. Similarly, it is 

shown that under the load of the “center of rotation” type, mainly shear waves are formed in the lattice, 

and the maximum perturbations are achieved in the tangential direction.

It is shown that, in the plane and antiplane formulations of the 2D problems under consideration, 

the following effects are observed in the lattice as  ( ): the maximum amplitude of the t   r  

velocities of masses decrease as  ( ); the quasi-front zone, i.e., zone, where perturbations vary 2 3t 2 3r

from zero to maximum, expands as  ( ). 1 3t 1 3r

The method proposed in this article is useful for the analytical study of the propagation of 

transient waves in discrete-periodic media.

Analytical and numerical solutions for 2D lattices are compared with each other. It is shown that 

they agree with each other qualitatively and quantitatively for both the plane and antiplane problems. 

This agreement occurs at a finite exposure time or, which is the same, at a finite distance from the place 

of loading.

In this article, solutions are obtained for a step load. In many seismic problems, the study of 

perturbations under an impulse load is even more important. Solutions for perturbations under an 

impulse load can be obtained from the solutions presented in this article using Duhamel’s integral.
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Appendix A. Calculation of the inverse Laplace and Fourier transforms of function  n mLF F

given by formula (18)

Applying the inverse discrete Fourier transform with respect to  to , we obtain:yq n mLF F

.1
01 1

cos( )1( , )
1 (2cos 1) cos

n y yLF
m x

x y

q m dq
p q

pВ q B q




 

 

Using [28], for  we obtain:0m 

.0 2 2
1

1( , )
(2cos 1)

nLF
x

x

p q
p B q

 
 

Applying the inverse discrete Fourier transform with respect to  to  and using the formula for the xq 0
nLF

Laplace transform of the derivative, we obtain:

. (A1)
/2

0 2 2 2 2
0

2 cos(2 )( )
( 6sin )( 2sin 6)

L qn dqp
p q p q







  



Let us derive the asymptotics of perturbations for large values of time t. As is known, the 

condition  in the time domain corresponds to the condition  in the p domain. Replacing the t   0p 

integral in (A1) by an asymptotically equivalent integral for  and large values of n, we obtain:0p 

.
/2

0, 2 2 2
01 1

1 cos(2 )( )
4 sin

L
n

qn dqp
p q




 

 

Here  means that f is asymptotically equal to g. Using [27] and [28], we obtain the following f g

asymptotic formula:

 as   and . (A2) 
2

2
,0 0 1 1

01 1

1 1( ) 2 sin cos(2 ) ( )
2n nt J t q qn dq J t



  
 

  t   n  

Here  is the Bessel function of the first kind of integer order n [28].nJ
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Differentiating (A2) with respect to time, we find the asymptotic behavior of acceleration :,0n

 as   and . (A3),0 1 1( ) ( )n n nJ t J t    t   n  

Here the prime denotes the derivative with respect to the argument of the function.

Next we need the following asymptotic formula for the Bessel function:

   as    and  . (A4)1 3
Ai( )( )

( 2)nJ t
t




 t   n  

Here

3

0

1Ai( ) cos
3
yy dy 



  
  

 


is the Airy function and

.1 3( 2)
n t

t







Formula (A4) was first obtained in [29] and is known as a Nicholson-type formula (see page 142 in [30] 

or pages 190 and 249 in [31]). 

Using (A4), rewrite (A2) in the following form:

  as   and , (A5)
 

2

,1
,0 1 3

1 1

Ai( )1( )
2 2

n
n t

t




 

 
 
  

  t   n  

where

.
 

