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In this work, a new adhesion model is proposed to analyze the peeling behavior of hyperelastic beams 

from a rigid flat substrate by utilizing a recently developed finite strain Euler beam model and the con- 

cept of adhesion energy. Both the large strain effect and bending effect are taken into account in the 

model. Hence, the model can be seen as a generalization of the extensible elastica-type adhesion model 

to the finite strain case, and it can also be taken as a generalization of the hyperelastic membrane-type 

adhesion model to the hyperelastic beam case. In the modeling process, the variational method is used to 

derive the equilibrium equation and associated boundary conditions, including one that physically means 

the local peeling (fracture) criterion. A first integral is found for hyperelastic beams and it is used to de- 

rive an equivalent global peeling criterion. Moreover, an analytical formula for the peeling force during 

steady peeling is also obtained. Furthermore, numerical solution procedures and results are presented 

to discuss the effects of large strain and bending deformation on the peeling behavior of the hyperelas- 

tic beam. The developed model will contribute to the modeling and understanding of the adhesion and 

fracture behaviors of soft structures and biomimetic adhesives. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Detachment of thin, flexible films by peeling is a ubiquitous

phenomenon of practical importance to a wide range of problems.

Examples include the fabrication and reliability of multifunctional

layered components ( Choi et al., 2005; Dupont et al., 2012 ), ad-

hesive tapes used to fix objects in place ( Gent and Kaang, 1986;

Sun et al., 2013; Williams and Kauzlarich, 2006 ), transfer print-

ing of micro/nano-scale materials and devices from one substrate

to another ( Feng et al., 2007; Song et al., 2009; Zaumseil et al.,

2003 ), the ability of plants and animals to cling to surfaces ( Cheng

et al., 2012; Melzer et al., 2010; Pesika et al., 2007; Sauer, 2011 ),

and the achievement of physiological functions of tissues involving

cell contact, adhesion and mechanotransduction ( Gao et al., 2011;

Qian et al., 2017; Shao et al., 2012 ). 

Peeling mechanics of thin films has been extensively studied

( Begley et al., 2013; Chen et al., 2008; Cheng et al., 2012; Ere-

meyev and Naumenko, 2015; Feng et al., 2013; Gialamas et al.,

2014; He et al., 2012 , 2013; Kendall, 1975; Oyharcabal and Frisch,

2005; Peng and Chen, 2015a, b; Peng et al., 2010; Pesika et al.,

2007; Rivlin, 1997; Sauer, 2011 ). Many theoretical works were con-

ducted via employing the inextensible elastica model ( Feng et al.,
∗ Corresponding author. 
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013; He et al., 2012; Oyharcabal and Frisch, 2005 ) or extensible

lastica model ( He et al., 2014 , 2013; Peng and Chen, 2015a, b ).

he finite rotation of the peeled film can be described by such

ind of models, while inextensibility or small strain assumption is

dopted in these models. For the case of small-angle peeling with

 moderate interfacial adhesion energy or large-angle peeling with

 strong interfacial adhesion energy, large strain probably occurs

n the peeled film, and thus the elastica-based adhesion models

ail to accurately describe the peeling behavior. The detachment of

yperelastic membranes from a flat substrate has also been stud-

ed by adopting the membrane approximation ( Begley et al., 2013;

remeyev and Naumenko, 2015; Gialamas et al., 2014; Srivastava

nd Hui, 2013 ). These adhesion models adopt hyperelastic consti-

utive relations and account for the large strain effect. However,

he bending effect (bending resistance) is neglected in such types

f models, which may be of importance in some cases ( He et al.,

012 , 2013; Peng and Chen, 2015a; Sauer, 2011 ). As far as we know,

he bending effect and the large strain effect have not been simul-

aneously considered in a single theoretical adhesion model. The

resent work is motivated to propose an adhesion model with both

he two effects taken into account. 

It is known that hyperelastic beam models account for the

ending deformation, while most hyperelastic beam models do not

onsider the variation of the cross-section of the beam under large

train ( Attard, 2003; Simo, 1985 ). Thus the large strain effect is not

https://doi.org/10.1016/j.ijsolstr.2019.03.011
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Fig. 1. Schematic figures for the reference and current configurations of a plane- 

strain hyperelastic beam lying on a rigid flat substrate and subjected to a peeling 

force. 
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orrectly captured in these models. In a recent work ( He et al.,

018 ), we proposed a new finite strain beam model which ac-

ounts for the thickness stretchability (with the plane strain as-

umption). Hence, both the bending effect and the large strain ef-

ect are captured in this model. In the present work, we will utilize

his model to develop a new adhesion model so as to describe the

eeling behavior of hyperelastic beams from a rigid flat substrate. 

