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Abstract

External bonding of FRP plates or sheets has emerged as a popular method for strengthening reinforced concrete struc-
tures. Debonding along the FPR—concrete interface can lead to premature failure of the structures. In this study, debond-
ing induced by a flexural crack in a FRP-plated concrete beam is analyzed through a nonlinear fracture mechanics method.
The concrete beam and FRP plate are modeled as linearly elastic simple beams connected together through a thin layer of
FRP—concrete interface. A bi-linear cohesive (bond-slip) law, which has been verified by experiments, is used to model the
FRP-concrete interface as a cohesive zone. Thus a cohesive zone model for intermediate crack-induced debonding is estab-
lished with a unique feature of unifying the debonding initiation and growth into one model. Closed-form solutions of
interfacial stress, FRP stress and ultimate load of the plated beam are obtained and then verified with the numerical solu-
tions based on finite element analysis. Parametric studies are carried out to demonstrate the significant effect of FRP thick-
ness on the interface debonding. The bond-slip shape is examined specifically. In spite of its profound effect on softening
zone size, the bond-slip shape has been found to have little effect on the ultimate load of the plated beam. By making use of
such a unique feature, a simplified explicit expression is obtained to determine the ultimate load of the plated concrete
beam with a flexural crack conveniently. The cohesive zone model in this study also provides an efficient and effective
way to analyze more general FRP—concrete interface debonding.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

External bonding of FRP plates or sheets has emerged as a popular method for strengthening conventional
materials such as reinforced concrete. The interface between the FRP and concrete plays a critical role in this
strengthening method by providing effective stress transfer from the existing structures to externally bonded
FRP plates or sheets and keeping integrity and durability of the composite performance of FRP—concrete
hybrid structures. Debonding along the FPR-concrete interface can lead to premature failure of the structure.
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Here, the FRP—concrete interface refers to a thin layer of adhesive and the adjacent concrete within which the
relative deformation between FRP and concrete mainly happens as revealed by experiment study (Yuan et al.,
2004). Therefore, the debonding of the FRP—concrete interface has to be properly characterized and modeled
before this technique can be commonly accepted in practice.

FRP-concrete interface debonding can be generally classified into two major types (Teng et al., 2003): plate
end debonding and intermediate crack-induced debonding (IC debonding). The former debonding model has
been studied extensively in the last decades (Roberts and Haji-Kazemi, 1989; Malek and Saadatmanesh, 1998;
Smith and Teng, 2001); while only a few studies have been conducted on the latter mode. Wu et al. (1997) took
an experimental and numerical combined approach to study IC debonding. They tested a plain concrete beam
reinforced by FRP plate under three-point bending load on which a mid-span notch was created to simulate a
mid-span crack. Later, they also developed a fracture mechanics based model (Yuan et al., 2001) to analyze IC
debonding. The significance of IC debonding was also examined experimentally by Sebastian (2001). To pro-
vide quantitative stress distribution at the vicinity of the intermediate crack, Leung (2001) developed a linear
fracture mechanics solution in which a linear elastic model was used to model the FRP—concrete interface.
This linear elastic model of interface was also adopted by others (Neubauer and Rostasy, 1999; Lau et al.,
2001; Rabinovitch and Frostig, 2001) in studying cracked concrete beams flexurally reinforced by FRP com-
posites. A strength model of IC debonding was proposed by Teng et al. (2003) recently.

Although the linear elastic model is used conveniently in the literature to model IC debonding, experimen-
tal studies have shown that the real stress deformation relationship of the FRP—concrete interface is nonlinear
(Chajes et al., 1995, 1996; Bizindavyi and Neale, 1999; Dai et al., 2005; Yao et al., 2005). The stress deforma-
tion relationship is generally referred to as bond-slip law in the literature since the deformation of interface is
mainly the relative displacement (slip) between the FRP plate and the concrete beam. Generally, this nonlinear
relationship consists of two stages: an initially elastic stage in which the interfacial stress increases with the slip
until it reaches a maximum value, and a softening stage in which the interfacial stress decreases with the slip.
Existing solutions of IC debonding fail to consider the softening stage of the interface and therefore, are
limited to elastic analysis and cannot be used to simulate debonding growth. By considering a nonlinear
bond-slip law, it is possible to model the whole debonding process of FRP—concrete interface as demonstrated
recently by Yuan et al. (2004). Existing solutions of such an approach are limited to simple single-lag shear
specimen (Triantafillou and Plevris, 1992; Taljsten, 1996, 1997; Yuan et al., 2001; Wu et al., 2002a,b; Yuan
et al., 2004). With aim to efficiently simulate and better understand the IC debonding behavior, an ana-
lytical model by using a nonlinear bond-slip law is developed for the FRP-reinforced concrete beam in this
study.

