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The general failure of structures is often preceded by the growth and coalescence of intermediate cracks.
In this work, a model with process zone is used to study the deformed state of an infinite isotropic body
with three collinear cracks. A numerical algorithm is presented to obtain crack opening displacements
effectively. The problem is analyzed for all possible cases of mutual location of the cracks and different
levels of loading. The numerical solution shows negligible influence of two cracks coalescence process
on the opening displacement of the third crack. An example of the results implementation to calculate
crack initiation duration in a problem for viscoelastic body is given.
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1. Introduction

The modern works on fracture mechanics of viscoelastic bodies
are mostly devoted to the problems for single isolated crack. So
the failure state is reached by the studied body in one of the follow-
ing cases: when the loading reaches some critical value (Irwin,
1948) or as a result of subcritical crack growth up to its critical
length (Schapery, 1986; Knauss, 1993; Kaminsky, 1994; Kaminsky,
1998). However, there is another mechanism that can lead to a
failure of the solid body. It is multisite fracture when the failure is
a result of coalescence of several subcritical crack into a single big
crack (Gutzul and Kaminsky, 1989; Kaminsky, 1990). The growth
of this big crack is just a final stage of the fracture process. This
mechanism is known to happen in some aircraft structures.

However, it should be noted that the theoretical investigation of
the last mechanism is not complete, so there is a need in solutions
of the several problems for elastic, elastoplastic and viscoelastic
bodies weakened by the systems of cracks taking into account
the modern models of fracture mechanics. At the time when this
paper was written there are only a few solutions for the problems
of this class are given (Vitvitskiy, 1965; Parton and Morozov, 1989;
Collins and Cartwright, 1996; Hao, 2001; Nishimura, 2002; Zhou
and Wang, 2006; Xu and Wu, 2012; Chang and Kotousov, 2012;
Chang and Kotousov, 2012).

Numerous experimental studies, see (Williams, 1984) and sur-
veys (Kaminsky, 2004; Kaminsky and Nizhnik, 1995) show that
there are partial fracture (process) zones in the front of crack
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which move as the crack grows. These zones appear due to the
high level of the stress near the crack front. The material in the pro-
cess zones converts to a semi-fractured state (e.g. the state in craze
zones in polymers).

The pattern of the fracture process zone, its structure and size
are the crucial factors of adequate description of the fracture pro-
cess. As it is shown in the modern studies (Parton and Morozov,
1989; Kaminsky and Selivanov, 2001; Kaminsky and Chernoivan,
2004), the most effective techniques to describe crack growth in
viscoelastic and elasto-plastic bodies make use models that taking
into account process zones. These models are also referred as two-
phase models as they are taking into account two phases of frac-
ture instead of one phase in Griffith-Irwin model where solid
material failure during the fracture occurs rapidly (without a tran-
sitional state). The model of Leonov-Panasyuk that is used to study
elastic and viscoelastic bodies, Dugdales model for elasto-plastic
bodies and some other models (Knauss, 1993; Schapery, 1986)
are two-phase models. The choice of the model to describe the
fracture of materials should be made taking into account physical
and mechanical properties of the material.

As in many cases the process zone is a thin wedge-shaped
defect align the crack it can be modeled using Leonov-Panasyuk-
Dugdale model as a split with self-balanced stresses ¢ applied
along of this split (o is a tensile strength of the material for the
Leonov-Panasyuk model (Panasyuk, 1969) and a yield stress for
the Dugdale model (Dugdale, 1960)).

Modern fracture mechanics uses energy, stress and deformation
criteria to describe the process of fracture for materials of different
types. The deformation criteria can be effective for the elasto-plas-
tic materials with considerable plastic zones near the crack front.
The stress criterion based on SIF can give an inappropriate
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precision when used for such materials. Furthermore, deformation
criterion, namely the COD-criterion, is widely used to study the
subcritical growth of the cracks in viscoelastic materials. This
criterion allows to obtain kinetic equations of slow crack growth
in viscoelastic media (see surveys (Schapery, 1986; Kaminsky,
2004)).

To use the deformation criteria in mode I problems it is neces-
sary to determine opening displacement §,(I,p) = 2v(l,p) at the
crack tip (where p is the loading intensity and v is a displacement
component which is normal to the crack). It is worth noting that
the corresponding calculations have not been given in the above
cited works. Then the fracture criterion is as follows (Wells,
1961; Panasyuk, 1969)

(51(17p*) = O (])

where p, is a critical intensity of the external loading that makes the
crack grow; Jy is the COD. Using Eq. (1) one can determine the crit-
ical loading p, by the known COD.

For a crack in viscoelatic body under the subcritical level of
external loading, the COD criterion can be written as (Savin and
Kaminsky, 1967)

5l(t7 l*p) = Oy (2)

Eq. (2) can be solved to determine the duration of mode I crack ini-
tiation for a known value of p.

Thus, to investigate long-term fracture of viscoelastic bodies it
is needed to determine the displacement of the crack faces using
the model which takes into account the process zone at the crack
front. The aim of this work is to establish the relations to obtain
the crack opening in the system of collinear cracks.

