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This paper describes a methodology for evaluation of influence of microscopic uncertainty
in material properties and geometry of a microstructure on a homogenized macroscopic
elastic property of an inhomogeneous material. For the analysis of the stochastic character-
istics of a homogenized elastic property, the first-order perturbation method is used. In
order to analyze the influence of microscopic geometrical uncertainty, the perturbation-
based equivalent inclusion method is formulated. In this paper, an analytical form of the
perturbation term using the equivalent inclusion method is provided.

As a numerical example, macroscopic stochastic characteristics such as an expected
value or variance of the homogenized elastic tensor of a unidirectional fiber reinforced
plastic, which is caused by microscopic uncertainty in material properties or geometry of
a microstructure, are estimated with computing the first order perturbation term of the
homogenized elastic tensor. Compared the results of the proposed method with the results
of the Monte-Carlo simulation, validity, effectiveness and a limitation of the perturbation-
based homogenization method is investigated.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Inhomogeneous materials such as composite materials have a complex microstructure, and its microstructure have
uncertainty in a material property or geometry. This uncertainty will cause a stochastic variation of a homogenized material
property, it should be estimated in order to evaluate reliability of a composite structure.

From this point of view, several results of stochastic homogenization analysis have been reported. Kaminski reported the
first-order perturbation-based homogenization analysis of two-phase composites (Kami’nski and Kleiber, 2000), the pertur-
bation-based homogenization analysis for thermal conductivity of unidirectional fiber reinforced composites (Kami’nski,
2001). Koishi also reported a result of the first-order perturbation-based homogenization analysis (Koishi et al., 1996). Sakata
reported some results of stochastic homogenization analysis using the Monte-Carlo simulation (Sakata et al., 2008a), the
three-dimensional result of perturbation analysis for the homogenized elastic tensor and the equivalent elastic properties
(Sakata et al., 2008b) or the second-order perturbation-based homogenization method (Sakata et al., 2008c). Kaminski also
reported a higher order perturbation-based analysis (Kaminski, 2007). Ostoja (Ostoja-Starzewski (2002)) or Xu (Xu and
Brady, 2005) reported other approaches for stochastic homogenization analysis.
. All rights reserved.
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The perturbation based homogenization method will give a good estimation of a stochastic characteristics such as the
expectation or variance of the homogenized material property with a relatively small random variation of material proper-
ties of component materials, however, its application will be limited to estimate a stochastic characteristic of a homogenized
elastic property caused by uncertainty in a material property of a component material. The approximation-based stochastic
homogenization approach has been proposed (Sakata et al., 2008d), however, the perturbation-based approach will be still
effective for the stochastic analysis with considering many random variables.

In using the finite element method based on the homogenization theory, a geometrical property such as shape or volume
fraction of inclusions is not expressed explicitly. Therefore, in perturbation analysis, an analytical form of a perturbation
term of a stiffness matrix cannot be obtained. This problem causes difficulty in analyzing a stochastic homogenization prob-
lem considering a microscopic geometrical uncertainty.

From these backgrounds, a perturbation-based stochastic homogenization analysis for a unidirectional fiber reinforced
composite using the equivalent inclusion method is attempted in this paper. In the equivalent inclusion method, a geomet-
rical parameter such as shape or volume fraction of inclusions is expressed analytically. Therefore, the perturbation-based
stochastic analysis procedure can be applied to a problem considering both microscopic uncertainties in geometry and mate-
rial properties of a microstructure.