As much experimental evidence (Chajes et al., 1995, 1996; Bizindavyi and Neale, 1999; Taljsten, 1997)
shows, the interface defined previously can be viewed as a large-scale fracture process zone (cohesive zone).
The nonlinear bond-slip relationship essentially is the cohesive law of this zone. Therefore, by using a non-
linear bond-slip law in the analytical model, the debonding process is essentially approached through a
non-linear fracture mechanics method—cohesive zone model (CZM). Cohesive zone model (CZM) pioneered
by Dugdale (1960) and Barenblatt (1962) is gaining more and more attention and popularity nowadays in
modeling fracture processes with large-scale fracture process zones. In CZM, the locally damaged materials
forming a narrow band of localized deformation may be modeled by nonlinear springs which represent the
major physical variables. Compared with the single-parameter fracture approach of linearly elastic fracture
mechanics, which ignores the microscopic details and discloses little what happens within the damage zone,
the CZM takes the behavior of fracture processing zone into consideration and provides a way to examine
the “inner problem” of understanding, characterizing and modeling the failure processes that actually lead
to energy dissipation. What is more, the CZM unifies the crack initiation and growth into one model and
can be easily formulated and implemented in numerical simulation, such as the “interface element” method
in finite element code (Yan et al., 2001; Blackman et al., 2003).

In this study, a cohesive zone model of IC debonding along the FRP—concrete interface is established ana-
lytically by using a non-linear bond-slip law. This paper is arranged as follows: the closed-form solution of the
cohesive zone model for IC debonding is first established, followed by a case study of midspan debonding of a
FRP-plated beam under point load. Parametric study is then carried out to study the effects of FRP stiffness
and bond-slip shape on the IC debonding of the FRP—concrete interface.
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2. Cohesive zone model of IC debonding
2.1. Bi-beam system

Consider a simply-supported reinforced concrete beam (RC beam) reinforced by an FRP plate subjected to
point loads and/or uniform distributed load, as shown in Fig. 1(a). To simplify the analysis, only a flexural
crack existing at the mid-span of the concrete beam is considered in this study. For more general configurations
of cracked beams, similar procedure as developed next can be used. Since a symmetric load is applied, only half
of the structure needs to be analyzed (Fig. 1(b)). The geometry of the cross-section of the plated beam is shown
in Fig. 1(a). Similar to many other researchers (Roberts and Haji-Kazemi, 1989; Malek and Saadatmanesh,
1998; Smith and Teng, 2001), both the concrete beam and the FRP plate are modeled as linear elastic simple
beams (beam 1 and 2 in Fig. 1, respectively). Therefore, the constitutive laws for these two beams read:

N;=Cal, M;=-Dw!, i=1,2 (1)

where N; and M; are axial forces and bending moments of beam i (i = 1, 2), respectively; u; and w; are axial and
vertical displacements of beam i (i = 1, 2), respectively; C; and D; are axial and bending stiffnesses of beam i
(i=1, 2), respectively; and C; = E;bh;, D; = E;I;; E; is the Young’s modulus of beam i (i =1, 2); b; and A; are
width and height of beam i (i = 1, 2); I; is the moment of inertia of the beam i (i =1, 2).

It should be pointed out that such a model is a simplification of a real FRP-plated RC beam in which the
RC beam is not strictly linearly elastic and there are usually more than one flexural cracks existing. Neverthe-
less, the model in this study allows us to obtain simple closed-form solutions of IC debonding, and can be
extended to more complicated cases in which the nonlinearity of concrete behavior and multiple cracks are
considered. New lights can also be shed on the IC debonding process and the significant effect of bond-slip
on IC debonding.
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Fig. 1. Interfacial stress of a FRP-plated concrete beam with a mid-span crack.
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The flexural crack introduces local flexibility at the crack location and is conventionally modeled as a rota-
tional spring with infinitesimal thickness at the crack location (Fig. 1(b)). For a plain concrete beam, if the
depth of the crack is known, the rotational stiffness of the spring K, can be estimated by (Paipetis and Dima-
rogonas, 1986):

Kr = c(al,hl)Dl (2)

where /; and a; are the thickness of the beam, the depth of the crack, respectively; D is the bending stiffness of
the whole concrete beam at the location of the crack, and ¢(ay, /1) is determined by the crack geometry. Based
on fracture mechanics principles, for example, c(a;, 1) can be approximated for a;/h; < 0.6 as (Paipetis and
Dimarogonas, 1986):

1 a 2 a 3 a 4 a >
)= ——(1.8624( %) —3.95(%) +16.375( %) —37.206( 4
clar ) 5.346h1< <h1> <h1> + n n

6 7 8 9 10\ !
ap aj aj aj ap
+76.81 <E> —126.9 (h_1> + 172 (h_]> — 143.97 (h_1) + 66.56 <h_]> > (3)

However, it is difficult to obtain an explicit expression of K, for RC beam due to the existence of steel bars. In
such a case, a trial-and-error method proposed by Rabinovitch and Frostig (2001) has to be used.

Considering the free body diagram of Fig. 1(c) and (d), equilibrium equations on axial direction and bend-
ing moment can be obtained as

dN dNv
o gt @
M=M+M,+N>(Y+ 7)) (5)

where 7 is the interfacial shear stress. Y, and Y, are the distances from the bottom of beam 1 and the top of
beam 2 to their respective neutral axis.