1
,1 1 3

1 2
n

n t
t







Now we use the following asymptotic formula valid in the vicinity of point :n t

   as     and   . (A6)
 2 3

Ai ( )( )
2

nJ t
t





  t   n  

Formula (A6) was derived in [32]. Using (A4) and (A6), from (A3) we obtain the following asymptotic 

formula for  in terms of the Airy function:,0n
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    as  . (A7),1 ,1
,0

1

2Ai( )Ai ( )
( ) n n

n t
t

 





  t  

Solutions (A5), (A7) obtained in terms of the Airy function are less accurate than solutions 

(A2), (A3) obtained in terms of the Bessel functions. However the advantage of solutions (A5), (A7), 

over (A2), (A3) is that they explicitly describe the degree of attenuation of long-wave perturbations 

with increasing time or distance in the vicinity of the quasi-front  of the longitudinal wave.1n c t

Now let's calculate displacement . Integrating (A2) with respect to time and using [28], we ,0n

obtain the following asymptotic formula for :0
nF

  as  .
 2

2 1 1
,0 2

0 01

2 sin cos(2 )1( )
4 sin

k
n

k

J t q qn
t dq

q

 








  t  

Since the main contribution to the integral is made by an arbitrarily small neighborhood of point , 0q 

then we replace the integral over  by the integral over , where  is a small positive (0, 2) (0, ) 

number, and we replace  by q in the integrand. Then, for the same reason, we replace the integral sin q

over  by the integral over . Using [28], we obtain:(0, ) (0, )

(A8)

 2 1 1 1
,0 2 2

0 01 1 1

2
1 1 1

2
1

2 cos(2 ) ( )1 1( ) ln ctg arcsin
4 2 2

( ) ln 1 .
2

k
n

k

J tq qn H t n nt dq
q t

H t n t t
n n

 
  

  







  
   

  
          

 

Differentiating both sides of this formula in time, yields:

. (A9)1
,0 2 2 2

1 1

( )( )
2

n
H t nt

t n


 



 

The above asymptotic expressions (A8), (A9) for ,  are valid for . Let us find ,0n ,0n 0n 

similar asymptotic expression  for . Letting  and , we obtain from (A1):,0n 0n  0p  0n 
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.
2

0,0 2 2 2 2
0 1

1( )
3 [ (4 ) s in ][1 sin 3]

L dqp
p p q q




   



Let us split this integral into two integrals:

, 
2

0,0 1 2
0

1 1( )
3 3

L p I I
p p






 

 
   

 
 

where  is a small positive number. We calculate the first integral:

.
2 2

1 1 1
1 22 2 2

0 1

4 2 4l n 1 ln
(4 )

dqI
p p pp q

    


 
      

 

Then we calculate the second integral:

.
22

2 2 2

1 sin 3 cos1 6ln ln
2s in 1 sin 3 1 sin 3 cos

qdqI
q q q








 

  
  

As a result, we get the following formula:

 as .1
0,0 2

1

4 61( ) ln
2

L p
p p


 

 0p 

Using [27], we calculate the inverse Laplace transform from both sides of the last formula. As a result, 

we obtain the asymptotics of displacement  at the point of load application:0,0

   as   . 0,0 12
1

1( ) ln 4 6
2

t t  


   t  

Here  is the Euler constant.0.577 

Appendix B. Calculation of the inverse Laplace and Fourier transforms of functions , n mLF Fu

 given by formulas (57)n mLF Fv

Apply the inverse Fourier transform with respect to variable  to functions ,  (57), yq n mLF Fu n mLF Fv

and put . This yields:1m 
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,1 2 2 2 2 2 2

2( 1)( , )
6sin ( / 2) 6sin ( / 2) 6 2sin ( / 2)

x
n

iq
LF

x

x x x

eu p q
p p q p q p q




     
 

.1 2 2 2 2 2 2

2( 1)( , )
6 2sin ( / 2) 6sin ( / 2) 6 2sin ( / 2)

x
n

iq
LF

x

x x x

ev p q
p p q p q p q




      
 

We apply the inverse Fourier transform with respect to variable  to the last two formulas. This yields:xq

,
/2

,1 2 2 2 2 2 20

4 [cos 2( 1) cos 2 ]( )
6sin 6sin 6 2sin

L
n

n q nqu p dq
p p q p q p q




 


     
 



.
/2

,1 2 2 2 2 2 20

4 [cos 2( 1) cos 2 ]( )
6 2sin 6sin 6 2sin

L
n

n q nqv p dq
p p q p q p q




 


      
 



Next, we proceed in the same way as we did in solving the antiplane problem (see Appendix A). 