In this paper, at first, outline of the equivalent inclusion method is introduced. Next, the perturbation-based stochastic
homogenization analysis method using the equivalent inclusion method is proposed. Finally, several numerical results are
illustrated for discussion on validity, accuracy and effectiveness of the proposed method.
2. Equivalent inclusion method (EI)

The equivalent inclusion method (EI) is one of the effective methods for estimating a homogenized elastic property of
composite materials. For a unidirectional fiber reinforced composite material, an equivalent inclusion method formula based
on Mori–Tanaka theory (Mori and Tanaka, 1972; Tohgo, 2004) can be used for the estimation. The homogenized elastic ten-
sor is computed using the following form:
EEI ¼ EmfEm � ð1� V f ÞðEm � EfÞSg�1 � ½Em � ðEm � Ef ÞfS � V fðS � IÞg� ¼ EmX�1Y ð1Þ
X ¼ Em � ð1� V f ÞðEm � EfÞS ð2Þ
Y ¼ Em � ðEm � EfÞfS � V f ðS � IÞg ð3Þ
where Em is the elastic tensor of a base material, Vf is the volume fraction of the inclusions, Ef is the elastic tensor of
the inclusions, S is the Eshelby tensor and I is a unit tensor. For an isotropic material, the elastic tensor can be ex-
pressed as
E ¼ Eð1� mÞ
ð1þ mÞð1� 2mÞ

1 m
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The Eshelby tensor depends on the shape of inclusion. Each component of the Eshelby tensor in case of continuous long uni-
directional fiber can be expressed as
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and other components are zero. ai is a size of an inclusion as shown in Fig. 1. In this paper, a3� a1,a2 is assumed.

3. Perturbation analysis for equivalent inclusion method

In order to estimate stochastic characteristics such as expectation or variance of a homogenized elastic property of a com-
posite material, the perturbation method is used in this paper. The perturbation based approach for stochastic homogeniza-
tion analysis has been reported (Kami’nski, 2004), and the basic concept is applied to the equivalent inclusion method-based
homogenization analysis in this paper. Based on the first-order approximation second moment method (FOSM), the expec-
tation and variance of the equivalent elastic tensor can be computed as
E½EEI� � ¼ ½EEI0�
cov½EEI� � ¼

P
i

P
j
½EEI1�i½E

EI1�jcov½ai;aj�

9=
; ð4Þ
where E½EEI� � ¼ ½EEI0� is the expectation of the homogenized elastic tensor, cov½EEI� � is the covariance of the homogenized elas-
tic tensor and cov[ai,aj] is the covariance of two random variables. ½EEI0� is the 0th order perturbation term, ½EEI1�i is the first
order perturbation term of the homogenized elastic tensor with respect to the random variable ai.

Also, the CoV (coefficient of variance) can be estimated using the following equation.
CoV½EEI� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j Var½EEI� �

q
j

E½EEI� �
ð5Þ
In this case, stochastic variations in material properties, volume fraction and cross-sectional shape of fiber is taken into ac-
count. Detailed formulations for computing the perturbation term of the equivalent elastic tensor against the each stochastic
variations are introduced in the following sections.

3.1. Stochastic variation in material properties

In case of considering stochastic variation in material properties, for example, variation in Young’s modulus of fiber, an
observed value of the Young’s modulus can be expressed as
E�f ¼ E0
f ð1þ aÞ ð6Þ
where superscript * indicates an observed value, superscript 0 indicates an expected value and a is a random variable. In this
case, the first order perturbation term for Ef (Young’s modulus of inclusion) variation can be expressed as
EEI1jEf
¼ Em

@ðX�1YÞ
oa

¼ Em½�X�1ð1� V fÞEf SX�1Y þ X�1EffS � V f ðS � IÞg� ð7Þ
Also, the first order perturbation terms for Em (Young’s modulus of matrix), mf(Poisson’s ratio of inclusion) and vm (Poisson’s
ratio of matrix) variation can be formulated as
x

y

z

a1
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Fig. 1. Schematic view of an inclusion.
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3.2. Stochastic variation in geometry of fiber

In a composite material, geometry of a reinforcement material has also uncertainty. For instance, volume fraction, cross-
sectional shape or shape along longitudinal axis may have a random variation. From this point of view, perturbation terms
for geometrical random variation are also derived. In this paper, the perturbation terms for a random variation in volume
fraction and cross-sectional fiber of fiber are introduced.
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For a random variation in volume fraction of fiber, we assume that an observed value of the volume fraction can be ob-
tained as
Table 1
Expecte