It should be pointed out that interfacial normal (peel) stress also exists. It is not shown in Fig. 1(c) and con-
sidered in this study for the following reasons. (a) Existing solutions (Smith and Teng, 2001) show that the nor-
mal stress has little effect on the derivation of shear stress. (b) According to Rabinovitch and Frostig (2001), the
concrete beam and FRP plate are in contact at the vicinity of the flexural crack. This suggests that the normal
interface stress is compressive at this location and, therefore, doesn’t affect the debonding of the FRP-concrete
interface if fiction is neglected. This is different from the normal stress at the FRP plate end, which is tensile and
plays a critical role in the plate end debonding. (c) Strictly speaking, any interface fracture is naturally mixed-
moded (Hutchinson and Suo, 1992) and the stress status within the interface layer is very complicated. Never-
theless, for a given shearing fracture energy introduced on the debonding surface, the mode I and mode II
fracture energy values can be linearly related, as found by Wu et al. (2002a,b). In such a way, the IC debonding
can be treated approximately as a mode II fracture (Yuan et al., 2004; Niu and Wu, 2005).

Beam 2 is bonded to Beam 1 through the FRP-concrete interface layer which is modeled as a large fracture
process zone with a nonlinear bond-slip law as demonstrated in many experimental studies (Chajes et al., 1995,
1996; Bizindavyi and Neale, 1999). It has been shown by experiments (Wu and Yin, 2003; Nakaba et al., 2001)
that a bi-linear bond-slip relationship in Fig. 2 can be a good approximation of this non-linear relationship. In
Fig. 2, the bond-slip law has three segments: (1) elastic stage when t < tp or 0 < 0;: stress increases linearly
with slip; (2) softening stage when d; < § < dy: stress decreases linearly with slip; and (3) debonding stage when
of < O: stress is zero and FRP is separated from the concrete beam. This non-linear relationship can be
described by the following equation:

—0 0<d<9
0
= 6 -9
t 5:_ 5, ¢ 01 <0< O (6)
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Fig. 2. Bi-linear bond-slip model.

where 0 is the slip along the interface (relative axial displacement of the top of the FRP plate and the bottom
of the concrete beam) and given by

5:(u|—Y]w’1—u2—Y2w’2) (7)

From the point of view of CZM, such a nonlinear relationship is a material property of the FRP—concrete
interface. 1y is the shear strength of the interface; J; is the separation slip; K, = t4/6; is the initial elastic stiffness
of the FRP—concrete interface; and the area given by the area under the curve is the fracture energy Gy which
can be calculated by

of 1
Gf = tdd = —5f‘Ef (8)
0 2

The above bond-slip model implies that the shear stress is constant along the thickness direction within the
interface layer. This is a simplification of the complex stress variation of the interface stresses in that direction.
One drawback to this model is that the boundary condition of shear stress at the location of the flexural crack
and the plate end (where 7 = 0) cannot be satisfied. However, such a simplification only affects the shear stress
at a very small region at the vicinity of the crack and plate end. Therefore, the bond-slip model is widely
adopted to obtain interfacial stress of FRP-plated beams (Roberts and Haji-Kazemi, 1989; Malek and
Saadatmanesh, 1998; Smith and Teng, 2001).

2.2. Debonding analysis

Under external load, interfacial shear stress is developed along the FRP—concrete interface. Initially, the
applied load is small and the maximum interfacial stress 7 is less than 7y and therefore, the interface is in
its elastic stage. The interfacial shear stress distribution at this stage can be sketched as shown in Fig. 1(e).
Due to the crack tip opening displacement introduced by the flexural crack, a finite slip between the FRP plate
and the concrete beam exists at the location of the crack. A stress concentration is introduced by this slip at the
vicinity of the flexural crack. This stage ends when the interfacial stress reaches 7¢ or the slip reaches ;. If we
keep on increasing the load, the slip at the location of the flexural crack becomes greater than §; and the FRP—
concrete interface begins to linearly soften with the slip. This is an elastic-softening stage in which two distinct
regions appear along the interface as shown in Fig. 1(f). In region I, the slip is less than d; and the interface is
linearly elastic; while in region II, the slip is greater than d; and the shear stress reduces linearly. If the slip at
the location of the crack is greater than the separation slip Jy, shear stress reduces to zero and full debonding
initiates and grows along the FRP—concrete interface which forms region 111, a fully debonded region.

2.2.1. Stage I: Linearly elastic stage
In this stage, the bond-slip relation is given by the first equation of Eq. (6). Substituting Eq. (7) into this
equation yields
Tr

T:a

(u1 — Y]W’l — Uy — YZWIZ) (9)
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Differentiating both sides of Eq. (9) with respect to x gives
T’:é—j(u’l — YW —uy — Youh) (10)

An assumption used commonly in the literature (Smith and Teng, 2001; Rasheed and Pervaiz, 2002) is
adopted in this study, which states that the FRP plate and concrete beam have the same curvature, i.e.,

wl =w) (11)
Substituting Eq. (11) and constitutive equation (1) into Eq. (5), we have

oM V4T
! Di+D, D/ +D,

Substituting Eq. (12) into Eq. (10) and considering Eq. (1), we obtain
;T <N1 N, Yi+1,

N, (12)

T =s\e ¢

Ci C, D +D
Differentiating both sides of Eq. (13) with respect to x and considering equilibrium equation Eq. (5) give the
governing equation of shear stress along the interface of FRP and concrete:

" Tf 1 1 (Y1—|—Y2)2 Tf Y1—|—Y2 ,
= —4—4— "2 \pr4— M 14
"o <c1 C, (DD ) T8 D+ Ds (14)

(M- (¥1 + mzvz)) (13)