This work deals with a stressed state of an infinite plate with a
system of three collinear cracks. To determine the length of process
zones and the opening displacement a solution for the plane with
rectilinear slits given in Muskhelishvili (1953) is used. An approach
that is used in this work is based on a polynomial representation of
the general solution of one-dimensional problem of linear conjunc-
tion on the segments where the loading is applied. This represen-
tation allows us to determine principal values of the integrals in
the solution of the linear conjunction problem. The obtained equa-
tions were used to solve a problem of initial period of crack devel-
opment in a viscoelastic plate using Leonov-Panasyuk-Dugdale
model and COD criterion. A comparison of the obtained results
with the results which are known from literature is given (see
Appendix A), as well as a discussion on possibility to expand the
solution on the determination of service life for viscoelastic bodies
with crack sets.

2. Problem statement

Consider a system of three collinear cracks of arbitrary length in
an infinite isotropic elastic body. The body is assumed to be under
uniform normal to the crack line tension p applied at infinity. To
formulate boundary conditions of the problem Cartesian coordi-
nate system with Ox axis along the crack line is used.

According to Leonov-Panasyuk-Dugdale model a zone of non-
linear behavior at the crack tip can be substituted by a slit with
compressing stresses of intensity ¢ applied on its faces. These
stresses are shown as a uniformly distributed loading along the
corresponding segments in Fig. 1. Thus the problem of elasticity
theory for the upper half-plane has the following boundary condi-
tions for stresses along Ox:

0, tel

Ty(t) =0, tel; ay(t):{(7 fer

where

3
UL/(7 Ly = (¢, dy), problem a
k=1

L= L] ULz, L] = (C],dz),Lz = (C3,dg,)7 problem b,
LiuL,, Ly =(c1,d1),L, = (cz,d3), problem c
L, Ly = (c1,d3), problem d

3
L'=J(@.b), L"=L-L.

k=1

The positions of ¢, and d; should be determined from the con-
dition of stress finiteness at these points. If the cracks (segments
of L' on Fig. 1) are close enough to each other adjacent zones of
non-linear behavior (process zones) can form a continuous united
zone. A condition of forming this united zone is the condition of the
problem a being unsolvable. All possible cases of the mutual cracks
positions are shown on Fig. 1.

Solutions of the problems a and b are given below. It can be seen
that the solution of problem c can be obtained from the solution of
the problem b by the inverse of x-axis direction. The problem d has
a simple analytic solution that is also given below.

3. Solution for the separate process zones (problem a)
3.1. General solution of the problem

The general solution of a problem for a plane with collinear slits
under the normal to the slits tension applied at infinity can be
expressed using two complex functions ®(z) and Q(z) (see
(Muskhelishvili, 1953)):

02) = 0o(2) + sy . 2@ =) + 5. 3)
where

Dy(2) = a%, F(z) :% / )5_(2 dt;

X(z) = ﬁ(z —c)P(z—dy)"?, (4)

k=1

n
Pia) =3 G G-,
—0
n is the number of slits, ¢, and d, are the ends of kth slit
(k=1,2,...,n).
Polynomial coefficients C; can be obtained from the condition of
displacement uniqueness:

Py (t)

2
Ly X+(t)

dt+/[<1>g(t)—q>g(t)]clt:0, k=1,2,...,n. (5)
Ly

Then the displacement can be obtained from the following
equation

2U(u +iv) = %9(2) - 0(2) - (2 - 20, (6)

where ® = (34 + p)/(2+ w) for the plain stress; Z and y are Lamé
constants,

w(z) = /Q(z)dz, ®(z) :/ D(z)dz.

3.2. Numerical solution of the problem

The function in (4) for n = 3 can be written on the upper faces of
slits as
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Fig. 1. Illustration of possible boundary condition dependency on crack disposition.
XH(t) = (-1 iX(t), tel, k=1,2,3, (7) X 5 '
XW) =¥ _day’, y=t—c
i=0
) 3 (11)
X(t) = \j [1ct=cot —do)|- A 5 '
k= XWy) = J’Z%dk)i}", y=di—t,
i=0

;) = 800+ S

where

s0={g 1oy =7
G@A?@mgeﬁﬁmm+mm N
and

Fu(t) = /k %dr, Fa(t) = /bkdk %dr. )
Then

;0 - 05 (1) = 2557

/Lk[cl)g(t)—Qg(t)]dt:(ff;!fki, ]I(:/Lk%dt, k=1,23.  (10)

The function in the numerator of (9) can be presented as

near the ends of the slits cy, d;. The analytical integration of Fy and
F4 leads to automorphic functions. To simplify the calculations
function X can be presented as polynomial on each of the segments
(O7y/ck)7 (Ovy:jk)' Where

Yex = Ak — Ci;, y/ck =KV = a;< = Ck;
Yae =de — b, Vi = Ky = die — by,
(see Fig. 2), and «x is lightly larger than 1.
One can obtain for the arguments from (0,y,,) and (0,y/,)