Young’s
Poisson
V�f ¼ V0
f ð1þ aÞ ð13Þ
Then, the first order perturbation term of the equivalent elastic tensor can be formulated as
EH1jV f
¼ Em
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Also, if it is assumed that the cross-sectional shape of fiber is ellipsoidal, we can consider that an observed value of the size of
cross section, which is illustrated in Fig. 1, is obtained as
a�i ¼ a0
i ð1þ aÞ ð15Þ
For instance, the first-order perturbation term in case of a1 variation can be expressed as
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4. Numerical results

4.1. Uncertainty in material properties

In this paper, stochastic characteristics such as expectation, variance and coefficient of variance (CoV) of the equivalent
elastic tensor of a unidirectional fiber reinforced plastic are estimated using Eqs. (4) and (5).

The properties of fiber and matrix are employed correspond to E-glass and Epoxy resin. Volume fraction of fiber (Vf) is
0.25 in this example. Elastic properties of the component materials are listed in Table 1.

For this material, uncertainty in Young’s modulus and Poisson’s ratio of fiber and resin are taken into account. In this case,
as stochastic characteristics of the component materials, E[a] = 0 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½a�

p
¼ 0:055 are assumed.

Figs. 2–5 shows the estimated results of expected value for each equivalent elastic tensor considering Fig. 2 shows the
result for Ef variation, Fig. 3 shows the result of Em variation, Fig. 4 shows the result of mf variation and Fig. 5 shows the result
of mm variation.
d values of elastic properties for fiber and matrix

Fiber (E-glass) Matrix (Epoxy)

modulus (GPa) 73.0 4.5
’s ratio 0.2156 0.39
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Fig. 2. Estimated expectation of equivalent elastic tensor for Ef variation.
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Fig. 3. Estimated expectation of equivalent elastic tensor for Em variation.
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Fig. 4. Estimated expectation of equivalent elastic tensor for mf variation.
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For comparison, the estimated results obtained with using the Monte-Carlo simulation are also illustrated. MC in the fig-
ures and tables shows the results of the Monte-Carlo simulation. In this study, 10,000 trials are carried out for estimating the
stochastic characteristics. The expected value and variances are computed from the result of each trial as
EMC½EEI� � ¼
R1
�1 EEIðaÞf ðaÞda ¼

P
EEIðaÞ

VarMC½EEI� � ¼
R1
�1ðE

EIðaÞ � EMC½EEI� �Þ2f ðaÞda ¼
P
ðEEIðaÞ � EMC½EEI�Þ2

)
ð17Þ
where the subscript ‘‘MC” means the result of the Monte-Carlo simulation. In order to generate a set of normal distributed
random number, the following Box–Mullar randomization formula (Press et al., 1993) is used.
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Fig. 5. Estimated expectation of equivalent elastic tensor for mm variation.

Table 2
Relative

Ef

Em

mf

mm
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a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2r2 log U1

p
� sin 2pU2 ð18Þ
where U1 and U2 are observed values of a uniform random number, r2 is variance of a.
‘‘MC” in the figure also indicates the result of the Monte-Carlo simulation and ‘‘Perturbation” indicates the result of the

proposed perturbation-based analysis.
From Figs. 2–5, it can be recognized that each expectation of the homogenized elastic tensor can be well estimated with

using the proposed method. For more detailed discussion, the relative estimation errors, which can be computed using Eq.
(19), are listed in Table 2. Eij in the figures and table shows the elements of the homogenized elastic tensor.
RE ¼
j EMC½EEI� � � E½EEI� � j

EMC½EEI� �
� 100ð%Þ ð19Þ
From Table 2, it can be found that the relative estimation errors are less than 0.1% in case of Ef, Em and mf variation. For mm

variation, the estimation error is larger than the others, but it is less than about 3%. From these results, it can be considered
that the proposed method gives accurate estimation of the expectation in these cases.