The remainder of this paper is structured as follows. In Sec-

ion.2, the kinematics and constitutive relations for hyperelastic

eams are firstly presented. Based on these results and by using

he variational method, the equilibrium equations and associated

oundary conditions are derived, including one boundary condition

hat physically means the local peeling criterion. A first integral is

lso found for the equilibrium equation, which is further utilized

o derive the global peeling criterion. It is also shown in this Sec-

ion that the new adhesion model can be easily degenerated to an

dhesion model based on the extensible elastica theory and to an-

ther one based on the membrane approximation. In Section 3 , a

umerical solution procedure is proposed to analyze the un-steady

eeling behavior of hyperelastic beams. Some numerical results are

resented and discussed in Section 4 . At last, some conclusions are

raw in Section 5 . 

. Theoretical modeling 

.1. Kinematics 

A finite strain Euler-type beam model was proposed for hyper-

lastic beam structures in a previous work ( He et al., 2018 ). We

ill use the model to analyze the peeling behavior of a hyperelas-

ic beam from a rigid flat substrate. It is assumed in that model

hat any planar cross-section of the beam remains planar after

eformation, and the deformed cross-sectional plane is still per-

endicular to the deformed geometrical mid-plane. However, the

igid cross-section hypothesis usually adopted in the classical Eu-

er beam model is relaxed by accounting for the thickness stretch-

bility of the beam. Moreover, for simplicity, plane strain assump-

ion is also adopted in the model. In the rest of this subsection, we

ill directly give the main results on the kinematics of the beam.

lease refer to our previous work ( He et al., 2018 ) for the detailed

inematic description. 

An initially straight hyperelastic beam with rectangular cross-

ection (the width and thickness denoted by B and H , respectively)

s considered. As shown in Fig. 1 , the deformation of the beam

rom an initial (stress-free) reference configuration can be de-

cribed by a mapping x = χ( X ), or x = X + u ( X, Z ), y = Y, z = Z + w ( X,

 ) in a Cartesian coordinate system, where u and w are the hori-
ontal and vertical displacement components of any material point

n the beam, respectively. By the aforementioned deformation hy-

othesis, we have the following expressions for the two displace-

ent components: 

u ( X, Z ) = u 0 ( X ) − z ∗( X, Z ) sin [ θ ( X ) ] , 

 ( X, Z ) = w 0 ( X ) + z ∗( X, Z ) cos [ θ ( X ) ] − Z, (1) 

here u 0 and w 0 are the displacement components of any point

n the geometrical mid plane (or simply called mid plane), z ∗ =
 Z 
0 λZ d Z , in which λZ is the stretch of any material line element

 Z and the absolute value of z ∗ means the deformed distance of

he material point ( X, Y, Z ) to the mid plane, and θ ( X ) is the ro-

ation angle of the deformed cross-section and is also the slanted

ngle of any material line element d X in the deformed mid plane.

he stretch of the line element d X on the deformed mid plane is

enoted by λ( X ). According to the geometric relation as shown in

ig. 1 , it is easy to find that: 

= arctan 

w 

′ 
0 

1 + u 

′ 
0 

, λ = 

√ 

( 1 + u 

′ 
0 ) 

2 + w 

′ 2 . (2) 

Here and thereafter, () ′ represents derivative with respective to

he reference coordinate X . In order to describe the bending de-

ormation, the curvature of the deformed geometrical mid-plane is

efined by 

r = 

d θ

d s 
= 

d θ

λd X 

= 

θ ′ 
λ

(3) 

here d s is the deformed length of the line element d X , and θ ′ , de-

oted by κ , is the nominal curvature of the geometrical mid plane.

By adopting the incompressibility assumption, which is applica-

le to various kinds of materials including rubbers and biological

issues under some typical conditions ( Beatty, 1987; Ogden, 1997 ),

t was found in a previous work ( He et al., 2018 ) that 

Z = 

(
λ2 − 2 κZ 

)−1 / 2 
, (4) 

X = 

√ 

λ2 − 2 κZ , (5) 

By Eqs. (4) and (5) , the first principal invariant of the right

auchy–Green deformation tensor C was determined: 

 1 = tr C = λ2 − 2 κZ + 

(
λ2 − 2 κZ 

)−1 + 1 . (6)

Moreover, for the present homogeneous plane strain beam, the

econd and third principal invariants of C satisfy I 2 = I 1 and I 3 = 1,

espectively. 