Nek Nk

X0) = VI _LaomW/YVa)" XO) = VI aon¥/Va)"  (12)
m=0 m=0

w
, —> WVhie— ’
b Tyt

Yak Yok
<>

Yar: ‘y(:(kﬂrl
<> —>

bp di Chy1 G

Fig. 2. The notation for geometric parameters used for crack tips.
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where n is determined by the accuracy of the representation.
Substitutions T = ¢y + Y4x? and T = di, — y4x? in (9) give us

~ /] VYek XZf(ck)m (.yckxz/y/ck)m 2yckxdx;
y(.‘kx (t—Ck) (13)
Vi X 2 & aiom VX /Y )™
Fa(t) ~ / & — = Yy 2y gexdx
or
‘ 1 N x2m+2dx
Fck(bck) ~ 2\/yck/ Zh ck) m \
1 Mgk me:ZCdx (14)
Fa(dar) ~ =2v/Yai / Zh dom a5
« K
where
ck g t—¢
h(ck)m = g (y I> = (cl;)1m , Ok = 5ck( ) K 3
yck K .yck
g d (1)
Y (dk) k—
e = B <ydI:> - K"’m + Oae = da(t) = de
Then integration in (14) yields
n
Fck(éck) ~ Zvyckzh(ck)mCm(écl<)§
m=0 (16)

n
Far(3ak) ~ =2Fae Y _hiaimCm (Sar),
m=0

where
1 y2m42
. _ X
Sm(é) 7/0 X2 _ (de
If 5] > 1

00 O—]
ln(0) = =071 o
m ;2(m+1+1)+1

if |8] < 1 it is possible to use recurrent formula

- 1 . - _
gm(b)_m'i'bgm—l(bL m=0,1,...,n,
where

1 linl=x2, 0=0
(x,l(é):é/ zd"é:ﬁ{ ”“5 :
0o X°— —tan™! ﬁ, 0<0

Further,

C((S)—zm:LJrém“C (6)
T & 2(m—j)+1 -1
and

n
> hnlm(8) = V(8) + 8{_1(8)H(9),
m=0
where
n
o) = vaém,
m=0
Whence, for the given problem parameters cy,ay, b, and d;

(k=1,2) one can obtain the following representations of F(t)
and Fg(t) for ¢, < t < @, and b}, < t < dy accordingly

n

. o L h;
H(©) = "hno™, vm_;m.

m=0

( )Nz\/}T[VCR( )JF(S( ( ) ck( )]> 5:5ck§ (17)
Fae(0) = =23V [Vak () + 01 (8)Hak (5)], 0 = Oar.

Each representation is defined by its own set of quotients
heiom, Vom (Mm=0,1,...,ny) for polynomials Hy and Vg, and
ham, Vam (M =0,1,...,ng) for polynomials Hg, and V.

Con51der the computational procedure to obtain J, (k =1,2,3)
in (10). To proceed, we first divide the interval of integration into
three parts; (ck,dy) = (ck, @) U (a}, bj) U (b, dx) then rewrite J, as
a sum of three integrals over these three parts

% G(o)
a X(t)

Among the functions F, Fg (k = 1,2, 3), function F; has nonin-
tegrable singularity on (c;, a) and Fg has nonintegrable singularity
on (b;,d,). Consider the computation of I principal value. Similar
formulas that can be obtained for Iy, I, have no singularities.
Using (8) for G(t) one can obtain

Ji=

dt = I + Lapk + lak- (18)

a 3-1 a
Icl _ / ! (_1) _ Fcl(écl) dt+ ! BAcl(t) dt, (19)
a X(t) q X(t)
where
3 3 "
Ba(t) = Y (-1) Sat) + Y (=1)*“Far(Sar), (20)
k=1 k=1
k#l

S and &g are the functions of t, they are defined by (15).Substitut-
ing t = ¢, + y4x* into (19) and taking into account (12) and (15) it
can be shown that

£) = VYo XHa(x*). (21)
Then using (17) and (21)
cd(Cl +YaX _
=20 [P g e

4 /\/— VC[(XZ) +X2Q—l (XZ)HCI(XZ) ClX
Vel Ha(x2) :

The first integral has no singularities. The second integral can be
found as

31 vE Vax®)  x  1-x 31 \FV( X%)
(-1) .4/0 [—+2 ]dx7(7> 40 dx + Ko |,

H(x?) 1+x Ha(x?)

where

Ko=(k—1)In §+1—2\/—

To calculate displacement at the crack tips we need to put
K = 1. This gives us Ky = —2.
Now it can be shown that

VE (1P 2 5 Va(x?) +
Icl:2ycl|;/0 ( ) \/y_d d( )

Ba(ci+¥a) gy, (1. @}

VVa Ha(x?) 2
(22)
has no singularities.
Similarly,
VE (1P 2 gV a(x?) + Ba(di — yax?) 31 Ko
o= —2yq / e 2 42 dx — (-1) ;
VYa Ha(x?) 2
(23)
where
3 3 3 )
Ba(t) = > (~1)" *Fa(da) + Z “Fa(dar)-
k=1 —

k#l
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3.3. Adjacent cracks

Now we calculate the quotients J and I for the case adjacent slit
ends d, and ¢, Fig. 2. Decreasing of wy = ¢y, — d, values lead to
increasing of qg); and g,y in (11) and increasing of ng and
Ne k1 in (]2)'