The solution can be expressed as

T = Ae " + Beh¥ 4 Tc (15)
where
2
\ Tr , 1 1 (Y1+Y2) Y1—|—Y2
=Cy =, =CcM, C = b|l=—F=—+—"——"""ZT"), Ci=——""— 16
1 i 5 Tc 2<C1 C, D, + D, (D]—&-Dz)Ci ( )

7 1s the particular solution of Eq. (14) and essentially the shear stress along the FRP—concrete interface if the
FRP-concrete system is treated as a fully composite beam. Noting that when x is sufficient large, shear stress is
limited and converges to its particular solution, B =0 (Wang and Qiao, 2004). The axial force in the FRP
plate can be obtained through Eq. (4) as

N2 :N20+/ bz(AT+Tc)dx:N20—/ bz(Ae_)'lx—F‘Ec)dx:NzC—FANz (17)
0 0
where
L2
Nx:/ byC.M dx = —byC.M (18)
* X L/2 A .
AN2:N20—/ berillxdx—bz/ CTM/dx:Nzo—Nzco—b27(1—e/‘lx) (19)
0 0 o
where N,cis the axial force of the FRP plate if the FRP—concrete system is treated as a fully composite beam and
Naco = Nacl,_g = =b2C:M|,_, (20)

At locations sufficiently far away from the crack, the axial force in the FRP plate is reduced to the composite
beam solution. Considering Eq. (17), we have

A
NzozNzcoerz/T (21)
1
bA _,
i (22)

AN, = —
2 gy
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To determine A4, displacement boundary condition at x = 0 is employed. Considering the symmetry, the dis-
placement boundary condition is given by

e
Wil = =55 (23)
The bond slip at the location of the flexural crack is then obtained as
5| = 51 = (ul - Y1W’ — Uy — YQW,) = i 1 (24)
x=0 1 2) [x=0 2Kr o
According to Eq. (12), we have
D D(Y,+7Y,) 4b,
M| = 1+ (Y, + Vo)bCOM| L1273 25
1|x70 D1 +D2< ( 1 2) 2 ) 0 Dl +D2 )\‘1 ( )
Substituting Eqs. (24), (21), (22), (15) into (9) at x =0, A is determined as
A 3k o (L+ (Y14 Y2)bCoM| g — el (26)

Yy D by
1+a‘1 2K, D1+D2(Y1 + YZ)AI

The interface shear stress presented by Eq. (15) increases linearly with the applied load until it reaches the
shear limit tg, i.e.

o = (27)

Substituting Eq. (26) into Eq. (27), we can solve the elastic limit which is the maximum load under which the
interface is under elastic stage.

2.2.2. Stage II: Elastic-softening stage
If the load is increased after reaching the elastic limit, part of the interface turns to soften with the slip and
two regions along the interface are formed (Fig. 1(f)).

2.2.2.1. Region I: Linearly elastic region (6 < ¢;). In this region, solution of shear stress has the same form as
in Eq. (15)

=AY 4 r¢ (28)
where « is the softening zone size and coefficient A4, is determined by the boundary condition:

Ty = Tr (29)
Therefore, A; is obtained as

Ay =1 —1¢|,_, (30)

Similar to the previous section, the axial force in this region can be obtained as

b - ;
N2e = N2C + AN2L"7 AN2(_» — 2(Tf )TC|x:O) ef/hl(xfa) (31)
4

2.2.2.2. Region II: Linearly softening region (6; < 6 < dr). Considering the second expression of bond-slip rela-
tion in Eq. (6), Eq. (10) turns to
1
V=5 (= Vil — i — Yowd) (32)

Differentiating both sides of Eq. (32) with respect to x again, we have
2
. Tr (1+1+(Y1+Y2)>b‘[ T Y1+Y2M,

(33)

:5f—51 C, ' C, D +D, > 8 — 0, Dy + D;
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The solution of Eq. (33) is then obtained as

7= Ccos(lp(x — a)) + Dsin(A(x — a)) + 1¢ (34)
and
. T¢ 1 1 (Y1 + Y2)2 o1
— o = 35
s (c,*cfr DitD, | o= (33)

C and D are two coefficients determined by continuous conditions at x = a

0
=1, 7|, = L

- 36
X=a— 5f _ 51 T ( )

7|

X=a—

x=a+

Substituting the shear stress solution Eq. (34) into above continuous equations, we can determine C and D
as

s 1 &

C:Tfirc|x:a’ Dzz(ff*’[ch:a)*g 5f_5] Tc — (37)
Axial force of the FRP plate in this region is then calculated based on the constitutive law Eq. (1):
NZS = N20 — bz/ (CCOS(/lz()C — a)) +Dsin(iz(x — a)) —+ Tc)dx = N2C —+ ANzS (38)
0
where
b . . ,
ANys = Ny — Nocy — /1_2 (C(sin(Aa) + sin(Ay(x — a))) — D(cos(A(x — a)) — cos(Aa))) (39)
Considering the continuous condition of the axial force at x = a, we have
A, = LT Telems) (40)
L1
Hence
by (. A by ¢ , ,
N2() = Nzc() + —2 <sm(/12a) -— COS(/Lza)) (’L’f — Tc|x:a) + ; ! ( COS(/Lza))’EC (41)
A2 A 15 0r — 0 Y
and
AN, = by sin(Ay(a —x)) — 22 cos(A(a—x)) | += b2 i (1 —cos(A(x —a)))t, (42)
s A 20— _
Considering the shear stress at x = 0:
b A by o ,
AN»s = —f <sm(m(x —a)) — 22 cos(Ja(x — a))> (1 — Teliey) + 2 < (1 = cos(Za(x — a))) 7.
2 z 45 O — 01 .
(43)
Substituting Eqs. (24), (34), (37) into Eq. (43) yields
cos(Aa) — 2 sin(/a) — 5? sin(Aa) + ) cos(Aa) ) | (tr — tcl,—,) + Tcliso
ll s iz x=a )
OrTp ¢
= — I - (Y1 +7Y2)Cy)M
o — 0 Y1+Y2( St 2)Cw) ¥=0
L% byE(1 — cos(ha)) + sin(4a) |, (44)
-0\ 2 Yi+7Y, 2 )te x=a
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where ¢ = bl 221, 515, (Y, + Y,). The size of softening zone 11, a, can be determined by Eq. (44) for a given
applied load. The largest softening zone is reached when
0y = 0¢ (45)