.2. Constitutive equations 

For finite strain beams, the strain energy per unit reference

ength is defined by 

( λ, κ) = 

∫ 
A 

W d A , (7) 

here W is the strain energy per unit reference volume of the

eam, and the area integral is over the referential (undeformed)

ross-section of the beam. An energy formula for the studied thick-

ess stretchable hyperelastic beam was also derived in the previ-

us work ( He et al., 2018 ), which reads: 

φ = T δλ + Mδκ. (8) 

Eq. (8) is equivalent to the following constitutive equations: 

 = 

∂φ

∂λ
( λ, κ) , M = 

∂φ

∂κ
( λ, κ) , (9)

here T and M are the stress resultant and bending moment, re-

pectively, on the deformed cross-section. Eqs. (9) - show that
1 2 



186 L. He, J. Lou and S. Kitipornchai et al. / International Journal of Solids and Structures 167 (2019) 184–191 

 

W  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

o  

p

δ  

w  

p

 

(

δ  

w  

t  

t  

n  

a  

w

δ

 

 

a  

t  

v  

t  

d

T  

a

M

 

w  

f  

(  

a

θ  

 

p  

p  

(  

(  

(  

n  

d  

d  

r  

i

the generalized forces T and M on the cross-section are respec-

tively work conjugated to the corresponding generalized strains λ
and κ . 

The Neo–Hookean model takes a very simple form, 

 ( I 1 ) = 

1 

2 

μ( I 1 − 3 ) , (10)

where μ is the initial shear modulus. By Eqs. (7) , ( 9 ) and (10) , the

following constitutive equations for Neo–Hookean beams were de-

rived: 

φ( λ, κ) = 

1 

2 

μBH 

(
λ2 − 2 

)
+ 

μB 

4 κ
ln 

λ2 + κH 

λ2 − κH 

, (11)

T = μBH 

(
λ − 1 

λ3 

1 

1 − κ2 H 

2 / λ4 

)
, 

M = − μB 

4 κ2 
ln 

λ2 + κH 

λ2 − κH 

+ 

μBH 

2 κλ2 

(
1 

1 − κ2 H 

2 / λ4 

)
. (12)

Employing the Taylor series expansion, the following approxi-

mate constitutive equations for Neo–Hookean beams were also ob-

tained: 

φ

μBH 

= 

1 

2 

(
λ2 + 

1 

λ2 
− 2 

)
+ 

1 

6 

κ2 H 

2 

λ6 
+ O 

(
ξ 4 

)
(13)

T 

μBH 

= λ − 1 

λ3 
− κ2 H 

2 

λ7 
+ O 

(
ξ 4 

)
, 

M 

μB H 

3 
= 

1 

3 

κ

λ6 
+ O 

(
ξ 4 

)
. (14)

where ξ is defined by ξ = κH / λ2 , which is usually much smaller

than 1 even in the case of large rotation. These constitutive equa-

tions clearly show that in the general case of large strain, the

bending and stretching deformation of Neo–Hookean beams are

strongly coupled. 

In the infinitesimal strain limit, both the membrane strain

ε = λ− 1 � 1 and the bending strain κH ≈ ξ � 1. Thus, by truncat-

ing the Taylor series of Eq. (13) to the second order of ε and κH ,

it is found that φ = 2 μBH ε 2 + 

1 
6 μB H 

3 κ2 . For incompressible ma-

terial under plane strain and in the infinitesimal strain limit, the

Poisson’s ratio ν = 1 and μ = E/ [ 2( 1 + ν) ] = E/ 4 . Hence, we have:

φ = 

1 

2 

E A ε 2 + 

1 

2 

E I κ2 , (15)

where A = BH , E I = E B H 

3 / 12 and E is the Young’s modulus.

Eq. (15) clearly shows that in the infinitesimal strain limit, the

strain energy ( Eq. (13) ) per unit reference length for Neo–Hookean

beams recovers the classical combination of independent stretch-

ing and bending energies (without any coupling term). Similarly, it

can be shown that the constitutive Eqs. (14) 1 , 2 for axial force and

bending moment also recovers the classical T = EA ε and M = EI κ in

the infinitesimal strain limit. 