Eqgs (11) can be rewritten as

4
X(y) = 4 y(y + Wk)zqzc,lﬁl)iyi;

w0 (24)
A~ 4 .
Xy) = | YW =)D g

i=0

The quotients with primes below denote the case where the repre-
sentation (24) is used for X. The quotients without primes are for
representation (11).Then it can be written for X(t) near d, and
Ck+1 Using (12) that

Me ki1

A VYV W) D ElerimW Vo)™
m=0

ot (25)
VYV WD lagm Y/ V)"
m=0
Further,
F ¢ VYck+1 X\/yck+1x2+wkzg(ck+l)rn Yek1X /yck+1> 2 xdx:
ck+1( ) / ka+1X — (t — Ck+1) Yk )

(l’) z/ \/mxng(dk)m(ydkx /ydk
0

di — t — YgX? 2adds.

The expressions that correspond to (14) for the distant cracks,
are as follows

dX 0 =0cki1, &€= Eki1;

1 Mkt \/X—-‘r{:
Frk+1(5 S)Nz.yckﬂ/ thkﬂ —5 X

X2
RS x *E x2m+2
Far(0,¢€) —Zde/ Zhwk dx, 0=0ax, &= ¢,
(26)

where hi.;;, and h;dk)m can be determined similarly to (15) and

Wi
Bekil = Gk =T (27)
¢ Yekn Yak

After consecutive integration in (26) one can obtain

Nekst

Fc.kﬂ (67 8) ~ 2yc.k+1 Z h;c,kﬂ)mé’m(éz 8)> 0= 5c,k+1~, &= gc,k+]§
m=0
- ndk ’ o o 3
Fae(8,8) = =2Y4Y haomln(3,€),  0=0a, &= &a,
m=0
(28)
where
= /] ‘)2‘2 tEami2gy
X2 -9
If 6] > 1,

Cm(57 8) = _57] an+j+] (8) 0"
=0

1
:/0 Va2 +ex?dx, n=0,1,2,... (29)

If €< 1 these quotients can be computed using recurrent
formula

1
n,(&) = 2(n+ 7 <8Yn+1 +v1 +£>
Vi+e+1

Y]ZIDT;

Y _ 1 2n—1)eY, 1+e¢ n=1,2
= eI n=12
For arbitrary &,

_ Ve . .
nn(g)_2n+1F(fl/2, n+1/2; n+3/2; —1/¢),

where F is the hypergeometric function.
To determine the quotients {,,(4, ¢) for |5| < 1 one can use recur-
rent formula

gm(éﬁg):”m(g)—’—égm*](évg)» m:O,l,...,n.
where
’ f—
{4(d,8) = Yi+s ln\/TJr«v’ PP=1+£>0
Y; +7 tan™! ﬁ 72 —1-:>0
Then

n(8,8) =D M i(8)9 + ™1 1(5,8)

=0
and

> Hilm(8,8) = V'(8) + 60_1(8, &)H'(5),
m=0

where

n n
) => vmd", H( Zh M V= i
m=0 j=m

Thus, the expressions for the functions F(t) and Fg(t) are
obtained for ¢, < t < @}, and b, < t < d. These expressions are sim-

ilar to (17) for the distant cracks:
Far(9) ~ 2V (9) + 501 (9)Ho(0)), 6 = b 50
Fa(0) = =2y [V (0) + 0L 1(9)Hg ()], 0 =

Every expression has its own set of quotients (com> 7/(6,<>
(m=0,1,...,ng) for polynomials Hy,Vy and hiy,,
(m=0,1,...,ng) for polynomials Hy,, V.

Now we can determine J, (k = 1,2, 3) using (18). As it was men-
tioned above, among the other F, Fg (k = 1,2, 3) functions, F,, has
nonintegrable singularity on (¢, aj) and Fy has nonintegrable sin-
gularity on (b}, d;). Consider the computation of I, principal value
for both values of I, 2 and 3. Substituting t = ¢; + y.x* into (19)
and using (25) and (30) yields

X(€) = VFa x\/yax? + wi Hy(x*). 31)

Taking into account (30) one can obtain
V() + R H()

/X2 + egHy (X

+2/ By CH‘ych %) dx

where B (t) is defined by (20) and

s Vldiom

I = (-1 4y,
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XZL 1 XZ

VX2 +

o(K, €) 4/

:2(Y1\/W <8Y1 ++1 +8> 'K+j§+\/ﬁ>

\/ 1T+e)-vK+e
M A+e)+vK+e

To determine the displacements at the crack tips we need the

last integral for x = 1. Then Ko(1,¢) = —2Y2e.
Further,
= 2/ > - 2Y4Vy(x*) + Ba(ci + yax?) dx
L VX2 eqH.,(x2) (32)
+ (_1) a '.VCIKO(Kv Sd)’

where there is no singularities.
Using the similar approach one can obtain

Iy = _2/ ) 2y Vi () + Ba(di — yax?)
VX2 eqHy(x2)
—1*" yaro (K, €a). (33)