Solving Egs. (44) and (45) simultaneously, we can find the ultimate load which is defined as the load at which
the full debonding will initiate along the interface, as well as the corresponding size of the softening zone.

2.3. Stage III: Elastic-softening-debonding stage

If the load is increased after reaching the debonding limit, full debonding occurs along the interface (Fig. 1
(g)) and propagates a distance d from the location of the flexural crack. In this region, the interface shear stress
is zero. Therefore N; and N, are constants. The stress distribution within region I and II can be obtained by
simply shifting d in abscissa in that of elastic-softening stage. Following the same procedure described in the
preceding section, we can express the shear stress and axial force in this stage as

Elastic Region I:

T = (‘Cf — ‘Cclx:de)eiil(x*dia) =+ Tc
(46)

by (¢ — 1| _
Ny = Nac + AN»,, AN, = we—mx-d%
1

Softening Region II:

7= (T — Tclieura) <Cos(/12(x —d—a))+ Q sin(Ay(x —d — a)))

A1
b, o .
_2 / _d—
o e . sin(4,(x a)) + ¢
Nas = Nac + ANy,
b b2 5f ’
ANy == (sin(Ay(a +d —x)) — 2 cos(a(a+d —x)) | + = (I —cos(Aa(x —d —a)))t.| —
s )1 15 0r — 0 e
(47)
Fully debonded region III:
=0
Nag = Noc +ANys, ANyy = Nag — Nac
by (. Ja
Nyy = Nac|,_y + /1—2 <51n(A2(a +d—x))— 7 cos(Za(a+d — x))) (48)
2 1
b, O ,
2 1 - —d—a)))
25, (1 —cos(Aa(x a)))te B
Considering the slip in this region, we have
5=90|,+ / PN
0
( No Ny Yi+Y,
=9 —— — (M - (Y Y>)N,) | dx
|x:0+/0 ( G C2+(D1+D2)( Y1+ 12) 2))
Y, 1 1 (Y41, Yi4Y, /
= T2 Mdx 49
2K, (Cl MRS NN AR ) (49)

Using above equation and considering Eq. (45), we can determine the softening zone size and ultimate load at
this stage as described in the stage II.
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3. Deflection of the concrete beam

The deflection of the plated beam can be obtained by integrating Eq. (12) twice:

X M X
w/lzw'1|x:0+/ (—W—F(Y]+Yz)Nzc>dx+(Y1+Yz)/ AN, dx = w)|,_o + W + A} (50)
0 1 2 0

where

/ ! M ! *
ch:/o (—DI+D2+(Y1+Y2)N2C)C1X7 AW1:(Y1+Y2)/OAN2dx (51)

The deflection of the concrete beam is then obtained as
wi = wi|, o+ / (Wilieo + Wi + An) dx (52)
0
At x = L/2, we have

L !
wi |x:L/2 = Wilog +5 W)

L2 L)2
+/ w/lcdx—i—/ AW, dx =0 (53)
2 0 0

x=0
Therefore, the mid-span deflection is obtained as
wi |x:0 = W1C|x:0 + AW] |x:0 (54)

Eq. (54) suggests that the concrete beam deflection at the mid-span consists of two parts, i.e., one from the
composite beam deformation assuming perfect bonding between the FRP plate and concrete beam and no
crack existing in the concrete beam, as given by

L)2
wiely == [ wiedr (59)
0
And the second part is due to the crack opening and the slip along the FRP—concrete interface, as given by
L L/2 L M]| Y] 4 Y2 L/2 X
A =—Zw| - Tdy =2 20— / /ANdxdx 56
Wi |x:0 ZWI 0 /O Wl 2 ZKr (Dl +D2) 0 0 2 ( )

4. Analysis of a simply supported beam under mid-span point load

To demonstrate the strength of the proposed CZM and shed new light on IC debonding, a simply sup-
ported beam under a mid-span point load P (Fig. 1) is studied in this section.