2.3. Governing equations and boundary conditions 

The principle of stationary potential energy ( Ogden, 1997 )

states that the total free energy E tot of the beam-substrate system,

consisting of the elastic energy E ela , the adhesion energy E ad and

the external potential energy E ext , reaches a minimal value when

the system is at equilibrium. By the principle, we have: 

δE tot = δE ela + δE ad + δE ext = 0 . (16)

The variation of the elastic energy of the peeled part of the

beam can be written as: 

δE ela = δ

∫ L 

φd X = 

∫ L 

( T δλ + Mδκ) d X − φ( a ) δa, (17)

a a 
here a is the referential length of the adherent (undeformed) part

f the beam and L is the total referential length of the whole hy-

erelastic beam. 

The variation of external potential energy is: 

E ext = −F x δ

(
a + 

∫ L 

a 

λ cos θd X 

)
− F y δ

(∫ L 

a 

λ sin θd X 

)
, (18)

here F x and F y are the horizontal and vertical components of the

eeling force at the end X = L , respectively. 

The adhesion energy of the beam-substrate system is

 Israelachvili, 2011 ): 

E ad = −ωδa, (19)

here ω is the adhesion work per unit reference length at the in-

erface between the beam and the substrate. It should be noted

hat any possible deformation of the adherent part of the beam is

ot considered here for the sake of simplicity. More complicated

nalysis can be conducted to discuss such an effect in the future

ork. 

Substituting Eqs. (17) –(19) into Eq. (16) , we obtain: 

E tot = 

∫ L 

a 
( T δλ + Mδκ) d X − φ( a ) δa 

−
∫ L 

a 

F x [ δλ cos θ − λ sin θδθ ] d X − ωδa 

−
∫ L 

a 

F y [ δλ sin θ + λ cos θδθ ] d X − F x δa 

+ ( F x λ( a ) cos θ ( a ) + F y λ( a ) sin θ ( a ) ) δa 

= 

∫ L 

a 
{ ( T − F x cos θ − F y sin θ ) δλ

+ 

[
−M 

′ + λ( F x sin θ − F y cos θ ) 
]
δθ

}
d X 

+ Mδθ | L − Mδθ | a − [ F x ( 1 − λ( a ) cos θ ( a ) ) 

− F y λ( a ) sin θ ( a ) + ω + φ( a ) ] δa (20)

Considering the arbitrariness of independent kinematic vari-

bles λ, θ and a , and using the relation δθ | a = δθ a − θ ′ ( a ) δa ( i.e. ,

he variation of θ a has two contributions, the one δθ | a is from the

ariation of the function itself at an assumed fixed boundary a and

he other θ ′ ( a ) δa is due to the variation δa of the boundary), we

erive the following Euler–Lagrange equations: 

 = F x cos θ + F y sin θ, M 

′ + λS = 0 , (21)

nd associated boundary conditions: 

κ + T λ − F x − φ = ω, at X = a , 

M = 0 , at X = L, (22)

here S = F y cos θ − F x sin θ and it physically means the shear

orce on the deformed cross-section of the beam. Eqs. (21) and

22) should be supplemented with the following essential bound-

ry condition: 

= 0 , at X = a. (23)

Actually, Eq. (21) 2 is the moment equilibrium equation for hy-

erelastic beams. It is also noted that from the fracture mechanics

oint of view, Eq. (22) 2 can be interpreted as the local peeling

or fracture) criterion, which states that the energy release rate G

the left-hand side of Eq. (22) 1 ) is equal to the adhesion work ω
or fracture energy) when the peeling front (crack front) at X = a

either propagates nor recedes. Such a peeling condition does not

epend on whether the peeling is activated by a force loaded or

isplacement loaded mode. This is completely the same as the cor-

esponding statement in the classical textbook of fracture mechan-

cs. 
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Fig. 2. Effect of the peeling angle on the peeling force and the mid-plane peeling 

stretch λ( L ) for the steady peeling of a plane-strain hyperelastic beam from a rigid 

flat substrate ( ̄ω = ω/ ( μBH ) ). 
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With the substitution of the constitutive Eqs. (14) 1 , 2 into the

quilibrium Eqs. (21) 1 , 2 , we have the following equilibrium equa-

ions in terms of kinematic variables for Neo–Hookean beams: 

μBH 

(
λ − 1 

λ3 − θ ′ 2 H 2 
λ7 

)
= F cos ( θ − θF ) 

1 
3 
μB H 

3 
(

θ ′ 
λ6 

)′ = λF sin ( θ − θF ) 

} 

for a ≤ X ≤ L, (24) 

nd corresponding boundary conditions: 

= 0 , at X = a , 
1 
3 
μB H 

3 θ ′ 2 
λ6 + F x ( λ − 1 ) − φ

(
λ, θ ′ ) = ω , at X = a , 

′ = 0 , at X = L, 

(25) 

here F = 

√ 

F 2 x + F 2 y and θF = arctan ( F y / F x ) are the peeling force

nd peeling angle, respectively. 