Using the proposed method and the Monte-Carlo simulation, CoV of each equivalent elastic tensor is also estimated. Figs.
6–9 show the estimated results using those methods, and Table 3 shows the relative estimation error between the results of
the proposed method and the Monte-Carlo simulation.
error between expectations estimated by the proposed method and MC in case of uncertainty in material properties

E11 E12 E13 E22 E23 E33 E44 E55 E66

0.018 0.021 0.018 0.018 0.018 0.065 0.037 0.037 0.031
0.097 0.099 0.097 0.097 0.097 0.028 0.104 0.104 0.102
0.001 0.001 0.015 0.001 0.015 0.003 0.002 0.002 0.002
1.983 3.224 3.094 1.983 3.094 0.701 0.037 0.037 0.059
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Fig. 6. Estimated CoV of equivalent elastic tensor for Ef variation.
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Fig. 7. Estimated CoV of equivalent elastic tensor for Em variation.
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Fig. 8. Estimated CoV of equivalent elastic tensor for mf variation.
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Fig. 9. Estimated CoV of equivalent elastic tensor for mm variation.

Table 3
Relative estimation error between CoV by the proposed method and MC in case of material properties

E11 E12 E13 E22 E23 E33 E44 E55 E66

Ef 0.957 0.949 0.952 0.957 0.952 0.028 0.758 0.758 0.809
Em 0.007 0.012 0.008 0.007 0.008 0.068 0.042 0.042 0.030
mf 0.119 0.120 0.094 0.119 0.094 0.116 0.099 0.099 0.098
mm 11.341 9.799 9.816 11.341 9.816 12.406 0.030 0.030 0.637
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From these figures and Table 3, it can be also considered that CoV of each homogenized elastic constant are well esti-
mated by the proposed method. Especially, the relative estimation errors are less than 1% in case of Ef, Em and mf variation,
those of CoV can be accurately estimated. On the other hand, the estimation error for mm variation is larger than the others,
and more than 10% of the estimation error is sometimes included. Since it is confirmed from Fig. 5 and Table 2 that the
expectation can be well estimated in case of mm variation, it can be considered that this error is caused by variance estimation
for mm variation with using the first-order perturbation-based approach. This result shows that the proposed method would
better to avoid to be used for estimation of CoV in case of large mm variation.
4.2. Uncertainty in geometrical parameters

Next, influence of uncertainty in microscopic geometrical parameter on an equivalent elastic tensor is investigated
with using the proposed method. In this case, the volume fraction of fiber Vf or size of cross-sectional shape of fiber,
which is illustrated in Fig. 1, is considered as a random variable. It is assumed that Vf and the size a1 are random vari-
ables distributed according to the normal distribution. Similar to the previous example, E[a] = 0 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½a�

p
¼ 0:055 are

assumed.
Figs. 10 and 11 show the estimated result of expectation and CoV of each equivalent elastic tensor using the proposed

method and the Monte-Carlo simulation for Vf variation. From these figures, it can be recognized that the proposed method
gives good estimations in case of Vf. Figs. 12 and 13 show the estimated result of expectation and CoV of each equivalent
elastic tensor for a1 variation. These figures show that the proposed method also give good estimations of those stochastic
characteristic in case of a1 variation.

For more detailed evaluation, the relative errors in estimating CoV between the result of the proposed method and the
Monte-Carlo simulation are listed in Table 4. From this result, it can be recognized that the maximum estimation error is
less than 1% in case of these geometrical variation, and it is considered that the proposed method will be usable for estima-
tion of the stochastic characteristics of the equivalent elastic tensor in case of microscopic uncertainty in geometry of a
microstructure such as the volume fraction or size of fiber.
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Fig. 10. Estimated expectation of equivalent elastic tensor for Vf variation.
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Fig. 11. Estimated CoV of equivalent elastic tensor for Vf variation.
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Fig. 12. Estimated expectation of equivalent elastic tensor for a1 variation.
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Fig. 13. Estimated CoV of equivalent elastic tensor for a1 variation.