Now, it suffices to define the conditions of (11) or (24) usage in
expression for X: for k=1 or &4 > 1 we use the first of Egs. (11),
for k > 1 and ¢4 < 1 the first of Egs. (24); for k =n or ¢4 > 1 the
second of Egs. (11), for k < n and &4 < 1 the second of Egs. (24).
Values of ¢ and &g can be determined using (27).

dx

3.4. Lengths of process zones and vertical displacement of crack faces

Denote
di gm dg
Ck X(t) .

The corresponding integrals can be determined using the
scheme explained above

/ﬂktmdt /*ktmdt /“ktmdt
Ik,m = ~ + = + =
X)) Jao X(@®)  Jn X()

by ¢m
72/ ck+yck2x dx+/ tde
ck X ay X(t)

Iim = (34)

/1 (di — yax*)" dx,
0

Da(x?)
where
D (é):{HCk(é)/\/fy k:lOl'SCk>] )
“ VEF eqHL(¢), k>1and gg <1’
Da(¢) = {Hdk(f)/\/}’d ) k=3orégg>1
) =\ VT ety (¢), k<3and e <1’

The condition of displacement uniqueness (5) can be written as
a system of linear algebraic equations

3 N N 5 Ck
Z[kj—ncn = *]] - Ik‘3CO-, Ck = F7 k= 07 cee :37

1
This system allows us to determine C;,C, and Cs.
®(z) then is as follows
__F@ Ps@ P 5 <
d(z) = GX(Z)+ Xz 4 Ps3(2) 7;0012 .
To find the crack opening displacement we have to determine

the values of this function on the crack faces. Using Sokhotskiy-
Plemel formula we have

G(x)+Ps(x) p

= (x) X (%) %

o
~ Sl + 0y Q" (x) = ®*(0) + 5, (35)
where functions g(x) and G(x) can be determined using (8) as func-
tions of geometry parameters.
Parameters cy, dy, k = 1,2,3 can be found using the condition of

® finiteness:
{G“U+E@@:0 k=1,2,3
G(dy) + P3(dy) =0’ o

This gives us a system of 6 non-linear equations. Quotients of P3(x)
and values of function G at z = ¢, T = d; in this system should be
treated as functions of c, dy.

Consider now the displacements on crack faces. According to (6)
the displacement for the upper face of kth slit is as follows

=2 / [x®*(x) — Q7 (x)]dx.
It can be shown using (35) that

G(x) +Ps(x)

[u(x) +iv(x)

anmﬁ—m/%l

p o
~a dx+A2§/g(x)dx

X*(x)
®+1 n—1
M= M=
For the plane stress this can be written as
4 _2(1—-v)
M=% A =S

Taking into account (7) one can obtain the displacement for the
upper face of kth slit (k=1,2,3) as

ui(x):—A1§x+Azg/ g(t)dt
0

v (x) = £(-1) " Aoy 10 (x), (36)
where

R 216)
uo(x)f/Ck 7 dr. (37)

Using (22), (23), (32), (33) it can be shown that at the crack tips
vo(a) = (-1 yg{ (-1
N /‘ (1" 2yFa Ve
JO

+%w+mw+&w+mﬂm
\/yc Hck X2 ’

when k=1 or &4 > 1 and
vo(a) = (~1PF (=17 -y Vi e
+/W4ﬁﬁwwum+mm+mm
0

VX2 + &g Hy (x2)

+ P3(Ck +yckX2) dX}

when k >1 and ¢4 < 1;
w(b) = (=1 yal (-1

n /1 (1> 2 ViV (®) + Ba(di — YgX) + Ps(dic — ygx®) dx
0 Vax Hax(x?) ’

when k=3 or &g > 1 and
vo(b) = (<1 (=1’ ya Vi e
+/“FU”“Qmwwﬂﬂﬂmm—mwﬂ+hw—mwﬂw}

VX2 + eg Hy (x2)
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when k < 3 and gy < 1.

4. Coalescence of inner process zones (problem b)

In this problem there are two slits and five process zones.

The function from (4) on the upper faces of cracks can be re-
written for n = 2 as
X*(0) = (-1 "X (),

tel, k=12,

3 3
xty=|| ] =]t -do|.
k=1 k=2
k#2

Then the second integral in the condition of displacement
uniqueness (5) is as follows

. _ 20, _ [ G
/[(D ]dt ( ‘1)2,,(1.7 ]k /Lk X(t)dt,

-1,2, (38)

G(t) = —[Fe1(t) 4 Fer(t) + Fap ()] + Fe3(t) + Fg3(t),

where F and Fg can be determined from (9) and

_ [ X
Falt) = | g (39)
. 4 ) by +a
X(y) = ZQ(ck)iylv y=t—e, e = ITZ (40)
\ =0
Denote