.4. A first integral and a global peeling criterion 

Integrating the moment equilibrium Eq. (21) 2 multiplied by θ ′ 
nd using integration by parts, we have 

 X 2 

X 1 

(
M 

′ + λS 
)
θ ′ d X = ( Mκ + T λ) 

∣∣X 2 
X 1 

−
∫ X 2 

X 1 

( Md κ + T d λ) = 0 

(26) 

here S = F y cos θ − F x sin θ and T = F x cos θ + F y sin θ have been

sed. With the work conjugation relations (9) 1,2 , Eq. (26) can be

implified to be: 

κ + T λ − φ = constant . (27) 

Thus the expression ( M κ + T λ−φ) is a first integral of the mo-

ent equilibrium equation for hyperelastic Euler beams, which

hysically means the complementary strain energy density (per unit

eference length) of the beam. In fact, such a first integral has been

xtensively used to obtain solutions of integral form for inextensi-

le elastica ( He et al., 2012 ) or extensible elastica ( He et al., 2013;

agnusson et al., 2001; Peng and Chen, 2015a ) within the context

f inextensibility or small strain. The present work clearly shows

hat the first integral also exists for hyperelastic beams . Moreover, the

hysical meaning of the first integral is more evident through such

 generalization. 

By using the first integral and the boundary condition

22) 3 , the local peeling criterion (22) 2 , which can be written

s M κ + T λ−φ − F x = ω at X = a , is equivalent to the following

global” one: 

 λ − φm 

( λ) − F cos θF = ω, at X = L. (28)
here φm 

( λ) = φ( λ, 0). In the special case of steady peeling ,

( L ) = θ F , F = T ( L ), and consequently the critical condition for

teady peeling is: 

 ( λ − cos θF ) − φm 

( λ) = ω, at X = L, (29)

here λ( L ) depends on the peeling force through d φm 

/ d λ = F . 

.5. Degenerations of the adhesion model 

As given in Section 2.2 , we have the following constitutive rela-

ions in the infinitesimal strain limit: 

 = EAε, M = EI θ ′ , φ = 

1 

2 

EA ε 2 + 

1 

2 

EI θ ′ 2 

Hence, the governing Eq. (21) 2 can be degenerated to the fol-

owing form: 

Iθ ′′ + 

(
1 + 

F x cos θ + F y sin θ

EA 

)
( F y cos θ − F x sin θ ) = 0 , (30) 

nd associated boundary conditions (22) can also be simplified: 

= 0 , at X = a , 
1 
2 

E A ε 2 + 

1 
2 

E I θ ′ 2 = ω, at X = a , 
 = 0 , at X = L, 

(31) 

hich are the same with those for extensible elastica as given

y He et al. (2013) and Peng and Chen (2015a) . Actually, the

xpression for the energy release rate on the left hand side of

q. (31) 2 was also stated by Suo and Hutchinson (1990), Thou-

ess and Yang (2008) and Collino et al. (2014) among many other

esearchers. 

When the bending effect is neglected, i.e. , adopting the mem-

rane approximation, the slanted angle θ of the detached part

f the beam will always be the same with the angle θ F . By

q. (21) 1 and Eq. (9) 1 , the only governing equation in this case

s: 

d φm 

d λ
= F , (32) 

here φm 

= φ( λ, 0). For Neo–Hookean beams, φm 

=
BH( λ2 + λ−2 − 2 ) / 2 . Thus, the stretch λ can be uniquely de-

ermined from this equation with the assumption that φm 

is a

onotonously increasing function of λ. 

Since the bending energy vanishes and the slanted angle at

he peeling front becomes θ F (no longer vanishes) in this case,

he expression for the energy release rate at the left-hand side of

q. (22) 2 should be modified. Therefore, the critical condition for

eeling in the membrane limit is obtained: 

 ( λ − cos θF ) − φm 

( λ) = ω, (33) 

here the magnitude of λ depends on the peeling force F through

q. (32) . It is evident that this condition is completely the same

ith the one (given in Eq. (29) ) for the steady peeling of hyperelas-

ic Euler beams. It is also found that Eq. (33) recovers the condition

or the peeling of hyperelastic membranes given by Eremeyev and

aumenko (2015) . Actually, in the limit of inextensibility or in-

nitesimal strain, Eq. (33) can be easily degenerated to the classi-

al Rivlin’s formula (1997) or Kendall’s formula (1973) as was done

y Eremeyev and Naumenko in their work. By Eqs. (33) and (32) ,

he critical stretch for the peeling of Neo–Hookean beams should

atisfy: 