4.1. Closed-form solution

Considering a point load P applied at the mid-span of the simply supported beam shown in Fig. 1(a), bend-
ing moment and its first and second derivatives are
P

L 1 P "o__

If P is small, the interface is in elastic stage and the interface shear stress is given by Eqs. (15) and (26) as

7 Y D C;
T= b_j 2Klr Dl+lDz A+ + Yz)bzcr)%+ TPe”dX - C }_) (58)
- i Y D by T
1+ﬁ2_1<er1+]Dz(Y1+Y2)/l_; 2

P, can be calculated by substituting Eq. (58) into Eq. (27) as
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(1+r_fh_1L@b_z)5l

5, 4K, Di+D,
o h D hi+hy [ Cy C:b
5_: 4_lér D1+]D2 (1 -7 (TV"‘TZ))
Note that P, is the maximum value of load applied to the beam without causing softening in the FRP-concrete
interface and therefore is referred to as elastic limit of the FRP—concrete interface in this study. Eq. (59) shows

that the P, is determined by J, and 1, as well as the geometry of beams. At this stage, the mid-span deflection
due to the flexural crack and interface slip is obtained as

P, = (59)

ORI (E2 (YRR A
=0T (D +Dy) 2 \2 ) 22K,
D] AbZ
1 Yi+7Y M Yh.+Y
< o (0 vaCoMl - (114 1) ) (60

When P > P., the FRP—concrete interface enters the elastic-softening stage in which shear stresses in region
I (elastic) and II (softening) read:

P ; P
T= (Tf +C; 5) e 10— CIE (x> a) (61)

- (u e g) <cos(}v2(x —a)) +j“—2 sin(Ja x — a))> _ cfg (x < a) (62)

‘1

This stage ends when the full dobonding begins to initiate. The corresponding load P at this point is referred to
as ultimate load of the beam P, and can be determined from Eq. (62) as

(cos(/lzau) —j—l sin(izau)>
—C, (cos(ﬂyzau) —% sin(Aay,) — 1)

Pu = Tf (63)

where a, is the ultimate softening zone size of the interface determined by Egs. (44) and (63). According to Eq.
(56), the mid-span deflection due to the flexural crack and IC debonding reads

i (Y1+Y2)(T1+%P)b2 Ll 1 1 1 1 b 2 1 .
Aw|,_o=— D1 +Ds) 24 Z+f12 /1} 1+—) cos(la) + 1/12 25 +) sin(/a)

L 1 D (PL Y, +7Y, L Yi+Y, (w+SP)by( . . Ja
2RD1 +D2{ R b,C, (E—a)P— RSN W sin(Zya) + )—ICOS(Aza) (64)
After full debonding initiates, FRP—concrete interface enters the elastic-softening-debonding stage
=0 (x<d) (65)
P A . P
7= (rf +C, 5) (cos(}uz(x —d—a))— T sin(A,(x —d — a))) - CTE (d<x<d+a) (66)
1
P\ P
T= <rf +C, E) e Mbrd=a) _ CTE (x>d+a) (67)

At this stage, we have

‘ b2 d2P(3L1 *2d) _ (Y] + YZ)(TF_TC|x:d+a)b2 <L1 1 > <1+1> 1 < 1+ )
Y= T4, + D) (D1 +D») Mo k) i 2

2 24
o) ot 2 () o 15 |
14

L1 D, Yi+Y, (Tf—TC| —d )bz . o R

- M Y1+ Y2)b,C.M|._, — x=dta ) =

22KrD1+D2{ Lo+ (Y14+Y2)02C:M|,_, (D1 +Ds) p sin( 20)+A1 cos(42a)
(68)
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The maximum size of softening zone @, and ultimate load P, for a given full debonding distance d can be
determined in the same way as in the elastic-softening stage.

4.2. Numerical verification

In this section, numerical examples and parametric studies are conducted for the simply supported beam
shown in Fig. 1(a). Same parameters as Wu and Yin (2003) are used: E; =25GPa, L=750 mm,
Ly =700 mm, /&; =150 mm, E, =230 GPa, b; = 100 mm, b, = 100 mm, /i, =,y = 0.11 mm. The bi-linear
bond-slip parameters are chosen as: ;= 150 = 1.8 MPa, Ky, = Ki,o = 160 M/mm, G; = Gy = 0.5 N/mm.

As verification, the interfacial shear stress and FRP stress calculated by the present analytical solutions are
compared with numerical solutions of finite element analysis (FEA) (Wu and Yin, 2003) and presented in
Fig. 3. The coefficient of rotational spring ¢ is approximately chosen as 0.0001167. Despite small deviation
which may be attributed to the approximation of ¢ value, Fig. 3 shows the present analytical model has
achieved good agreements with FEM, which validates the solution of this study.

4.3. Parametric studies

4.3.1. Interfacial shear stress and debonding growth

Interfacial shear stress distributions along the FRP—concrete interface under different loads are illustrated
in Fig. 4(a). When P = 1.05 KN, the interface is in elastic stage and the shear stress distribution along the
FRP-concrete interface is given by Line 1 of Fig. 4(a). A stress concentration exists and the shear stress
reaches its maximum at the location of the flexural crack. Noting that the maximum shear stress reaches ¢

2.4
—a— Present Model
2 4
o FEA (Wuand
E 1 Yin 2003)
s .6 1
@
o 1.2
»
8 08
%)
0.4
o
0 & : SAAAASA n_0
0 100 200 300 400
(a) X (mm)
2000
—=a— Present Model
1600 -
E A ---@--- FEA (Wu and
Yin 2003
2 1200 | :
[
2]
1
o 800 A
o
o
[T
400 -
O T
0 200 300 400
(b) X (mm)