Table 4
Relative estimation error between CoV by the proposed method and MC in case of variation in microscopic geometry

E11 E12 E13 E22 E23 E33 E44 E55 E66

Vf 0.076 0.085 0.082 0.076 0.082 0.046 0.072 0.072 0.072
a1 0.092 0.000 0.031 1.000 0.922 0.000 0.802 0.045 0.000
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4.3. Uncertainty in material property and geometry

As a more complex problem, the case that all material properties, volume fraction and shape of fiber have uncertainty is
taken into account. It is assumed that the six random variables change independent to each other, and those distribute
according to the normal distribution. The expectation and variance of the random variable a is same as the previous
examples.

The stochastic characteristics such as expectation and CoV of each equivalent elastic constant are estimated using the
proposed method and the Monte-Carlo simulation. For the Monte-Carlo simulation, 10,000 samples are used for trial.

The estimated results using the proposed method and the Monte-Carlo simulation are illustrated in Figs. 14 and 15.
Fig. 14 shows the estimated results of expectations of the equivalent elastic tensor, and Fig. 15 shows the estimated results
of CoV. From these figures, it can be considered that both of the stochastic characteristics can be well estimated using the
proposed method.

For more detailed evaluation, the relative estimation errors in expectation and CoV are listed in Table 5. From this table, it
can be found that the maximum error in estimated expectation of the equivalent elastic tensor is about 3%, and the maxi-
mum error in the CoV estimation is about 9%.

The estimation error in the expectation is same degree of the result of mm variation, and the estimation error in the CoV is
also same degree or slightly less than the result of mm variation. It can be considered from this result that the mm variation is
dominant to accuracy of the estimation.

As a numerical investigation, the stochastic homogenization analysis is performed under the following condition.
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Fig. 14. Estimated expected value of equivalent elastic tensor for the six random variables.
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Fig. 15. Estimated CoV of equivalent elastic tensor for the six random variables.

Table 5
Relative estimation error between CoV by the proposed method and MC in case of the six random variables

E11 E12 E13 E22 E23 E33 E44 E55 E66

Exp 2.048 3.334 3.198 2.056 3.201 0.722 0.029 0.002 0.021
CoV 9.099 8.461 8.450 9.142 8.456 4.295 1.285 0.942 1.178
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E½a� ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½a�

p
¼

0:055 : for Ef ; Em; mf ;V f ; a1

0:0055 : for mm

� ð20Þ
Namely, it is assumed that the variance of mm is less than the other random variables. Fig. 16 shows the result of CoV esti-
mation, and Table 6 shows the relative estimation error between the proposed method and the Monte-Carlo simulation.

From this figure and table, it can be recognized that the maximum estimation error is less than 0.1% in case of the expec-
tation estimation, and that of the CoV estimation is less than about 1%. Compared this result with the Table 5, the estimation
in case of less mm can be accurately performed. Therefore, it can be concluded that the proposed method will be useful for
estimation of the stochastic characteristics of the equivalent elastic tensor for microscopic uncertainty in geometry and
material properties of a microstructure. In case that the stochastic variation in mm is observed, however, the proposed meth-
od should be used carefully for the stochastic homogenization analysis.

4.4. Accuracy of the perturbation analysis for large stochastic variation

In order to evaluate applicability of the proposed method, influence of degree of a stochastic variation on accuracy of esti-
mation is investigated. In this case, the estimated results using the proposed method and the MC simulation in case of
0 < CoV[a] 6 0.067 are investigated. The relative estimation errors between the result of the proposed method and the
Monte-Carlo simulation are illustrated in Fig. 17.
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Fig. 16. Estimated CoV equivalent elastic tensor for the six random variables in case of less variance of mm.