λ − 1 

)
( λ − cos θF ) − 1 

(
λ2 + 

1 − 2 

)
= 

ω 

. (34) 
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Fig. 3. Variation of the energy release rate with the position of the peeling front 

under specified peeling forces ( ̄F = F/ ( μBH ) , H = 0.04m, L = 1m): (a) θF = π/ 2 ; (b) 

θF = π/ 3 ; (c) θF = π/ 12 . 
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3. Numerical solution procedure 

In this section, we will present a simple numerical solution pro-

cedure to the boundary value problem described in Section. 2 . The

solution procedure will be utilized to analyze the unsteady pealing

behavior of hyperelastic beams in the next section. 
With an given value for a and a specified external force F ,

uess an initial function λ0 ( X ), utilize the finite difference method

o discretize Eq. (24) 2 and apply the Newtonian iteration method

o solve the discrete nonlinear algebraic equation together with

oundary conditions (25) 1 and (25) 3 , so as to obtain θ1 ( X j ) ( j = 1,

, …, N , with N the number of discrete points); then substitute

1 ( X j ) and its numerical derivative ( θ1 ( X j+1 ) − θ1 ( X j ) ) / ( X j+1 − X j )

nto Eq. (24) 1 , and solve this algebraic equation to obtain a new

1 ( X j ); and repeat the above procedure k times until a defined

rror ( eg. , 
∑ 

j [ θk +1 ( X j ) − θk ( X j ) ] 
2 

or | θ k + 1 ( L ) − θ k ( L )|) is smaller

han a prescribed tolerance. It is evident that such a solution pro-

edure can be used to calculate the deformation of the membrane

ubjected to a specified force with a given position a of the peeling

ront. 

However, the deformation corresponding to the given a

s probably not consistent with the peeling criterion (25) 2 .

o solve such a problem, we need to evaluate the en-

rgy release rate G = ( M θ ′ + F x ( λ− 1) −φ)| X = a or equivalently

 = ( T λ−φm 

( λ) − F cos θ F )| X = L (by Eq. (28) ) for the given a based

n the calculated deformation. If the calculated G is smaller

larger) than adhesion energy density ω, increase (decrease) the

alue of the external force F and then adopt the above solution

rocedure again; repeat the second step until the difference be-

ween G and ω is smaller than a prescribed tolerance. The final

xternal force is the peeling force needed to peel the membrane

rom the given peeling front a . With the developed model and

he above solution procedure, the peeling behavior of hyperelastic

eams, taking Neo–Hookean beams for instance here, from a rigid

at substrate can be analyzed. 

. Results and discussion 

In this section, some numerical results will be presented to dis-

uss the effects of large strain and the bending deformation on the

eeling behavior of Neo–Hookean beams. 

.1. Steady peeling 

It is known that after a large enough part of a slender beam

s peeled from the substrate, the slanted angle θ ( L ) will become

qual to the peeling angle θ F , and the peeling force will not vary

n the subsequent peeling process (except the final process of

omplete detachment). Such a peeling process is usually called

teady peeling. The peeling force for the steady peeling of ad-

erent Neo–Hookean beams is firstly studied. The steady peel-

ng force is calculated by using Eq. (34) , and the variation of the

teady peeling force with the peeling angle is plotted in Fig. 2 .

he results are also compared with those predicted by the classical

endall model (1973) , which is theoretically applicable in the small

train limit. It can be found that the difference between the two

odels is very significant when the peeling angle is small. This is

ue to the fact that, during the steady peeling stage, the stretch of

he purely stretched part (or simply called “peeling stretch”, which

s just equal to the mid-plane stretch at the loading point λ( L )) of

he beam increases with the decrease of the peeling angle (as dis-

layed in Fig. 2 ), and consequently the large strain effect becomes

ore important for the small-angle peeling of hyperelastic beams.

ig. 2 also shows that the two models agree with each other in

 wider range for the case of ω̄ = 0 . 1 ( ̄ω = ω/ ( μBH ) ), in com-

arison with the case of ω̄ = 0 . 3 . This is also because, at a given

eeling angle, the peeling stretch for ω̄ = 0 . 1 is smaller than that

or ω̄ = 0 . 3 , and large strain effect is less significant for ω̄ = 0 . 1 .