/

K—1
Yer =02 — b1, Yo =Ky = 0y — by, a/2:a2+Tyelﬂ

b,]:bl_;c—l

An approximation of X(y) for (=y.,/2,y.,/2) can be built as a
polynomial

e

.y) ~ Zg(el)m(y/y/el)mv (41)
m=0

where n,; is determined by the accuracy of approximation.
Substituting T = e; + Y,,x into (39) one can obtain

12 ~8etymVerX/Ver)"
Fer(t) ~ / Sehm it/ Tty dx 42
81( ) 7‘1/22 yg]X_(t_e]) yel ( )
or
~1/2 Tt xMdx
For(001) ~ / Rt~ 43
31( el) ] —1/2,,12:0 (e])mxi(se] ( )
where
m
Zetym t—e
hetnym = Zetym (f%) = ;Jr,), ;01 = 0a(t) = B (44)
el yel
The sequential integration in (43) yields
el bel Zh el) mgm ()el (45)
where

12 um
cm<5>:/ *_dx.

When [§| > 1
e ; 0 when n is even
§)=-o" a0, =1 .
) jzzonm“” 'Tn { 1/(n2™"), when n is odd

For |6| < 1 a recurrent formula can be used:

{m(é):nm+(3gm—l(5): m:1727"'7n
where
L 12 dx 1/2-6
“(0) = /71/2 X=0 In ‘1/2 +5'.
Then

m-1 i
8) =D M ;8 +8"Lo(8)
j=0

where

n-1
=3 vnd", H() =
m=0

Thus, for the given parameters of the model c,a, by and di
(k =1,2,3) we have the following value of F,;(t) for b} <t < @,

Fe1(0) = Ve1(6) + (o(0)He1(8), 0 = Je1. (46)
To determine J, from (38) the interval of integration can be split

into five subintervals (c1,dz) = (c1,a)) U (a}, b)) U (b}, a,)U
(ay, b)) U (b, dy). We denote the corresponding integrals as follows

hm5m7 Um = i h]nj—m'

m=0 Jj=m+1

]1 = =l + Icel +1ab1 +Idel +1d2- (47>

o X(t)

Among the functions F.q, Fe1, Fg, Fe3, Fg3, function F.; has nonin-
tegrable singularity on (c;, a)) (I = 1 or I = 3), Fy has nonintegrable
singularity on (b, d;) (I = 2 or | = 3) and F,; has nonintegrable sin-
gularity on (b}, a,).

The value of I,y can be calculated using (22). The value of I;; can
be calculated using (23) when ¢4, > 1 and using (33) when &g, < 1.
It can be seen that in the above-mentioned equations (—1)*~* should
be replaced with (—1)*>"! = —1 and B, (t) should be defined as

Be1(t) = —[Fe1(0e1) + Fa2(da2)] + Fe3(de3) + Faz(0a3)-
5. Coalescence of all inner process zones (problem c)

In this case a vertical displacement of upper face of a slit with
two process zones can be obtained as

3

V(x) = A1y S {K(x,by) — K(x, 05}, 48)
k=1

where

Koo = (x- i S5 o0 = [

Coordinates of process zones ends can be found using a system
of equations
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Fig. 3. An example of the crack opening displacement plots calculated for three
different positions of the longest crack.

S22 {tan~! §(by) — tan! o)} = (1 - 2)

X X ) 49
Sha{X(b) ~X(@y} =0 (49)
X(x) =/ (x = c1)(ds — x).
For a single crack one can obtain from (48) that
v(x) = Ao {K(x,b) — K(x, —b)}. (50)

In this case, the first condition from (5) gives the following
dependence

2 arccosg =T

Q.I'U

6. Numerical results and discussion

Fig. 3 shows crack opening displacement for three cracks of dif-
ferent lengths (0.5,0.4,1) and three positions of the longest crack.
This opening displacement was calculated using (36) and shown
up to a factor A;o, which is a function of elastic constants.

Fig. 3 a corresponds to the problem a when all process zones are
separated. Fig. 3 b is for problem c. For these crack positions the
problem a has no solution, process zones between second and third
cracks collate and the distance w; between the first and the second
slits is small. Fig. 3 ¢ corresponds to the problem d when all inner
process zones collate.

Fig. 4 shows a transition from different kinds of the problem. So
we have problem a for a; = 1.08,1.07, 1.06, problem c for a; = 1.05
and problem d for a3 = 1.04,1.03,1.02.

The crack opening displacement near the tips is shown
separately in Fig. 5. We use dots to indicate the displacements of
the upper face of the cracks at the ends of process zones, vg, Uy
(k=1,2,3).

Consider the influence of the mutual positions of the cracks on a
deformation field. To do so we can compare the process zones
length and the opening displacement at the crack tips with the
corresponding values for the single crack. For a single crack of
half-length [ the length of process zones and the displacement at
the crack tips can be found as follows
Vi = l(cos*l %f 1), vy = A1a12lIncos™! %,
where displacements are given up to the factor, which depends on
the elastic constants only.