Table 6
Relative estimation error between CoV by the proposed method and MC in case of the six random variables in case of less variance of mm

E11 E12 E13 E22 E23 E33 E44 E55 E66

Exp 0.022 0.002 0.003 0.004 0.024 0.024 0.003 0.094 0.080
CoV 0.879 0.809 0.870 1.058 0.924 0.040 1.049 0.555 0.885

0.000 0.017 0.033 0.050 0.067
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Fig. 17. Relationship between the estimation error and degree of CoV of a.
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From Fig. 17, it can be recognized that the error in the estimation of CoV for E44, E55 E66 does not increase when CoV[a]
becomes large. This fact shows that the proposed method is effective for estimation of CoV for E44, E55, E66 even in case of a
large stochastic variation of component materials. On the other hand, the estimation error increases nonlinearly, and is rap-
idly increases when CoV[a] becomes large. It should be noticed that the estimated result of CoV using the proposed method
may include over 10% of estimation error when CoV[a] is large, and this result shows a limitation on application of the pro-
posed method to the stochastic homogenization analysis considering microscopic uncertainty in material properties and
geometry of a microstructure. From Fig. 17, it may be recommended that the proposed method is used for CoV estimation
of E11, E12, E13, E22, E23, E33 when CoV[a] is less than 0.05 in this case. From these results, it can be concluded that the
lower order perturbation technique as the proposed first-order perturbation based method should be applied to a problem
with a very small coefficient of variation for a random input in case that a nonlinear relationship between a response and a
random variable is observed.

5. Conclusion

In this paper, the perturbation analysis is applied to the equivalent inclusion method, which is widely used for estimating
the equivalent elastic property of composite materials. The perturbation-based equivalent inclusion method is applied to a
stochastic homogenization problem of a unidirectional fiber reinforced composite material.

At first, the analytical form of the first order perturbation term of the equivalent elastic tensor with respect to several
kinds of random variables such as material properties of component materials, volume fraction and size of an inclusion.
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Using the perturbation terms, the stochastic characteristics such as the expectation, variance and coefficient of variance can
be estimated based on the first order approximation.

In order to investigate validity and effectiveness of the proposed method, the stochastic homogenization analysis for sev-
eral kinds of microscopic stochastic variations are performed. Compared to the result of the Monte-Carlo simulation, validity
and accuracy of the proposed method are confirmed.

For more discussion, the stochastic homogenization analysis considering six random variables such as Young’s modulus
and Poisson’s ratio of fiber and matrix, volume fraction and size of the inclusion is performed. From the numerical result, it
can be confirmed that the proposed method is usable for estimating the stochastic characteristics in this case, but it is found
that the mm variation has a large influence on accuracy of the estimation.

Also the proposed method is applied to the stochastic homogenization problem considering several degrees of stochastic
variation. From the numerical result, it can be recognized that the relative estimation error is less than 10% in case that CoV
of a random variable is less than 0.05 even if all of the microscopic uncertainty in geometry and material properties of a
microstructure under the given condition.

From the numerical results, it can be concluded that the proposed method will be useful for estimation of the stochastic
characteristics of the equivalent elastic tensor for microscopic uncertainty in geometry and material properties of a micro-
structure with taking the normal distributed random variables into account, however, it should be used carefully for stochas-
tic homogenization analysis especially when a large stochastic variation in mm is observed. Also, it should be noticed that the
proposed first order perturbation based technique should be applied to a problem with a very small coefficient of variation
for a random input in case that a nonlinear response is observed,

In addition, it should be mentioned that this paper focuses on the case that a material property of a composite can be
regarded as a ‘‘homogenized macroscopic property” of an inhomogeneous media and a uniform random variability can be
observed over a certain region including a very large number of inclusions. In this case, namely, the scale of the inclusion
is assumed to be sufficiently (or infinitely) small. If we consider a case of a more general problem such as a non-uniform
random variability or finite size of inclusions, an influence of the length scale (Ostoja-Starzewski (2008)) should be taken
into account. This problem may not able to be solved using the proposed method, and a new approach will be studied as
a next step of this study.
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