t should also be noted that the peeling force during the steady

eeling stage does not rely on the bending stiffness of the beam

s predicted by Eq. (29) . 
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Fig. 4. The shape evolution (a, d), mid-plane stretch distribution (b, e) and local rotation distribution (c, f) of two hyperelastic beams during the peeling process from a rigid 

flat substrate. (a)–(c) ω̄ = 0 . 3 , θF = π/ 2 , H = 0.04m, L = 1m; (d)–(f) ω̄ = 0 . 3 , θF = π/ 3 , H = 0.1m, L = 1m. The needed peeling forces are also given in (a) and (d). 
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.2. Initial peeling 

The peeling process before steady peeling is termed “initial

eeling” in the present work. In this subsection, the initial peeling

ehavior, especially the bending effect during the initial peeling,

f the Neo–Hookean beam will be studied by using the adhesion

odel and the solution procedure presented in Sections 2 and 3 . 

Fig. 3 shows the variation of the energy release rate G ( ̄G =
/ ( μBH ) ) with the position of the peeling front for a beam sub-

ected to different peeling forces. Firstly, let’s discuss the results for

he case θF = π/ 2 as shown in Fig. 3 (a) for instance. Each curve

n this figure displays that during steady peeling, the energy re-

ease rate does not vary with the propagation of the peeling front,
hile it increases significantly with the propagation of the peeling

ront during the initial peeling. Therefore, for an adhesion inter-

ace with a constant adhesion work ω (per unit length), the peel-

ng criterion G = ω predicts that the needed peeling force in the

nitial peeling process is larger than that during steady peeling.

oreover, this figure also implicitly shows that the needed peel-

ng force decreases with the propagation of the peeling front dur-

ng the considered range of the initial peeling. The same conclu-

ion can also be drawn for the cases θF = π/ 3 and θF = π/ 12 , as

hown in Figs. 3 (b) and (c), respectively. 

The shape evolution of two beams during the peeling process

including the initial peeling and steady pealing) from a rigid flat

ubstrate are displayed in Figs. 4 (a) and (d). The needed peel-
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Fig. 5. Effect of the (initial) bending stiffness on the peeling force of the beam at 

specified positions. ( ̄ω = 0 . 3 , θF = π/ 3 , H 0 = 0.04m, L = 1m). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Effect of the peeling angle on the peeling force at a specified position ( ̄ω = 

0 . 3 , L = 1m). 
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ing force for each configuration is also given in the two figures,

from which one can directly find that the peeling force decreases

with the propagation of the peeling front during the initial peeling

stage. The peeled shapes of the two beams also evidently show

that the bending deformation of the beam is very significant dur-

ing the initial peeling stage, especially at the early stage of the ini-

tial peeling process. 

Besides the peeled shapes, the distributions of the mid-plane

stretch and the slanted angle for the two beams are also given in

Fig. 4 (b)(c) and (e)(f), respectively. The mid-plane stretch near the

peeling front could be as large as 1.3 even for θF = π/ 2 and it be-

comes even larger with the decrease of the peeling angle. In this

case, the small-strain elastica model is not applicable, and the large

strain elasticity should be employed. Moreover, in order to obtain

the deformed configuration of the peeled beam during the steady

or initial peeling state as shown in Fig. 4 (a) and (d), the bend-

ing stiffness should also be considered. Therefore, both the large

strain elasticity and bending stiffness should be accounted for to

obtain the deformed configuration of a hyperelastic beam initially

strongly adherent to a stiff substrate during the peeling process. 

The effect of the (initial) bending stiffness on the peeling force

of the Neo–Hookean beam is further discussed. Fig. 5 shows the

peeling force when the peeling front propagates to three different

positions ( X = 0.8, 0.85, 0.9m). It can be found that, for a specified

peeling front, when the bending stiffness is large enough, the peel-

ing force is larger than the corresponding steady peeling force. It

is demonstrated through the comparison among the three curves

in this figure that, for a given bending stiffness (or given thick-

ness), the closer the peeling front is to the peeling end ( X = 1m) of

the beam, the larger the contribution of the bending effect to the

peeling force will be. Actually, besides the bending stiffness, the

large strain elasticity should also be considered in order to cor-

rectly predict the peeling force at the initial peeling stage for a

beam strongly adherent to a stiffness substrate with a compara-

tively small peeling angle. This point can be explained as follows.