For  and large values of n, the following asymptotic formulas hold true. 0p 

, (B1)
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where  is defined by (16). As can be seen from (B1), the asymptotics of displacement  is equal to 1 ,1
L
nv

zero.

Now let us investigate the asymptotics of displacement  and its time derivatives. We ,1nu

calculate the inverse Laplace transform of velocity of the mass :,1
L
nu

. (B2) 
/2

2 2
,1 0 1 1 1 1

01 1

2 1( ) [cos 2( 1) cos 2 ] 2 sin ( ) ( )n n nu t n q nq J t q dq J t J t


  
        

Differentiating (B2) with respect to time, we find the asymptotics of the acceleration of the mass:

. (B3) ,1 1 1 1 1 1 1( ) 2 ( ) ( ) ( ) ( )n n n n nu t J t J t J t J t      
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Let us now calculate the asymptotic behavior of displacement . Using [28], we rewrite (B2) ,1nu

in another form:

. (B4)   
/2

,1 2( 1) 1 2 1
01

2( ) [ 2 sin 2 sin ]n n nu t J t q J t q dq


 
   

Integrating (B4) over time, we obtain the asymptotics for displacement:

. (B5)
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Since the main contribution to the integral is made by an arbitrarily small neighborhood of point , 0q 

then we replace the integral over  by the integral over , where  is a small positive (0, 2) (0, ) 

number, and we replace  by q in the integrand. Then, for the same reason, we replace the integral sin q

over  by the integral over . As a result, we obtain the contribution of the singular point (0, ) (0, )

 to the asymptotics of :0q  ,1nu

. (B6)
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Now let us study the asymptotics of  as a whole. For this, in (B5), we represent the Bessel ,1nu

function in the form of a series using [28] and integrate that series term by term. This yields 
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and find an approximate formula for this function. From (B5) and (B7) we obtain:
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The thin curve in Fig. B1a shows a plot of function  versus time t for . To do this, the 1( , )F n t 11n 

integral is calculated numerically with precision  using MATLAB. The plot of the function 710

 in Fig. B1a resembles the plot of the well-known function . Choosing the 1( , )F n t ( )[1 ] ( )b t ae H t a  

parameters a, b so that the last function is as close as possible to , we get the following 1( , )F n t

function:

.
12[ /( 3 2) 1]

1 1 12
1

{1 }( , ) [ ( 3 2)]
( 1 2)

t neF n t H t n
n



 
 

  
  



The thick curve in Fig. B1a shows a plot of function  versus time t for . As can 1 1( , )F n t 11n 

be seen in Fig. B1a, the plots of functions  and  are close to each other both in the 1( , )F n t 1 1( , )F n t

vicinity of the front of the longitudinal wave, i.e. for , and for . From this we 1( 1 2) /t n   t  

conclude that  can be considered as a reasonable approximation for . Replacing 1 1( , )F n t 1( , )F n t

 by  in (B7), we obtain the following approximate formula for displacement:1( , )F n t 1 1( , )F n t

. (B8)   
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    



Fig. B1b shows the plots of displacement  for , calculated by formulas (B5) (thin ,1nu 11n 

curve) and (B8) (thick curve). We see that the thick and thin curves practically coincide. In Fig. B1a and 

b, the horizontal dashed lines correspond to the static value of displacement calculated by (B6). The 

vertical dashed lines correspond to the arrival time of longitudinal wave propagating with velocity , 1c

i.e., to . Fig. B1b shows that solution (B8), which describes a longitudinal wave 1( 1 2) /t n c 

propagating with velocity , oscillates around the static value of displacement determined by (B6).1c
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Fig. B1. (а) Plots of functions  (thin curve) and  (thick curve) versus time for . (b) Plots 1( , )F n t 1 1( , )F n t 11n 

of displacement  versus time calculated by (B5) (thin curve) and by (B8) (thick curve) for . ,1nu 11n 

Using (A4) and (A7), we obtain from (B2), (B3), (B8) as  (or, which is the same, t   n  

):
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