Fig. 3. Comparison between the present solution and FEA (Wu and Yin, 2003): (a) shear stress distribution along the interface; (b) FRP
stress distribution.
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Fig. 4. Interfacial shear stress and FRP stress distributions along FRP-concrete interface under different loads: (a) interfacial shear stress
distribution; and (b) FRP stress distribution.

under this load, P = 1.05 KN is the elastic limit of the FPR-concrete interface. Softening zone begins to ini-
tiate and propagate and the interface enters elastic-softening stage if P is increased further as presented by
Line 2 in Fig. 4(a). In this case, P =10 KN and a softening zone with a size of 90.3 mm is formed along
the FRP—concrete interface. The size of softening zone increases with P until the full debonding initiates at
the location of the flexural crack as shown by Line 3 in Fig. 4(a), of which P = P, = 12.86 KN. The interface
debonding grows along the interface with P and a fully debonded region is created as shown by Line 4 in
Fig. 4(a). In such a case, P =16.5 KN and a 50 mm fully debonded region has been induced as indicated
by the zero shear stress zone in Fig. 4(a). The stress distributions in the FRP plate corresponding to these loads
are presented in Fig. 4(b).

The feature of debonding growth along the interface is captured in Fig. 5. Fig. 5(a) shows that the softening
zone size a increases with the propagation of debonding. But the increment rate is very small and can be
neglected. Therefore, it can be said roughly that the softening zone size is a constant during the debonding
growing along the interface. Fig. 5(b) clearly shows that P, increases with the debonding region size d. Such
a trend suggests that P must be increased in order to further debond the interface. Otherwise, the interface
debonding tends to arrest. Therefore, for the thicknesses of FRP plates examined in Fig. 5(b), the debonding
process is stable, which is also revealed by Rabinovitch and Frostig (2001) in their linearly elastic analysis.
With the increment of the debonded region, the moment applied to the concrete beam at the location of
the crack, My, also increases as demonstrated in Fig. 5(c). In this figure, M, is given by
- % <PZL + (Y1 + Y2)byC, (é' - a’)Pu — (Y1 +Yy) <rf + ng) % <sin(iza) +j£ cos(im)))

2 ‘1

M

(69)

The stress intensity factor (SIF) at the tip of the flexural crack is proportional to M;,. Once M, is big
enough such that the SIF of the crack is greater than the critical value of the concrete (fracture toughness
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Fig. 5. Debonding propagation along the FRP—concrete interface: (a) softening zone size varies with debonding distance d; (b) ultimate
load ¢, varies with debonding distance d; (c) M, varies with debonding distance.

of concrete), the flexural crack will initiate again and grow from the depth a; to a new depth a5 in the concrete
beam. In such a case, the new P, of the crack depth a, is lower than P which is the P, for the shorter depth a;.
As a result, IC debonding initiates and grows suddenly and d becomes larger until a new balance between P,
and d is reached for the crack depth a,. Such a debonding process is unstable and observed frequently in
experiments.

4.3.2. Effect of stiffnesses of FRP plates

The stiffness of the FPR plate has been identified by many researchers as an important factor affecting
the interfacial stress distribution. In this study, different stiffnesses of FRP plates are modeled by varying the
thickness FRP plate as shown in Fig. 6. In Fig. 6(a), shear stress distributions along the FRP-concrete
interface for three thicknesses are examined under P = 12.86 KN. Obviously, the FRP plate stiffness plays
a significant role in the interfacial shear stress distribution and debonding growth. In the case of the FRP
plate with the lowest stiffness (4, = 0.11 mm), a full softening zone is created and full dobonding is initiated
as indicated by the zero shear stress at the location of the flexural crack. When /, = 0.2 mm, the shear stress
at the location of the flexural crack is greater than zero, and therefore, only a partial softening
zone (79.18 mm) is created along the FRP—concrete interface (Fig. 6(a)). If s, = 0.4 mm, an even smaller
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Fig. 6. Effect of FRP plate thickness on debonding: (a) shear stress distribution varies with the FRP plate thickness; (b) softening zone size
a varies with the FRP plate thickness; (c) ¢, varies with the FRP plate thickness; (d) M, varies the FRP plate thickness.

Fig. 7. Effect of K, on interfacial debonding: (a) bond-slip shapes with different 6;(Kj) considered; (b) softening zone size a varies bond-
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softening zone (61.86 mm) is observed from Fig. 6(a). Generally, the ultimate softening zone size a,
increases with the thickness of FRP plate as shown in Fig. 6(b). The effect of 4, on the value of P, is pre-
sented by Fig. 6(c), in which two different trends of P, varying with /4, can be observed. When d is very
small, P, increases monotonically with /,; while after d is greater than a certain value, P, turns to decrease
with 7, initially until it reaches a minimum value, and then increases with /,. Fig. 6(d) shows the effect of &,
on Miy. Generally (d> 0 in this case), the thicker the FRP plate is, the less the M, is. However, when
d =0, a very interesting phenomenon is revealed by Fig. 6(d), i.e., Mo is almost a constant regardless
the thickness of the FPR plate.