Firstly, it can be found from Fig. 2 that when a beam strongly ad-

herent to a stiff substrate is peeled with a comparatively small

peeling angle (should not be too small, as in that case the inter-

face sliding probably dominates the interface failure ( Collino et al.,

2014 )), the large strain effect significantly influences the steady

peeling force. Secondly, as depicted in Fig. 3 , the peeling force

during the initial peeling stage monotonically approaches to the

steady peeling force with the propagation of the peeling front, al-

though the latter does not rely on the bending stiffness. Consid-
ring these two points as well as the bending effect revealed in

ig. 5 , one can conclude that both the large strain effect and the

ending effect should be accounted for so as to predict the peeling

orce for the considered case. 

The effect of the peeling angle on the peeling force at a speci-

ed peeling front ( X = 0.9m) is depicted in Fig. 6 . The correspond-

ng peeling force for steady peeling is also plotted in this fig-

re. By considering the two cases X = 0.9m, H = 0.04mand X = 0.9m,

 = 0.08m, we know that the former case has a thinner thickness

nd thus a much smaller initial bending stiffness. Via comparison

mong the curves for the two cases and that for steady peeling, it

s easy to find that at a specified peeling front, the peeling force for

he case X = 0.9m, H = 0.04m, i.e. , for a beam with a comparatively

mall bending stiffness, is almost the same with that for steady

eeling for any peeling angle; while when the peeling angle is

lose to π /2, the difference between the peeling force for X = 0.9m,

 = 0.08m, i.e. , a beam with a comparatively large bending stiffness,

nd that for steady peeling is considerable. This is because only in

his case the bending effect is significant, and in other cases, the

eeling at the peeling front X = 0.9m has already “entered” into the

teady peeling stage. However, this does not mean that the bend-

ng effect is negligible for the case of small-angle initial peeling.

s long as the peeling front is close enough to the peeling end,

he bending effect should be taken into account during the initial

eeling stage, even if the peeling angle is small. 

At last, it should be pointed out that at the very initial peeling

tage, peeling (or crack) should be initiated at the end of the com-

letely adhered hyperelastic beam. For such a process, the present

eam theory should be replaced by a finite deformation elasticity

heory ( Krishnan et al., 2008; Long and Hui, 2015 ), and the exact

ohesion-separation relation on the interface should be adopted

ather than the present adhesion energy concept ( Oyharcabal and

risch, 2005; Peng and Chen, 2015a; Peng et al., 2010 ), so as to

btain quantitatively accurate results. Moreover, when the length-

o-thickness ratio of the peeled part is comparatively small, shear

eformable finite strain beam models instead of the present one

an be utilized to model the peeling behavior, in order to give

ore accurate predictions. Although the present model could not

redict the peeling initiation process or give very accurate results

specially for a peeled beam with small length-to-thickness ratio,

oth the large strain effect and the bending effect can be correctly

redicted by the model, at least semi-quantitatively. The present

dhesion model will be useful for evaluating the peeling and frac-

ure behaviors of soft structures and devices. 
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. Conclusion 

The peeling behavior of hyperelastic beams from a rigid flat

ubstrate is studied in the present work. By utilizing a previously

eveloped finite strain Euler beam model and the concept of adhe-

ion energy, a new adhesion model is established via the standard

ariational method to describe the peeling behavior. The novelty of

he model lies in that both the large strain effect and the bending

ffect are taken into account in a single model. Hence, it can be

aken as a generalization of the extensible elastica-type adhesion

odel and also an extension of the adhesion model based on the

embrane approximation. 

With the derived governing equations and boundary conditions,

 first integral is found for the hyperelastic beam. Based on the

rst integral, a global peeling criterion for the adherent hypere-

astic beam is derived and an analytical formula for the peeling

orce for steady peeling is obtained. Furthermore, a numerical so-

ution procedure and numerical results for the general peeling pro-

ess are also presented. It is found that the large strain effect is

ignificant at small-angle peeling, and thus the Kendall model is

ot applicable and the derived analytical formula for steady peel-

ng can be used instead. It is also revealed that, during the initial

eeling process (before steady peeling), the bending effect has to

e considered since it leads to the increase of the needed peeling

orce. Moreover, both the large strain elasticity and bending stiff-

ess should be considered when predicting the small-angle peeling

orce during the initial peeling stage for a beam strongly adherent

o a stiff substrate. The developed model and the obtained physi-

al insights on the large strain and bending effects will contribute

o the modeling, analysis and understanding of the adhesion and

racture behaviors of soft structures and devices. 
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