Fig. 6 a shows the dependence of y, =y, /vy, (curves ck) and
Y =Ya/Yn (curves dk,k=1,2,3) on crack mutual positions
according to notation given in Fig. 2. Fig. 6 b shows the similar
dependencies of v/, = va/vi and v}, = vp/vn on the position of
the left tip of the third crack. As it was beforehand, we lock the
positions of two cracks, a; = —0.3,b; =0.2,a, = 0.4,b, = 0.8, and
the position of the right tip of the third crack b; = 2.08. The posi-
tion of the left tip of the third crack, as, has the values from 1.02
to 1.08. It can be seen that y,,y},, v, and v, are growing as the
left tip of the third crack approaches the other cracks. The influence
the third crack left tip position on the length of outer zones of the
other cracks (curves 1a and 3b) is negligible.

Fig. 7 shows combined plots of crack opening displacement
for the following crack tips positions a; = —-1,b; = —-0.5,a3

Y
0.1}
0.05
0+
-0.05
0.1
z
1 1 1 1 1
0 0.5 1 1.5 2
a;=-0.3 b;=0.2 ay=0.4 by=0.8 b3=2.08
az=1.02
1.05
1.08

Fig. 4. Combined representation of crack opening displacement from Fig. 3 with intermediate crack positions (a; = 1.03,1.04,1.06,1.07).
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Fig. 7. The crack opening displacement for two collating cracks and the distant third crack.
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Fig. 9. The dimensionless process zone parameters for /p = 6.

=0.5,b3 =1. We use eight equidistant values for a,, from
a; = —0.4 to a, = —0.26. The problem should be solved as problem
b for a; =-04,...,—-0.32 and problem a for a, = —-0.3,-0.28,
—0.26. As it can be seen the influence of the position of a, on the
opening displacement of the third crack is negligible.

Fig. 8 a shows dependencies of y., =y./vn (curves ka) and
Y = Yax/n (curves dk,k = 1,2,3) on ay. Fig. 8 b shows the similar

dependencies for v, = va/vn, vy, = va/vn. The bending points
on the curves indicate the position when the process zones collate.

The numerical results are given for a/p = 3. The dependencies
for the values depicted on Fig. 8 and the lower levels of loading
are shown in Fig. 9 (6/p = 6) and Fig. 10 (o/p =9). As it can be
seen the curves become steeper for the lower levels of loading
(as the coalescence occurs for the closer cracks).

Fig. 10. The dimensionless process zone parameters for o/p = 9.
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Table 1

Parameters of PMMA creep function.
k Jx, days™! By, days™!
1 3.60-10° 3.95.10°
2 6.12:10* 3.74-10°
3 1.52:10* 3.02-10
4 3.26.10° 2.27-10°
5 7.44.10% 1.68-10%
6 2.06-10° 13.2
7 69.5 1.44
8 21.7 1.47.107!
9 6.11 2.03:102
10 5.44.107" 3.39.10°°
11 9.51.1072 2.98.107*

7. Mode I crack initiation in a viscoelastic plate

The solution that is given above can be used to determine
parameters of initial period of mode I crack development in a vis-
coelastic body under subcritical loadings.

According to [Christensen, 2003], the stress-strain relation for
isotropic non-aging linear viscoelastic material for uniaxial tension
and isothermal conditions can be written as a Boltzmann'’s integral

e(t) = /OtD(t —1)da(7),

where D is a material creep function. This function can be described
with a satisfactory precision using the following well-established
model (Rabotnov, 1980)

D(t) :%

DY /0 exp(—ﬁ:ﬂ)df} (51)

Parameters of this function for PMMA (E = 2240 MPa) are given
in Table 1 according to (Kaminsky and Selivanov, 2005).

Equations for the stressed state of a linear viscoelastic plate
with cracks can be obtained from the equations of the previous
sections using the correspondence principle (Christensen, 2003).
So the time dependence of the transverse crack opening displace-
ment can also be written as Boltzmann’s integral. The moment
when the crack starts to grow can be determined as a moment
when the opening displacement at the tip of some crack reaches
its critical value. During the studied period of crack initiation a,
and by should be constant but the opening displacement should
grow.

According to Eqgs. (36) and (51), the displacement of crack faces
as a function of time can be written as

v(x,t) = 2FGD(t) Vo(X), (52)

where ¢ is time and x is the coordinate and z,(x) can be determined
using Eq. (37).

Whence the equation to determine the duration of the crack ini-
tiation period ¢, is

40

?D(to)yOmax =0¢, Upmax = Max Z/(X)

X =0k
X = bk
k=123

and the condition of subcritical crack state is

0.5/ 0.51
e — —
— N ~———]

Fig. 11. The critical length vs. dimensionless parameter of external loading.
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Fig. 12. The initiation period duration t, vs. dimensionless parameter of external loading.

40
ﬁ Vomax < (36-

For further numerical computations we use §. = 30 - 107% m,
o = 35 MPa (Gain et al., 2011).