4.3.3. Effect of the bond-slip shape

As aforementioned, the bond-slip law is essentially the constitutive law of the cohesive zone. Currently,
many researchers have assumed that two independent parameters ( Gy and either 7, or dy) are sufficient to model
interfaces using CZM (Rahulkumar et al., 2000; Mohammed and Liechti, 2000; Hutchinson and Evans, 2000).
Such an assumption leads to a “two-parameter’” nonlinear fracture model which is favorable to experimental
characterization of concrete-FRP interfaces. However, recent studies (Chandra et al., 2002; Alfano, in press)
show that the CZM shape also plays a significant role in debonding due to different boundary conditions
involved. In this section, the sensitivity of the bond-slip shape is examined.

JL700) - [

Y B S e ——

0 0.5 1 1.5 2 25

0 05 1 15 2 25
(c) k

Fig. 8. Bond-slip shape effect (J; effect) on debonding: (a) different bond-slip shape with J¢; (b) P, varies with d (c) M, varies with Jy.
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In Fig. 7, the effect of initial stiffness of the bond-slip law K3, on IC debonding is studied. The variation of
the bi-linear bond slip shape is achieved by changing the value of §; while keeping all the other parameters
same as 7y, Or, and Gy (Fig. 7(a)). Fig. 7(b) shows that the softening zone size increases with K, Interestingly,
P, and M, almost do not change with K}, as demonstrated in Fig. 7(c) and (d). In other words, the shape of
CZM seems not important in determining the values of P, and Mjo. This important feature provides us
with an efficient way to calculate P, and M, As shown in Fig. 7, to calculate P, and M, we can use
an assumed linear shape is to replace the real bi-linear bond-slip model (Fig. 7(a)). In this way, the
FRP-concrete interface is only in linear elastic stage. In a similar way as described before, we can obtain
Pu and Ml() as

_ 9rv2Gr + 2FGy (70)
Y Ré: + HV2G;
D (Pl L P,C\ b
M10D1—|—D2<4 +(Y1+Y2)bch<2 d>Pu (Y1+Y2)<Tf+ > )/q) (71)
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Fig. 9. Load-deflection curve of FRP-plated concrete beam with mid-span crack: (a) effect of flexural crack length; (b) effect of flexural
crack length on the slip at x = 0; (c) effect of FRP plate thickness.
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Fig. 8 examines the effect of ¢ (or 7¢) on IC debonding. In this case, J¢ is changing while Gy and initial elastic
stiffness Ky, are kept as constants as shown in Fig. 8(a). Fig. 8(b) shows that P, increases monotonically with
or. It is obvious that the larger is Jy, the larger the slip along the FRP—concrete interface can be developed to
accommodate the crack opening more easily. As a result, P, value is increased. As P, getting larger, M, in-
creases correspondingly as demonstrated in Fig. §(c).

Fig. 9 presents the curves of the mid-span deflection varying with P. Two particular points are labeled on
the curves, i.e., the elastic limit P, Point 1 and ultimate load P, Point 2. Initially, load point (mid-span) deflec-
tion increases linearly with the applied load P until P, is reached. After P becomes larger than P, the debond-
ing enters its elastic-softening stage. In this stage, the mid-span deflection of the beam increases nonlinearly
with P as shown by the segment 1-2 in Fig. 9. Beyond Point 2, the deboding enters elastic-softening-debonding
stage, at which the mid-span deflection increases with P almost linearly. Same trend is also observed for the
variation of the deflection with the debonding size d. As shown in Fig. 9(a), the mid-span deflection increases
almost linearly with the growth of debonding size d. The load-deflection curves of beams with different ¢ values
are compared in Fig. 9(a). As mentioned before, ¢ value is related to the flexural crack length, i.e., the larger ¢
value, the smaller cracked length. Fig. 9(a) shows that the flexural crack length has a profound effect on the
mid-span deflection and the ultimate load. It is not surprising to see that mid-span deflection increases with
crack length a, (decreases with ¢). Similar trend of the interface slip varying with P can be observed as shown
in Fig. 9(b). The effect of the FRP plate thickness on the mid-span deflection is demonstrated in Fig. 9(c). In
this figure, three different thicknesses are considered to represent three different reinforcement levels. It can be
seen that the mid-span deflection can be significantly reduced by using thicker FRP plates.

5. Conclusions

In this study, intermediate crack-induced debonding of FRP-plated concrete beams is studied through a
nonlinear fracture mechanics approach. Both the concrete beam and FRP plate are modeled as linearly elastic
beams while the FRP—concrete interface is modeled by a bi-linear bond-slip law. A cohesive zone model is thus
established and then used to simulate the initiation and growth of FRP-concrete interface debonding. Closed-
form solutions of the interfacial stress, the FRP stress and the ultimate load of the plated beam are obtained
and verified with a numerical solution based on finite element analysis. Parametric studies are carried out to
demonstrate the significant effect of FRP thickness on the interface debonding. The bond-slip shape is exam-
ined specifically. In spite of its profound effect on the softening zone size, the bond-slip shape has been found
to have little effect on the ultimate load of the FRP-plated beam. From the point of view of CZM, this means
that “two-parameter” ( Gy, dr) model may be sufficient in determining the initiation and growth load of IC deb-
onding. By making use of this unique feature, a simplified explicit expression is obtained, which can be used to
determine the ultimate loads of plated concrete beams with flexural cracks conveniently. The cohesive zone
model in this study also provides an efficient and effective way to analyze more general FRP—concrete interface
debonding.
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