Fig. 11 b shows a dependence of the critical length of the largest
crack in the system of three cracks where one of them is twice as
big as two others Fig. 11 a on the dimensionless external loading
parameter. The curves were plotted for the following values of L:
1forL=12for L=1.25],3 for L=1.5],4 for L=2l,5 for L = o0
(the last case corresponds to the critical length of a single crack).
The critical length is determined as

_ TES
‘T 4O-VO max ’
where vpmax is calculated for a, = —0.5,b,
0.25,b;3 = FL + 0.25.

Fig. 12 shows a dependence of the initiation period duration on
the value of the external loading for the positions of the cracks
from Fig. 11 (plot a is for [ = 1 cm, plot b is for [ = 2 cm and plot
cis for [ =3 cm).

As it can be seen from figures, the bigger values of t, correspond
to the bigger values of L and ¢ /p.

=05,a13 = FL-

8. Conclusions

As it can be seen, the approach used in this work allows us to
obtain and analyze solutions for the problem of mutual influence
of positions of three collinear cracks in isotropic elastic body on
their opening displacements. The numerical analysis shows that
the opening displacement of the third cracks dependence on the
process of coalescence of other two cracks is negligible even for
the cases of very close cracks. Thus the conclusion is that the coa-
lescence process can be treated as almost independent from the
process of the third crack development.

The scheme that is used to solve the problem herein can also be
used to solve the problem for arbitrary number of cracks. It can
also be used to determine the service life duration of viscoelastic
isotropic and anisotropic bodies with crack sets, expanding the re-
sults from Kaminsky (1990), Kaminsky (1998) and Selivanov and
Chernoivan (2007).

Appendix A. Comparison of the results of this work with the
results from literature

Herein, a comparison is given between the results for the open-
ing displacement in a system of three collinear cracks obtained in
this paper and the results for a periodical system of collinear cracks

(Parton and Morozov, 1989). The potential functions for the peri-
odical system of cracks is

— g g_p _ p -9
O2) = i@ +5 -5, Q@) =0@)+5. o1 =5,
where
—@- V@2
C()=1In (A1)
\/a@> — a2l +IVa? -z
((2) = sin”?, a=sin md+d) a; = sin— L
S L 5 - L ’ 1= L )
where L is the distance between two adjacent cracks.
The displacement for the upper face of the crack is
X
o) = or [ Glewide
—(l+d)
{(x) £
~ Ao L GO ¢ %) = ReCH(x). (A2)

TJa J1-&

To calculate this displacement for —(I+d) <x <
Cx(x) as

Cx(x) =

0 we present
Ce(x) —Inlay +x],

- @ —-aVa: —x2+a® - mx
Ce(x) = (a; — x)
\/a? —a?va? —x2 +a? + aix

1<x(x)=/l+d m_/ ﬁtﬁddm 1)
/ ) In|a; +r|d
v1-12

The principal value of second integral in the above expression
can be found as follows.

1. When [{(x) + a1| < &

“~%Inla; + 1|
w  V1i-12
2. When —a; + e < {(x) <0

4% In|a; + 1|
Ja  V1I-12

@ Inja + 1| g

+ dr. A4
Joagp+e V1 — T2 ( )

I(x) = dt + F{(x)] — F[-a1 — &]; (A3)

I(x) = dt + F[-ay + & — F[-a; — ¢
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Y

Fig. A.1. A comparison of normalized opening displacement in the problem of three cracks with two limiting cases of its solution known from literature.
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Fig. A.2. A comparison of the process zone lengths in the problem of three cracks with two limiting cases of its solution known from literature.

Functions under integrals in (A.3) and (A.4) are regular so

Fo) = [ Infar +x3 be(ar +x)dx
k=0

Inja; +x 1

— Zbk(a] + x)k+1

k=0

k+1 (k+1)?

1.5
b
_yoa) __ 1 .
bk_ k1 ) y(X)_ /—1—)(27
y(z’”(—m) _ Z?:OA(Zn)i : (a%)n# 7 y(2n+1)(_a])

(1 _ a%)znn/z

Y pAenic (@)
- (1 _ a2)2n+3/2 :
1
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Below is some rows from the top of matrix A:

1

2 1

6 9

24 72 9

120 600 225

720 5400 4050 225

5040 52920 66150 11025

40320 564480 1058400 352800 11025
362880 6531840 17146080 9525600 893025

3628800 81648000 285768000 238140000 44651250 893025

Fig. A.1 shows the normalized opening displacement
(v(x)/(A10),0/p = 3) in the system of three collinear cracks (solid
lines) and in the periodical system of cracks (outer dotted lines).
For a comparison, the normalized opening displacement for a sin-
gle crack is shown according to Eq. (50) (inner dotted lines). The
difference between the results is bigger for the smaller L.

Using Fig. A.2a one can compare lengths of process zones
(¥e» Ya) in the system of three equidistant collinear cracks of equal
lengths with a length of process zones in the periodical system of
cracks (y,). The corresponding opening displacements at the crack
tips (vak, vpk and v,) can be compared using Fig. A.2b. The differ-
ence between the results diminishes for the large values of L. This
approves reliability of the results presented in this paper.
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